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Abstract

In this paper, we provide four extensions of the constrained equal award
rule for bankruptcy situations to the class of bankruptcy situations with a pri-
ori unions. We present some characterisations and relations with correspond-
ing games. The four new extensions are illustrated by a specific application.
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1 Introduction

In many situations in which agents interact, they do so in groups. Cooperative game
theory studies such situations by taking into account what each particular coalition
of players can achieve on its own. These values of the coalitions are subsequently
taken into account in determining a fair division of the value of the grand coalition
between all players.

Often, however, some coalitions play a special role, in that they arise in a natural
way from the underlying situation. If these naturally arising groups form a partition
of the grand coalition, they are usually referred to as a priori unions.

One interesting class of problems in which the role of a priori unions has been

studied is the class of bankruptcy problems. In a bankruptcy problem, there is
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an estate to be divided among a number of claimants, whose total claim exceeds
the estate available. In many situations, these claimants can be divided in a priori
unions, based on the nature or cause of their claims. Eg, when a firm goes bankrupt,
the creditors can usually be grouped in a natural way by distinguishing between
claims on the basis of outstanding bonds, equity or commercial transactions.

The main focus of the bankruptcey literature is on finding rules assigning to each
bankruptcy situation an allocation of the estate, which satisfies some appealing
properties. This branch of cooperative game theory was initiated by O’Neill (1982)
and has gained in popularity over the years.

One natural way to analyse the class of bankruptcy situations with a priori unions
is to extend well-known standard bankruptcy rules to this class. Eg, Casas-Méndez
et al. (2000) extend the adjusted proportional rule by considering a two-stage pro-
cedure in which the estate is first divided among the unions, and subsequently the
amount that each union receives is divided among its members.

In this paper, we present some extensions of the constrained equal award (CEA)
rule. The first extension involves a similar two-stage procedure as in Casas-Méndez
et al. (2000). We relate this extension to the C'EA solution of a corresponding
TU game with a priori unions, which is inspired by Owen (1977). We provide two
characterisations of this two-stage extension, based on previous results by Dagan
(1996) and Herrero and Villar (2001).

The second extension uses the concept of multi-issue allocation situations as
introduced in Calleja et al. (2001). Two further extensions of the C'EA rule are
based on the recursive completion rule introduced in O’Neill (1982), one of which is
characterised by a consistency property.

We illustrate and compare our four extensions of the C'E A rule by applying them
to the bankruptcy case of the Pacific Gas and Electric Company.

The outline of the paper is as follows. In section 2, we formally define the
class of bankruptcy situations with a priori unions and some related concepts that
are used throughout the paper. In section 3, the problem of extending standard
bankruptcy rules is addressed and the first two extensions are presented. In section
4, we provide the two characterisations of the two-stage extension of the C’E'A rule.
Section 5 contains the last two extensions and deals with the concept of consistency.

Finally, in section 6 we present the application.



2 Bankruptcy with a priori unions

A bankruptcy problem arises when there is an estate to be divided and this estate
is not enough to satisfy all the claims on it. In this kind of problems the question is
how to divide the available estate among all the claimants.

We model a bankruptcy situation by a triple (N, E,c), where N = {1,...,n} is
the set of players/creditors, £ € R, represents the estate (the available resources
of the debtor) and ¢ = (c1, ..., ¢,) € RY is the vector of claims of the creditors. We
assume Zie ~ Ci > I, so the estate is insufficient to meet all the claims.

By BY we denote the set of all bankruptcy problems with creditor set N. A
bankruptcy rule is a function f : BY — RY that allocates to every bankruptcy
problem (N, E, ¢) a vector f(N, E,c) € RY such that foralli € N, 0 < f;(N, E,c) <
¢; (f is reasonable) and ), v fi(N. E,c) = E (f is efficient).

A cooperative game with transferable utility (or TU game) is a pair (N, v), where
N = {1,---,n} is the set of players, and v : 2V — R is the characteristic function
that assigns to each coalition S C N its worth v(S). By convention, v() = 0. We
denote the class of TU games with player set N by TUN. A solution concept is a
function f: TUYN — RY that assigns to every TU game (N,v) € TU" an allocation
f(N,v) € RY such that >,_y fi(N,v) = v(N).

For every bankruptcy problem (N, F,c), O’Neill (1982) defines an associated
bankruptcy game (N,vg.). In this game, the value of a coalition S is the part of
the estate that remains after paying the creditors in N\S all their claims, that is,
Vp(S) = max{E — 7, \\s ¢, 0} for all S C N.

Curiel et al. (1987) study this class of games. They call a bankruptcy rule
game-theoretic if the solution of a situation only depends on the game. So, for a
game-theoretic f : BY — R¥, we can find a function F : TUY — R¥ such that
f(N,E,c) = F(N,vg,) for all bankruptcy problems (N, E,c) € BN. Note that the
corresponding F’ is only uniquely determined on the class of bankruptcy games. In
this paper, we only consider game-theoretic bankruptcy rules.

We represent a bankruptcy problem with a priori unions by (N, E,c,P) where
(N, E,¢) is a standard bankruptcy problem and P = {Py}rer is a partition of the
set of players. We denote by BUY the set of all bankruptcy problems with a priori
unions and player set N.

Our aim is to define bankruptcy with a priori unions rules, that is, functions ¢ :

BUY — RY that assign to each bankruptcy problem with a priori unions (N, E, ¢, P)



a vector o(N, E,c,P) € RY such that for alli € N, 0 < ¢;(N, E,c, P) < ¢; and
Yoien Pi(N. E, ¢, P) = E.

If (N,E,c,P) € BU" is a bankruptcy problem with unions, we can define the
corresponding bankruptcy problem among the unions (R, E, c¢”), the so-called quo-
tient problem, where ¢ = (cI)rep is the vector of total claims of the unions, so
= p, i for each union Py of creditors. Note that (R, £, ) is a well defined

bankruptcy problem.

Next, we introduce disjoint issue allocation situations. These are a special case
of multi-issue allocation situations as introduced in Calleja et al. (2001). The basic
idea behind this class of problems is that the agents do not simply have just a single
claim on the estate, as in the standard bankruptcy model, but a number of claims,
each of which results from a particular issue. The basic assumption is that these
issues are dealt with in turn: as soon as money is distributed according to one
particular issue, this issue must first be completed before the next one is considered.

A multi-issue allocation situation is a triple (N, E,C), where N = {1,...,n} is
the set of players, ' € R, is the estate and C' € ]RfXN is the matrix of claims. Every
row in C represents an issue and the set of issues is denoted by R = {1,...,r}. An
element cg; > 0 represents the amount that player ¢ € N claims according to issue
k € R. If a player is not involved in a particular issue, his claim corresponding to
that issue equals zero.

The claim matrix C' is assumed to satisfy the following properties:

e Every issue gives rise to a claim: ), \ ¢y > 0 for all k € R.

e Every player is involved in at least one issue: ), pcp > 0 for all i € N,
e The allocation problem is nontrivial: Y, > .\ cri > E.

A disjoint issue allocation situation is a multi-issue allocation situation in which
every player is involved in exactly one issue.

Every bankruptcy situation with a priori unions (N, E, ¢, P) gives rise to a disjoint
issue allocation situation (N, E, C%?), where the issues correspond to the unions and
the matrix C*F = (C,?]P) rerjen is defined by

Oc"’P _ Cj if je Py
ki 0 ifjé¢ P
for all k € R,j € N.



For ease of notation, we define ¢, = ) _._\ ¢ to be the total of claims according
to issue k& € R. Similarly, we define cpg = ), 4 cri for every coalition S C N. An
ordering of the players in N is a bijection o : {1,...,n} — N, where o(i) denotes
which player in N is at position 7. The set of all n! permutations of N is denoted by
II(N). Similarly, the set of permutations of the set of issues R is denoted by II(R).

In order to analyse disjoint issue allocation situations, we define a corresponding
game. As explained before, a bankruptcy game is defined from a pessimistic point
of view: in order to compute v(S), it is assumed that the claims of the players in
N\S are satisfied first. In the case of disjoint issue allocation situations, this can
be established by assuming that the issues are handled in that order which gives S
the lowest payoff. But for this, we first need to specify how the claims within each
issue are dealt with.

If a certain amount of money F’ < ¢ is given to an issue k, then the resulting
allocation problem within issue k is a standard bankruptcy problem. So, let f
be a bankruptcy rule. Then the f-game, v/, corresponding to the disjoint issue
allocation game (N, E,C) is defined as follows.! Tet 7 € TI(R) be an order on
the issues. Now the players in S first address the first ¢ issues completely, where
t = max{t'| Zgzl cr(s) < EB}. The part of the estate that is left, F' = E—Y"1_| ¢, (),
is divided by applying f to the claims in issue 7(¢ 4+ 1). So in total, the players in

S receive

t

93;(7) = Z Cr(s),s t Z fi(N, v, (Cr(t+1),i)i€N)-
s=1 jES

The value of coalition S C N is the amount of money they get when the worst order

on the issues is chosen:

o (8) = min g5(7).

The core of a game (N, v) is defined by
C)={zeRV|) 2;=v(N),VSCN:> z; >v(9)}
iEN ies
A game (N, ) is called ezact if for each S C N, S # 0, there exists an 2% € C(v)
such that >, 27 = v(S). A game is convez if v(SUT) +v(SNT) > v(S) +v(T)
for all S,T"C N.

IBecause the underlying situation is usually clear from the context, we denote the game by v/
rather than Uf;,c-



Proposition 2.1 Let (N, E,C) be a disjoint issue allocation situation and let f be
a bankruptey rule. Then (N,v7) is exact.

Proof: Let S C N and let 7° € TI(R) be such that g4(7°) is minimal. De-
fine 2 = (g/(7°))ien. Then Sien®i = E = o/(N) and ¥,z = gh(r°) >
min, cryg) gh(1) = v/(T) for every coalition T C N. So, = € C(v/). Furthermore,
Yoics Ti = gl (1°) = v/(S). Hence, (N,vf) is exact. O

It follows immediately from the proof of Theorem 3.3 in Calleja et al. (2001) that
given a rule f, for every nonnegative exact game v, one can find a multi-issue
allocation situation such that the corresponding game v/ coincides with v. However,
the class of games corresponding to disjoint issue allocation situations is a strict
subclass.

As stated before, every bankruptcy situation with a priori gives rise to a disjoint
issue allocation situation in a natural way. This is illustrated in Example 2.1, in
which the constrained equal award rule is used. For (N, E,c) € BY| the constrained
equal award rule is defined for all i € N by CEA;(N, E,c¢) = min{\, ¢;}, where A is
such that ), y min{\, ¢;} = E. This rule awards the same amount to all claimants
with the restriction that no player can get more than his claim. The constrained
equal award is used by different authors, among others Dagan (1996) and Herrero

and Villar (2001), who provide different axiomatic characterisations.

Example 2.1 Consider the 4-creditor bankruptcy problem (N, E,¢) with £ = 10
and ¢ = (6,2,8,5). Suppose that creditors 1 and 2 form a union and creditors 3 and
4 another one, that is, P = {{1,2},{3,4}}.

This situation gives rise to the 4-player disjoint issue allocation problem
(N, E,C*?) with E' = 10 and the following claim matrix:

6 2 0 0
c,P __
¢ _[0085]'

Take S = {1,3}. In order to determine v“F4(S), we first compute g§F4(7) for both
possible 7 € TI(R):
T ‘ C’EA( )

1,2 ‘ 6+ CEA3({3,4},2,(8,5)) =
2,1| CEA3({3,4},10,(8,5)) =
( ) =

) = mln-rEH(R) g§FA(T) = 5. Similarly, taking T = {1,4}, we obtain
5, vCFA(SUT) = 8 and v“FA(SNT) = 0. Hence, v¢FA(S) + v FA(T) >
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vCEA(SUT) +v“FA(SNT). So, although v“F4 is exact (cf. Proposition 2.1), it is

not convex. <

If P is the discrete partition P* = {{1},...,{n}}, then the game v/ equals the
bankruptcy game vg . for all f. If P is the trivial partition P = {N}, then for all
f the game v/ is additive with v/ ({i}) = fi(N, E, c) for all i € N.

3 Extending bankruptcy rules

In this section, we consider various ways to extend a bankruptcy rule to a rule for
bankruptcy situations with a priori unions. We use the C'E A rule to illustrate these
extensions.

Before extending bankruptcy rules, we first present the relationship between a
game-theoretic bankruptcy rule and its corresponding solution for TU games. Recall
that a rule f : BY — RY is called game-theoretic if there exists a function F :
TUYN — RY such that f(N, E,c) = F(N,vg,) for all (N, E,c) € BY. To construct
this F', we use the utopia vector. The utopia vector of a game (N,v), M(v), is
defined by

M;(v) = v(N) — v(N\{i})

for all ¢ € N. For a bankruptcy game (N,vg,.), the utopia point M;(vg,.) equals
cE = min{c;, F}.

It readily follows that if f(N, E,c) = f(N, E,cF) for all (N, E,c) € BY, ie, if the
solution is not changed by truncating claims that are larger than the estate, then

F(N,vg,) = f(N,vg,(N), M(vp,))

does the trick and f is game-theoretic. In fact, Curiel et al. (1987) show that
this truncation property is not only sufficient, but also necessary for f to be game-

theoretic. It is easily seen that the C'E'A rule is a game-theoretic rule.

If we want to divide the total estate among the creditors, one approach is to divide
the estate among the unions first and second to divide the allocation of each union
among the creditors of this union. Let f : BY — RM. We define the two-stage
extension f : BUY — R as follows. Let (N,E,c,P) € BUY be a bankruptcy
problem with a priori unions. First, define E,’: = fu(R,E,c”) for all k € R and
second, for i € Py, fi(N, E, ¢, P) = fi( Py, EL, (¢;);er,)-
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The following example illustrates the two-stage constrained equal award rule with

unions.

Example 3.1 Consider the bankruptcy problem with a priori unions as described in
Example 2.1. To obtain the constrained equal award of the bankruptcy problem with
unions (N, E,c,P), we first consider the quotient bankruptcy problem (R, E,cP)
involving the unions. In this problem, union {1, 2} has a claim of 8 and union {3,4}
has a claim of 13. Then, each union obtains half the estate: F; = Fy = 5. If we
divide the allocation of each union among its creditors, we obtain CEA(N, E, ¢, P) =
(3,2,5/2,5/2). The constrained equal award of the bankruptcy problem without a
priori unions is CEA(N, E,c¢) = (8/3,2,8/3,8/3). <

The CEA rule for bankruptcy situations with a priori unions generalises the stan-
dard O E A rule for bankruptcy situations, in the sense that both CEA(N, E, ¢, PN)
and CEA(N, E, ¢, P") coincide with CEA(N, E, ¢). Also note that by construction,
CEAL(R,E,c”, Pt = E} for all k € R.

The C'E A solution of a bankruptcy situation with a priori unions coincides with
the C'E A solution for a corresponding TU game with a priori unions, which we are
going to define next.

A cooperative game with transferable utility with a priori unions is a triple
(N,v,P) where (N,v) is a standard TU game and P = { Py }xer is a partition of the
set of players, R being the set of unions. For (N, v, P), we define the corresponding
TU game among the unions (R, v”), the quotient game, where v” (L) = v(Uger, Py)
for all L C R.

Let (N,v,P) be a TU-game with a priori unions. The constrained equal award
solution of this game, C EA(N,v,P) is defined in two steps.? First, the payoff to
each union P, € P equals CEA(R,v"), ie, the constrained equal award solution of
the quotient game.

In the second step, the payoff to each union is divided among its players. To do
this, we consider for every player ¢ € N his cooperation possibilities with the players
outside i’s union. We should note that a similar idea is used in Owen (1977), where

a modification of the Shapley value for TU games with a priori unions is defined.

2The CEA rule for TU games with a priori unions is only well-defined for a subclass of such
games. If the underlying game is exact, then the CEA rule is well-defined.



Let P, € P and let i € P,. The “claim” of player 7 is defined as his contribution to
the coalition UgeR\{k}PgU{i}, that is, M; (’U, P) = U(UgeR\{k}PgU{i}) —U(UgeR\{k}Pg).
The constrained equal award solution of the game (N, v, P) for player i € Py is then
defined by

CEA;(N,v,P) = CEA;(Py, CEAL(R, V"), (M;(v,P))jep,)-

In general, CEA(N, E,c,P) # CEA(N,vg,.,P). However, CEA does coincide with
the CEA of the game (N,v“PA, P), as is shown in the following proposition.

Proposition 3.1 For every bankruptcy problem with a priori unions (N, E,c,P)
we have that CEA(N, E,c,P) = CEA(N,v“E4, P).

Proof: Let (N, F, ¢, P) be a bankruptcy problem with a priori unions. First, it is

easy to see that
’UCEA(U]CGLPk) = max{E — Z Ci, 0}
iEN\UkeLPk
for all L C R and hence, the games (R, (v“F*)?) and (R,vg ») coincide. So,
CEAL(R, W“ENP) = CEAy(R,vg ») = ESEA
for all k£ € R.
Next, for ¢ € P,

CEA(Py, B, (cj)jer,) if E<cp,

(nCEA Dy _
Mi(v™™, P) { Ci it B> cf.

From this, one can easily see that
OEAZ(Pka EICCEAa (Cj)jEPk) = CEAZ(PkJ OEAk(Rv ,UP)’ (Mj(v7 P))jGPk)
for all 7 € P,. O

Instead of a two-stage procedure, bankruptcy rules can also be extended by means
of the bankruptcy cover. For this, we define TU f to be the class of games in which
the utopia vector is nonnegative and adds up to at least the value of the grand

coalition, ie,

TUY = {v e TUY | M(v) >0, M;(v) >v(N) > 0}.

For all v € TU. f , we define the corresponding bankruptcy cover game (N, 0) by
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(S) = max{v(N) — Y M;(v),0}

1EN\S

for all S C N. The term cover results from the following lemma.

Lemma 3.2 For allv € TUY, 0 = 0.

The bankruptcy cover v is the bankruptcy game with estate v(/N) and claim vector

M (v). Indeed, v equals v if and only if v is a bankruptcy game itself.

Lemma 3.3 Let v € TUYN. Then v = v if and only if v is a bankruptcy game.

We extend a bankruptcy rule f to a rule f on the class of all games in TU f by
defining

f(N,v) = F(N,0).
Note that on the subclass of bankruptcy games, f coincides with F' by definition.
Using the concept of disjoint issue allocation situations, we now extend f to a
rule f on the class of bankruptcy situations with a priori unions in the following

way:
f(N,E,c,P) = f(N,v/)

for all (N, E,c,P) € BUY. The right hand side is well defined, because the corre-

sponding disjoint issue allocation game v/ belongs to TU. N

Example 3.2 Consider again the bankruptcy situation with a priori unions as de-
scribed in Example 2.1. To compute CEA, we need the following values:

S 1{1,2,3} {1,2,4} {1,3,4} {2.3,4} N
vOEAS) | 5 5 8 4 10

Hence, M (vCF4) = (6,2,5,5) and CEA(N, E, ¢, P) = (8/3,2.8/3,8/3). <
Note that in the previous example, C’/Ejél(N, E,c,P) coincides with CEA(N, E, ¢).

This holds for every bankruptcy situation with a priori unions, as is shown in the

following proposition.
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Proposition 3.4 Let (N, E,c,P) be a bankruptcy situation with a priori unions.
Then CEA(N,E,c,P) = CEA(N, E,c).

Proof: Let k € R and let ¢ € P,. Then
E — ¢ fe < B
CEA Y i kS L,
VN = { E — CEA{(Py. E,(¢j)jep,) if cx > E.

Since v“FA(N) = E, we have

L CEAy_ ) G if p < F,
Mi(v™™) = { CEA(Py, E, (c;)jen,) if x> E. (3.1)
Next,

CEA(N,E,c,P) = CEA(WCEA) = CEA(N, vCEA(N), M(vCEAY)

— CEA(N, B, M(vCEAY)

and since the truncation in (3.1) has no effect on the outcome, we have
CEA(N, E,c,P) = CEA(N, E,c). 0

Note that for an arbitrary bankruptcy rule f, f(N, E.c,P) = f(N, E,c) does not

hold in general.

4 Characterisations of the two-step constrained
equal awards rule

In this section, we provide two characterisations of the C'E'A rule as defined in sec-

tion 3. Consider the following properties for a rule ¢ : BUY — R,

Composition (COMP): For each bankruptcy problem with unions (N, £, ¢, P),
O(N,E,c,P)=¢(N,E' ¢, P)+p(N,E—FE' c—p(N,E' ¢, P),P)forall 0 < ' < F.

This property considers the situation in which after the estate (£’) has been
divided among the agents, this estate is reevaluated and turns out to be a bigger
amount (F). In these cases, we have two options. We can cancel the initial division
and apply the rule to the new problem, or we can preserve the initial division and
apply the rule to the increment of the estate by considering a new vector of claims,
taking into account the quantities already received. The composition property says
that both options should lead to the same result.

11



Path independence (PI): For each bankruptcy problem with unions (N, £, ¢, P),
©(N,E,c,P)=p(N,E,o(N,E' ¢c,P),P) for all E' > F.

Here, the opposite situation is considered, one where the estate (F) is actually
smaller than the one initially considered (E’). Then, we can apply the rule to the
new problem or divide the new value by taking the initial divisions as claim vector.
Path independence states that both ways of proceeding should result in the same

vector of allocations.

Equal treatment within the unions (ET): For each bankruptcy problem with
unions (N, £, ¢,P) and for each two agents ¢, j of a union P, € P such that ¢; = ¢;,
©i(N,E,c,P) = ¢;(N,E,c,P).

This property requires that agents of the same union with equal claims obtain

equal payoffs.

Quotient problem property (QPP): For each bankruptcy problem with unions
(N, E,c,P) and for each union Py € P, 3, p ¢i(N, B, ¢, P) = ¢p(R, E, c”, PR).

In a bankruptcy problem with unions we can consider the associated quotient
problem where the unions negotiate about the division of the estate. After this, a
negotiation within every union takes place. The quotient problem property states
that the total gains of the agents of a union in the initial problem equal the gains
of this union in the quotient problem. Note that if ¢ is the two-step extension f of
a bankruptcy rule f, then @i(R, E, ¢, PR) = Ef. (Recall that Ef = fi(R, E, ")

is the amount that union k € R gets in the quotient problem according to f.)

Stability within the unions (STA): For each bankruptcy problem with unions
(N, E,c,P), for each union Py € P and for each agent i € Py,

SOZ(Na E: C, P) = SOL(Pk? Z SOZ(Nv E7 G, P)a (cj)jEPk: Ppk)a

i€Py

where P = { P} is the trivial partition of Py into one union.

Consider a bankruptcy problem with a priori unions (N, E,c,P) and its so-

lution (N, E,c,P). The agents of a union P can renegotiate their awards,

12



Y ic p, Pi(IN, B, ¢, P), using the initial claims. Then a new bankruptcy problem ap-
pears with a boundary structure of unions, (Py, > ;cp 0i(N, E, ¢, P), (¢j)jep,, PFr).
We say that ¢ is stable within the unions if the agents in P, obtain the same quan-
tity in the initial problem as in the new problem. It is easy to see that the adjusted
proportional rule for bankruptcy problems with a priori unions as introduced in
Casas-Méndez et al. (2000) satisfies the quotient problem property, but it does not

satisfy stability within the unions.

Invariance under claims truncation within the unions (ICT): For each
bankruptcy problem with unions (N, £, ¢, P) and for every player i of a union P, € P
such that ¢; > >, p ©;(N, E,c,P), we have p(N, E,c,P) = p(N, E, ', P), where
¢y =cjforall j € N\ {i} and ¢; =3, p ¢;(N, E,c, P).

Suppose that the claim of an agent is greater than the total quantity that his
union gets. Then ICT states that the awards of the agents are not affected if we

replace the claim of this agent by the total payoff of his union.

Sustainability of creditors within the unions (SUS): For each bankruptcy
problem with unions (IV, £, ¢, P) and for every player i who is sustainable within his
union Py, € P, e, i p min{ci, ¢;} < pp(R, E, c?, PR, we have p;(N, E, ¢, P) = c;.

This property establishes a protective criterion within the unions in the sense
that small claims should be completely satisfied. The claim of agent i is consid-
ered sustainable within his union if the worth of this union in the quotient problem

is enough to pay each agent in this union his claim, truncated by the claim of agent i.

Composition and path independence are in essence identical to the corresponding
properties for bankruptcy rules. Equal treatment within the unions is a weak version
of equal treatment of bankruptcy rules. Stability within the unions, invariance under
claims truncation within the unions and sustainability of creditors within the unions
are natural extensions of other properties for bankruptcy rules to this context of a
priori unions. Note that the quotient problem property implies that the rule involves

some two-step procedure to obtain the solution.

Proposition 4.1 The CFEA-rule satisfies composition, path independence, equal
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treatment within the unions, stability within the unions, invariance under claims
truncation within the unions, sustainability of creditors within the unions and the

quotient problem property.

Proof: Equal treatment within the unions, stability within the unions, sustainabil-
ity of creditors within the unions and the quotient problem property are straight-
forward to show. We only prove composition. The proof of path independence and
invariance under claims truncation within the unions follows similar lines.

Let P, € P and let i € P,. By definition of CEA we have that

CEA{(N,E,c,P) = CEAi(Py, ES®4,(¢j)jep,)-
Consider now 0 < F' < E. Then
CEA(N,E'.c.P) = CEAi(Py, E{Y, (¢))jer,).
with ECPA = CEAL(R, B, c7). Define ¢ = ¢ — CEA(N, E', ¢, P). Then we have
CEA(N,E—-FE',c,P)=
CEA;(Py, CEAL(R, E — E', (), () jep,)-

j
Because the constrained equal award rule for bankruptcy problems satisfies compo-
sition (Dagan (1996)), we have that

ECEA _ ECEA — CBA(R, E,cP) — CEAL(R, E',cP)

= CEALR,E—FE' " —CEAR,E "))
= CEAyR.E—FE, (7).

From the previous, it follows that

CEA/(N,E,c,P) = CEA;{(Py, ES"4, (¢}) jep,)

= CEA(Py, E{PY, (¢))jep,) + CEA(Pr, EJFA — EZFY () jep,)
- mz(N/ Ela c, P) + OEAZ(PIC/ OEAk(Rv E— E/v (C/)P)v (C;')jGPk)
— CEA(N,E,¢,P)+CEA{(N,E — E'.c,P).

Hence, we have that C'E'A satisfies composition. O

In the following theorem we axiomatically characterise the C' E A rule. This theorem
is inspired by a similar result for the CEA rule for bankruptcy games in Dagan
(1996).
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Theorem 4.2 The CEA rule is the unique rule for bankruptcy problems with a pri-
ori unions that satisfies equal treatment within the unions, composition, the quotient

problem property and invariance under claims truncation within the unions.

Proof: In view of Proposition 4.1 we only need to prove that the rule CEA is the
only rule satisfying the four properties.

Let ¢ be a rule for BUY satisfying ET, QPP, COMP and ICT. Let (N, E,c, P) be a
bankruptcy problem with unions and consider the quotient problem (R, E, ¢, P).
Without loss of generality, suppose that 0 < ¢ < ... < ¢”. In Proposition 1 of
Dagan (1996) it is established that the constrained equal award rule is the only rule
for bankruptcy problems that satisfies the bankruptcy equivalents of ET, COMP
and ICT. Since the quotient problem with P# is basically a bankruptcy problem, it
follows that ¢ (R, E,c”,PT) = ECFA for all k € R.

Now, we consider the first union P, € P. Suppose without loss of generality that
Py ={1,...,n1} and that ¢;; < ... < -

Step 1. If 0 < E < reyp, then EYFA < ¢; and because of ICT, QPP and ET,
oi(N, B, ¢, P) = CEA(N, E, ¢, P) for all i € P.

If re;y < E < repp +reqi (1 — n—ll), then equality is established using COMP.
Repeating the same construction, ¢;(N, E,c,P) = CEA;(N, E,c,P) for all
’L'Epl ingEgrnlcu.

Step 2. If rnjey; < E < rnyery + r(cia — ¢11), by COMP and Step 1 we have
©(N,E,c,P) =z+¢p(N, E—rnqci1,c—x, P), where x; = ¢;(N,rnic11,¢,P) =
CFEA;(N,rnici1,¢,P) = cpp for all i € P,. Furthermore, E — rnjc;; <
r(c12 — ¢11). So because of ICT and ET we have ¢;(N, F —rnyciy,c—z,P) =
CEA;{(N,E — rnjcyy, ¢ — 2. P) for all i € P, and hence, (N, E,c,P) =

OEAZ(N, E,C, P) for all 7 € Pl-

Repeating the same argument one can prove that ¢;(N,FE, c,P) =
CEA;(N,E,c,P) forallie P if 0 < E <rnjcyy +1r(ny — 1)(c12 — c11).
Using the same arguments, we obtain that ¢;(N, E, ¢, P) = CEA;(N, E, ¢, P)
foralli e P if 0 < E <rnjepp+r(ng —1) (g —cq1) + ...+ r(cin, —Cin—1) =

— P
T(611+012+...+01n1)—7"01.

Now, we consider the second union. We distinguish between two cases. If £ < rcT,

we can use the same arguments as in the first union to obtain ¢;(N, E,¢,P) =

15



CEA;(N,E,c,P) for all i € P,.
So, suppose that E > rcf. Because ¢ satisfies COMP, we have that

©(N,E,c,P) = ¢(N,rcy,c,P)+ o(N,E —rcl c—z,P),

where = (N,rcl,c,P). By the previous case, @;(N,rcl,c,P) =
CEA;(N,rcl,c,P) for all i € P,. With the second term, (N, E—rcl’, c—xz,P), we
proceed as with the first union with estate £ —rc} and claims ¢ — x and we obtain
0i(N,.E —rcl,c—x,P) = CEA;(N,E —rcl’,c — x,P) for all i € P,. Note that in
the problem (N, E —rcl,c—x,P) all the members of P obtain zero. Because CEA
satisfies COMP, we have ¢;(N, E,c,P) = CEA;(N, E,c,P) for all i € P;.

Repeating the same arguments with all the unions, we conclude the statement. [J

Our second characterisation is based on Herrero and Villar (2001). In order to give

this result, we first present some lemmas.

Lemma 4.3 If ¢ is a rule for bankruptcy problems with unions that satisfies
path independence and sustainability of creditors within the unions then for every
bankruptcy problem with unions (N, E, ¢, P) we have that pi(R, E, P, PE) = E¢FA
for all k € R.

Proof: Let ¢ : BUY — R be a rule satisfying PI and SUS and let (N, E,c, P) €
BUY. Consider the associated quotient problem (R, E, c”, P®). Theorem 1 of Her-
rero and Villar (2001) states that the constrained equal award rule is the only rule for
bankruptcy problems that satisfies the bankruptcy equivalents of path independence

and sustainability. From this, the statement readily follows. (]

Lemma 1 of Herrero and Villar (2001) states that if a bankruptcy rule satisfies path
independence and sustainability, then it satisfies equal treatment of equals. In a
similar way we can establish the next result for a rule for bankruptcy problems with

a priori unions.
Lemma 4.4 If a rule for bankruptcy problems with a priori unions satisfies the

quotient problem property, path independence and sustainability within the unions

then it satisfies equal treatment within the unions.

Now we can give our second axiomatic characterisation of the C EF'A rule.
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Theorem 4.5 The C'EA rule is the unique rule for bankruptcy problems with a
priori unions that satisfies path independence, sustainability of creditors within the

unions and the quotient problem property.

Proof: In view of Proposition 4.1 we only need to prove that the rule CEA is the
only one satisfying the three properties.

Let ¢ be a rule for BUY satisfying QPP, PI and SUS and let (N, E,c, P) € BUV.
Let P, € P. We have to show that ¢;(N, E,c,P) = CEA;N, E,c,P) for all
i € Py. We use the following notation: n} = max;ep, ¢;, Nf = {i € Py |c; = nl},

ko ko (s _ ok
ny = maX;ep\ Nk Gy Ny = {i € Py |c; =ns}.

Step 1. Suppose that, in the union P, the claims of the agents in P,\N} are
sustainable. Then ¢;(N, E,c,P) = ¢; for all i € P,\NF because ¢ sat-
isfies SUS. Now, we have that o;(N, E,c,P) = CEA;(N,E,c,P) for all
i € Py, because ¢ satisfies ET (by Lemma 4.4) and by QPP and Lemma 4.3,
ZiePk pi(N, E,c,P) = EFPA.

Step 2. Suppose now that, in the union Py, the claims of the agents in P\ (NFUNE)
are sustainable. Let E’ > E be such that ¢p(R, E',cP,PE) is the mini-
mum quantity that sustains the claims of P,\NF within union P, which
is possible because of Lemma 4.3 and the basic properties of CEA. Let
d = @(N,E' c,P). Bystep 1, ¢ = ¢ for all i € P\N} and ¢} = ¢

for all i,j € NFU NF. Because ¢ and CEA satisfy PI, we have that

0i(N,E,c,P) = ¢;(N,E,c,P) and CEA;(N,E,c,P) = CEA;(N,E,c,P)
for alli € N. By step 1, ¢;(N, E,d,P) = CEA;(N, E,c,P) for all i € P, and

hence, ;(N, E,c,P) = CEA;(N,E,c,P) for all i € P,.

Repeating this procedure, we obtain ¢;(N, FE,¢,P) = CEA;(N, E,c,P) for all i €
P.. ]

5 Consistency

In this section we define two further extensions of bankruptcy rules to bankruptcy
situations with a priori unions. We also introduce a property of consistency that
we subsequently use to characterise one of these extensions. We should mention

that the rules and properties in this section are clearly inspired by concepts that
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appear in O’'Neill (1982). These concepts are the method of recursive completion,
the random arrival rule and the property of consistency.

Our third extension of a bankruptcy rule f to bankruptcy situations with a
priori unions is the recursive completion of f. Let f be a bankruptcy rule and let
(N, E,c,P) be a bankruptcy situation with a priori unions. Then we define the

recursive completion of f, RCY, in the following way:

1
RCif(Na E,c, P) = ; fi(Pk7 Elv (Cj)jEPk) + Z fi(ka EIJ?Kv (Cj)jEPk)
CER 04k

for all i € Py, where E' = min{E, c['}, E}'* = fi(R\{¢}, max{E — ¢, 0},c",) and
Py = (] )ier\io-

The first term in the sum in the definition of the RC’if is the quantity that agent
1 € P obtains according f when union Py receives its maximum. The second
term is the amount that agent ¢ € Pj obtains according f, when union ¢ # k gets
its maximum and the remaining estate is divided among the other unions in the
quotient problem according to f. Hence, we are computing the average amount
that agent 7 obtains according to f over the r situations where one of the unions
gets its maximum.

In the next example, we illustrate the recursive completion of the CEA-rule.

CCEA

Example 5.1 We compute R in the bankruptcy situation with a priori unions

of Example 2.1. In the associated disjoint issue allocation problem, £ = 10 and

6 2 00
P _
¢ [0085]'

We complete and modify the claim matrix by considering the two situations where

one of the unions obtains its maximum:

6 2 1 1

0 05 5|’
so if we average over the two unions, we obtain RCYF4 = (3,1,3,3). Note that
RCYEA(N, E, ¢, P) differs from both CEA(N, E, ¢, P) and CEA(N, E,c, P) <

If P = PV, then RC/ coincides with the f rule, that is, RCY(N, E, c,PV) =
f(N, E, c) for every bankruptcy problem (N, E,c). If P = P", the formula for RC'
corresponds to the definition of O’Neill consistency for bankruptcy rules. Since

the random arrival rule for bankruptcy situations (which we denote by RA) is the
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only O’Neill consistent rule we have RCFA(N, E, ¢, P") = RA(N, E,c) for every
bankruptcy problem (N, E, c¢). For arbitrary f, RC/(N, E,c, P") = f(N, E, ¢) does
not hold in general.

Because of this special property, we think that RCT®4 is an interesting rule for
bankruptcy situations with a priori unions. Nevertheless, RO, and in general the
RCY rules, can not be extended easily to rules for multi-issue allocation situations
that are not disjoint. Recall from section 2 that a bankruptcy situation with a priori
unions can be seen as a special case of a multi-issue situation in which the unions are
the issues. If these issues are not disjoint, ie, if a player can have a claim according
to more than one issue, the recursive completion procedure does not work. In order
to solve this difficulty, we introduce a new extension of bankruptcy rules.

Let f be a bankruptcy rule and let (N, E, ¢, P) be a bankruptcy problem with a

priori unions. Then we define the f-random arrival rule in the following way:

RA{(N,E,C./'P) - % Z fi(kaEUJ(Cj)jEPk)
o€TI(R)
for all i € Py, where E, = max{0, E' — >~/ (ty<or) € I+

The interpretation of this rule is similar to that of other solutions inspired by
ideas of random arrival. Here, we suppose that the claims of the different unions are
satisfied following a fixed order. If at the moment to allocate money to a particular
union, the remaining estate is not enough to satisfy its total claim, we use the rule f
to distribute within this union. So, the f-random arrival rule allocates to an agent
the average of the amounts he obtains according to the previous procedure over all
the possible orders on the unions.

Note that if P = P we have RA/(N, E,c,P") = RA(N, E,c), that is, in this
boundary case, RAf coincides with the random arrival rule for bankruptcy problems
for every bankruptcy rule f. If P = PV, the f-random arrival rule coincides with
the rule f. Note that in the case of two unions, both extensions of f, RC/ and RA7,
coincide.

Now, we define the property of consistency for bankruptcy with a priori unions
rules. A bankruptcy with a priori unions rule ¢ is consistent if for every (N, E, ¢, P),

for each union P, € P and for each agent ¢ € P, we have
©i(N,E,c,P) =
% |:30i(Pk> El: (Cj)jEPk7 Ppk) + ZéeR,é;ﬁk Spi(N\Pfa E—fﬂ C—t, ,P_Z)] ’
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where £ = min{E, '}, c_y = (¢j)jen\p,, E—¢ = max{E — ¢} ,0} and P_, is the
partition of the set N\ P, induced by P.

So, a rule is consistent if in a bankruptcy problem with a priori unions it allocates
to an agent the average of what he gets when the rule is applied to the problem
restricted to his own union and the solutions of the » — 1 bankruptcy situations in
which the estate is the amount that remains when each of the other unions gets
its maximum. Note that if P = P, this definition of consistency corresponds to
O’Neill consistency.

Let f be a bankruptcy rule. We say that a consistent rule ¢ for bankruptcy prob-
lems with a priori unions is f-consistent if for every bankruptcy problem (N, E, )
we have that (N, E,c,PN) = f(N, E,c). That is, ¢ is f-consistent if ¢ is consis-
tent and it coincides with f when the a priori unions structure P is the boundary
system PV,

The next theorem establishes, for a fixed bankruptcy rule f, the existence and
uniqueness of an f-consistent rule. This result extends the O’Neill result of existence
and uniqueness of a bankruptcy consistent rule; this unique rule is the random arrival
rule.

Theorem 5.1 The f-random arrival rule RAT is the unique f-consistent rule for

bankruptcy problems with a priori unions.

Proof: Let f be a bankruptcy rule.

FExistence: First we show that the f-random arrival rule, RAf, is f-consistent. We
know that for every bankruptcy problem (N, E,c), RA’(N,E,c,P") = f(N, E,c).
So, it remains to be shown that RA' is consistent. Let (N, E,c,P) a bankruptcy
situation with a priori unions. Let ¢ € P,. Define E,, £’ and E_, as before define
and B¢, = max{E_¢ — 3 cp\ (11.0(t)<o (k) cl,0} for all ¢ € 1I(R), £ € R. Then,

1
RA{(NaEaCP) = F Z fi(PkJEfﬂ(cj)jEPk)
" oell(R)

= % |:(T‘ — DUfi(Pr, B, (¢))jer,) +

Z Z fi(Pk'aE—K,m (Cj)jEPk)

LERLFkK ocII(R\{(})

- %[fi(Pk, E' (¢j)jen,) +
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S X AR B (6)ien)

(r—=1)!
(R I#£k o€ell(R\{¢})
1
o7 [RAZ(PIC, E',(¢j)jep, P™) +

3" RA[(N\Pmax{E — ], 0}, c_y, P_g)] .
(ER, l#k

Hence, RA' is consistent and therefore f-consistent.

Uniqueness: Now we show that if ¢ is an f- consistent rule for bankruptcy problems
with a priori unions then ¢ coincides with the f-random arrival rule RAF. We
show this by induction on the number of unions. If r = 1 then (N, E,c, PY) =
f(N,E,c) = RA/(N,E,c) by the definition of f-consistency. Suppose that this
holds for r = m — 1. For r = m, f-consistency implies that o(N\P,, max{F —
e, 0}, c_¢, P_y) is completely determined and hence we conclude that there is a

unique f-consistent rule, which is the f-random arrival rule. O

Calleja et al. (2001) characterise two random arrival rules for multi-issue alloca-
tion situations by using consistency properties that also extend O’Neill consistency.
Whereas the consistency properties in Calleja et al. (2001) consider an average over
the agents, our consistency property considers an average over the unions. It is
possible to extend our consistency property to multi-issue allocation situations by

considering an average over the number of issues.

O’Neill (1982) also shows that the random arrival rule of a bankruptcy problem
coincides with the Shapley value of the bankruptcy game associated. Owen (1977)
extends the Shapley value to the context of cooperative games with a priori unions,
resulting in the Owen value, Ow. The next theorem extends the previous result by
O’Neill . We omit the proof that follows a similar line to the proof of the preceding

theorem.
Theorem 5.2 If (N, E, ¢, P) is a bankruptcy problem with a priori unions, then its

RA-random arrival rule coincides with the OQwen value of the associated bankruptcy

game with a priori unions, that is,
RARA(N,E,c,P) = Ow(N,vg,., P).

Now, from the previous two theorems, we immediately obtain the next result.
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Theorem 5.3 The only rule for bankruptcy problems with a priori unions satisfying
random arrival-consistency is the Owen value of the associated bankruptcy games

with a priori unions.

In Winter (1992) and Hamiache (1999), the Owen value is axiomatically charac-
terised on the class of cooperative games with a priori unions by using two different
properties of consistency. Note that in the current paper, we characterise the Owen
value on the class of bankruptcy situations with a priori unions, using another
consistency property that extends the O’Neill consistency property for bankruptcy

problems.

To finish this section, we provide an example that shows that the two new ex-
tensions of the C'E'A rule need not coincide. We compare these two rules with the

two extensions introduced in section 4.

Example 5.2 Consider the bankruptcy problem with a priori unions (N, £, ¢, P),
where the set of agents is N = {1,...,6}, the estate is £ = 10, the vector of claims is
c=(6,3,11,2,3,2) and the structure of a priori unions is P = {{1, 2}, {3, 4}, {5,6}}.
For this situation, we have

RCCFA(N, E,c,P) = (29/12,17/12,38/12,14/12,13/12,9/12),

RACFA(N, E,c,P) = (29/12,17/12,39/12,13/12,13/12,9/12),

CFEA(N, E,c,P)=CEA(N, E,c,P) = (5/3,5/3,5/3,5/3,5/3,5/3).

6 An application

In this section we apply the various extensions of the C'E'A rule to one particular
bankruptcy situation, the Pacific Gas and Electric Company, a fully owned sub-
sidiary of PG&E Corporation and one of the largest combined natural gas and
electricity utilities in the United States. Due to negative stocktaking they filed for
reorganisation under Chapter 11 of the US Bankruptcy Code in a San Francisco
bankruptcy court in 2001.

The debtor’s 20 largest unsecured creditors are listed in the following table, which

is taken from www.bankruptcydata.com.
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# | Nature of claim Claim ($)

1 | Bank bonds 2,207,250,000
2 | Power purchases | 1,966,000,000
3 | Bank bonds 1,302,100,000
4 | Power purchases | 1,228,800,000
5 | Bank bonds 938,461,000
6 | Bank bonds 310,000,000
7 | Power purchases 57,928,385
8 | Power purchases 49,452,611
9 | Power purchases 48,400,572
10 | Power purchases 45,706,378
11 | Power purchases 40,147,245
12 | Power purchases 40,122,073
13 | Power purchases 32,867,878
14 | Gas purchases 29,523,530
15 | Gas purchases 28,210,551
16 | Gas purchases 24,718,334
17 | Gas purchases 23,849,455
18 | Power purchases 22,576,506
19 | Power purchases 21,506,087
20 | Power purchases 19,800,248

According to this table,

sues (nature of claims).

tion with three unions of creditors:

the creditors claim money on the basis of three is-

So we can analyse this as a bankruptcy situa-
P = {1,3,5,6} related to bank bonds,
Py = {2,4,7,8,9,10,11,12,13,18,19,20} related to power purchases and P; =
{14,15,16, 17} related to gas purchases. The total estate (F) to be allocated to

unsecured creditors equals $1,060,000,000.

We compute the CEA, RCYFA and RA“F4 solutions for the bankruptcy situation
with the three unions and compare them with the solution obtained by applying the
C'E A rule to the same situation without the unions (which coincides with the CEA

solution). The next table shows the results, where all amounts have been rounded

to the nearest integer.
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# CEA CEA RCCFA RACEA Union
1] 95,865,025 | 119,212,266 | 128,070,755 | 128,070,755 | P,
2 195,865,025 | 52,089,822 | 130,945,277 | 161,514,515 b
3 195,865,025 | 119,212,266 | 128,070,755 | 128,070,755 | P,
4 [ 95,865,025 | 52,080,822 | 130,945,277 | 161,514,515 | P
5 | 95,865,025 | 119,212,266 | 128,070,755 | 128,070,755 | P,
6 | 95,865,025 | 119,212,266 | 128,070,755 | 128,070,755 | P,
7 | 57,928,385 | 52,089,822 | 36,672,736 | 28,964,193 P
8 | 49,452,611 | 49,452,611 | 32,968,407 | 24,726,306 P
9 | 48,400,572 | 48,400,572 | 32,267,048 | 24,200,286 I
10 | 45,706,378 | 45,706,378 | 30,470,010 | 22,853,180 | P,
11| 40,147,245 | 40,147,245 | 26,764,830 | 20,073,623 | P,
12| 40,122,073 | 40,122,073 | 26,748,049 | 20,061,037 | P,
13 | 32,867,878 | 32,867,878 | 21,911,919 | 16,433,939 | P
14 | 29,523,530 | 29,523,530 | 9,841,177 | 9,841,177 | Pj
15 | 28,210,551 | 28,210,551 | 9,403,517 | 9,403,517 | Pj
16 | 24,718,334 | 24,718,334 8,239,445 8,239,445 Ps
17 | 23,849,455 | 23,849,455 7,949,818 7949818 | P3
18 | 22,576,506 | 22,576,506 | 15,051,004 | 11,288,253 Py
19 | 21,506,087 | 21,506,087 | 14,337,391 | 10,753,044 Py
20 | 19,800,248 | 19,800,248 | 13,200,165 9,900,124 Py

The first conclusion of these results is that all three rules that take the unions into
account are more favourable for P; and less favourable for P, than the CEA rule
without unions. Since the idea behind constrained equal award is that the smaller
creditors are protected, it is better for the (smaller) claimants in P to be considered
as separate creditors than as one big group.

The RCYFA rule and the RA°F4 are worst for Ps;, which contains only small
claimants. The protective aspect of constrained equal award is partly neutralised
by taking averages over a number of extreme outcomes.

The only difference between the RC“E4A and RA“FA solutions is that the larger
claimants in P, are better off when the last rule is applied, at the expense of the
smaller claimants in the same union. The RA“F4 solution is an average over more
extreme outcomes than the RCF4 solution, and hence, the smaller creditors are

again less protected.
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