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A Cooperative Approach to Queue Allocation of Indivisible Objects

Herbert Hamers a Flip Klijn b Marco Slikker c Bas van Velzen d
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Abstract

We consider the allocation of a finite number of indivisible objects to the same number of
agents according to an exogenously given queue. We assume that the agents collaborate in order
to achieve an efficient outcome for society. We allow for side-payments and provide a method
for obtaining stable outcomes.

Keywords: indivisible objects, queue, cooperative game theory
JEL classification: C71, D61, D70

1 Introduction

Many housing associations use waiting lists to allocate houses to tenants. Typically, the tenant
on top of the waiting list is assigned his top choice, the tenant ordered second is assigned his top
choice among the remaining houses, etc. A major reason why this mechanism is considered not
very desirable is that the outcome of the procedure might not be efficient for society. In particular,
by collaboration the total group of tenants might be able to achieve a higher utility.

A situation where a finite number of indivisible objects need to be allocated to the same number
of individuals with respect to some queue is studied in [5]. To be more precise, [5] discusses
a situation with a finite number of indivisible objects, the same number of individuals, and an
exogenously given queue. Subsequently, an allocation method is proposed and it is shown that it
satisfies certain desirable properties.

The difference between our model and that of [5] is that we assume that the preferences of the
agents over the set of objects are expressed in monetary units. This implies that the allocation
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proposed by [5] might not be efficient for society. Only by collaborating the agents will be able
to reach a society-efficient allocation. Because of this collaboration individual agents might not be
satisfied with the final assignment of the objects. We assume that these agents are compensated
by means of side-payments. Our main result is that the society-efficient assignment is supported
by side-payments that guarantee stability, i.e., no coalition has an incentive to split off from the
grand coalition.

Another well-known model with indivisible objects is the housing market of [3]. This housing
market considers a finite number of agents, each initially possessing an object (house). The agents
have preferences over the set of objects. It is shown that core allocations exist for this model. In
[6] the model of [3] is adapted by assuming that the preferences of the agents can be expressed by
monetary units. In this way the class of permutation games is introduced and the non-emptiness
of the core is shown. Hence, our work parallels the approach to the housing market.

The remainder of this note is organized as follows. In Section 2 we briefly discuss several
concepts from cooperative and non-cooperative game theory. In Section 3 we present our model
and associate with each object allocation situation a cooperative game. In Section 4 we first provide
a method to obtain stable allocations by using assignment games (cf. [4]). Next, we show that when
agents have a common rank order over the objects our cooperative game coincides with a related
permutation game.

2 Game theoretical preliminaries

In this section we shortly introduce some game theoretical concepts. First we recall some notions
from cooperative game theory. The section ends with a brief description of extensive form games.

A cooperative game is a pair (N, v) where N = {1, . . . , n} is a finite set of players and v, the
characteristic function, is a map v : 2N → R with v(∅) = 0. The map v assigns to each subset
S ⊆ N , called a coalition, a real number v(S), called the worth of S. The core of a game (N, v) is
the set C(v) = {x ∈ R

N :
∑

i∈S xi ≥ v(S) for every S ⊆ N and
∑

i∈N xi = v(N)}. Intuitively, the
core is the set of efficient payoff vectors for which no coalition has an incentive to split off from the
grand coalition. The core can be empty.

A bipartite matching situation (N, M, U) consists of two disjoint finite sets of agents N =
{1, . . . , n}, M = {1, . . . , m}, and an n × m-matrix U . If agents i ∈ N and j ∈ M collaborate they
achieve a utility of Uij ∈ R. This matching situation was first modelled as a cooperative game in
[4], in the following way. Let S ⊆ N and T ⊆ M . A matching µ for S ∪ T is a map from S ∪ T

onto itself of order two (that is, µ(µ(i)) = i for all i ∈ S ∪ T ) such that for all i ∈ S with µ(i) 6= i

it holds that µ(i) ∈ T , and for all j ∈ T with µ(j) 6= j it holds that µ(j) ∈ S. We write (i, j) ∈ µ

if µ(i) = j for i ∈ S and j ∈ T . Let M(S, T ) denote the set of all matchings for coalition S ∪ T .
The assignment game (N ∪M, vA) is defined by vA(S ∪ T ) = max{

∑

(i,j)∈µ Uij : µ ∈ M(S, T )} for
all S ⊆ N , T ⊆ M . That is, the worth of a coalition is obtained by maximizing the sum of utilities
over the set of matchings for this coalition. A matching that maximizes the sum of utilities is called
optimal for the coalition. An optimal matching for N∪M is simply called optimal. It is well-known
that assignment games have a non-empty core (cf. [4]). In particular, let µ be an optimal matching
and let x = (u, v) ∈ R

N × R
M . Then it holds that x ∈ C(vA) if and only if ui + vj = Uij for each

(i, j) ∈ µ, ui + vj ≥ Uij for each i ∈ N , j ∈ M , and xk ≥ 0 for each k ∈ N ∪ M .
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A permutation situation (N, M, U) consists of a finite set of agents N = {1, . . . , n}, a finite set
of objects M = {1, . . . , n} and an n × n-matrix U . Each agent i ∈ N initially possesses object
i ∈ M . The utility that agent i ∈ N receives from the consumption of object j ∈ M is given by
Uij ∈ R. By reallocating their initially owned objects the agents can possibly achieve a higher
utility. Permutation situations can be modelled as cooperative games in the following way. A
reallocation of the objects of coalition S ⊆ N among the members of S can be expressed by a
bijection πS : S → O(S), where O(S) denotes the set of objects initially owned by coalition S.
Let Π(S, O(S)) denote the set of all bijections from S to O(S).1 The permutation game (N, vP ) is
defined by vP (S) = max{

∑

i∈S UiπS(i) : πS ∈ Π(S, O(S))} for all S ⊆ N . That is, the worth of a
coalition is the maximum utility it can achieve by reallocating their initially owned objects among
its members.

Permutation games were studied first in [6]. In that paper a link was established between the
cores of assignment games and permutation games. It was shown that each core element of an
assignment game gives rise to a core element of a related permutation game. In [2] it was shown
that all core elements of a permutation game can be obtained from the core of some associated
assignment game.

To conclude this section we shortly introduce extensive form games.2 We first remark that
we only consider extensive form games with perfect information, i.e., extensive form games with
information sets of cardinality one and without chance nodes. An extensive form game is a 4-tuple
(P, T, C, u), where P is a finite set of players, T is a rooted tree with non-terminal node set V1 and
terminal node set V2, C : V1 → P is a control function, and u : V2 → R

P is a function expressing
the utility that each player receives at each terminal node. For each i ∈ P let ci ⊆ V1 be the
set of nodes controlled by i, i.e., ci = {v ∈ V1 : C(v) = i}. A strategy of player i ∈ P is a map
yi : ci → V1 ∪ V2 such that (v, yi(v)) is an arc in T for all v ∈ ci. So a strategy for player i

describes at each node controlled by player i the direction in which the game proceeds. The set of
all strategies of player i is denoted by Σi. It is obvious that each strategy profile (yi)i∈P leads to
a unique terminal node. Hence we can write, with slight abuse of notation, the utility function u

as a function of strategy profiles, i.e., u((yi)i∈P ) = u(v) if v ∈ V2 is the terminal node reached by
(yi)i∈P . We say that yi ∈ Σi is a best reply for player i against y−i = (yj)j∈P\{i} ∈ (Σj)j∈P\{i} if it
holds that ui(y−i, yi) ≥ ui(y−i, zi) for all zi ∈ Σi. In other words, a player’s strategy is a best reply
against some strategy profile of the other players if he cannot be strictly better off by unilaterally
deviating from this strategy.

3 The object allocation situation and game

In this section we introduce our object allocation situation and a corresponding cooperative game.
An object allocation situation is a 4-tuple (N, M, U, σ0). Here N = {1, . . . , n} is a set of agents,

M = {1, . . . , m} is a set of indivisible objects, U is a non-negative n × m-matrix that gives the
utility of each object for each agent, and σ0 is an initial order. We assume that there are as many
agents as objects, i.e., n = m.3 The initial order should be interpreted as the order in which the

1We denote the set of bijections from a set A to a set B by Π(A, B).
2For a full description of extensive form games, see, e.g, [1].
3The situation where m < n is captured by introducing worthless null objects.
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agents may choose from the set of objects, i.e., agent σ0(1) has the first choice, agent σ0(2) the
second, etc. Without loss of generality, let σ0(i) = i for all i ∈ {1, . . . , n}.

Let (N, M, U, σ0) be an object allocation situation. We will analyze this situation using coop-
erative game theory. At our cooperative game we define the worth v(S) of a coalition S ⊆ N as
the maximum total utility it can guarantee itself without any help from N\S. This utility can be
determined in two stages. In the first stage, all players sequentially choose an object, respecting
σ0. In the second stage, the members of S reallocate the chosen objects among themselves to reach
coalitional efficiency. Obviously, the outcome of this reallocation depends on the objects chosen by
the members of S, and therefore also on the objects chosen by the members of N\S.

In order to describe the value v(S) of a coalition S ⊆ N , we define an (auxiliary) extensive
form game ({S, N\S}, T, CS , uS) with player set {S, N\S}. We first describe the rooted tree T .
Let 1 ≤ k ≤ m. The set of injective maps from {1, . . . , k} to M is denoted by Sk. A map π ∈ Sk is
interpreted as a situation where object π(i) is chosen by agent i for each 1 ≤ i ≤ k. Similarly, we
define S0 as the situation where none of the objects is chosen yet. Let T be the rooted tree with
node set ∪0≤k≤mSk and root S0. There is an arc between π ∈ Sk and τ ∈ Sk+1 with 0 ≤ k ≤ m−1,
if and only if π(i) = τ(i) for all 1 ≤ i ≤ k. That is, there is an arc between π and τ if π can
be extended to τ by assigning an appropriate object to player k + 1. So, V1 = ∪0≤k≤m−1Sk and
V2 = Sm are the sets of non-terminal and terminal nodes, respectively.

We define the control function CS : ∪0≤k≤m−1Sk → {S, N\S} as follows. Let π ∈ Sk for some
0 ≤ k ≤ m − 1. Then we define CS(π) = S if and only if k + 1 ∈ S. So coalition S controls
the nodes at which one of its members is to choose an object. Let ΣS and ΣN\S be the set of all
possible strategies of players S and N\S, respectively.

Finally, we describe the utility function uS : ΣS ×ΣN\S → R
{S,N\S}. Let y = (yS , yN\S) ∈ ΣS ×

ΣN\S . Let τ ∈ Sm be the terminal node reached by strategy profile y, and let HS(τ) = {τ(i) : i ∈ S}

be the corresponding set of objects obtained by S. Now define uS
S(y) = max{

∑

i∈S Uiπ(i) : π ∈

Π(S, HS(τ))}, and uS
N\S(y) = −uS

S(y). So, the payoff of S at terminal node τ ∈ Sm is the maximum

utility S obtains after reallocating the initially chosen objects and the payoff for N\S is just the
opposite of the payoff of S. Hence, N\S maximizes its payoff at the extensive form game by
minimizing the payoff of S.

Now we define the object allocation game (N, v) by

v(S) = max
yS∈ΣS

min
yN\S∈ΣN\S

uS
S(y) for all S ⊆ N.

Note that v(S) is precisely the maximum utility coalition S can guarantee itself, i.e., without any
help from N\S. Also, notice that v(N) = vA(N ∪ M), where (N ∪ M, vA) is the assignment game
corresponding to the bipartite matching situation (N, M, U).

We illustrate the object allocation game in the following example.

Example 3.1 Let N = {1, 2, 3}, M = {A, B, C}, and U =





3 6 2
4 5 3
5 3 0



 . The object allocation
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Figure 1: The extensive form game ({{1, 3}, {2}}, T, C{1,3}, u{1,3}).

game (N, v) is given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 6 4 0 10 7 6 14
.

To see for instance why v({1, 3}) = 7 consider the extensive form game ({{1, 3}, {2}}, T,

C{1,3}, u{1,3}) which is depicted in Figure 1. If coalition {1, 3} chooses object A as a first choice,
then the utility it will achieve is equal to 7, since player {2} will choose object B in order to maxi-
mize its own payoff at the extensive form game. If coalition {1, 3} chooses object B or C first, then
coalition {2} will obviously maximize its payoff at the extensive form game by choosing object A.
This leads to a utility of 6 for coalition {1, 3}. Hence, coalition {1, 3} can guarantee itself a payoff
of 7 by first choosing object A. We conclude that v({1, 3}) = 7. 3

4 Results

In this section we first show that the core of object allocation games is non-empty. In fact, we
provide a method to obtain core elements by using core elements from a related assignment game.
Furthermore, we show that for a special class of utility profiles the object allocation game coincides
with a corresponding permutation game.

The following theorem shows the non-emptiness of the core of object allocation games.

Theorem 4.1 Let (N, M, U, σ0) be an object allocation problem and let (N, v) be its corresponding
game. Let (N, M, U) be the corresponding bipartite matching problem and let (N ∪M, vA) be the
corresponding assignment game. Let (u, w) ∈ C(vA) and let τ : {1, . . . , m} → M be a bijection
such that wτ(1) ≥ . . . ≥ wτ(m). Define xi = ui + wτ(i) for all i ∈ N . Then, x ∈ C(v).
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Proof: By definition of x,
∑

i∈N xi = vA(N ∪ M). Since vA(N ∪ M) = v(N),
∑

i∈N xi = v(N).
It remains to show stability. Let S ⊆ N and consider the extensive form game ({S, N\S}, T, CS ,

uS). Consider the following (possibly non-optimal) strategy zN\S ∈ ΣN\S for player N\S: “always
pick the object with highest wi that is still available.” More precisely, let zN\S ∈ ΣN\S be such
that zN\S(σ) = τ for each σ ∈ Sk, k + 1 ∈ N\S, and τ ∈ Sk+1 with wτ(k+1) ≥ wj for all
j ∈ M\{σ(1), . . . , σ(k)}.

Now if player S would use a similar strategy in the strategic form game as player N\S, i.e.,
also “always pick the highest wi that remains,” then player S would acquire {τ(i) : i ∈ S} as its set
of objects. If player S uses a different strategy, then, given player N\S’s strategy zN\S , it would
obtain a set of objects A with lower wi-values. Formally,

∑

a∈A

wa ≤
∑

i∈S

wτ(i). (1)

In particular, let player S play a best reply against strategy zN\S . Let A∗ be the set of objects
acquired by S. Let π : S → A∗ be the optimal reallocation of the obtained objects. From (1) it
follows that

∑

i∈S

wπ(i) =
∑

a∈A∗

wa ≤
∑

i∈S

wτ(i). (2)

Hence,
∑

i∈S

xi =
∑

i∈S

ui +
∑

i∈S

wτ(i) ≥
∑

i∈S

ui +
∑

i∈S

wπ(i) ≥ vA(S ∪ {π(i) : i ∈ S}) =
∑

i∈S

Uiπ(i). (3)

The first inequality is due to (2). The second inequality is satisfied because (u, w) ∈ C(vA). The
last equality is satisfied since the matching {(i, π(i)) : i ∈ S} is an optimal reallocation, and hence
optimal for coalition S ∪ {π(i) : i ∈ S} at the assignment game (N, vA).

From the definition of the game (N, v) it follows that

∑

i∈S

Uiπ(i) = max
yS∈ΣS

uS
S(yS , zN\S) ≥ max

yS∈ΣS

min
yN\S∈ΣN\S

uS
S(y) = v(S). (4)

Now the theorem follows immediately from (3) and (4). 2

The next example illustrates Theorem 4.1. Moreover, it shows that in general not all core
elements of the object allocation game can be obtained via the technique of Theorem 4.1.

Example 4.1 Let (N, M, U, σ0) be the object allocation situation from Example 3.1, and (N, v)
the corresponding game. Consider the corresponding bipartite matching situation (N, M, U) and
assignment game (N∪M, vA). Note that (u, w) ∈ C(vA) with u = (2, 3, 3) and w = (wA, wB, wC) =
(2, 4, 0). Clearly wB ≥ wA ≥ wC . Now let x1 = u1+wB = 6, x2 = u2+wA = 5, and x3 = u3+wC =
3. From Theorem 4.1 it follows that x = (6, 5, 3) ∈ C(v).

We will now show that not each element of C(v) is achievable by the method of Theorem
4.1. Consider y = (8, 4, 2) ∈ C(v). Suppose that (u′, w′) ∈ C(vA) is such that u′

1 + w′
τ(1) = 8,

u′
2 +w′

τ(2) = 4, and u′
3 +w′

τ(3) = 2 where τ : {1, 2, 3} → M is a bijection with w′
τ(1) ≥ w′

τ(2) ≥ w′
τ(3).
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First note that (N, M, U) has a unique optimal matching µ = {(1, B), (2, C), (3, A)}. So, since
(u′, w′) ∈ C(vA), it holds that u′

1 + w′
B = U1B = 6, u′

2 + w′
C = U2C = 3, and u′

3 + w′
A = U3A = 5.

Since u′
2 + w′

τ(2) = 4 it follows that w′
τ(2) > w′

C . So, w′
τ(1) ≥ w′

τ(2) > w′
C . Hence, τ(3) = C.

Because u′
1 + w′

τ(1) = 8 it follows that w′
τ(1) > w′

B, and thus that τ(1) 6= B. We conclude that

w′
A ≥ w′

B ≥ w′
C . Hence, u′

2 + w′
B = 4 < 5 = vA({2, B}) contradicting (u′, w′) ∈ C(vA). Hence,

there is no pair (u′, w′) ∈ C(vA) with u′
1 + w′

τ(1) = 8, u′
2 + w′

τ(2) = 4, and u′
3 + w′

τ(3) = 2 where

τ : {1, 2, 3} → M is a bijection with w′
τ(1) ≥ w′

τ(2) ≥ w′
τ(3). 3

Our second result deals with a special case of object allocation situations. Let (N, M, U, σ0) be an
object allocation situation where all agents prefer the first object over the second, the second object
over the third, etc. Then, the object allocation game coincides with a corresponding permutation
game.

Proposition 4.1 Let (N, M, U, σ0) be an object allocation situation with Uj1 ≥ . . . ≥ Umj for
all j ∈ N and let (N, v) be its corresponding object allocation game. Let (N, M, U) be the
corresponding permutation situation and (N, vP ) its corresponding game. Then, the games (N, v)
and (N, vP ) coincide.

Proof: We show that for all S ⊆ N it holds that v(S) = vP (S). Let S ⊆ N and consider the
extensive form game ({S, N\S}, T, CS , uS). First we show, by giving a strategy for player S, that at
the extensive form game player S can obtain a payoff of at least vP (S). This implies v(S) ≥ vP (S).

Consider the following strategy zS ∈ ΣS for player S at the extensive form game: “always pick
the remaining object with lowest index number,” i.e., the remaining object with highest utility.
In other words, zS is such that zS(σ) = τ for each σ ∈ Sk, k + 1 ∈ S, and τ ∈ Sk+1 with
τ(k+1) = min{j : j ∈ M\{σ(1), . . . , σ(k)}}. Let the best reply of player N\S against this strategy
of S result in a set of objects A = {a1, . . . , a|S|} ⊆ M for S. We assume, without loss of generality,
that the elements of A are ordered a1 < a2 < . . . < a|S|.

4

Denote the set of objects initially owned by S in the permutation situation (N, M, U) by B =
{b1, . . . , b|S|}. We assume, without loss of generality, that this set is ordered b1 < b2 < . . . < b|S|.
Note that by definition of strategy zS player S will obtain a better set of objects at the extensive
form game in the sense that aj ≤ bj for all j ∈ {1, . . . , |S|}. Now let π∗ : S → B be the optimal
reallocation of the objects in B among the members of S, i.e.,

∑

i∈S Uiπ∗(i) = max{
∑

i∈S Uiπ(i) :
π ∈ Π(S, B)}. Furthermore, define π̄ : S → A by π̄(i) = aj if and only if π∗(i) = bj . In other
words, assign the j-th object of A to player i if and only if it is optimal to assign the j-th object
of B to i. Now

vP (S) = max{
∑

i∈S

Uiπ(i) : π ∈ Π(S, B)} =
∑

i∈S

Uiπ∗(i)

≤
∑

i∈S

Uiπ̄(i) ≤ max{
∑

i∈S

Uiπ(i) : π ∈ Π(S, A)} ≤ v(S).

The first inequality holds because π∗(i) ≥ π̄(i) for all i ∈ S. The second inequality is satisfied
because π̄ might be non-optimal. The last inequality is satisfied since the strategy of S might be
non-optimal.

4Recall that M = {1, . . . , m} and that ai < ak implies that Uji ≥ Ujk for all j ∈ N .
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Finally, we prove the inequality v(S) ≤ vP (S) by considering the following strategy for N\S:
“always pick the remaining object with lowest index number.” It is obvious that if N\S uses this
strategy, then S cannot do better than to obtain the set of objects B. By reallocation of the objects
in B player S obtains a maximal total utility of vP (S). Therefore, v(S) ≤ vP (S). 2
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