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1 Introduction

It is well-known that regulation and legislation on corporate taxation leave ample

room for strategic behavior of firms. Scholes and Wolfson (1992) provide a thorough

overview of the different opportunities for firms to minimize tax expenses through

business strategy. An important way to shift income is through depreciation of the

firm’s assets. Since taxable income consists of cash-flows reduced with depreciation

charges, one can shift taxable income from one period to another by depreciating

more or less in a certain period, while keeping the total amount to be depreciated

over all periods fixed. Consequently, different depreciation schemes can yield a

different stream of future taxable income. The decision maker can try to optimize

by choosing – among those methods that are accepted by the tax authorities – the

depreciation method that minimizes the expected present value of future taxable

income.

The development of the research on optimal tax depreciation can be seen as

follows. Wakeman (1980) compares accelerated and straight line depreciation and

shows that, in the absence of uncertainty, accelerated depreciation dominates s-

traight line depreciation, in the sense that it yields a lower expected value of dis-

counted tax payments for all values of the discount rate. Berg and Moore (1989)

consider a 2-period model and show how uncertainty can affect this dominance of

accelerated depreciation methods. Berg et al. (2000) provide an analysis of the

optimal choice between accelerated and straight line depreciation with uncertain

cash-flows and a possibly progressive tax system.

In this paper we do not compare two given methods of tax depreciation, but

determine the optimal tax depreciation scheme among those that are accepted by

the tax authorities. Within the limitations set by the tax authority, we optimize

with respect to both the number of periods the asset should be depreciated in, and

the corresponding depreciation charges in each period. We show how this optimal

depreciation scheme depends on the discount factor and the probability distributions

of future cash-flows. In order to take into account that the tax authority does not
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accept every possible depreciation scheme, we consider two sets of constraints. The

first set contains all depreciation schemes for which the fraction of the residual value

that is depreciated lies within certain bounds. The constraints on the depreciation

charge in a certain period then clearly depend on the depreciation charges chosen

in earlier periods. Commonly used methods of this type are the so-called Declining

Balance methods, where in each period a given fraction of the residual value is

depreciated. The second set contains all depreciation methods for which the amount

depreciated in a period lies within certain bounds. Here, the constraints in a certain

period are clearly independent of decisions made in earlier periods. An example here

is the Straight Line method, where the amount depreciated is equal over all periods.

In the sequel the two types of constraints will be referred to as dynamic constraints

and static constraints, respectively.

The paper is organized as follows. Section 2 defines the optimization problems

for the two types of constraints described above. In Section 3 we reformulate the

optimization problem with dynamic constraints as a dynamic program. We then

show that the path-coupling method, which is developed to solve continuous time

optimization problems, yields valuable insights when applied to this discrete time

optimization problem. We show that a depreciation scheme satisfies the necessary

conditions for optimality iff the last non-zero depreciation charge is the unique strict-

ly positive root of a decreasing function, where the depreciation charges in all other

periods are specific functions of the last non-zero depreciation charge and its period.

Therefore, there are at most N candidate optimal depreciation schemes, where N

is the maximum number of periods in which the asset has to be depreciated. The

optimal scheme is then found by evaluating all candidate optimal solutions. Section

4 derives the optimal solution in case of static constraints. Also here, one finds at

most N candidate optimal solutions by determining the unique root of a decreasing

function. As opposed to the case with dynamic constraints however, it can be shown

that the optimal depreciation scheme is the candidate optimal scheme in which the

number of periods over which the asset is depreciated is maximal or, equivalently,

the optimal depreciation scheme is the feasible scheme with the longest depreciation
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life. There is therefore no need to evaluate all the candidate optimal solutions. Sec-

tion 5 provides analytical results on the effect of the discount rate and the cash-flow

distributions on the optimal scheme. We present some numerical examples in Sec-

tion 6. In the absence of constraints and with equally distributed future cash-flows

and a discount rate that is strictly less than one, the optimal depreciation scheme is

an accelerated scheme. This is no longer necessarily the case when future cash-flows

are not equally distributed or when there are constraints. The paper is concluded

in Section 7.

2 The optimization problems

An asset of value D has to be depreciated over a maximum of N periods. Let dk

denote the amount depreciated in period k. The decision maker has to decide on

the number of periods (≤ N) that will actually be used to depreciate the value D

(i.e. the last k with dk > 0), and the corresponding depreciation charges.

The cash-flow or income in period k (gross revenue before depreciation) is a

random variable denoted Ck, with cumulative distribution function Fk(.). We will

assume that cash-flows are continuously distributed, so that Fk(.) is continuous and

strictly increasing.

The decision maker’s objective is to minimize the expected present value of future

tax payments. With a fixed tax rate T over all taxable income, and a discount rate

α ∈ [0, 1], this leads to the following optimization problem.

min
(d1,... ,dN )∈D

T
N∑
k=1

αkE
[
(Ck − dk)

+
]
, (1)

where x+ := max{x, 0}, and D is the set of acceptable depreciation methods. One

can classify the two most common types of constraints on depreciation methods in

two groups:

i) Methods with dynamic constraints, i.e. constraints on the depreciation charge
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as a fraction of the remaining value of the asset, so that

D =


(d1, . . . , dN ) ∈ IRN+

∣∣∣∣∣∣∣
∑N
k=1 dk = D

dk ∈ [lkDk−1, ukDk−1]


 , (2)

with 0 ≤ lk < uk ≤ 1 for all k = 1, . . . , N . Here, Dk−1 = D −
∑k−1
i=1 di is the

residual value to be depreciated in periods k until N , so that D0 = D.

ii) Methods with static constraints, i.e. constraints on the value of the deprecia-

tion charges dk, so that

D =


(d1, . . . , dN ) ∈ IRN+

∣∣∣∣∣∣∣
∑N
k=1 dk = D

dk ∈ [l̃k, ũk]


 , (3)

with 0 ≤ l̃k < ũk ≤ D, for all k = 1, . . . , N .

In some cases a solution to problem (1) is found easily. Suppose for example that

cash-flows are known with certainty, and that the constraint set equals:

D =

{
(d1, . . . , dN) ∈ IRN+ |

N∑
k=1

dk = D

}
. (4)

It is seen immediately that an optimal scheme is given by:

dk = max{Ck, 0}, if Ck ≤ Dk−1,

= Dk−1, if Ck ≥ Dk−1.

for k = 1, . . . , N − 1, and dN = D −
∑N−1
j=1 dj .

Indeed, since due to the discounting effect (α ≤ 1), paying taxes later is preferable

to paying them now, one should depreciate ”as much as possible as early as possible”,

but never more than the actual cash-flow if there is still at least one period to come.

In the more interesting case where future cash-flows are unknown, or where the

set of acceptable depreciation schemes is a strict subset of (4), an analytical solution

is not found easily. In the next section we present the solution for the case of dynamic

constraints.
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3 The dynamic constraints

The constraints in (2) imply that the fraction of the residual value to be depreciated

is subject to limitations. Commonly used methods of this type are the so-called

declining balance methods.

Instead of determining the optimal (d1, . . . , dN ), one can then determine the

optimal fraction γk ∈ [lk, uk] of the residual value Dk−1 to depreciate in period k, so

that dk = γkDk−1, where:

Dk = D −
k∑
j=1

dj, for k ≤ N.

Since our aim is also to determine the optimal number of periods in which D is

depreciated, we consider the case where uk = 1, so that γk ∈ [lk, 1]. It is clear that

without loss of generality, we can set T = 1. With the expected values written as

their corresponding integral, the problem to solve then is:

min(γ1,... ,γN )
∑N
k=1 α

k
∫∞
γkDk−1

(1− Fk(y))dy

s.t. Dk = (1− γk)Dk−1,

D0 = D,

γk ∈ [lk, 1].

(5)

Now, if (γ1, . . . , γN ) solves (5), the optimal depreciation charges are given by

dk = γkDk−1, and the optimal number of periods used to depreciate the asset equals

J = min{k : γk = 1}.

In the sequel we use the current-value Hamiltonian and the path-coupling method

(see e.g. Feichtinger and Hartl, 1986, pp. 504-509, and Van Hilten et al. 1993)

to determine the solution of problem (5). We proceed as follows. In section 3.1

we describe the current-value Hamiltonian and the current-value Lagrangian, and

state the necessary conditions for optimality. In section 3.2, we define the paths

and describe their dynamics. In section 3.3, we characterize the set of solutions

that satisfy the necessary conditions for optimality, and we show how the optimal

solution can be found.
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3.1 The necessary conditions

The current-value Hamiltonian for problem (5) is given by:

H(δ, γ, λ, k) = −
∫ ∞
δγ

(1− Fk(y))dy + λ(1− γ)δ, (6)

where δ (resp. γ) is the state (resp. control) variable, and λ is the co-state variable.

To incorporate the condition γk ∈ [lk, 1], we define the current-value Lagrangian of

this problem as follows:

L(δ, γ, λ, η1, η2, k) = H(δ, γ, λ, k) + η1(γ − lk) + η2(1− γ). (7)

Then the necessary conditions for optimality are given by the following system

of equations:

λN = 0, D0 = D, (8)

and, for k = 1, . . . , N :1

(1− Fk(γkDk−1))Dk−1 − λkDk−1 + η1k − η
2
k = 0, (9)

λk−1 = α(1− Fk(γkDk−1))γk + αλk(1− γk), (10)

Dk = (1− γk)Dk−1, (11)

η1k(γk − lk) = 0, (12)

η2k(1− γk) = 0, (13)

η1k, η
2
k ≥ 0, γk ∈ [lk, 1]. (14)

Since the conditions in (8) and (9)-(14) are necessary conditions for an optimum,

it is natural to introduce the following definition.

Definition 3.1 A depreciation scheme (d1, . . . , dN ) is a candidate optimal solution

if there exist variables γk, λk, η1k, η
2
k, and Dk that satisfy (8) and (9)- (14), such that

for all k ≤ N , one has dk = Dk−1 −Dk = γkDk−1.

We now analyze the set of candidate optimal solutions, using the path-coupling

method. Therefore, we first define the paths and describe their dynamics.

1The first two equations express the conditions ∂L
∂γ
(Dk−1, γk, λk, η

1
k, η

2
k, k) = 0, and

α∂L∂δ (Dk−1, γk, λk, η
1
k, η

2
k, k) = λk−1, respectively.
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3.2 The paths

Consider a certain time period k, with a residual depreciable value Dk−1. Then

there are four different paths that can be followed to the next period, as can be seen

in the following table:

1 2 3 4

η1k 0 > 0 0 > 0

η2k 0 0 > 0 > 0

.

We will say that path i ∈ {1, . . . , 4} is feasible in period k if there exists a solution

to (8)-(14) in which the values for η1k and η2k satisfy the conditions for path i as given

in the above table. Path 4 is clearly never feasible, since (12) and (13) would then

imply that γk = lk = 1, which is clearly a contradiction. In order to study the other

three paths, we use the following lemma.

Lemma 3.1 Consider the case where Dk−1 > 0 and λk > 0, and define:

γ̃k =
1

Dk−1
F−1k (1− λk) . (15)

Then,

- path 1 is feasible in period k iff γ̃k ∈ [lk, 1],

- path 2 is feasible in period k iff γ̃k < lk, and

- path 3 is feasible in period k iff γ̃k > 1.

Proof: By definition, γ̃k is the unique solution of the equation:

∂

∂γ
H(Dk−1 , ., λk, k) = 0. (16)

It is seen immediately that ∂
∂γ
H(Dk−1, γ, λk, k) is strictly decreasing in γ. Then,

path 1 is not feasible (i.e. the unique solution γ̃k of (16) is such that γ̃k /∈ [lk, 1]) iff

∂
∂γ
H(Dk−1 , lk, λk, k) < 0 ⇔ γ̃k < lk,

or ∂
∂γ
H(Dk−1 , 1, λk, k) > 0 ⇔ γ̃k > 1.
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This concludes the proof. 2

We now evaluate the dynamics of the three feasible paths.

- Path 1: This path is characterized by η1k = η2k = 0. This is feasible when

Dk−1 = 0, or when γ̃k ∈ [lk, 1]. When Dk−1 �= 0, solving (8)- (14) yields that

γk = γ̃k, and

αλk = λk−1. (17)

When Dk−1 = 0, there are infinitely many solutions to (8)-(14).

- Path 2: This path is characterized by η1k > 0 and η2k = 0. This implies that

the minimum amount is depreciated in period k, i.e. γk = lk. It is only feasible

when Dk−1 > 0, λk > 0, and γ̃k < lk. The dynamics of the co-state are

λk−1 = αlk(1− Fk(lkDk−1)) + αλk(1− lk). (18)

- Path 3: This path is characterized by η1k = 0 and η2k > 0. This implies that

everything left in period k is depreciated, i.e. γk = 1. It is feasible when

Dk−1 > 0, λk > 0, and γ̃k > 1, or when Dk−1 > 0 and λk ≤ 0. The dynamics

are:

λk−1 = α(1− Fk(Dk−1)). (19)

Notice that paths 2 and 3 can only be feasible whenDk−1 > 0. Notice furthermore

that, when path 1 is feasible for γk = 1, then the dynamics are as in (19).

3.3 The optimal solution

In this section we derive the optimal solution using the path-coupling method. First

we characterize the set of candidate optimal depreciation schemes. For any depreci-

ation scheme, we will denote J for the last period in which the depreciation charge

is non-zero, i.e. d̂ = (d1, . . . , dJ , 0, . . . , 0) with dJ > 0.
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Due to the fact that the objective function in (5) is not strictly concave in

(γ1, . . . , γN , D0, . . . , DN−1), there is in general not a unique candidate optimal de-

preciation scheme. However, in the sequel we will show that for any given value of

J , there will be at most one candidate optimal solution. This candidate optimal

solution equals the optimal depreciation scheme, given that exactly J periods are

used to depreciate the asset. In general, several values of J will yield a depreciation

scheme that satisfies the necessary conditions, but there will be a unique value of J

that yields the optimal scheme.

In order to characterize the set of candidate optimal depreciation schemes, we

introduce the following definition. Intuitively this definition should be interpreted

as the solution of the difference equations forDk and λk, given that the total amount

is depreciated in J periods.

Definition 3.2 Consider the following recursive definition:

Dk−1 := max
{ Dk

1− lk
, Dk + F−1k

(
1− λk

)}
, (20)

and

λk−1 := αmin
{
λk, (1− Fk(lkDk−1))lk + (1− lk)λk

)}
. (21)

Then, if DJ−1 > 0 and λJ−1 > 0 are given, Dk and λk can be determined recursively

for all k = J − 2, . . . , 0. Moreover, we define

ΨJ(d) := D −D0(d, J), (22)

where D0(d, J) = D0 determined by (20) and (21) with DJ−1 = d and λJ−1 =

α
(
1− FJ(d)

)
.

The above definition shows how the candidate optimal solution can be calculated,

once the values of DJ−1 and λJ−1 are known.

The following theorem provides necessary and sufficient conditions for d̂ =

(d1, . . . , dN ) to be a candidate optimal depreciation scheme.
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Theorem 3.1 A depreciation scheme d̂ = (d1, . . . , dJ , 0, . . . , 0) with dJ > 0 satis-

fies (8)-(14) iff

• d̂ satisfies:

dJ ∈ Ψ−1J (0),

dk = max
{
lkDk−1 , F

−1
k

(
1− λk

)}
, for all k ≤ J − 1.

(23)

where Dk and λk, for k = 1, . . . , J − 2, are determined by (20) and (21) with

DJ−1 = dJ and λJ−1 = α
(
1− FJ(dJ)

)
, and

• dJ ≤ F
−1
J (1− λ∗J), where



λ∗k := αminγ∈[lk+1,1]

{
γ(1− Fk+1(0)) + (1− γ)λ∗k+1

}
, k = 1, . . . , N − 1,

λ∗N := 0
(24)

Proof: See Appendix. 2

The above theorem implies that all candidate optimal depreciation schemes can

be found by solving ΨJ(.) = 0, for J = 1, . . . , N . Then, for any J for which ΨJ(.)

has a root dJ ∈ (0, D] that satisfies dJ ≤ F
−1
J (1 − λ∗J), there exists a candidate

optimal depreciation scheme for which the depreciation charges are given by (23).

The following proposition states that ΨJ(.) is a decreasing function, so that its

root can be found easily. Moreover, the depreciation charge dJ is the unique solution

of ΨJ(.) = 0. Combined with (23), this yields at most N candidate optimal schemes.

Proposition 3.1 The function ΨJ(.) is decreasing. Moreover, ΨJ(.) has a non-

negative root iff ΨJ(ũJ) ≤ 0 ≤ ΨJ(0), where ũJ = (1 − l1)(1 − l2) · · · (1 − lJ−1)D.

Proof: It is clear that ΨJ(.) is decreasing iffD0(., J) is increasing, where D0(d, J) =

D0 determined by (20) and (21) with DJ−1 = d and λJ−1 = α
(
1− FJ(d)

)
.

We will now show by induction that Dk is increasing in d and that λk is decreasing

in d for all k = 0, . . . , J − 1.
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The above statements are trivially satisfied for k = J − 1. Moreover, it follows

immediately from (20) and (21) that, if the statements are satisfied for k, they are

also satisfied for k − 1.

Finally, the fact that the root is less than or equal to ũJ follows immediately from

d = DJ−1

⇒ d ≤ (1− lJ−1)DJ−2

⇒ d ≤ (1− l1)(1− l2) · · · (1− lJ−1)D0(d, J) = ũJ .

This concludes the proof. 2

Theorem 3.1 and Proposition 3.1 imply that there are at most N candidate

optimal schemes. The following result shows how the set of potential candidates

can be further decreased.

Proposition 3.2 If a depreciation scheme (d1, . . . , dJ , 0, . . . , 0) with dJ > 0 is op-

timal, then dJ satisfies

dJ ≤ F
−1
J (1− α(1− FJ+1(0))), if J ≤ N − 1. (25)

Proof: See Appendix. 2

Since the objective function is strictly convex in (d1, . . . , dN ), and the constraint

set D is compact, there is a unique optimal scheme. In order to find the unique

optimal depreciation scheme, one can proceed as follows. For every J ∈ {1, . . . , N}:

i) Check whether ΨJ(u∗J) ≤ 0 ≤ ΨJ(0), where u∗N = ũN and u∗J =

min{ũJ , F
−1
J (1− α(1− FJ+1(0)))} for J < N .

ii) If so, calculate dJ = Ψ−1J (0).

iii) Evaluate the objective function in the resulting depreciation scheme given in

(23).

Notice that it is not necessary to calculate λ∗J , since the condition dJ ≤ F
−1
J (1−λ∗J )

can be replaced by the stronger condition (25).
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4 The static constraints

In this section we determine the optimal depreciation charges in case of static con-

straints. For ease of notation, we consider the case where dk ∈ [l̃k,+∞), and without

loss of generality assume that T = 1. The problem to be solved is then:

min(d1,... ,dN )
∑N
k=1 α

k
∫∞
dk

(1− Fk(y))dy

s.t.
∑N
k=1 dk = D,

dk ≥ l̃k, for k = 1, . . . , N.

(26)

For any depreciation scheme d̂, we denote J for the last period in which the de-

preciation charge strictly exceeds the lower bound, i.e. d̂ = (d1, . . . , dJ , l̃J+1, . . . , l̃N)

with dJ > l̃J .

Similarly to the case with dynamic constraints, we define the functions d̃k(d, J),

which can be interpreted as the optimal depreciation charges given that the depreci-

ation charge in period J equals d, and that J is the last period where the lowerbound

is not binding.2

Definition 4.1 For all J ≤ N , and k ≤ J − 1, we define:

d̃k(d, J) := max
{
l̃k , F

−1
k

(
1− αJ−k(1− FJ(d))

)}
, k ≤ J − 1,

(27)

Ψ̃J(d) := D − d−
J−1∑
k=1

d̃k(d, J)−
N∑

k=J+1

l̃k, (28)

P :=
{
k ∈ {1, . . . , N}

∣∣∣ Ψ̃k(l̃k) ≥ 0
}
. (29)

In the following theorem we show that in the optimal solution, the last depreci-

ation charge that exceeds the lower bound is the unique root of Ψ̃J(·), which is a

2The reason why the solution of the difference equation for λk is not stated in this definition

(contrary to the dynamic case), is that we can find a closed form expression for λk as a function of

J and d so that they do not have to be determined recursively. Therefore, we can immediately state

the optimal depreciation charges given period J and its depreciation charge d. This is elaborated

upon in the proof of Theorem 4.1.
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strictly decreasing function, and all other depreciation charges are given functions

of this depreciation charge and its period J . More precisely, we have the following

result:

Theorem 4.1 The optimal depreciation scheme satisfies:



dJ ∈ Ψ̃−1J (0),

dk = d̃k(dJ , J), for k ≤ J − 1,

dk = l̃k, for k ≥ J + 1.

(30)

for some J ∈ P. Moreover, the function Ψ̃J(.) is strictly decreasing.

Proof: It is clear that also this problem can be stated as a dynamic problem as in

(5), but with the constraints replaced by

γkDk−1 ≥ l̃k, k = 1, . . . , N. (31)

The necessary conditions for optimality therefore are:

λN = 0, D0 = D,

and, for k = 1, . . . , N :

(1− Fk(γkDk−1))Dk−1 − λkDk−1 + η1kDk−1 = 0,

λk−1 = α(1− Fk(γkDk−1))γk + αλk(1− γk) + αη1kγk,

Dk = (1− γk)Dk−1,

η1k(γkDk−1 − lk) = 0,

γkDk−1 ≥ l̃k,

η1k ≥ 0, γk ∈ [0, 1].

Therefore, the proof is similar to the proofs of Theorem 3.1 and Proposition 3.1.

However, notice that the fact that dJ = γJDJ−1 > l̃J implies that η1J = 0, so that

λJ = 1− FJ(dJ). (32)
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Moreover, the dynamics of Path 2 are now equal to those of Path 1. This implies

that (21) can now be replaced by

λk = αJ−kλJ = αJ−k(1− FJ(dJ)), k = 1, . . . J − 1. (33)

This yields the desired result. 2

As opposed to the case with dynamic constraints, it can be shown that out of

the set of candidate optimal solutions, the optimal solution is the one in which J is

maximal.

We need the following lemma.

Lemma 4.1 Let (d1, . . . , dJ , l̃J+1, . . . , l̃N) be a solution that satisfies (30) for some

J ∈ {1, . . . , N}. Then for every k ≤ J , one has:

i) min
{
αk
(
1− Fk(l̃k)

)
, αJ
(
1− FJ(dJ)

)}
(dk − l̃k) = αJ

(
1− FJ(dJ)

)
(dk − l̃k),

ii) min
{
αk(1− Fk(l̃k)), αJ(1− FJ(dJ))

}
= αk

(
1− Fk(dk)

)
.

Proof: First notice that for any k, J ≤ N and x ∈ IR, one has:

F−1k

(
1− αJ−k(1− FJ(x))

)
≥ l̃k ⇔ αk

(
1− Fk(l̃k)

)
≥ αJ

(
1− FJ(x)

)
.

(34)

i) Follows from the fact that (27), (30), and (34) imply that if dk > l̃k then

min
{
αk
(
1− Fk(l̃k)

)
, αJ
(
1− FJ(dJ)

)}
= αJ

(
1− FJ(dJ)

)
.

ii) Is trivially satisfied for k = J . For all k < J , one has:

αk
(
1− Fk(dk)

)
= αk

(
1− Fk

(
max

{
l̃k, F

−1
k

(
1− αJ−k(1− FJ(dJ))

)}))
= αk

(
1−max

{
Fk(l̃k), 1− αJ−k(1− FJ(dJ))

})
= αkmin

{
1− Fk(l̃k), αJ−k(1− FJ(dJ))

}
= min

{
αk(1− Fk(l̃k)), αJ(1− FJ(dJ))

}
.

This concludes the proof. 2
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The following proposition states that the optimal depreciation scheme is the one

in which J is maximal. Therefore, as opposed to the case with dynamic constraints,

there is no need to evaluate all the candidate optimal solutions.

Proposition 4.1 The optimal depreciation scheme satisfies (30) for

J = max{k : k ∈ P}. (35)

Proof: Notice that J ∈ P iff the allocation defined in (30) exists and satisfies

dJ ≥ l̃J . It therefore suffices to show that if J,K ∈ P , and K < J , then the

allocation as defined in (30) for J yields a lower value of the objective function than

the one for K. Let us denote dJ and dK for the corresponding candidate solutions,

i.e. 

dJk = max

{
l̃k, F

−1
k

(
1− αJ−k(1− FJ(dJJ))

)}
, k = 1, . . . , J,

dJk = l̃k, k = J + 1, . . . , N,
(36)

since dJJ ≡ F
−1
J

(
1− αJ−J(1− FJ(dJJ))

)
, and, equivalently,



dKk = max

{
l̃k, F

−1
k

(
1− αK−k(1− FK(dKK))

)}
, k = 1, . . . , K,

dKk = l̃k, k = K + 1, . . . , N.
(37)

Then, the difference in objective function (expected discounted taxable income) for

dJ and dK is given by::

∑N
k=1 α

kE
[(
Ck − dJk

)+]
−
∑N
k=1 α

kE
[(
Ck − dKk

)+]

=
∑K
k=1 α

kE

[(
Ck − dJk

)+]
+
∑J
k=K+1 α

kE

[(
Ck − dJk

)+]

−
∑K
k=1 α

kE
[(
Ck − dKk

)+]
−
∑J
k=K+1 α

kE
[
(Ck − l̃k)+

]
=
∑K
k=1 α

k
∫ dK
k

dJk

(
1− Fk(u)

)
du−

∑J
k=K+1 α

k
∫ dJ
k

l̃k

(
1− Fk(u)

)
du

≤
∑K
k=1 α

k
(
1− Fk(dJk )

)(
dKk − d

J
k

)
−
∑J
k=K+1 α

k
(
1− Fk(dJk )

)(
dJk − l̃k

)
.
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Applying lemma 4.1 ii) to the last expression then yields that:

∑N
k=1 α

kE
[(
Ck − dJk

)+]
−
∑N
k=1 α

kE
[(
Ck − dKk

)+]

<
∑K
k=1min

{
αk
(
1− Fk(l̃k)

)
, αJ
(
1− FJ(dJJ)

)}(
dKk − l̃k − (dJk − l̃k)

)
−
∑J
k=K+1min

{
αk
(
1− Fk(l̃k)

)
, αJ
(
1− FJ(dJJ)

)}(
dJk − l̃k

)
≤
∑K
k=1 α

J
(
1− FJ(dJJ)

)(
dKk − l̃k

)
−
∑J
k=1 α

J
(
1− FJ(dJJ)

)(
dJk − l̃k

)
= αJ

(
1− FJ(dJJ)

)(∑K
k=1 d

K
k +

∑J
k=K+1 l̃k −

∑J
k=1 d

J
k

)
= 0,

where the second inequality follows from lemma 4.1 i) and from replacing the mini-

mum by one of its components, and the last equality follows from the fact that dJ

and dK are feasible, and therefore both have components that until period J add

up to D −
∑N
k=J+1 l̃k. This concludes the proof. 2

The above proposition implies that the optimal solution can be found by deter-

mining maximal J for which the root of Ψ̃J(.) is strictly larger than l̃J . The optimal

depreciation charges are then given by (30).

Notice finally that, whereas in the case of dynamic constraints, J equals the

number of periods in which the asset is depreciated, this is no longer necessarily the

case here, since dk is bounded below by l̃k, so that dJ+i > 0 if l̃J+i > 0.

5 Effect of distributions and discount rate

Let us denote dSL for the straight line depreciation method, i.e. dSL = (D
N
, . . . , D

N
),

so that the amount to depreciate is divided equally over all periods. In the next

theorem we show that dSL is optimal when all cash-flows are equally distributed,

there is no discounting, and dSL ∈ D.

Theorem 5.1 If Fk(.) = F (.) for all periods k, α = 1, and dSL ∈ D, then dSL is

optimal.

Proof: Since dSL ∈ D, it suffices to show that dSL is optimal for problem (26) with

l̃1 = . . . = l̃N = 0.
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The fact that F−1(F (dN)) = dN , implies:

max
{
0, F−1k (FN (dN )))

}
= dN =

D

N
, for all k.

Therefore, the depreciation charges in dSL satisfy (30) with J = N . Given Theorem

4.1 and Proposition 4.1, this yields the desired result. 2

We now show that, when cash-flows are equally distributed, α < 1, and the

constraints are such that l1 ≥ l2 ≥ · · · ≥ lN (resp. l̃1 ≥ l̃2 ≥ · · · ≥ l̃N), then the op-

timal depreciation method with dynamic (resp. static) constraints is an accelerated

depreciation method.

Theorem 5.2 When Fk(.) = F (.) for all k, α < 1, and l1 ≥ l2 ≥ · · · ≥ lN

(resp. l̃1 ≥ l̃2 ≥ · · · ≥ l̃N), then the optimal depreciation method with dynamic

(resp. static) constraints satisfies d1 > d2 > . . . > dJ .

Proof: Consider the case of dynamic constraints. We know from Theorem 3.1 that

the optimal depreciation scheme is such that:

dk = max
{
lkDk−1, F

−1 (1− λk)
}
,

λk−1 = min
{
αλk , α(1− F (lkDk−1))lk + α(1− lk)λk

}
,

for all k ≤ J − 1, and

λJ−1 = α (1− F (DJ−1)) .

Notice now that lkDk−1 is decreasing in k, and λk is strictly increasing in k, due to

α < 1. This implies that

dk+1 < dk, for all k = 1, . . . , J − 2.

Furthermore, it is seen immediately that lJ ≤ 1 and DJ−1 = dJ imply that

dJ = max
{
lJDJ−1, F

−1(1− (1− F (dJ))
}
.

Therefore, since 1− F (dJ) = 1− F (DJ−1) > λJ−1 it follows that dJ < dJ−1, so we

can conclude that depreciation is accelerated.

In case of static constraints, the proof is similar. 2

18



6 Numerical examples

In this section we illustrate our results in numerical examples. In Sections 6.1 and

6.2, we illustrate the effect of the discount rate and of the distribution functions,

both in case l̃k = lk = 0, for all k ∈ {1, . . . , N}. Finally, in Section 6.3 we illustrate

the effect of the constraints. In all examples, the initial amount to depreciate (D)

equals 5.

6.1 The effect of the discount rate

Given that lk = l̃k = 0 for all k, the set of dynamic constraints is equal to the set of

static constraints, and Theorem 4.1 and Proposition 4.1 imply that in order to find

the optimal depreciation scheme, one should find the maximal J ∈ P , which yields

the optimal number of periods in which to depreciate D. The corresponding depre-

ciation charges are given by (30). We now illustrate this procedure in a numerical

example.

We consider a project with N = D = 5. The future cash-flows have exponential

distributions with E[Ck] = 3, for all k = 1, . . . , 5. The distribution function and

inverse distribution function are:

F (x) = 1− e−x/3, for all x ≥ 0,

F−1(y) = −3ln(1− y), for all y ∈ [0, 1).

We consider the case where lk = 0 for k = 1, . . . , 5. In order to determine the

optimal J , as defined in Theorem 3.1, we solve Ψ̃5(d) = 0, i.e.

5− d−
∑4
k=1 F

−1
(
1− α5−k(1− F (d))

)
= 0,

⇔ 5− d + 3
∑4
k=1 ln

(
α5−ke−d/3

)
= 0,

⇔ 5− d + 3
∑4
k=1 ((5− k) ln(α)− d/3) = 0,

⇔ d = 1 + 6 ln(α).

Consequently, for all α such that 1 + 6 ln(α) > 0, i.e. for all α ∈ (0.846, 1], one

has J = 5 ∈ P , and therefore the optimal depreciation scheme has J = 5. Theorem

3.1 then yields the corresponding depreciation charges:

d5 = D4 = 1 + 6 ln(α),
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and, for k = 1, . . . , 4:

dk = F−1
(
1− αJ−k(1− F (D4))

)
,

= −3(5− k) ln(α) +D4.

Straightforward calculations then yield:




d1 = 1− 6 ln(α),

d2 = 1− 3 ln(α),

d3 = 1,

d4 = 1 + 3 ln(α),

d5 = 1 + 6 ln(α).

For some values of α the results have been calculated and these are summarized

in the following table.

α = 1 α = 0.95 α = 0.9 α = 0.85

d1 1.000 1.308 1.632 1.975

d2 1.000 1.154 1.316 1.488

d3 1.000 1.000 1.000 1.000

d4 1.000 0.846 0.684 0.512

d5 1.000 0.692 0.368 0.025

We see that when α gets smaller, i.e. when the discounting effect gets stronger, the

optimal method becomes more accelerated. Notice that, when α = 1, the optimal

method is the straight line depreciation, as stated in theorem 5.1.

Now consider α ≤ 0.846. Then it follows from the above that the optimal number

of periods in which to depreciate the total depreciation charge D is less than 5.

Therefore, we solve Ψ̃4(d) = 0.

5− d−
∑3
k=1 F

−1
(
1− α4−k(1− F (d))

)
= 0,

⇔ 5− d + 3
∑3
k=1 ((4− k) ln(α)− d/3) = 0,

⇔ d = (5 + 18 ln(α))/4.
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Consequently, 4 ∈ P iff

d4 = (5 + 18 ln(α))/4 > 0.

So, the optimal depreciation scheme has J = 4 for all α ∈ (0.757, 0.846].

Straightforward calculations then yield:


d1 = (5− 18 ln(α))/4,

d2 = (5− 6 ln(α))/4,

d3 = (5 + 6 ln(α))/4,

d4 = (5 + 18 ln(α))/4,

d5 = 0.

As seen before, a lower value of α implies more accelerated depreciation, which in

the above case implies that the optimal number of periods, in which to depreciate

the asset, decreases.

6.2 The effect of the distribution fuctions

We now illustrate the effect of the cash-flow distributions on the optimal depreciation

scheme. We again consider the situation where lk = l̃k = 0, but now under three

different scenarios for the cash flow distributions.

All cash-flows have normal distributions Ci ∼ N(3, σi), with standard deviations

as given in the following table:

A B C

σ1 1 5 5

σ2 2 4 4

σ3 3 3 3

σ4 4 2 3

σ5 5 1 1

Whereas scenario A describes a situation where the uncertainty on realized payoffs

increases over time, the opposite holds for scenario B. Scenario C is almost equal
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to scenario B, except for the higher variance in the fourth period. The results are

stated in the following table:

A B C

α = 0.8 α = 0.90 α = 0.8 α = 0.90 α = 0.8 α = 0.90

d1 2.902 2.629 2.882 1.343 2.882 1.543

d2 2.098 1.855 1.601 0.904 1.601 1.096

d3 0 0.516 0.517 0.706 0.517 0.892

d4 0 0 0 0.801 0 0

d5 0 0 0 1.246 0 1.469

For scenario A, both the discounting effect and the increasing variances over

time work in favor of a strongly accelerated method. Scenario’s B and C with α =

0.9 illustrate that, in contrast to the case where cash-flows are equally distributed

(see Theorem 5.2), the optimal depreciation method is no longer accelerated. The

explanation is as follows: The higher variances in the early periods imply that the

risk of having a cash-flow that is lower than a given depreciation charge is higher

in early periods than in later periods. Therefore there is a trade-off between the

discounting effect, which always works in favor of accelerated depreciation, and the

decreasing variances, which work in favor of the opposite. We see that, whereas the

discounting effect still had the upper-hand for α = 0.8, this is no longer the case for

α = 0.9. Scenario C makes clear that increased variance in period 4 can imply that

it is optimal not to plan any depreciation charge in that period.

6.3 The effect of the constraints

We finally demonstrate the effect of constraints on the following scenario.

C1 ∼ N(1, 3), C2 ∼ N(3, 3), C3 ∼ N(4, 3)

C4 ∼ N(5, 2), C5 ∼ N(5, 1).

These cash-flow projections for instance describe a project that is quite risky in the

beginning, but has good expectations in the longer run.
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We consider the two types of constraints, with lower bounds as follows:

l1 = 0.1, l2 = 0.3, l3 = 0.4, l4 = 0.7, l5 = 1, (38)

l̃1 = 1.0, l̃2 = 1.0, l̃3 = 0.5, l̃4 = 0.5, l̃5 = 0, (39)

in case of dynamic constraints (γk ≥ lk) and static constraints (dk ≥ l̃k), respectively.

The results for (38) respectively (39) are presented in the following two tables.

α = 0.80 α = 0.84 α = 0.87 α = 0.96 α = 0.95

γ1 0.191 0.100 0.100 0.100 0.100

γ2 0.491 0.359 0.300 0.300 0.300

γ3 0.766 0.486 0.404 0.400 0.400

γ4 1.000 1.000 1.000 0.792 0.700

γ5 0 0 0 1.000 1.000

α = 0.80 α = 0.90 α = 0.95 α = 1.00

d1 1.000 1.000 1.000 1.000

d2 1.963 1.000 1.000 1.000

d3 1.537 1.011 0.500 0.500

d4 0.500 1.989 1.710 0.500

d5 0.000 0.000 0.790 2.000

In both cases we see that, as α increases, i.e. the discounting effect gets less strong,

more and more constraints become binding. This can be explained as follows: the

expected values of the cash-flows are increasing over time, whereas the opposite

holds for the variances. Therefore, the risk of ”wasting” tax reduction due to a too

low cash-flow is higher in the early periods than in the later periods. This effect

favors a scheme with increasing depreciation charges over time. This, however, is

prohibited to some extent by the constraints. When the discounting effect becomes

strong enough (i.e. α low enough) the optimal scheme becomes more accelerated over

time, so that less constraints are binding, since the risk of ”wasting” tax reduction

is dominated by the time value of money in these cases.
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7 Conclusion and future research

This paper determines the optimal depreciation scheme given that the objective is

to minimize expected discounted future tax payments. Whereas previous research

focused on comparing different methods, we determine the optimal depreciation

scheme given constraints imposed by the tax authority. We consider both constraints

on the fraction of the initial depreciable value, and on the fraction of the remaining

depreciable value. This optimization also yields the optimal depreciation life (the

optimal number of periods in which to depreciate the asset). The effects of the

discount rate, the cash-flow distributions and the constraints are analyzed. Our

results make clear that the degree of uncertainty (e.g. the variance) in future cash-

flows largely affects the optimal choice. Decisions based solely on the expected value

of future cash-flows can therefore be critically off-mark. For future research it might

be interesting to move to a game-theoretic approach where the tax authority has to

set the constraints. Interesting points there are that, due to welfare considerations,

the objective of the government is more complex than maximization of tax revenues,

and that the information on the cash-flow distributions will be asymetric. This can

possibly be a starting point for the discussion to increase or decrease the freedom of

firms in choosing the tax depreciation method.

Acknowledgement: We thank Menachem Berg for raising the issue of opti-

mization problems related to tax depreciation.

A Proof of Theorem 3.1

Define

λ∗k := α min
γ∈[lk+1,1]

{
γ(1− Fk+1(0)) + (1− γ)λ∗k+1

}
, k = 1, . . . , N − 1,

λ∗N := 0,

γ∗k := argminγ∈[lk,1] {γ(1− Fk(0)) + (1− γ)λ∗k} , k = 1, . . . , N.
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⇒) First suppose that d̂ satisfies (8)-(14). We will now show that it satisfies (23)

and dJ ≤ F
−1
J (1− λ∗J).

First observe that (8) and (9)-(14) imply that γk < 1 for all k = 1, . . . , J − 1 and

γJ = 1, or, equivalently, DJ = 0 and DJ−1 > 0.

Indeed, if DN−1 > 0, then since λN = 0, (9), (12) and (13), imply that

η2N = (1− FN(DN−1))DN−1 > 0,

γN = 1,

η1N = 0.

It therefore follows that DN = 0, so that J = N in this case. If DN−1 = 0, obviously

the fact that D0 = D > 0, and Dk ≤ Dk−1 for all k, implies that there exists a

unique k < N such that Dk = 0 and Dk−1 > 0. Since dJ > 0, and dk = 0 for all

k ≥ J + 1, it follows that k = J .

It therefore follows that Path 1 or Path 2 is applied in periods k = 1, . . . , J − 1.

Consequently, (9) and (10) imply that:

λk := min
{
αλk+1, α(1− Fk+1(lk+1Dk))lk+1 + α(1− lk+1)λk+1

)}
, (40)

for k = 0, . . . , J − 2.

Moreover, γJ = 1, implies that in period J either path 3 is followed, or path 1

with γJ = γ̃J = 1. The dynamics in both cases imply that:

λJ−1 = α(1− FJ(DJ−1)). (41)

Now take an arbitrary k ≤ J − 1. Then Dk−1 > 0 and λk > 0 imply that γ̃k, as

defined in lemma 3.1, exists.

We can now apply lemma 3.1, which yields that:

• Path 2 is feasible iff γ̃k < lk, and then γk = lk.

• Otherwise, path 1 is feasible, and then γk = γ̃k.

It therefore follows from (9) that:

dk = γkDk−1 = Dk−1 −Dk,

= max
{
lkDk−1 , F

−1
k

(
1− λk

)}
,

(42)
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for all k ≤ J − 1. This implies that

Dk−1 = max
{ Dk

1− lk
, Dk + F−1k (1− λk)

}
,

DJ−1 = dJ ,

so that dk satisfies (23) for all k ≤ J − 1.

Moreover, notice that it follows from (21) that the minimal value of λJ that can

be reached with γk ∈ [lk, 1] for k ≥ J + 1 equals λ∗J . Therefore, η2J ≥ 0 implies that

1− FJ(dJ) ≥ λ∗J .

It therefore remains to show that ΨJ(dJ) = 0. This follows immediately from

(8), i.e. D0(dJ , J) = D0 = D.

⇐) Suppose that (d1, . . . , dJ , 0 . . . , 0) satisfies (23) and dJ ≤ F
−1
J (1 − λ∗J). We

will show that there exist variables γk, λk, η1k, η
2
k, and Dk, for k = 1, . . . , N , that

satisfy (8) and (9)- (14), and lead to depreciation charges as in (23).

Therefore, we define the following variables:

Dk−1 = max
{
Dk
1−lk

, Dk + F−1k (1− λk)
}
, k ≤ J − 2,

DJ−1 = dJ ,

Dk = 0, k ≥ J,

(43)

and

λk = min{αλk+1, α(1− Fk+1(lk+1Dk))lk+1 + α(1− lk+1)λk+1} 0 ≤ k ≤ J − 2,

λJ−1 = α(1− FJ(DJ−1)),

λk = λ∗k, J ≤ k < N,

λN = 0.
(44)

γk = (Dk−1 −Dk)/Dk−1, k ≤ J − 1,

γJ = 1,

γk = γ∗k , k ≥ J + 1,

(45)

26



η1k =
(
λk − (1− Fk(γkDk−1))

)
Dk−1, k ≤ J − 1,

η2k = 0, k ≤ J − 1,

η1J = 0,

η2J = (1− FJ(DJ−1)− λ∗J)DJ−1,

η1k = η2k = 0, k ≥ J + 1.

(46)

By definition, one has DJ−1 > 0, and consequently, by construction, Dk > 0, and

Dk+1 ≤ Dk/(1− lk) for k = 0, . . . , J − 1. This implies that γk ∈ [lk, 1], and:

γk = max
{
lk ,

1

Dk−1
F−1k (1− λk)

}
, k = 1, . . . , J − 1.

Now notice that γk = lk implies that:

1
Dk−1

F−1k (1− λk) ≤ lk,

⇒ 1− Fk(lkDk−1) ≤ λk,

⇒ λk − (1− Fk(lkDk−1)) ≥ 0,

and γk > lk implies that:

γk = 1
Dk−1

F−1k (1− λk) ,

⇒ (1− Fk(γk(Dk−1)) = λk,

⇒ λk − (1− Fk(γkDk−1)) = 0.

This implies that η1k ≥ 0 for all k ≤ J − 1, and, by definition, η1k = 0 for

J ≤ k ≤ N . Obviously, also η2k ≥ 0 for all k ≤ N .

Furthermore, one can check that for all k ≤ N ,




(1− Fk(γkDk−1))Dk−1 − λkDk−1 + η1k − η
2
k = 0,

λk−1 = αT (1− Fk(γkDk−1))γk + αλk(1− γk),

η1k(γk − lk) = 0,

η2k(1− γk) = 0,

It therefore only remains to show that D0 = D. This follows immediately from

ΨJ(DJ−1) = 0. This completes the proof. 2
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B Proof of Proposition 3.2

Let us denote γ̂1, . . . , γ̂J for the fractions that yield the optimal depreciation charges

in periods 1, . . . , J . Then, since DJ = 0, the vector (γ̂1, . . . , γ̂J , 1, . . . , 1) must

satisfy the necessary conditions for optimality. Now γJ+1 = 1 implies that λJ =

α(1− FJ+1(0)) so that η2J is non-negative iff (25) is satisfied. 2
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