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Abstract

This paper proposes an alternative estimation procedure for a panel data Tobit model with

individual specific effects based on taking first differences of the equation of interest. This helps

to alleviate the sensitivity of the estimates to a specific parameterization of the individual specific

effects and some Monte Carlo evidence is provided in support of this. To allow for arbitrary serial

correlation estimation takes place in two steps: Maximum Likelihood is applied to each pair of

consecutive periods and then a Minimum Distance estimator is employed.
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1. Introduction

This paper is concerned with the estimation of a panel data Tobit model in which the unobserved

individual specific effects are allowed to correlate with the explanatory variables. More

specifically, this paper proposes a Maximum Likelihood estimator based on taking first

differences of the equation of interest in order to alleviate the sensitivity of the estimates to a

specific parameterization of the individual specific effects. With respect to previously proposed

parametric estimators for censored regression panel data model this set up can be regarded a bias

reduction strategy for the possible bias caused by misspecification of the individual specific

effects.

Nijman and Verbeek (1992) and Zabel (1992) propose a Maximum Likelihood estimator

for panel data selection models in which the individual specific effects are allowed to correlate

with the explanatory variables. To estimate such models Wooldridge (1995) proposes a two-step

estimator, in the spirit of the Heckman (1976), using fewer distributional assumptions and

allowing for arbitrary serial correlation. These estimators can be applied to a panel data Tobit

model with individual specific effects. To allow for correlation between the individual specific

effects and the explanatory variables both estimators, following Mundlak (1978) and

Chamberlain (1984), explicitly model this correlation by assuming a specific parameterization of

the individual specific effects as a function of the explanatory variables and random individual

specific effects. A convenient and often made choice is to model the individual specific effects as

a linear combination of the averages over time of the explanatory variables plus random

individual specific effects. Intuitively this is an appealing approach since in the absence of

censoring this yields the familiar ‘within’ estimates (see Mundlak, 1978).

Unlike in a linear regression model in a censored regression model consistency of the

estimates is based on the assumption of correctly specified individual specific effects. To

overcome this problem, Honoré (1992) proposes a trimmed Lead Absolute Deviations estimator

requiring less parametric assumptions and allowing for arbitrary correlation between the

explanatory variables and the individual specific effects (i.e. a fixed effects specification). The

costs of applying this estimator are considerable. Firstly, in contrast to the parametric approaches

discussed above, one cannot identify the marginal effects of the explanatory variables on the

dependent variable. From a policy point of view it may be insufficient to have only parameter

estimates. Secondly, this estimator depends on other assumptions concerning the error terms and,

consequently, does not allow for arbitrary serial correlation.1 And thirdly, from an empirical point

                                                       
1 The estimator proposed by Honoré (1992) relies on the so-called conditional symmetry assumption.
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of view it is fair to say that this estimator is relatively difficult to implement which considerably

restricts widespread application.2 A possible parametric solution to alleviate the sensitivity of the

parameter estimates to the parameterization of the individual specific effects is to allow for a

more flexible parameterization3. This may, however, increase the number of parameters

dramatically.

An alternative parametric solution proposed in this paper is to start by eliminating the

individual specific effects from the equation of interest and setting up the likelihood function

based on taking first differences of the equation of interest. Following the studies mentioned

above, in the selection part of the model the individual specific effects are parameterized as a

function of the explanatory variables and random individual specific effects. To allow for

arbitrary serial correlation estimation takes place in two steps: Maximum Likelihood is applied to

each pair of consecutive periods and then a Minimum Distance estimator is employed to obtain

estimates of the parameters of interest. This alternative parametric approach yields parameter

estimates that are less sensitive to a specific parameterization of the individual specific effects

relatively to using a standard Tobit model. Monte Carlo evidence is provided in support of this.

Also the estimation procedure is relatively easy to carry out, hence may provide a powerful tool

for analyzing censored panel data.4

                                                       
2 An application of this estimator can be found in Charlier et al. (2000).
3 For instance, following Chamberlain (1984) and Wooldridge (1995) one can parameterise the individual specific

effects as a linear function of all past and future exogenous variables. See also Zabel (1992).
4 A Gauss program is available from the author upon request.
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2. A Panel Data Tobit Model with Individual Specific Effects

The model of interest is formulated as follows:

(1) itiitit Xy εαβ ++=* ,

( )*,0max itit yy = , Ni ,..,1= , Tt ,..,1= ,

Where the individual is indexed by i, the time period by t. Xit is a (1xK) vector of exogenous

variables, β is a (Kx1) vector of the parameters of interest and αi is an unobserved individual

specific effect that may be correlated with Xit. The latent dependent variable is censored at zero

and only yit is observed. The error term εit is assumed to be Normal distributed with mean zero

and variance 2
,tεσ , ( )2

,,0~ tit N εσε , and is allowed to be arbitrary serially correlated. The panel

data is characterized by having a large number of individuals over a short period of time.

Following Mundlak (1978), Zabel (1992) and Nijman and Verbeek (1992) specify the

individual specific effect as a linear function of the averages over time of all exogenous variables

plus a random individual specific effect that is assumed to be independent of the explanatory

variables:

(2) iii X µγα += , ∑
=

=
T

s
isi X

T
X

1

1
.

The random individual specific effect, iµ , is assumed Normal distributed with mean zero and

variance 2
µσ , ),0(~ 2

µσµ Ni .

2.1 Model A

Substituting equation (2) in model (1) yields:

(3) itiitit uXXy ++= γβ* ,

),0max( *
itit yy = , Ni ,..,1= , Tt ,..,1= .
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Where itiitu εµ +=  with, given the distributional assumptions, ),0(~ 2
tit Nu σ where

2
,

22
tt εµ σσσ += . The estimation is done in two steps in order to take into account arbitrary serial

correlation. First one obtains Maximum Likelihood estimates per period (see, e.g., Tobin, 1958):

(4) ( ) ( ) ( ) ( )∑
=

>> +−=
N

i
ityityt LILI

itit
1

2
0

1
0 lnln)1(maxargˆ

θ
θ

Where ),,( tttt σγβθ = , 






 +−
Φ=

t

iit
it

XX
L

σ
γβ )(1  and 







 +−
=

t

iitit

t
i

XXy
L

σ
γβ

φ
σ

)(1
2 .

The cumulative standard Normal distribution is denoted by Φ(.) and the standard Normal

distribution by φ(.). Next, a Minimum Distance estimator using the optimal weighting matrix is

employed to impose the restrictions { ββ =t  and γγ =t , t∀ } (see, e.g., Chamberlain, 1984).

From an empirical point of view, this estimator is quite appealing since it is relatively easy to

implement. As discussed in the introduction, consistency depends on correctly specified

individual specific effects (equation (2)).

2.2 Model B

In order to alleviate the sensitivity of the parameter estimates to a specific parameterization of the

individual specific effects this paper proposes to start by eliminating the individual specific

effects from the main equation by taking first differences:

(5) ititit Xy ηβ +∆=∆ * Ni ,..,1= , Tt ,..,1= ,



 >>∆

=∆
otherwiseunobserved

yandyify
y itisit

it

00 ***

.

Where s=t-1, ∆y y yit it is
* * *= − , isitit XXX −=∆  and isitit uu −=η ( isit εε −≡ ). The

correlation between uis and uit is denoted by tρ  and, as previously defined, ),0(~ 2
tit Nu σ .

Given the distribution assumptions: ( )η σ ηit tN~ , ,0 2  with 222
, 2 ttstst σσσρσση +−= . Note
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that applying a Least Squares to equation (5) on a sample of positive values of yis and yit yields

inconsistent estimates since [ ]0,0| ** >> itisit yyE η  ≠ 0.

The probability of observing positive values of the dependent variable in both period s

and t is given by:

(6) );,..,|0,0Pr( 1
**1 θiTiitisit XXyyL >>≡ 







 ++
Φ= t

t

iit

s

iis XXXX
ρ

σ
γβ

σ
γβ

,,2 .

Where ),..,,,..,,,( 21 TT ρρσσγβθ =  and Φ2(.) denotes the cumulative bivariate standard

Normal distribution.

The truncated distribution of ( )βitit Xy ∆−∆  is given by (see appendix):

(7)    ( ) ( )
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Where 2
ststs σσσρση −=  and tsttt σσρσση −= 2 .

Based on equations (6) and (7), the Maximum Likelihood estimate of

),,,,( ttsttt ρσσγβθ =  is given by:

(8) ( ) ( ) ( ) ( )∑
=

>>>> +−−=
N

i
ityyityyt LILI

itisitis
1

2
0,0

1
0,0 ln1ln)1(maxargˆ

θ
θ

Next, a Minimum Distance estimator is employed to impose the restriction { ββ =t  and γγ =t ,

t∀ } using the optimal weighting matrix. Note that only the β parameters corresponding to the

time varying regressors are identified. For a time constant regressor only the sum (say, β2+γ2) is

identified.
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Table: Simulation results. MB is the mean bias, RMSE is the root mean squared error,

MedB is the median bias and MAD is the median absolute deviation.

β=1 Model A Model B

N T MB RMSE MedB MAD MB RMSE MedB MAD

500 2 0.104 0.079 0.106 0.106 0.010 0.093 0.005 0.066

500 4 0.141 0.064 0.136 0.136 -0.005 0.051 -0.006 0.029

500 8 0.102 0.040 0.100 0.100 -0.003 0.032 -0.004 0.022

1000 2 0.084 0.065 0.087 0.090 -0.008 0.084 -0.014 0.055

1000 4 0.142 0.043 0.137 0.137 0.001 0.033 -0.000 0.019

1000 8 0.095 0.025 0.096 0.096 -0.002 0.021 -0.001 0.012

The data is generated as follows: )2.0,0max( itiitit Xy εα +++= . So the true value of β is 1. 
ititit XX ξ+= −18.0 ,

ititit ζεε += −14.0 , 
11 iiX ξ= , 

11 ii ζε = , All three error terms (
ititit ζξε ,, ) are N(0,1) distributed. The individual

specific effect is non-linear in the time-averages of the explanatory variables:
iiii XX µα += || , )1,0(~ Niµ ,

Ni ,..,1= , Tt ,..,1= .

3. A Monte Carlo experiment

The main idea behind setting up a panel data Tobit model in first differences has been to reduce

the bias due to misspecification of the individual specific effects (equation (2)). A Monte Carlo

study is carried out to provide some empirical support for this notion. Studies referring to a

parametric estimator for a censored regression model usually have Model A of section 2.1 in

mind. Therefore the estimator based on first differences, i.e. Model B of section 2.2, is compared

with Model A. Details of the design are given at the bottom of the table. The simulations are

based on 100 replications and the values chosen for N and T are, respectively, {500, 1000} and

{2, 4, 8}. The models A and B as outlined in section 2 are estimated using the parameterization of

the individual effects as specified in equation (2). Given the design, both models are misspecified

and the simulation results reported in the table provide some measure of the relative performance

of the two models under misspecification of the individual specific effects. Of course, the results

in the table have to be interpreted with caution since they may depend on the design chosen.

As has been put forward in the literature the simulation results show that the parameter

estimate of β using Model A is sensitive to misspecification of the individual specific effects.

Although the simulation results (in particular the MAD) show that both estimators yield

inconsistent estimates, the estimator based on first differences (i.e. model B) is less sensitive to
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misspecification of the individual specific effect. The bias reduction when using model B instead

of model A is substantial (up to 80%) in this particular example. Of course, in empirical studies

one can test, similar to the suggestion of Zabel (1992), whether or not a more flexible

parameterization of the individual specific effects is needed.

4. Some concluding remarks

The benefit of using model B instead of model A is that the parameter estimates are less sensitive

to a specific parameterization of the individual specific effects. The cost associated with this is

that estimating model B demands more from the data than estimating model A since one only

uses those individuals that are observed in two consecutive periods and identification of β is

largely based on observing positive values of the dependent variables in two consecutive periods.

While Model A is straightforward extension of the normal censored regression model as

formulated by Tobin (1958) by exploiting the fact one has panel data, it seems inappropriate to

classify Model B as such. The main equation of Model B, i.e. equation (5), only includes time

varying regressors and the selection part also includes time constant variables. For this reason one

should perhaps classify this type of model as a hybrid model, i.e. a model in between the classical

Tobit and sample selection models.

As in the standard Tobit model formulated by Tobin (1958) the Normality assumption is

needed for consistency. If Normality is too strong of an assumption then for both models a two-

step estimator in each period yields consistent estimates under less distributional assumptions

(only Normality in the first step). The estimator of Wooldridge (1995) can be taken as a two-step

estimator of model A and a parametric version of the estimator proposed by Rochina-Barrachina

(2000) can be taken as a two-step estimator for model B. Of course, if Normality is not too strong

of an assumption, a two-step estimator leads to severe loss of efficiency.5 In this respect, the

Maximum Likelihood estimator proposed in this paper (model B) is considered complementary to

these two-step estimators in the specific case of a panel data Tobit model.

                                                       
5 Simulation results not reported here show that the estimates are not very sensitive to violations of the Normality

assumption.
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Appendix: The truncated distribution of itη

A density function is denoted by f(.), the cumulative standard Normal distribution is denoted by

Φ(.) and the standard Normal distribution is denoted by φ(.). The truncated distribution of itη is

denoted by ( )itg η  and is given by:

( )itg η = ( ) ( )( )γβγβη iititiisisit XXuXXuf −−>−−> ,|

,, = ∫ ∫
∞

−−

∞

−−

∂∂
γβ γβ

η
iit iisXX

it

XX

isitisit uuuuf ),,(

,, = ( ) ∫ ∫
∞

−−

∞

−−

∂∂
γβ γβ

ηη
iit iisXX

it

XX

isititisit uuuuff )|,( .

Given the distributional assumptions made in section 2, the first density function at the right hand

side is a Normal density function with mean 0 and variance 2
,tησ . The second term on the right

hand side involves a degenerative distribution since isitit uu −=η  and can be written as follows:

∫ ∫
∞
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γβ γβ

η
iit iisXX
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With 2
ststs σσσρση −=  and tsttt σσρσση −= 2 .


