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Abstract

According to basic models of sequential private value auctions of identical
objects, consecutive prices are on average constant or rising. In empirical
studies, prices are often found to decline. Several explanations have been
put forward for this declining price anomaly. In this paper we analyze data
on sequential Dutch auctions of roses from the largest flower auction in the
world. We find that there is a substantial price decline and suggest that the
presence of a buyer’s option, whereby the winner of the first auction has
the opportunity to buy the remaining units at the winning price, is a main
determinant of the observed price decline. We advance on the empirical
literature on sequential auctions by using formal panel data estimation

techniques.
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1 Introduction

In symmetric independent private value auctions of a single object with risk neu-
tral bidders, the English (second price) auction has a strategic simplicity.! It is
optimal for bidders to reveal their valuation for the object and make bids accord-
ingly. In that case the auction is won by the person with the highest valuation
who pays a price equal to the second highest valuation. In a Dutch (first price)
auction, this simplicity vanishes. Here winning bidders have to pay their bid. In
order to make a profit they shade their bids and bid below their valuation of the
object. Somewhat loosely one may state that an English auction is truth reveal-
ing, whereas a Dutch auction requires strategic behavior. The simple structure
of the one-unit English auction vanishes if two identical objects are auctioned
sequentially. Now, in the first round it is optimal for bidders to shade their bids
to account for the option value of participating in the subsequent second round
(Weber, 1983). Bidders with a higher valuation also have a higher option value.
Therefore they shade their bids in the first round by a greater amount than bid-
ders with a lower valuation. As the auction proceeds, the number of bidders
decreases. Over the sequence of auctions the number of objects decreases as well.
The first has a negative effect on the competition for an object, the second has
a positive effect. Both effects cancel out, and prices follow a martingale. As a
result, all gains to waiting are arbitraged away and the expected prices in both
rounds are the same. The latter result also holds for sequential auctions of more
than two objects and does not depend on whether there is an English or a Dutch
auction.

This neat theoretical result is not supported by empirical research (see e.g.
Ashenfelter, 1989, who finds a price decline in a sequence of auctions of identical
lots of wine). Because of the contradiction between theory and empirical studies
the declining price is considered to be an anomaly.

A number of recent theoretical studies have given explanations for declining
prices in sequential auctions. These can be distinguished according to whether
the cause is in the preferences of the bidders, the structure of the auction, or
the nature of the objects. An example of the first cause is provided by the exis-
tence of a specific type of risk aversion among the buyers (McAfee and Vincent,
1993). For another example, see Branco (1997), who considers an auction of
objects of which for some bidders the value is superadditive. An example of the
second cause concerns the existence of a buyer’s option, whereby the winner of

the first auction has the opportunity to buy the remaining objects at the win-

1See McAfee and McMillan, 1987, and Wolfstetter, 1996, for surveys of the auction literature.



ning price (Black and De Meza, 1993). Other examples concern auctions where
bidders or auctioneers act as agents who are instructed to win an object at any
price up to a specified maximum (Milgrom and Weber, 1982b), or where bid-
ders have to pay participation costs (Von der Fehr, 1994; Menezes and Monteiro,
1997). Engelbrecht-Wiggans (1994), Bernhardt and Scoones (1994), and Gale
and Hausch (1994) relate the price decline to heterogeneity of objects. In Section
3 we discuss theoretical studies and their relevance for the present study in detail.

In this study we use data from the Aalsmeer Flower Auction (AFA) on roses
to analyze price movements in sequential auctions. AFA is located in The Nether-
lands and is the largest auction of ornamental plant products (cut flowers, house
plants etc.) in the world. AFA uses a Dutch auction to sell products. Products
are supplied as “lots”, which are defined as the total amount of a given product
(or article) supplied by a given grower on a given day. A lot consists of a number
of fully identical “units” (a unit is a fixed number of flowers, in our case a bucket
of roses). The auctioning of the units of a given lot is sequential, in the following
manner. Upon winning the first auction associated with a given lot, the buyer
announces how many units he buys at the winning price. If this number falls
short of the supplied number of units then the remaining units are auctioned in
the same way, until all units are sold. AFA has a buyer’s option which is often
although not always exercised. Typically, a given lot is auctioned in more than
a single round.

We restrict attention to so-called “specialty” roses, that is, rather expensive
roses with an exclusive image. The reason for this is that these are auctioned
without mandatory minimum purchase quantities. For most other types of roses,
the minimum number of units to be bought at the sequential auction of a given lot
increases during the sequential auctioning of a given lot. According to a survey
questionnaire held among buyers at AFA, this is the main reason for the observed
price declines for roses in general (see Kalicharan, 1995). We focus on specialty
roses in order to be able to abstract from this potential cause of declining prices.
The latter cause would be very difficult to analyze, because the auctioneer may
increase the minimum purchase quantity in a way which depends on previous
outcomes within the sequential auction.

The setup of our analysis is as follows. First, we establish that there is a
price decline in sequential auctions of roses. We relate this to the characteristics
of the auction in order to evaluate the relevance of alternative explanations for
price declines that are given in the literature. Given the specific nature of the
auction, we can dismiss some of these explanations. The estimation results are

then used to pinpoint the most likely cause of the price declines we observe. Here,



we focus on the shape of the price decline and the way in which this is related to
observable characteristics of the auction.

There have been a number of empirical studies on sequential auctions (see
references in Section 3). Many of these involve sequential auctions of objects
that are not fully homogeneous, and sometimes the heterogeneous characteristic
is even unobservable for the researcher. Also, many empirical studies consider
only sequential auctions of limited size. Usually, only two or three objects are
auctioned sequentially. In contrast, our data concern sequential auctions in which
the auctioned lots consist of many units, and each lot is fully homogenous. As a
result, we are able to investigate the declining price phenomenon in great detail.
Our results therefore provide additional insights into the nature of the declining
price phenomenon. Another distinguishing feature of the auction we consider is
the fact that this is a Dutch (descending first-price) sequential auction, whereas
most empirical studies in the literature deal with second-price sequential auctions.

From an econometric point of view, the empirical analysis advances on earlier
studies of sequential auction data. Most of those studies analyze data by exam-
ining mean prices at different rounds in a sequential auction, or by regressing the
price on the rank number of the corresponding round. However, there may be
unobserved determinants of the price that are stochastically related to the rank
numbers that are observed in the data. If this is ignored then such methods of
inference may provide inconsistent estimates of the magnitude and significance
of the price decline. To deal with this, we apply methods that are commonly
used to estimate panel data. In particular, we use fixed effect regressions and
first-difference regressions (see e.g. Hsiao, 1986).

The setup of this paper is as follows. In Section 2 we describe the Aalsmeer
Flower Auction in detail. In Section 3 we give an overview of previous work on
the declining price anomaly. Section 4 contains the empirical analysis. Section 5

concludes.

2 The Aalsmeer Flower Auction

2.1 General statistics

In this section we give some general statistics concerning the Aalsmeer Flower
Auction (AFA), and we provide details of the actual auctioning process. Most of
the information on the general statistics is from the Annual Reports of AFA in
recent years (see e.g. Bloemenveiling Aalsmeer, 1996a).

AFA is located in Aalsmeer, close to Amsterdam, The Netherlands. It is



the largest auction of ornamental plant products (cut flowers, indoor plants,
garden plants etc.) in the world. Its current annual turnover is about 2.5 billion
Dutch guilders (about 1.3 billion US Dollars; 1997). AFA is a cooperative owned
by about 4000 Dutch growers of the auctioned products. The magnitude of
AFA reflects the importance of the market for ornamental plant products for
the Dutch economy. Indeed, The Netherlands is the world’s leading producer
and distributer of cut flowers, and flowers are The Netherlands’ most important
export product. AFA itself employs about 1800 workers, but on a given day
about 10,000 individuals do their work in the auction buildings (the latter number
includes suppliers and buyers).

To give some further indication of the size of AFA, the current total annual
supply consists of about 4.3 billion single flowers, 330 million indoor plants (or
houseplants) and 150 million garden plants. The current annual import includes
1.8 billion single flowers. Of these, the largest shares are supplied by Israel, Kenya
and Spain. The value of the current annual export of flowers and houseplants
equals 4.4 and 1.8 billion guilders, respectively. For flowers, Germany, France
and the United Kingdom are the most important markets, while for houseplants
these are Germany, France and Italy.

The total number of growers participating in the auctions equals about 7100.
Of these, almost 1500 are from abroad. The total number of buyers equals about
1700. The dispersion of their shares in total turnover is enormous. On the one
hand, about 50 buyers each buy for more than 10 million guilders a year; together
this amounts to about 50% of total turnover. On the other hand, about 725
buyers each buy for less than 0.1 million guilders a year; together this amounts
to about 1% of total turnover. These two extremes basically correspond to big
exporting companies and small domestic retail shops, respectively. Obviously the
large buyers are acting as agents. For cut flowers this dispersion is similar in size.
About one third of the buyers each buys for less than 0.05 million guilders per
year, which together amounts to only 0.2% of total turnover in cut flowers.

Finally, it should be mentioned that roses are the most important products
that are auctioned at AFA. Together, they amount to 33% of the total turnover

of cut flowers.

2.2 Institutional features of the auctioning process

AFA uses a Dutch auction to sell products. As a start, consider the auctioning of
a certain lot of a homogeneous product. A “lot” is defined as the total amount

of a given product (or article) supplied by a given grower on a given day. The



wall in front of the auctioning room contains a large board with a clock and an
electronic display of properties of the product to be auctioned (identity of the
grower, name of the product, various quality indicators, length of the stem in
case of flowers and size of the flower pot in case of plants) as well as properties
of the setup of the auction (monetary unit, minimum price, possibly a minimum
purchase quantity). The flowers or plants are transported through the room,
and an employee takes a few items from the carriage to show them to the buyers
(buyers also have the opportunity to closely examine the flowers some time before
the actual auctioning). The auctioneer decides on a starting position for the
clock hand which corresponds to an unreasonably high price for the product. He
then sets the clock in motion. The value pointed at by the clock hand? drops
continuously until a buyer stops the clock by pushing the button in front of him.
The value pointed at by the clock hand at that moment is the price to be paid
by that buyer for a single item. The buyer then announces how many “units” he
wants to buy. A “unit” is defined as a fixed amount of single items (e.g., for a
particular type of flower, a unit can be defined as 120 flowers; this definition is
fixed for a given product). The identity of the buyer is shown on the electronic
display in front of the room. If the number of units he buys falls short of the
supplied number of units then the clock is reset to a very high value, and the
process restarts for the left-over units. If applicable, the auctioneer may decide
to stipulate a different® minimum purchase quantity than before. Recall however
that for the products analyzed in this paper the minimum purchase quantity is
always simply 1. This goes on until the whole lot is sold. If the hand of the
clock passes the minimum price then the remaining lot is destroyed. Every lot is
auctioned in this manner.

The minimum price for a given product is fixed throughout the year (at least,

2 Actually, the clock is designed as a circle of small lamps each corresponding to a given
monetary value, such that a clockwise movement corresponds to a decrease of this value. If the
clock is set in motion then consecutive lamps light up sequentially.

3The auctioneers often use standard sequences for the minimum purchase quantity of a
given product. For example, for tulips, in about 90% of all auctions, the minimum number
of units to be bought at consecutive auctions of a given lot is stipulated according to the se-
ries {2,4,4,6,6,9,9,9,9,...}. For roses this series usually is {3,5,9,9,9,9,9,...}. However, an
auctioneer may deviate from such sequences, in response to what he perceives as idiosyncratic
shocks. He may even decide to deviate from the standard sequence somewhere halfway the
sequential auctioning of a given lot. Apparently, the auctioneers use rules of thumb to govern
such deviations. For example, they may occasionally stipulate a high minimum purchase quan-
tity in order to try to make buyers believe that supply is short. For a small number of specific
products, AFA has decided against minimum purchase quantities. These mostly concern rather
expensive flowers.



for the time periods from which our data are). For example, for houseplants,
the minimum price in 1996 was 25 cents per single plant, while for roses with
large flowers (including specialties) it was 10 cents per flower (i.e., per item).
The minimum prices are published in an annual code-book which is distributed
among buyers and growers (see e.g. Bloemenveiling Aalsmeer, 1996b).

Now let us go back one step and consider how AFA chooses the order of the
auctioning of different lots. AFA uses the term “auction group” to denote a
group of products with similar features. For example, about 120 auction groups
are defined for the 3500 varieties of cut flowers. The sequence in which auction
groups appear at the auction is the same on every day. However, the sequence in
which different lots within an auction group appear at the auction is randomized.

The AFA buildings contain four auction rooms. The total number of clocks
equals 13. These clocks are often used at the same time, so that simultaneous
auctions take place within a room. As a result, it is difficult to observe the number
of participants at a given auction. A given individual can only participate in one
auction, but a given buyer may of course delegate more than one individual to
an auction room. The number of seats in an auction room is about 500. The
average duration of a single auction (i.e., one transaction) equals just a couple

of seconds. The average number of transactions per day at AFA equals about

30,000.

3 Theoretical analysis

3.1 Theoretical studies

In this section we examine the theoretical literature on prices in sequential auc-
tions. We also investigate to what extent theoretical explanations for the declin-
ing price phenomenon apply to the Dutch flower auction.

The theoretical literature on sequential auctions is concerned with the gen-
eralization of a basic sequential auction model. This basic model assumes “in-
dependent private values” (IPV): a bidder knows his own valuation, but he only
knows the distribution from which the rivals’ valuations are drawn. The valua-
tions of different bidders are independent random draws from this distribution.
There are two fully homogeneous objects to be auctioned (so that there are two
rounds in the sequential auction), each bidder only wants one object, and the
bidders are risk-neutral. The auction design is second-price sealed-bid. Milgrom
and Weber (1982b) and Weber (1983) show that in equilibrium, the gains of wait-

ing are arbitraged away so that the expected prices in all rounds are the same.



Weber (1983) shows that this result also applies to the modification of the basic
model where the auction design is first-price sealed-bid.

Milgrom and Weber (1982a, 1982bh), among others, show that if the IPV
framework is replaced by a common-value or affiliated-value framework, then
this result does not hold anymore (see also the discussion in Black and De Meza,
1993). Instead, price trajectories are upward trended, notably early on in the
sequential auction. Basically, early auctions release information about the value
of the good, thereby reducing concerns about the winner’s curse in subsequent
auctions, and there is a strategic incentive to fool the other bidders into believing
that the true value is low.

Ashenfelter (1989) suggests that risk aversion may explain declining prices
in sequential auctions. For risk averse bidders, the randomness of the second
auction reduces the value of this auction. In case two identical items are auc-
tioned, the expected price in the second period is lower because the price in the
first period also contains a risk premium associated with the risky future price.
However, the theoretical analysis by McAfee and Vincent (1993) casts doubt on
the relevance of risk aversion as an explanation of declining prices. They show
both for first-price and for second-price sealed-bid auctions that if the bidders
exhibit non-decreasing absolute risk aversion then prices tend to decline within
the sequential auction. However, non-decreasing absolute risk aversion is an un-
satisfactory characterization of attitudes to risk. But it is necessary to assume
non-decreasing absolute risk aversion in order to obtain pure-strategy, monotonic,
equilibrium bidding functions. If bidders exhibit increasing absolute risk aver-
sion then no pure strategy equilibria exist, sequential auctions may lead to an
inefficient allocation, and in that case there is an incentive for retrading after the
auction.

Black and De Meza (1993) extend the basic model in two steps. First, they
assume that bidders are interested in the acquisition of more than one object.
The value to a bidder of acquiring two objects is assumed to be less than twice
the value of a single object. So, the bidders have a high valuation for the first
object and a lower valuation for the second object. They examine both second-
price sealed-bid auctions and English auctions, and they show that the price
tends to increase. For the special case of two bidders, this can be explained
intuitively (see also Paarsch and Robert, 1996). The bid of both bidders in the
first round is equal to their low valuation. That means that the bidder with the
higher valuations (say, the first bidder) gets an object for a price equal to the
low valuation of the second bidder. If the high valuation of the second bidder is
higher than the low valuation of the first bidder who won the first round, then the



second bidder wins the second auction and pays a price equal to the low valuation
of the first bidder. Since the low valuation of the first bidder is higher than the
low valuation of the second bidder, the price in the second auction is higher than
the price in the first. Similarly, if the high valuation of the second bidder is lower
than the low valuation of the first bidder who won the first round, then the first
bidder wins the second auction and pays a price equal to the high valuation of
the second bidder. Since the high valuation of the second bidder is higher than
the low valuation of the second bidder, the price in the second auction is again
higher than the price in the first. In sum, the price tends to increase. Paarsch
and Robert (1996) show that this result can be generalized to auctions of more
than two objects.

In their second step, Black and De Meza (1993) show that this result can be
reversed (i.e., the price tends to decline) if the auction allows for a buyer’s option
whereby the winner of the first auction has the opportunity to buy additional
objects at the same price. In that case, the bidder with the lowest valuations
can no longer assume that he will win at least one item if his high valuation is
higher than his rival’s low valuation, because this rival may win the first round
and exercise the option. The winner will always exercise the option if the selling
price is below his low valuation. The second bidder therefore has an incentive
to bid up in the first round in order to prevent the first bidder from exercising
the option. But in the two-bidder case, if the option is not exercised, the second
price is the first-round winner’s low valuation. Hence, the second object must
necessarily sell for less than the first. It should be mentioned that if the number of
bidders is larger than two then in some cases the price may actually rise, although
numerical examples in Black and De Meza (1993) with three buyers suggest that
on average the price declines. Interestingly, these examples also suggest that the
buyer’s option is in the interest of the seller. No results have been derived for
auctions of three or more objects if a buyer’s option is allowed.

Branco (1997) also considers an auction in which bidders are interested in
the acquisition of more than one object. However, contrary to Black and De
Meza (1993), he assumes that the value to a bidder of acquiring two objects is
assumed to be more than the sum of the valuations of the separate objects. This
means that preferences are superadditive. In his model there are two objects and
two bundle bidders. Because a bundle bidder has an extra gain if he succeeds in
buying both objects, both bundle bidders are more aggressive in the first auction.
In the second auction only the winner of the first auction will bid aggressively.
This causes the expected price to decline over the sequence of the auction.

Milgrom and Weber (1982b) argue that a price decline in sequential auctions



may arise from the presence of bidders who act as agents. These agents bid to
win an object at any price up to a specific maximum price, so they do not behave
strategically. If none of the other bidders bids sufficiently high, the agent with
the highest maximum price wins the first auction. If, again, in the second round
none of the other bidders has the highest bid the agents with the second highest
maximum price wins the second auction at a price which is obviously lower than
the winning price in the first auction. In the extreme case where all the bidders
act as agents the first auction is won by the agent with the highest maximum
price, the second auction is won by the agent with the second highest price etc..

A number of theoretical studies examine sequential auctions of objects that
are in some sense perceived to be heterogeneous. It turns out that various forms of
heterogeneity are able to generate declining prices (see for example Engelbrecht-
Wiggans, 1994; Bernhardt and Scoones, 1994; Gale and Hausch, 1994; and Beggs
and Graddy, 1997). This need not concern us here, as in this paper we deal with
fully homogeneous objects.

Yet another explanation of declining prices in sequential auctions considers
the existence of participation costs (Von der Fehr, 1994; Menezes and Monteiro,
1997). If losing bidders in the first round realize that they only have a small
probability of winning, participation costs may induce these bidders to leave the
auction, which causes expected prices to decline.

Keser and Olson (1996) use laboratory experiments to study prices in sequen-
tial first-price sealed-bid IPV auctions. They too find that prices decline. In the
set-up of their experiment there is no heterogeneity of objects and no buyer’s
option, and the bidders cannot buy more than one object. Furthermore, they
find that certain features of the price outcomes cannot be explained by risk aver-
sion, and that bidders who act as agents do not behave differently from other
bidders. From this they conclude that declining prices cannot be fully attributed
to risk aversion, heterogeneity, a buyer’s option, the institutional structure of the
English auction, bidders acting as agents, etc.. In this respect the declining price
is still an anomaly. Note that the findings by Keser and Olson (1996) do not
exclude the buyer’s option from being a quantitatively important explanation of
observed price declines in real-life auctions. The experiments merely show that
even without these explanations there is a “residual” price decline.

As mentioned in the introduction, there have been a number of empirical

“Bernhardt and Scoones (1994) indicate that their model probably does not explain declining
prices in the case of wine auctions, for the reason that it is unlikely that a bidder’s valuation
would differ across identical lots of wine: “a rosé is a rosé is a rosé”. This refers to our

assumption that “a rose is a rose is a rose”.
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studies on price changes in sequential auctions, and we end this subsection by
briefly mentioning some interesting results. Ashenfelter (1989) finds a mild price
decrease in sequential auctions of identical units of wine, and he attributes this
to risk aversion of the bidders. These auctions allow for a buyer’s option. McAfee
and Vincent (1993) also present empirical evidence on sequential wine auctions.
They find that, on average, the second unit of wine is sold at a price 1.4% lower
than the price of the first unit. Donald, Paarsch and Robert (1997) find price
increases in their analysis of timber auctions where bidders are interested in
more than one object. These are English auctions of homogeneous objects. The
authors assume risk neutrality and decreasing marginal utility, so these results
can be interpreted as a strong confirmation of the predictions derived from the
Paarsch and Robert’s (1996) model and from Black and De Meza’s (1993) model
without the buyer’s option. Ginsburgh (1998) uses data on wine auctions in
which the auctioneer acts as an agent for bidders who are not present at the
auction. He finds price declines, but apparently the absent bidders enter bids
which do not fit with the theory.

The empirical studies by Ashenfelter and Genesove (1992) (see also Laffont,
1997) and Beggs and Graddy (1997) concern heterogeneous objects. They also
detect price declines. Jones, Menezes and Vella (1996) find an increasing price,
apparently because the composition of the pool of bidders changes over the se-

quence of the auction in response to heterogeneity of the objects.

3.2 Implications for the Dutch flower auction

Before we move on to our empirical analysis, we evaluate the relevance of the
results in the theoretical literature, by examining to what extent the assumptions
underlying these results are valid for the Dutch flower auction. As we find strong
evidence of declining prices in our data, we are more interested in explanations
of price declines than in explanations of price increases.

It seems that the IPV framework is a reasonably accurate description of the
valuations of bidders at AFA. Many bidders are retailers with flower shops that
serve a local neighborhood. These act as monopolistic competitors on the con-
sumption market for flowers in their neighborhood. From experience, they have
an excellent knowledge of the demand functions of the products they sell to the
consumers, and these functions differ across different neighborhoods. In addition
to these buyers, there are also large buyers who export flowers. These are typ-
ically active in a particular geographical region, where they have some market

power. Flowers are highly perishable goods, so there is no scope for extensive
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retrading after the auction is held.

Are bidders at AFA risk averse, and if so, would it affect their behavior at
the auction of a given lot? Often, the price of a given unit covers an extremely
small fraction of the budget of a bidder. Most bidders face no strong binding
financial constraints. This points towards risk neutrality, but it is difficult to
assess whether the argument holds for all bidders. Other lots that are auctioned
at the same day may be close substitutes for a given type of flower as supplied
by a given grower. This would provide some insurance against the risk at the
auction of the lot at hand. However, the “specialty” roses we consider are among
the most expensive cut flowers that are available, and the range of substitutes is
smaller than for bulk product flowers like most tulips.

Are bidders at AFA often interested in the acquisition of more than one unit?
This seems plausible. The size of a unit is often chosen to be rather small and
“handy”. It is very likely that the value to a bidder of a second unit is always
larger than zero. However, it is also likely that the marginal value decreases as
more units are bought, so the value of two units is less than twice the value of a
single unit.?

The AFA always allows for a buyer’s option.® The units within a lot are fully
homogeneous, so any sequential auction at AFA deals with fully homogeneous
objects. Also, there may be participants who act as agents (e.g. of international
trading companies). Finally, the marginal costs of participation at successive
rounds within a sequential auction of a lot are zero.”

From all of this, we conclude the following. First, theoretical explanations
based on the IPV framework seem relevant. Secondly, (some) bidders might
be risk averse. We know from the previous subsection that from a theoretical
point of view, risk aversion is a highly unlikely explanation, in particular if there
are possibilities of retrading after the auction. Since the latter possibilities are
relatively expensive in case of perishable goods like cut flowers, we do not yet
exclude the possibility that risk aversion is driving the price decline. A third
conclusion is that the buyer’s option and/or the presence of bidders acting as

agents may well explain the price decline. A fourth conclusion is that explanations

5Tt could be argued that having multiple units generates efficiency gains in the market where
the buyer sells the flowers to the consumers. However, these are probably small, and consumers
typically prefer a wide variety of available flowers.

8Note that the availability of many close substitutes could reduce the importance of the
buyer’s option as a determinant of the bidders’ behavior. However, recall that one may expect
a relatively minor scope for substitution of “specialty” roses.

"The auction time is very short. Even the auction of a lot with many units only takes a
couple of minutes.
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based on stochastic values or heterogeneity of objects or participation costs are
irrelevant. The latter is also true for explanations based on super-additivity. Note
that super-additivity in combination with a buyer’s option would simply imply
that the highest bidder buys all the objects in the first round and a declining
price could never occur. Because in the Dutch flower auction a buyer’s option
exists and sequences of auctions frequently occur, superadditive preferences are
not present.

As a result, three possible explanations for the declining price phenomenon
at the Dutch flower auction emerge: risk averse bidders, the buyer’s option, and
the presence of bidders acting as agents. We should however point out that the
relation between the theoretical models in the literature and the actual setup
of the Dutch flower auction is not always very intimate. In particular, most of
the theoretical literature on sequential auctions deals with English auctions or
second-price sealed-bid auctions rather than Dutch auctions. In addition, this
literature often adopts a basic auction setting with a maximum of two objects
to be auctioned. It remains a topic for further research to investigate to what
extent the theoretical predictions in these studies carry over to sequential Dutch
auctions with many objects. We return to this in Subsection 4.3. Finally, the
auction setup may provide additional reasons for a price decline which have not
vet been discovered, and certain aspects of the bidders’ behavior may be missing

from the theoretical models.

4 Empirical analysis

4.1 The data set

We use information on auctions of a particular auction group of roses (AFA
code 52) for the period June 3 - August 1, 1996. In this period of 44 working
days almost 24,000 lots in this group were auctioned, resulting in about 58,000
transactions. So, on average there were 550 auctions per day and 2.4 transactions
per auctioned lot. The AFA code 52 roses are so-called “large flower” roses.
These are relatively expensive and have an exclusive image. The length of the
roses varies from 50 centimeters to over 90 centimeters. On average, the auction
price of a rose increases with its length. The color of the roses may be red,
brown, green, yellow, orange, purple, white, salmon, et cetera. So, there are
obvious differences between the lots. The heterogeneity between the lots is also
illustrated by the wide range of the item price (see below).

Figure 1 shows that there is a lot of variation concerning the number of units
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per lot offered by the growers. About 3500 lots contain only 1 unit, but there
are also for example about 500 lots that contain 10 units. Obviously some of
the growers offer their flowers in small quantities, while others offer their flowers
in vast quantities. The heterogeneity between the lots is illustrated in the wide
range of the number of items (individual roses) per unit. As shown in Figure 2,
there are peaks at 80, 100, 120, 140 and 160 items per unit.

Figure 3 presents the distribution of the number of transactions per auctioned
lot. About 10,000 lots were auctioned in only 1 transaction, about 5,000 lots in
2 transactions, etc.. Note that to study the phenomenon of the declining auction
price we need at least 2 transactions per auctioned lot. Figure 4 shows that
about 23,000 transactions only concern 1 unit, about 17,000 transactions concern
2 units, about 8,000 concern 3 units etc..

The minimum price per rose is equal to 10 cents. As shown in Figure 5, for
about 100 transactions the auction did not result in a price above this minimum
price. About 300 transactions have a price of 11 cents, etc.. There are more than
500 transactions for every price between 20 and 76 cents. The highest price, not

included in Figure 5, is 265 cents (attained in only 1 transaction).

4.2 Price determinants in auctions of roses

To proceed, we create a sub-sample in which the range of values of several vari-
ables is somewhat limited. The sub-sample contains information about lots that
contain less than 11 units and have a number of items per unit of 80, 100, 120
or 140. Furthermore, the length of roses as measured in 10cm is restricted to
equal 50, 60, 70, 80 or 90 centimeters. In addition, we restrict attention to the
about 20 products for which the number of transactions during the period of
analysis is larger than 1000. Finally, we omit information on lots of which part
was destroyed because the price fell below the minimum price (13 observations).
We also do not use lots in which a minimum purchase quantity was used dur-
ing the sale (744 observations). The sub-sample contains information on 14,092
transactions.

We analyze the price effects of characteristics of the rose and the auction setup
by estimating an equation with the log of the prices as dependent variable and
several dummy variables as explanatory variables. The explanatory variables are
day of the week, a quality indicator, the number of units per lot, the number of
items per unit, the length of the roses and the product code. The reference group
concerns Monday, high quality, 1 unit lot, 80 items/unit, length 50 centimeters

and one of the product codes.
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The estimation results are presented in Table 1. In general, the parameter
estimates are highly significant, which is not surprising given the size of the
data set. Prices are the highest on Mondays. The lowest prices are recorded on
Thursdays when prices are on average 12 percent lower than on Monday. Roses
which were labelled to have a low quality are on average 27% cheaper than roses
without such a label. Holding everything else constant, lots of one unit have the
lowest price. The price increases with more than 10 percent for lots of 2 or 3
units. Table 1 also shows that prices are on average the highest for units which
contain 80 flowers. Lots that contain 100 and 120 flowers per unit are about 6
percent cheaper. Lots with 140 flowers per units are 19 percent cheaper. This
may very well be caused by unobserved quality effects such that lower quality
flowers are offered in larger units. The length of a rose is an important price
determinant. Roses of 90 centimeter are 53 percent more expensive than roses
of 50 centimeter. There are also large price differences between different product
codes.

Table 1 also shows the results of a regression in which the rank number of the
transaction within the sequential auctioning of the lot is included as an explana-
tory variable. The rank number has a positive effect on the price. Units sold in
the second transaction are, on average, 1.5 percent more expensive. This results
seems to contradict a declining price of sales within a lot. However, this result
could be affected by unobserved quality differences. In the next subsection we
examine this in more detail.

Table 2 shows the direction of the price movements between subsequent rounds
within the sequential auction of a lot, distinguished by the rank number of the
transaction. Considering all transactions, the number of instances where the price
increases is slightly below the number of transactions where the price decreases.
From the first to the second transaction the price more often increases than
decreases. The opposite is the case for most of the subsequent transactions. These
results do not provide conclusive evidence of either a price decline or increase.
In fact, as Keser and Olson (1996) show, a comparison between the number
of increases and decreases is not very informative on the importance of price

declines.

4.3 Price changes in the sequential auction

A simple regression of the transaction price on the rank number of the transaction
can be misleading, for two reasons. To understand the first reason, note that the

maximum rank number differs across auctions of different lots. It is plausible
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that the value of this maximum rank number is not exogenous, because it is an
outcome of the behavior of the auction participants and may depend on realized
prices earlier on in the sequential auction. Suppose that there is a characteristic
of the rose or the auction setup that is unobserved to us but observed by the
auction participants. This may affect both the level of the prices within the
sequential auction and the number of rounds in the sequential auction. A result
of this may be that a relatively high price throughout the sequential auction often
goes together with a relatively large number of rounds. This means that in the
data, among the realized prices at transactions with large rank numbers, there
are relatively many high prices. The regression coefficient of the rank number
is then biased upward (i.e., the price declines more than as suggested by the
regression estimate).

A second (related) reason for why a simple regression can be misleading is
that the price observations for a given sequential auction are typically not inde-
pendent. There may be unobserved price determinants which affect all realized
prices within a sequential auction. In that case, regressions may generate biased
results even if the number of rounds would be the same for all sequential auctions.
Note that this criticism also affects the results in Table 1. To a certain extent we
dealt with this by allowing for fixed effects for the identity of the product.

To advance, we estimate a fixed effect model for the price as a function of the
rank number of the transaction within the sequential auction. This model states
that

logp;; =, + 55 - d;j + &5 (1)

where p; ; is the price per flower in the transaction with rank number j =1,.... J;
in the sequential auction of lot i = 1,..., N. The lot-specific fixed effect «; cap-
tures observed and unobserved heterogeneity between lots. The dummy vari-
able d;; denotes the rank number of the transaction. The series of g,;(j =
2,...,max; J;) coeflicients captures the price change within a lot, relative to the
first transaction. These are the parameters of interest. We normalize 3;= 0, and

we define

B; =B — B

Finally, the random variable ¢, ; captures the remaining variation in p; ; and is
assumed to be identically and independently distributed across 7 and j.

By analogy to the fixed-effect panel-data model, the 3} coefficients can be
estimated by ordinary least squares (OLS) routines. Specifically, the fixed effects
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are removed by estimating the model (1) by OLS with variables that are measured
in deviation from their average over j = 1,...,J;. Lots that are sold in one round
do not contribute to the estimation since in that case the price log p; ; equals the
average of log p; ;. Note that with this estimation approach, the effects of observed
characteristics like those examined in the previous subsection are absorbed into
the fixed effect and are consequently not estimated along with the 3} coefficients.

An alternative method to eliminate the fixed effect from the model is to
take first differences of (1) for pairs of consecutive rounds. In this case, the
price change from one transaction to the subsequent is directly entered as the
endogenous variable in a regression. The price change from the (j — 1)th to the

3 round equals

log Lod Bi—Bi1+ei;—eij1 = 0 +er (2)
Pij-1

This estimation approach does not impose a priori that the fixed effect is the
same in all rounds within the sequential auction of a lot. An advantage of this
is that data on auctions that are finished in say jy rounds do not play a role
in the estimation of the price changes in rounds j > jo. The equations (2) can
be estimated directly by OLS. The estimated coefficient is simply the average
observed log price decline.

Both estimation approaches only use information on transactions within a
sequential auction to estimate the effect of the rank number on the price. The
resulting estimates are not affected by the possible biases mentioned at the be-
ginning of the subsection.

If the specification of the model equation (1) is correct then the 3

obtained with both approaches are asymptotically the same. In fact, they are

estimates

always exactly the same for 3. Moreover, if J; does not depend on 7 then they
are even exactly the same for all 37 (see Appendix I, which contains a detailed
comparison of the two estimation approaches). In general, the estimates based on
the fixed effect approach are more efficient than those based on first differencing.

If the sets of 37 estimates differ substantially then this suggests that the
model is misspecified. In reality, the price may be affected by the interaction
between the fixed effect and the rank number of the transaction. This means
that unobserved lot-specific determinants of the price level also affect the amount
of price change within the auction of the lot. In that case, auctions with many
rounds may also have a different pattern of price changes than auctions that are

finished in a few rounds.®

8The unobserved lot-specific price determinants may also have a different effect on the price
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For both approaches, the estimated coefficients are given in Table 3. Note that
the results obtained with first differences are in fact based on separate estimations
for each 5, whereas the fixed effect approach estimates all coefficients together.

The empirical analysis provides very strong evidence for declining prices within
the sequential auction. The point estimate for the first price change 35 is exactly
the same under the two approaches (2.2 percent). For the subsequent rounds,
the fixed effect approach generally predicts less decreasing prices than the first
differences approach. With the fixed effect approach, the price change becomes
insignificant after the 5 round. With first differences, the largest price decline is
observed from the 3™ to the 4'" round (2.8 percent). After that the price declines
somewhat less. In Appendix 1 we show that the difference between the two sets
of estimates suggests that the price decline per round is smaller in lots that are

auctioned in a small number of rounds. We return to this in the next subsection.

4.4 A closer look at the price decline

In this subsection we evaluate empirical evidence for the plausibility of the three
remaining explanations for the declining price at the Dutch flower auction: risk
aversion, the buyer’s option, and the presence of bidders who act as agents. It
should be stressed from the outset that the contents of this subsection is rather
speculative. Virtually all of the theoretical literature on price changes in se-
quential auctions deals with English auctions or second-price sealed-bid auctions
rather than Dutch auctions. In addition, this literature often adopts a basic auc-
tion setting with a maximum of two objects to be auctioned. It is not certain
that the theoretical predictions in these studies and the corresponding intuition
always carry over to the rather specific sequential Dutch auction we consider in
this paper.

The literature on the effect of the buyer’s option is a case in point. Recall
that Black and De Meza (1993) only examine second-price sealed-bid auctions
and English auctions, and only examine auctions of two objects (so the number
of rounds is at most two). Moreover, they show that if the number of bidders is

larger than two then in some cases the price may actually rise, although numerical

change at early rounds than on the price change at later rounds. For example,
logpij = i+ 0 - dij + 06 - dij +ei
with additional parameters ;. One can think of many alternative generalizations of model (1).

We do not pursue the estimation of such general models. However, in the next subsection we
estimate some specific departures from model (1).
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examples with three buyers suggest that on average the price declines.

In Table 4 we examine the data on lots that consist of two or three units at
the beginning of the sequential auction. In particular, we show the relationship
between the number of units bought and the price changes at subsequent rounds.
For the 1345 two-unit lots there are two possibilities: the lot is sold in one round
or in two rounds. The former applies 940 to lots while the latter applies to
405 lots. For the latter lots, the average price decline over the two subsequent
auctions is 3.6%. This echoes the results of the previous subsection, and all that
can be said is that it does not contradict the predicted effect of a buyer’s option.

From the results in Black and De Meza (1993) it follows that the buyer’s
option is typically exercised if the price at the first round is low in the sense
that the valuation of the actual buyer is much larger than the valuations of the
other participants. As argued in the previous subsection, we do not use the
data on the price levels in the empirical analysis of the price changes, because of
possible endogeneity problems. To a certain extent, we can however check this
prediction indirectly, using the data on the three-unit lots. If the price at a certain
round is low then one may expect the subsequent price decline to be relatively
small in absolute size. Therefore, one may expect to see a frequent simultaneous
occurrence of the exercise of the buyer’s option with a small subsequent price
decline.

In the data on the 1099 three-unit lots there are four possible trajectories. The
first is that the lot is sold in one go. In that case no price change is observed.
In the second trajectory, the lot is sold in two rounds, and the buyer’s option is
exercised in the second round. In the third trajectory, the lot is also sold in two
rounds, but the buyer’s option is used in the first round when two of the three
units are bought. The comparison between the price declines in the latter two
trajectories confirms the above hypothesis that the exercise of the buyer’s option
is often followed by a small price decline.

Now let us turn to the evidence for risk aversion of bidders. Our line of
reasoning is the following. If risk aversion is important, it will probably not show
up in situations where the auctioned lot consists of many units and the auction
has just started. On the other hand, if few units are left, the risk that no more
units will be available for a subsequent sale is larger, so price declines may be
expected to be larger.

As a first example we investigate auctions of ten-unit lots of which in the
first auction 1 unit was sold (total of 71 transactions). This leaves 9 units to
be auctioned in the second round. If one unit is sold in the second round the

average price decline is 1.1% (32 transactions), if two units are sold the average
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price decline is 2.3% (18 transactions), if three units are sold the average price
decline is 3.5% (12 transactions). In the latter situation there are still six units
left for the third round. So, even in a situation where many units are left to be
bought we find a price decline.

Next, we examine the price decline between two rounds as a function of the
number of units that are left at the beginning of the first of these two rounds.
The results are in the first column of Table 5. Indeed, price declines are larger
when there are few units left for sale. To see whether this is a specific result for
the first two rounds after the moment at which few units are left, we perform
the same exercise for the price change from the second to third round after that
moment. The results are in the second column of Table 5. No systematic effects
are found between the two columns.

However, we should be careful in deriving conclusions from Table 5. As we
already saw in Table 3, price declines are especially large in the beginning of the
sequential auction. Table 5 shows that price declines are large when only a few
units remain to be sold. Both results can be driven by lots that consist of only a
few units. When the auction starts for these lots then already in the beginning a
few units remain to be sold. To distinguish between the two effects we estimate a
fixed effect model in which we correct both for the rank number of the transaction

and for the number of units remaining at the start of each round®:

ppi=71+72-(j—2)+73-(/<:—2)+gi,j i>1k>1 (3)
551

log

where j refers to the rank number of the transaction and k refers to the remaining
number of units at the beginning of round j — 1. So, for a two-unit lot that is
auctioned in two rounds, j = k = 2, for a three-unit lot where we consider the
price change from the first to the second round j = 2,k = 3, for a price change
from the second to the third round j = 3,k = 2 etc.. The reference case is a
two-unit lot that is auctioned in two rounds. In this case we cannot distinguish
between the effect of the rank number of the transaction and the effect of the
remaining number of units. The value of v, captures the price change for this
case. If we find 5 > 0, then this is evidence that the strongest decline is early on
in the auction, whereas if 3 > 0, then this is evidence that the strongest decline
is where only a few units remain.!®

The estimation results are in Table 6. The first column shows the estimation

results if we impose 3 = 3 = 0. Then, we measure the average price change over

9For these estimates we use lots containing 2-6 units.
10Note that at the end of Subsection 4.3 we found evidence of an interaction effect between
7 and k on the price decline. We do not pursue this further.
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two subsequent auctions within the same lot. It turns out that the average price
decline is 2.8%. In the second column we impose 73 = 0. Then, we only consider
the effect of the rank number of the transaction. The resulting estimate of v, is
= —2.6%. Furthermore, we find that 7 < 0, indicating that the price declines
increase at the later rounds. The third column of Table 6 shows the estimation
results if we impose 5 = 0. Now, we find that the coefficient 73 > 0 indicating
that the fewer the remaining number of units, the larger the price decline. In the
fourth column of Table 6 we show the results for the full equation. The results
are similar as before albeit that now 7, does not differ from zero at conventional
levels of significance.

Our conclusion is that the declining price is particularly important in the
beginning of a sequential auction irrespective of the number of units to be auc-
tioned. It is true that the decline is stronger the smaller the number of units that
remain, but the evidence is not sufficiently unambiguous to conclude that risk
aversion is an important determinant of the declining price phenomenon.

Finally, we investigate whether the phenomenon that some bidders may act
as agents can explain the declining price.’! We do this by considering whether
there is a systematic difference between large and small buyers. When a purchase
is made, the buyer identifier number is registered. As we saw in Section 2, the
differences in buyer size are enormous. During the period under investigation,
613 different buyers bought the types of roses we consider here. The largest six
buyers are responsible for 20 percent of the total sales. We classify buyers in four
groups depending on their total purchase of roses. 558 buyers are classified as
small buyers. They represent 30 percent of total sales. 27 buyers are classified
as medium. They are responsible for 20 percent of the total sales. 22 buyers
are classified as larger. Together they account for 30 percent of total sales. As
mentioned, the very large buyers are responsible for the remaining sales.

Table 7 shows the relation between the rank number of the transaction and
the type of buyer. No clear relationship can be found. Small buyers tend to buy
relatively more often in the second and third round but the differences are small.
Table 8 presents the relation between the type of buyer and the number of units
that are available at the start of the sequential auction. Large buyers tend to
buy more frequently when the number of units that are available is large. Large
buyers apparently have a preference for buying many units of the same kind of
flowers. If there is only one unit left, the majority of the buyers is small. However

even the very large buyers are involved in these one-unit sales.

H'Within a sequence of auctions of the same lot bidders typically only buy once. We have 9

observations where a bidder is involved in two transactions within the same lot.
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If the large or the very large bidders would behave as agents we would expect
them to be active more frequently at the beginning of the auction, and we would
expect them to be inactive when only a few units are available. This not being
the case we conclude that the phenomenon that bidders act as agents is not a
very important determinant of the declining prices we observe over the sequence

of auctions.

5 Conclusions

By now there is a substantial literature on price movements in sequential auctions.
Theoretical studies often focus on second-price auctions. Empirical analyses are
often descriptive. In our paper we analyze data from the Aalsmeer Flower Auc-
tion on sequential Dutch auctions of homogeneous lots of roses. Using rather
sophisticated econometric techniques, we find that there is a price decline in se-
quential auctions. We can dismiss some of the explanations put forward in the
theoretical literature. It turns out that the explanation in terms of the presence
of the buyer’s option is consistent with the price declines we find in the data.
Since price declines also occur in situations where there are still numerous units
to be auctioned we feel that risk aversion is not a very important explanation
of the declining prices of roses. From the fact that there does not seem to be
a systematic difference in buyer’s behavior between small and large buyers we
conclude that agent behavior is not a very important determinant of the price
decline either. Therefore, after a process of elimination we conclude that the
presence of a buyer’s option is an important determinant of the price decline of

roses.
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Table 1 Estimation results log price per flower with and without transaction order as regressor
(t-values in parenthese$)

coefficient  t-value coefficient t-value
Tuesday -0.073  (-7.46) -0.074 (-7.57)
Wednesday -0.088 (-8.72) -0.088 (-8.73)
Thursday -0.118 (-11.01) -0.118 (-11.05)
Friday -0.032  (-3.23) -0.033 (-3.37)
Low quality -0.270 (-21.24) -0.268 (-21.09)
Lot size (excluded category: 1 unit)
2 units 0.105 (6.82) 0.103 (6.64)
3 units 0.110 (7.18) 0.104 (6.66)
4 units 0.090 (5.76) 0.079 (4.99)
5 units 0.095 (5.88) 0.081 (4.90)
6 units 0.090 (5.68) 0.073 (4.44)
7 units 0.061 (3.57) 0.041 (2.32)
8 units 0.101  (5.74) 0.076 (4.18)
9 units 0.049 (2.92) 0.021 (1.19)
10 units 0.070 (3.71) 0.040 (2.01)
Number of flowers (items) per unit (excluded category: 80 flowers)
100 -0.076  (-5.82) -0.075 (-5.75)
120 -0.065 (-4.73) -0.064 (-4.65)
140 -0.195 (-11.55) -0.193 (-11.45)
Length of flower ( excluded category: 50 cm)
60 cm 0.157 (12.62) 0.155 (12.45)
70 cm 0.317 (25.58) 0.311 (25.13)
80 cm 0.440 (32.98) 0.434 (32.47)
90 cm 0.536 (35.94) 0.529 (35.38)
Rank number of transaction (excluded category: 1)
2 0.015 (1.83)
3 0.035 (3.32)
4 0.054 (3.71)
5 0.071 (3.18)
6 0.145 (3.70)
7 0.160 (2.17)

a) The estimated equations allow for fixed effects for each product code (20 in total).

Table 2 Sign of price changes by rank numbers of the transactions (% of total)

Rank numbers of transactions

1-2 2-3 3-4 4.5 5.6 6-7 all
Decline 34 42 49 47 42 19 39
Constant 20 29 30 31 38 52 24
Increase 46 29 22 22 20 30 37
nr of observations 3777 1953 867 334 100 27 7058
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Table 3 Estimated price changes at successive transactions, by rank numbers of the transactions
(t-values in parentheses)

Rank numbers of the transactions

1.2 2-3 3-4 4.5 5.6 6-7
fixed effect approach -0.0223 -0.0200 -0.0217 -0.0170 -0.0085 -0.0057
(-14.57) (-10.00) (-7.55) (-3.78) (-1.07) (-0.37)
first differences -0.0223 -0.0261 -0.0279 -0.0268 -0.0171 -0.0066

(-15.37)  (-16.59) (-12.08) (-7.86) (-3.39) (-0.54)

Table 4 Price changes for lots of two and three units

price change (%)

Two-unit lot nr of lots from 1stto from 2nd
2nd round to 3rd

1 round (2 units) 940

2 rounds (1 and 1 unit) 405 -3.57

price change (%)

Three-unit lot nr of lots  from 1stto from 2nd
2nd round to 3rd

1 round (3 units) 463

2 rounds (1 and 2 units) 267 -4.38

2 rounds (2 and 1 unit) 241 -2.52

3 rounds (3 times 1 unit) 128 -0.73 -2.18

Table 5 Price decline by number of remaining units (t-values in parentheses)

price decline

nr of units left first to second second to third
before sale

2 -0.0357 (-7.45) -0.0266 (-5.49)
3 -0.0294 (-7.94) -0.0333 (-8.39)
4 -0.0235 (-6.83) -0.0234 (-6.15)
5 -0.0216 (-5.32) -0.0307 (-7.68)
6 -0.0206 (-4.87) -0.0165 (-4.70)
7 -0.0163 (-3.34) -0.0182 (-4.72)
8 -0.0064 (-1.74) -0.0269 (-5.02)
9 -0.0194 (-4.10) -0.0294 (-3.41)
10 -0.0112 (-1.84) no observations
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Table 6 Estimation results for the effects of the rank number of the transaction and the number
of remaining units (coefficients * 100; t-values in parentheses)

1 2 3 4
Constant  -2.75(20.3) -2.58 (16.0) -3.31(14.4) -3.13 (11.4)
j-2 - -0.39 (2.0) - -0.24 (1.2)
k-2 - - 0.31(3.0) 0.28 (2.5)

Table 7 Size of buyer by rank humber of transaction (percentages, number of transactions)
size of buyer (row %)

Rank small medium very large  number of
number Large transactions

1 38 17 29 15 7034
2 44 18 27 10 3777
3 45 18 27 10 1953
4 40 18 29 13 867
5 42 21 26 12 334
6 40 16 30 14 100
7 26 17 48 9 23
8 100 0 0 0 4

Total 41 18 28 13 14092

Table 8 Size of buyer by number of units left for sale (percentages, number of transactions)

type of buyer

nr of units small middle large very large number of
left for sale transactions
1 51 15 25 9 2485
2 41 17 29 14 3028
3 40 18 29 13 2281
4 38 19 31 12 1843
5 38 20 29 14 1328
6 37 20 29 15 1148
7 36 19 30 15 740
8 39 19 30 12 549
9 35 22 26 17 477
10 34 19 29 17 213
total 41 18 28 13 14092
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Appendix I. Fixed effects versus first differences

First we show that if the number of transactions is the same for each lot, then the fixed
effect approach is equivalent to estimation in first differences. Suppressing the error
term, the model can be written as

J
yij:ai+zlijﬁ< j=1,...J i=1,...N 1)
=1

where
[ = indicator for lot ,
j = rank number of transaction within lot,
y = log(price per flower in roungfor lot i)
Iij =1 ifj:k,

= 0 otherwise.

The fixed effects can be eliminated by rewriting this in differences from the cluster
(lot) means. In matrix notation

with
M; 0 00O a,0n Oy, O
_ 0 O 0o _ _ '
5o 0 M,H H,8  BnE

where

! 1
vi=(ve - W) andM;,:IJ—leI'J.

TheJ normal equations can be written as
N A
2 Mayi=N Myp )

The estimated price change from jfieto the [+1)" round is defined agB; - f,.1) -

The matrixM; takes differences from the means. By subtracting fhé)"( from the

i™ normal equation this mean cancels out. Hence,

(B; _ﬁj+1) =WZ Yi =Yg+ (4)

The estimated price change from tffe to the [+1)" round is estimated by the
average log price difference froffi to the {+1)" round. The same estimate results
from estimating the model in first differences. Suppressing the error term, the first
difference specification for the price change fromj'fh&o the 1+1)th round is

Yi = Y TV i=1,..N ©)

wherey; is defined as the price change. It follows directly that
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Vj =(BA1 _ﬁj+1) . (6)

In our application, the total number of rounds varies across lots. We show that
in that case the estimators with the fixed effect approach and those based on first
differences are generally not the same. Deljrees the total number of rounds for lot i
and letJ=max(d ,...,Jn). Maintaining the same notation, the fixed effect equations
can now be written as

My = MXB (7
with
EMJ1 0 o4O D~J1D Oy, O ,
M=50 08, x=g.0,y=2.andg=(s . 8,)
o o My HyH  BuE
where

[I 3 D] with dimension §x ;) and

' 1
yl =(>/I1 e y\l,) and MJ\ - I“'\ _J_[‘]ll‘ll ’

The normal equations can now be written as

N J - .
zMJiyi:zNj M; B (8)
i=1 i=2
where

~ [M;, OO0 .

M =g ! , ¥/ =(y 0O)and

=On o ¥=0r 0

N; = the number of lots which are soldjirounds.

Lots which are sold in 1 round are excluded, since the price then equals the fixed
effect of the lot. Since all other lots are sold in at least 2 rounds, the estimated price
change when going from the first to second round is the same as before

(ﬁl - ﬁz) =3 ! (yil - Yiz) )

This is identical to the estimator for the first differences approach.
The estimators of the price change when going from the second to third round
is not the same for the two approaches. For the fixed effect approach, subtracting the
third from the second normal equation yields
J R R R R R N N
z N; (Bz _Ba)"' Nz(Bz‘%(ﬁl +Ez)) = Z(yz - y3) las2) + Z( Yoi — _3() b3=2) (10)
=3 =1 =1

Rearranging terms yields
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N

(ﬁl - ﬁz) = Z(YZ - Y3)|(Ji>2) + (yzi - Vi) 522 (11)

J
= 1=1 1=1

3 - )-—2
S Ny(B - B) -
=3
in which (9) can be substituted. This yields an expressio([?fpf ,[?3)

Taking first differences yields the following estimator for the price change
when going from the second to third round,

iNJ(’éZ _B3)= i(yz = Ya) ko2 (12)

]=3 1=

The two estimators are clearly differentNg>0 andN3; + N4 + ... >0. A similar
argument can be made for price changes in subsequent transactions.

Using (10) we can say something about how the two estimators compare. If the
average price decline from the first to second round is larger in the lots that are sold in
two rounds than in the whole sample, then the value of the fixed effect estimate of

B, —ﬁ’3 will be more negative than the value of the estimate based on first
differences.
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