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Introduction 

 

The last two decades have witnessed a revival in interest in the 

measurement of productive efficiency pioneered by Farrell (1957) and Debreu 

(1957). 1978 was a watershed year in this revival with the christening of DEA by 

Charnes, Cooper and Rhodes (1978) and the critique of Farrell technical efficiency 

in terms of axiomatic production and index number theory in Fare and Lovell 

(1978). These papers have inspired many others to apply these methods and to add 

to the debate on how best to define technical efficiency. 

 

In this paper we try to pull together some of the variants that have arisen 

over these decades and show when they are equivalent. The specific cases we take 

up include: 1) the original Debreu-Farrell measure versus the Russell measure—the 

latter introduced by Färe and Lovell, and 2) the directional distance function and 

the additive measure. The former was introduced by Luenberger (1992) and the 

latter by Charnes, Cooper, Golany and Seiford (1985). We also provide a 

discussion of the associated cost interpretations. 

 

Basic Production Theory Details 

 

In this section we introduce the basic production theory that we employ in 

this paper. We will be focusing on the input based efficiency measures here, but the 

analysis could readily be extended to the output oriented case as well. 

 

To begin, technology may be represented by its input requirement sets 

 

MyyproducecanxxyL +ℜ∈= },:{)( ,                                    (1) 
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where }{ Mmyyy m
MM ,...,1,0: =≥ℜ∈=ℜ∈ + denotes outputs and 

Nx +ℜ∈ denotes inputs. We assume that the input requirement sets satisfy the 

standard axioms, including: NL +ℜ=)0( , and L(y) is a closed convex set with both 

inputs2 and outputs3 freely disposable (for details see Färe and Primont (1995)). 

The subsets of L(y) relative toward which we measure efficiency are the 

isoquants 

  

{ } MyyLxyLxxyIsoqL +ℜ∈>∉∈= ,1),(),(:)( λλ ,                       (2) 

 

and the efficient subsets 

 

{ } MyyLxxxxxyLxxyEffL +ℜ∈∉′⇒≠′≤′∈= ,)(,),(:)( .          (3) 

 

Clearly, )()( yIsoqLyEffL ⊆  and as one can easily see with a Leontief technology, 

i.e., { }{ }yxxxxyL ≥= 2121 ,min:),()( , the efficient subset may be a proper subset 

of the isoquant.  

 

Next we introduce two function representations of L(y), namely the 

Shephard input distance function and the directional input distance function, and 

discuss some of their properties.  

 

Shephard’s (1953) input distance function is defined in terms of the input 

requirement sets L(y) as 

 

{ }.)(/:sup),( yLxxyDi ∈= λλ                                                       (4) 

                                         
2 Inputs are freely disposable if ).(')(' yLxyLxx ∈⇒∈≥  
3 Outputs are freely disposable if ).()'(' yLyLyy ⊆⇒≥  
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Among its important properties4 we note the following 

i) ),(1),( yLxifonlyandifxyDi ∈≥  Representation 

ii) ,0),,(),( >= λλλ xyDxyD ii  Homogeneity 

iii) ),(1),( yIsoqLxifonlyandifxyDi ∈=  Indication 

Our first property shows that the distance function is a complete 

representation of the technology. Property ii) shows that the distance function is 

homogeneous of degree one in inputs, i.e., the variables which are scaled in (4). 

The indication condition shows that the distance function identifies the isoquants. 

 

Turning to the directional input distance function introduced by Luenberger 

(1992)5, we define it as 

 

{ })()(:sup);,( yLgxgxyD xxi ∈−= ββ
r

,                                        (5) 

 

where N
xg +ℜ∈  is the directional vector in which inefficiency is measured. Here 

we choose NN
xg +ℜ∈= 1 . This function )1;,( N

i xyD
r

 has properties that parallel 

those of Di(y, x), and are listed below. For technical reasons the indication property 

is split into two parts. We note that we require inputs to be strictly positive in part 

a) of the indication property. The proofs of these properties are found in the 

appendix. 

 

i) ),(0)1;,( yLxifonlyandifxyD N
i ∈≥

r
 Representation 

ii) ,0,)1;,()1;1,( >+=+ ααα N
i

NN
i xyDxyD

rr
 Translation 

                                         
4For additional properties and proofs, see Färe and Primont (1995). 
 
5In consumer theory he calls this the benefit function and in producer theory he uses the term 
shortage function. 
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iiia) ),(,,...1,00)1;,( yIsoqLxthenNnxandxyDif n
N

i ∈=>=
r

 Indication 

iiib) 0)1;,()( =∈ N
i xyDimpliesyIsoqLx

r
, Indication 

 

Since we will be relating technical efficiency to costs, we also need to 

define the cost function, which for input prices Nw +ℜ∈  is 

}{ .)(:min),( yLxwxwyC ∈=                                                         (6) 

 

The following dual relationships apply  

 

),(/1
),(

xyD
wx

xyC
i≤                                                                        (7) 

and 

).1;,(
1

),( N
iN

xyD
w

wxxyC r
−≤−

              (8) 

 

Expression (7) which is the Mahler inequality, states that the ratio of 

minimum cost to observed cost is less than or equal to the reciprocal of the input 

distance function. Expression (8) states that the difference between minimum and 

observed cost, normalized by input prices, is no larger than the negative of the 

directional input distance function. 

These two inequalities may be transformed to strict equalities by introducing 

allocative inefficiency as a residual. 

 

The Debreu-Farrell and Russell Equivalence 

 

Our goal in this section is to find conditions on the technology  

MyyL +ℜ∈),( , such that the Debreu-Farrell (Debreu (1957), Farrell (1957)) 

measure of technical efficiency coincides with the Russell (Färe and Lovell (1978)) 
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measure. To establish these conditions we redefine the original Russell measure 

and introduce a multiplicative version. We do this by using the geometric mean as 

the objective function in its definition rather than an arithmetic mean. Thus our 

multiplicative Russell measure is defined as 

 







 ∏ =≤<∈=

=
NnyLxxxyR

N

n
nNN

N
nM ,...,1,10),(),...,(:)(min),(

1
11

/1 λλλλ            (9) 

 

The objective function here is ∏ =
N
n

N
n1

/1)( λ  in contrast to ∑ =
N
n n N1 /λ  

from the original specification in Färe and Lovell (1978). For technical reasons we 

assume here that inputs x = (x1, . . ., xn) are strictly positive, i.e., xn > 0, n = 1,…,N. 

More specifically in this section we assume that for )(,0,0 yLyy ≠≥  is a subset of 

the interior of N
+ℜ .6 

 Note that the Russell measure in (9) has the indication property 

 

)(1),( yEffLxifonlyandifxyRM ∈=                      (10) 

 

Recall that the Debreu-Farrell measure of technical efficiency is the reciprocal of 

Shephard’s input distance function, i.e., 

 

),(/1),( xyDxyDF i=             (11) 

 

thus it is homogeneous of degree -1 in x and it has the same indication property as 

Di(y, x). 

 

 

 

                                         
6 See Russell (1990) for a related assumption 
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Now assume that the technology is input homothetic7,  i.e., 

 

)(/),1(),( yHxDxyD ii =              (12) 

 

and that the input aggregation function Di(1 , x) is a geometric mean, so that the 

distance function equals 

 

)(/)(),(
1

/1 yHxxyD
N

n

N
ni ∏=

=
.           (13) 

 

From (4) and the Representation property it is clear that the distance 

function takes the form above if and only if the input requirement sets are of the 

following form 

 

)(
ˆ,1)ˆ(:ˆ)()( /1

1 yH

x
xxxyHyL NN

n
=









≥∏⋅=
=

 .         (14) 

 

The Russell characterization theorem can now be stated; the proof may be found 

in the appendix. 

 

Theorem 1: Assume that L(y) is interior to M
+ℜ  for .0,0 ≠≥ yy  

).(/)(),()(),(),(
1

/1 yHxxyDifonlyandifyLxallforxyDFxyR
N

n

N
niM ∏=∈=

=
 

 

Thus for these two efficiency measures to be equivalent, technology must 

satisfy a fairly specific form of homotheticity - technology is of a restricted Cobb-

Douglas form in which the inputs have equal weights. This makes intuitive sense, 

                                         
7 For details see Färe and Primont (1995). 
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since technology must be symmetric, but clearly not of the Leontief type. That is, 

technology must be such that the IsoqL(y) =EffL(y). Of course, it is exactly the 

Leontief type technology which motivated Färe and Lovell to introduce a measure 

that would use the efficient subset EffL(y) rather than the isoquant IsoqL(y) as the 

reference for establishing technical efficiency. 

 

The Directional Distance Function and the Additive Measure 

 

We now turn to some of the more recently derived versions of technical 

efficiency; specifically we derive conditions on the technology L(y), My +ℜ∈   that 

are necessary and sufficient for the directional distance function to coincide with a 

“stylized’ additive measure of technical efficiency. 

 

The original additive measure introduced by Charnes, Cooper, Golany and 

Seiford (1985)(hereafter CCGS) simultaneously expanded outputs and contracted 

inputs. Here we focus on a version that contracts inputs only, but in the additive 

form of the original measure. Although the original measure was defined relative to 

a variable returns to scale technology, (see p. 97, CCGS), here we leave the returns 

to scale issue open and  impose only those conditions itemized in Section 2. 

Finally, we normalize their measure by the number of inputs, N. 

 

We are now ready to define the stylized additive model as 

 

,)(),,(:/max),(
1

11








∈−∑ −=
=

yLsxsxNsxyA NN
N

n
n K          (15) 

 

where .,,1,0 Nnsn K=≥  
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This measure reduces each input xn so that the total reduction ∑ =
N
n n Ns1 /  

is maximized.  Intuitively, one can think of this problem as roughly equivalent to 

minimizing costs when all input prices are equal to one. We will discuss this link in 

the next section.  

 

The additive measure and the modified Russell measure look quite similar, 

although the former uses an arithmetic mean as the objective and the modified 

Russell measure uses a geometric mean. The additive structure of A(y, x) suggests 

that the directional distance function - which also has an additive structure - may be 

related to it.8 To make that link we begin by characterizing the technology for 

which these two measures would be equivalent. We begin by assuming that 

technology is translation input homothetic,9 i.e., in terms of the directional distance 

function we may write 

  

).()1;,0()1;,( yFxDxyD N
i

N
i −=

rr
            (16) 

 

Moreover, we assume that the aggregator function )1;,0( N
i xD
r

 is arithmetic 

mean so that the directional distance function may be written as 

 

).(
1

)1;,(
1

yFx
N

xyD
N

n
n

N
i −∑=

=

r
           (17) 

 

Note that from the properties of the directional distance function, it follows 

that it takes the form required above if and only if the underlying input requirement 

sets are of the form 

                                         
8 Larry Seiford noted the similarity at a North American Efficiency and Productivity Workshop. 
 
9 For details see Chambers and Färe (1998). Chambers and Färe assumed that F(y) depends on the 
directional vector 1N. Here we take it as fixed and omit it. 
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),(0~1
:~)(

1
yFx

N
xyL

N

n
n +









≥∑=
=

            (18) 

where )).(,),((~
1 yFxyFxx N −−= K  

We are now ready to state our additive representation theorem (see appendix for 

proof), 

 

Theorem 2: 

  

{ }0),(,1ˆ:ˆ))((),()1;,( ≥∈+==∈= δδ yLxxxxyLCxallforxyAxyD NN
i

r

  

if and only if    ).(
1

)1;,(
1

yFx
N

xyD
N

n
n

N
i −∑=

=

r
 

 

Here we see that to obtain equivalence between the additive measure and 

the directional distance function, technology must be linear in inputs, i.e., the 

isoquants are straight lines with slope = -1 . 

 

Cost Interpretations 

 

The Debreu-Farrell measure has a dual interpretation, namely the cost 

deflated cost function. Here we show that the multiplicative Russell measure and 

the additive measure also have dual cost interpretations.10 

 

 

 

                                         
10 It is straightforward to show that the original (additive) Russell measure also has a cost 
interpretation, despite the claim by Kopp (1981, p. 450) that the Russell measure ‘...cannot be given 
a meaningful cost interpretation which is factor price invariant.’ In this section, we provide such a 
cost interpretation. 
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Recall that we define the cost function 

 

{ },)(:min),( yLxwxwyC ∈=            (19) 

 

where  Nw +ℜ∈ are input prices. From the definition it follows that 

 

).(,),( yLxwxwyC ∈∀≤             (20) 

 

Now since  )(),( yLxxyDF ∈  it is also true that 

 

)),(()),((),( xyDFwxxxyDFwwyC =≤            (21) 

and 

 

),(/),( xyDFwxwyC ≤             (22) 

 

Expression (22) is the Mahler inequality expressed in terms of the cost 

efficiency measure (C(y, w)/wx) and the Debreu-Farrell measure of technical 

efficiency, DF(y, x). This inequality may be closed by introducing a multiplicative 

measure of allocative efficiency, AE(y, x, w), so that we have 

 

C(y, w)/wx = DF(y, x)AE(y, x, w).           (23) 

 

To introduce a cost interpretation of the multiplicative Russell measure we 

note that 

)()( *
,,11

* yLxx NN ∈λλ K ,             (24) 

 



 

 12

where λ* n (n = 1 , . . .,N) are the optimizers in expression (9). From the assumption 

that the input requirement sets are subsets of the interior of N
+ℜ  , it follows that λ* n 

>0, n = 1, . . .,N. By (20) and (24) we have 

 

)(),( *
,,111

*
NNN xwxwwyC λλ K≤           (25) 

 

 

and by multiplication 





























∏

++









∏









∏≤

==

=
wx

xw

wx

xw
wxwyC

NN

n
n

NNN
NN

n
n

NN

n
n /1

1

*

*

/1

1

*

111
*/1

1

*/),(

λ

λ

λ

λλ L       (26) 

 

 

or 





























∏

++









∏

≤

==
wx

xw

wx

xw
xyRwxwyC

NN

n
n

NNN
NN

n
n

M /1

1

*

*

/1

1

*

111
*

),(/),(

λ

λ

λ

λ
L            (27) 

 

Expression (27) differs from the Mahler inequality (22) in that it contains a 

second term on the right hand side. This term may be called the Debreu-Farrell 

deviation, in that if λ1 = . . . = λN , the deviation equals one. That is, if the scaling 

factors λ* n are equal for each n, then (27) coincides with (22). Again, the inequality 

(27) can be closed by introducing a multiplicative residual, which captures 

allocative inefficiency. 
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Turning to the additive measure, we note that 

 

)(),,( **
11 yLsxsx NN ∈−− K             (28) 

 

where Nnsn ,...,1,* = are the optimizers in problem (15). Thus from cost 

minimization we have 

 

,),( *wswxwyC −≤              (29) 

 

where ).,,( **
1

*
Nsss K= From (29) we can derive two dual interpretations: a ratio 

and a difference version. 

 

The ratio interpretation is 

 

,1/),(
*

wx

ws
wxwyC −≤             (30) 

 

which bears some similarity to the Farrell cost efficiency model in (22). Now if w = 

(1, . . .,1 ), then it follows that the additive model is related to costs as 

 

 

Nx

xyA

Nx

Ns

x

yC
N

n
n

N

n
n

N

n
n

N

n
n

N

/

),(
1

/

/

1
)1,(

11

1

*

1
∑

−=
∑

∑

−≤
∑

==

=

=

          (31) 

 

 

In this case we see that Debreu-Farrell cost efficiency (the left-hand side) is 

not larger than one minus a normalized additive measure. 
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The second cost interpretation is 

 

,),( *wswxwyC −≤−                         (32) 

 

and when w = (1, . . .,1) we obtain 

 

),(

)1,(
1 xyA

N

xyC
N

n
n

N

−≤
∑−
=             (33) 

 

If we compare this result to (8), we see again, the close relationship between 

the additive measure and the directional distance function. 
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Appendix 

 

Proof of (2.5): 

i) See Chambers, Chung and Färe (1998, p. 354) for a similar proof. 

 

ii)   

{ })()11(:sup)1;1,( yLxxyD NNNN
i ∈+−=+ αββα
r

    

                             { })()1)((:sup yLx N ∈+−= αββ  

    { } )ˆ()(1(:ˆsup αββββα −=∈−++= yLx N  

    α+= )1;,( N
i xyD

r
. 
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iiia) We give a contrapositive proof. Let )(yLx∈ with Nnxn ,,1,0 K=>  and 

)(yIsoqLx∉ . Then Di(y, x) > 1, and by strong disposability, there is an open 

neighborhood )(xNε of x { })),(,,),(min( 11 NiNi xxyDxxxyDx −−= Kε such that 

)()( yLxN ∈ε . Thus  0)1;,( >N
i xyD
r

  proving iiia). 

 

iiib) Again we give a contrapositive proof. Let  0)1;,( >N
i xyD
r

 then 

)(1)1;,( yLxyDx NN
i ∈−
r

 and since the directional vector is )1,,1(1 K=N , each 

Nnxn ,,1, K= can be reduced while still in L(y). Thus Di(y, x) > 1 and by the 

Indication property for Di(y, x), )(yIsoqLx∉ . This completes the proof. 

 

Remark on the proof of iiia): The following figure shows that when the directional 

vector has all coordinates positive, for example N1 , then Nnxn ,,1,0 K=>  is 

required. In the Figure 1, input vector a has x1 = 0, and 0)1;,( =N
i xyD
r

 , but a is 

not on the isoquant. 

 

 

         x2 

 

                 a                                isoquant of L(y) 

 

 

 

 

            0      x1 

 

 

Figure 1. Remark on the proof of iiia). 
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This problem may be avoided by choosing the directional vector to have ones only 

for positive x’s. 

 

Proof of Theorem 1: 

 

Assume first that the technology is as in (13), then 

 

),( xyRM ( ) ( ){ }NnyLxx nNN

NN
n n ,,1,10),(,,:min 11

/1

1 KK =≤<∈∏= = λλλλ  

 

( ) ( )






 =≤<≥∏= = NnxxD nNNi

NN
n n ,,1,10,1,,:min 11

/1
1 KK λλλλ  

 

( ) ( )






 =≤<≥∏∏= == NnyHx n

N
n

N
n n

NN
n n ,,1,10,1)(/:min

/1
1

/1
1 Kλλλ  

 

( ) ( ) ( )






 =≤<∏≥∏∏= === NnxyH n

N
n

N
n

NN
n n

NN
n n ,,1,10,1/)(:min

/1
1

/1
1

/1
1 Kλλλ

 

( ) ),(/1/)(
/1

1 xyDxyH i
N

n
N
n =∏= = . 

 

Since DF(y, x) =1 /Di(y, x) we have shown that ( 3) implies RM(y, x) =DF(x, y). 

 

To prove the converse we first show that 

 

( ) .,,1,10,/),(),(
/1

1,,11 NnxyRxxyR n
NN

n nMNNM KK =≤<∏= = δδδδ         (34) 
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To see this, 

 

),( ,,11 NNM xxyR δδ K { ( ) ),(),,(:min 111
/1

1 yLxx NNN
NN

n n ∈∏= = δλδλλ K  

}Nnnn ,,1,10,10 K=≤<≤< δλ  

 

( ) { ( ) ),(),,(:min 111
/1

1
/1

1 yLxx NNN
NN

n nn
NN

n n ∈∏∏= =
−

= δλδλδλδ K

 }Nnnn ,,1,10,10 K=≤<≤< δλ  

 

( ) { ( ) ),()ˆ,,ˆ(:ˆmin 111
/1

1
/1

1 yLxx NNN
NN

n n
NN

n n ∈∏∏= =
−

= δλδλλδ K

 }Nnnn ,,1,10,1ˆ0 K=≤<≤< δλ  

 

( ) NN
n nM xyR

/1
1),(

−
=∏= δ  

 

where  .,,1,ˆ Nnnnn K== δλλ  Thus (34) holds. 

 

Next, assume that the Debreu-Farrell and the multiplicative Russell 

measures are equal, then 

 

( ) ),,,(/),(),,,( 11
/1

111 NN
NN

n nMNNM xxyDFxyRxxyR δδδδδ KK =∏= =
 

thus 

 ( ) NN
n nNNM xxyDFxyR

/1
111 ),,,(),( ∏= = δδδ K  

and 

 ( ) NN
n nNN xxyDFxyDF

/1
111 ),,,(),( ∏= = δδδ K  
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Now we take Nnxnn ,,1,/1 K==δ  then 

 

 ( ) NN
n nyDFxyDF

/1
1)1,,1,(),( ∏= = δK  

 

Moreover, since the Debreu-Farrell measure is independent of units of 

measurement (Russell (1987), p. 215),11  xn can be scaled so that  

Nnxn ,,1,0 K=> . Thus by taking )1,,1,()( KyDFyH = , and using (11) we have 

proved our claim. 

 

Proof of Theorem 2: 

 

First consider 

 

=−− ),,,( 11 NNxxyA δδ K  
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
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
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∈+−∑ +−+−=
=

yLsxsxs
N NNN

N

n
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∑ +−=
=

N

n
n xyA

N 1
),,(

1 δ  

 

where Nns nn ,,1,0,0 K=≥≥ δ .  

 

                                         
11 This was pointed out to us by R.R. Russell. 
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This is equivalent to 

 

∑ +=
=

N

n
nN

xyA
1

1
),( δ ),,,( 11 NNxxyA δδ −− K  

 

Take δn = xn and define -F(y) =A(y,0), then since equality between the directional 

distance function and the additive measure holds, 

 

).(
1

),()1;,(
1

yFx
N

xyAxyD
N

n
n

N
i −∑==

=

r
 

 

Next, let  )),(( yLCx∈  then for some ),(yIsoqLx∈  and ,0≥δ  

 

.)1;ˆ,()1;1ˆ,()1;,( δδ +=+= N
i

NN
i

N
i xyDxyDxyD

rrr
      

 

Since ),(ˆ yIsoqLx∈   .)1;,( δ=N
i xyD
r

   

Next,    

  A(y,x) 







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0)(/)(:
1

max
1 1

yFNsxs
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N

n
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
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
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1
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n

N
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







≥−∑ ∑+=
= =

Nn
N

n

N

n
n s

N
yFNxs

N

1
)(/ˆ:

1
max

1 1
δ  

           

           = δ, 

since ),(ˆ yIsoqLx∈  thus ).,()1;,( xyAxyD N
i =
r

 


