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Introduction

The last two decades have witnessed a revival terast in the
measurement of productive efficiency pioneered lyrdil (1957) and Debreu
(1957). 1978 was a watershed year in this revivdll the christening of DEA by
Charnes, Cooper and Rhodes (1978) and the criag§&arrell technical efficiency
in terms of axiomatic production and index numbesory in Fare and Lovell
(1978). These papers have inspired many otherpgly hese methods and to add

to the debate on how best to define technicalieffy.

In this paper we try to pull together some of tlaiants that have arisen
over these decades and show when they are equivalespecific cases we take
up include: 1) the original Debreu-Farrell measteesus the Russell measure—the
latter introduced by Fare and Lovell, and 2) theectional distance function and
the additive measure. The former was introduced.umnberger (1992) and the
latter by Charnes, Cooper, Golany and Seiford (L98%8e also provide a

discussion of the associated cost interpretations.
Basic Production Theory Details

In this section we introduce the basic productioeoty that we employ in
this paper. We will be focusing on the input bas#tiency measures here, but the

analysis could readily be extended to the outpented case as well.

To begin, technology may be represented by itstigguirement sets

L(y) ={x: x can produce v}, yDD'Y' , (1)



where  yOoOW :{yDDM Ym=20m=1..M }denotes  outputs  and
xDD'l'denotes inputs. We assume that the input requirersets satisfy the

standard axioms, including:(0) = D'l', andL(y) is a closed convex set with both

inputs and outputsfreely disposable (for details see Fare and Prirt395)).
The subsets of (y) relative toward which we measure efficiency are th

isoquants

IsoqlL(y) ={x: xOL(y),AxOL(y).A>1,y00Y, (2)
and the efficient subsets
EffL(y) ={x: xOL(y),x < x, X # x= X' OL(y)},yoo". (3)

Clearly, EffL(y) [ IsogL(y) and as one can easily see with a Leontief teclgyplo
i.e., L(y) :{(xl,xz) : min{xl,xz} = y}, the efficient subset may be a proper subset

of the isoquant.
Next we introduce two function representations Lqf), namely the
Shephard input distance function and the directionaut distance function, and

discuss some of their properties.

Shephard’'s (1953) input distance function is defimeterms of the input
requirement sets(y) as

D, (y,x) =sugdA : x/ A0 L(y)}. (4)

% Inputs are freely disposable x> x [ L(y) = X' L(y).
® Outputs are freely disposableyf> y = L(y') O L(y).



Among its important propertiésve note the following
i) D,(y,x)=1 if andonlyif xOL(y), Representation
i) D,(y,Ax) = AD, (Y, x),4 >0, Homogeneity

i) D,(y,x)=1 if andonlyif xOlIsogl(y), Indication

Our first property shows that the distance functi®n a complete
representation of the technology. Property ii) sbdhat the distance function is
homogeneous of degree one in inputs, i.e., theabk®s which are scaled in (4).
The indication condition shows that the distancefion identifies the isoquants.

Turning to the directional input distance functiotroduced by Luenberger
(1992, we define it as

D, (y,%9,) = SudB: (x= Ag,) D L(y)}, (5)

where g, 00" is the directional vector in which inefficiency iiseasured. Here

we choosg, =1" OO . This function D, (y,x1") has properties that parallel

those ofD;(y, x),and are listed below. For technical reasons ttieation property
is split into two parts. We note that we requirputs to be strictly positive in part
a) of the indication property. The proofs of thgeeperties are found in the

appendix.

i) D, (y,x2") =0 if andonlyif xOL(y), Representation

iy D,(y,x+a1"1") =D, (y,x1")+a,a >0, Translation

“For additional properties and proofs, see FarePaimdont (1995).

®In consumer theory he calls this the benefit fuorctand in producer theory he uses the term
shortage function.



iiia) if I5i(y, x1")=0 andx, >0,n=1..N, thenxOlsogL(y), Indication

iiib) xOlIsoglL(y) implieslii(y, x1") =0, Indication

Since we will be relating technical efficiency tosts, we also need to

define the cost function, which for input pricas10" is

C(y,w) = min{vvx: xOL(y) } (6)

The following dual relationships apply

COX 1/, (y,%) @)
WX
and
CXZW <5 (y, xaM). ®)
wl

Expression (7) which is the Mahler inequality, ssathat the ratio of
minimum cost to observed cost is less than or etpu#ie reciprocal of the input
distance function. Expression (8) states that ifferdnce between minimum and
observed cost, normalized by input prices, is ngelathan the negative of the
directional input distance function.

These two inequalities may be transformed to stegtalities by introducing

allocative inefficiency as a residual.
The Debreu-Farrell and Russell Equivalence

Our goal in this section is to find conditions ohet technology

L(y),yDD_'Y', such that the Debreu-Farrell (Debreu (1957), éfarf1957))

measure of technical efficiency coincides with Bessell (Fare and Lovell (1978))



measure. To establish these conditions we redéfi@eeoriginal Russell measure
and introduce a multiplicative version. We do tiysusing the geometric mean as
the objective function in its definition rather than arithmetic mean. Thus our

multiplicative Russell measure is defined as

R, (V,X) = min{(ﬁl/]n)”“ C(AX A X ) OL(Y),0< A <1, n =L...,N} 9)

The objective function here igf1N_,1,)* N in contrast toxN_ A, /N

from the original specification in Fare and Lov@lB78). For technical reasons we
assume here that inpuws= (xi, . . ., %) are strictly positive, i.ex, >0, n=1,...,N

More specifically in this section we assume thatya O,y # O,L(y) is a subset of

the interior of 1!

Note that the Russell measure in (9) has the aidic property
Ry (v, Xx) =1if andonlyif xOEffL(y) (10)

Recall that the Debreu-Farrell measure of techref@diency is the reciprocal of
Shephard’s input distance function, i.e.,

DF(y,x) =1/ D;j (Y, X) (11)

thus it is homogeneous of degree -k and it has the same indication property as
Di(y, Xx).

® See Russell (1990) for a related assumption



Now assume that the technology is input homotheiie.,
D (v, x) = Dj @ x)/ H(Y) (12)

and that the input aggregation functibr(1 , X) is a geometric mean, so that the

distance function equals
N N
Di(y,X)=(|‘|1Xn) TH(y). (13)
n=

From (4) and the Representation property it is rcieat the distance
function takes the form above if and only if thgubh requirement sets are of the

following form

X
H(y)

L(y) = H(y) E{x (1 x)““ } %= (14)

The Russell characterization theorem can now hedstthe proof may be found

in the appendix.

Theorem 1: Assume thatL(y) is interior to oM fory=0,y 0.

Ry (Y, X) = DE(y,x) for all xOL(y)if andonlyif D;(y,x) =( Hxn)llN TH(y).
n=1

Thus for these two efficiency measures to be edgmatechnology must
satisfy a fairly specific form of homotheticity e¢dhnology is of a restricted Cobb-

Douglas form in which the inputs have equal weigfitds makes intuitive sense,

" For details see Fare and Primont (1995).



since technology must be symmetric, but clearlyafahe Leontief type. That is,
technology must be such that tleqglL(y) =EffL(y). Of course, it is exactly the
Leontief type technology which motivated Fare amyell to introduce a measure
that would use the efficient subdetffL(y) rather than the isoquatgogL(y) as the
reference for establishing technical efficiency.

The Directional Distance Function and the Additive M easure

We now turn to some of the more recently derivetsioas of technical

efficiency; specifically we derive conditions orettechnologyL(y), y [ DM that

are necessary and sufficient for the directionsiatice function to coincide with a

“stylized’ additive measure of technical efficiency

The original additive measure introduced by Char@mper, Golany and
Seiford (1985)(hereafter CCGS) simultaneously edpdnoutputs and contracted
inputs. Here we focus on a version that contragpsits only, but in the additive
form of the original measure. Although the originadasure was defined relative to
a variable returns to scale technology, (see pC&iGS), here we leave the returns
to scale issue open and impose only those condititemized in Section 2.

Finally, we normalize their measure by the numidenjouts, N.

We are now ready to define the stylized additivelel@s

Ay, X) = max{ gsn IN: (X —Sg,... XN —SN) U L(y)}, (15)
n=1

wheres, 20,n=1...,N .



This measure reduces each inguso that the total reductioEr'}'zlsn I'N

is maximized. Intuitively, one can think of thisoplem as roughly equivalent to
minimizing costs when all input prices are equadte. We will discuss this link in

the next section.

The additive measure and the modified Russell medsok quite similar,
although the former uses an arithmetic mean asobjective and the modified
Russell measure uses a geometric mean. The adslitiveture ofA(y, X) suggests
that the directional distance function - which ates an additive structure - may be
related to i€ To make that link we begin by characterizing teehnology for
which these two measures would be equivalent. Wginbby assuming that
technology is translation input homothetice., in terms of the directional distance

function we may write
Bi (v, xa") = B; 0 x1") = F(y). (16)

Moreover, we assume that the aggregator fundbp(®, x;lN) is arithmetic

mean so that the directional distance function beyritten as

B (xa™) = Tt ~F () ar)

Note that from the properties of the directionaitaince function, it follows
that it takes the form required above if and ohiyhe underlying input requirement

sets are of the form

8 Larry Seiford noted the similarity at a North Ariwan Efficiency and Productivity Workshop.

® For details see Chambers and Fare (1998). CharahdrBare assumed that F(y) depends on the
directional vector "l. Here we take it as fixed and omit it.



Z

L(y)={~ S 3% 2 }+F(y), (18)

n=1

where X = (x = F(y),....xn = F(Y))-

We are now ready to state our additive represemdtieorem (see appendix for
proof),

Theorem 2:
B,(y,x2") = A(y,x) for all xOC(L(y)) ={%: % = x+ 81", x O L(y),5 = 0}

if and only if D, (y,x1") = = 3'x —F(y).
n=1

Z||—\

Here we see that to obtain equivalence betweeraddéive measure and
the directional distance function, technology mbst linear in inputs, i.e., the
isoquants are straight lines with slope = -1 .

Cost Interpretations
The Debreu-Farrell measure has a dual interpretatamely the cost

deflated cost function. Here we show that the multiplicatRassell measure and
the additive measure also have dual cost intetjasa®

0¢is straightforward to show that the original ¢&te) Russell measure also has a cost
interpretation, despite the claim by Kopp (1981450) that the Russell measure ‘...cannot be given
a meaningful cost interpretation which is factdacgrnvariant.’ In this section, we provide such a
cost interpretation.

10



Recall that we define the cost function

C(y,w) =min{wx: x O L(y)}, (19)

where wI[J 'l' are input prices. From the definition it followsath
C(y,w) < wx, Ox O L(y). (20)
Now since DF(y,x) xOL(y) it is also true that

C(y,w) < W(DF(y, X)x) = wx(DF(y, X)) (21)
and

C(y,w)/wx < DF(y,X) (22)

Expression (22) is the Mahler inequality expressederms of the cost
efficiency measurgC(y, w)/wx) and the Debreu-Farrell measure of technical
efficiency, DF(y, x). This inequality may be closed by introducing altiplicative
measure of allocative efficienciE(y, X, w) so that we have

C(y, w)/wx = DF(y, X)AE(y, X, w). (23)

To introduce a cost interpretation of the multiptice Russell measure we
note that

A axg A Nxn) OL(Y), (24)

11



wherel*, (n =1, .. .,N)are the optimizers in expression (9). From the@gsion

that the input requirement sets are subsets antbgor of D'l' , it follows that*,,

>0,n=1,...,N By (20) and (24) we have

C(y,w) < (A 1wyxq, A NWyXy) (25)

and by multiplication

c / - NA* YN A*]_W]_X]_ + A*NWNXN 26
(HAn} WX (HAn) WX
L n=1 n=1 i
or
C(y,w)/wx < Ry (Y, X) A +oo A N X (27)
(y,w) SENVENZ N 1/ N N 1/N
(HA}?] wx (m}l] wx
L n=1 n=1 i

Expression (27) differs from the Mahler inequa(®2) in that it contains a
second term on the right hand side. This term neydlled the Debreu-Farrell
deviation, in that it; = . . . = A, the deviation equals one. That is, if the scalin
factorsi*, are equal for eaal then (27) coincides with (22). Again, the inedpyal

(27) can be closed by introducing a multiplicativesidual, which captures
allocative inefficiency.

12



Turning to the additive measure, we note that
(X =st,.., XN —SN) O L(Y) (28)

where s;,n:L...,N are the optimizers in problem (15). Thus from cost

minimization we have
C(y,w) < WX—WS*, (29)

where s” = (sI,...,sL).From (29) we can derive two dual interpretationsato

and a difference version.

The ratio interpretation is
ws'

C(y,w)/wx<l-——o, (30)
WX

which bears some similarity to the Farrell cosiceghcy model in (22). Now v =

1, ...,2), then it follows that the additive model is rethte costs as
ST
Sn
Cya™) _,_n= ALY
> Xn > Xy /N > Xy /N
n=1 n=1 n=1

In this case we see that Debreu-Farrell cost effwy (the left-hand side) is

not larger than one minus a normalized additivesuea

13



The second cost interpretation is
C(y,w) —wWx < -ws (32)

and wherw = (1, . . .,2 we obtain

cyiN) - $x,
=l < —A®y,X) (33)

N

If we compare this result to (8), we see againctbse relationship between
the additive measure and the directional distanoetion.
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Appendix

Proof of (2.5):
i) See Chambers, Chung and Fare (1998, p. 354) $onilar proof.

D, (y, x+a1" V) :sud,B: (x-p1" +al™)0 L(Y)}
:SUF{IB; (X—(,B+0’)1N) ] L(y)}
= +a+sur{,@: (x-p41" 0O L(y)}(ﬁ =fF-a)

=D, (y,x1") +a.

15



iiia) We give a contrapositive proof. Let[]L(y) withx, >0,n=1,...,N and
x[OlIsogl(y). ThenDi(y, x) > 1, and by strong disposability, there is an open
neighborhoodN,(x ®fx (&= min{xl =D (Y, X)Xq,.-., XN — Dj (Y, x)xN}) such that

N, (x)OL(y). Thus Dj(y,xa") >0 proving iiia).

iib) Again we give a contrapositive proof. Let D; (y,x:LN)>O then

x—Dj (y, xaN )1N OL(y) and since the directional vector 18' = @... ), each
Xn,N=1,...,Ncan be reduced while still ib(y). ThusDi(y, x) > 1 and by the

Indication property foDi(y, X) x[JIsogl(y). This completes the proof.

Remark on the proof of iiia): The following figushows that when the directional
vector has all coordinates positive, for exam[b'Ne, then x, >0,n=1...,N is

required. In the Figure 1, input vectahasx; = 0, andD; (y, x:LN) =0, butais

not on the isoquant.

X2 A
° a isoquant of L(y)
0 > X1

Figure 1. Remark on the proof of iiia).
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This problem may be avoided by choosing the dioeetii vector to have ones only

for positivex’s.
Proof of Theorem 1:

Assume first that the technology is as in (13)nthe

Ry (Y, X) = min{(ﬂ,f':l)ln)w :()lel,...,)leN)D L(y),0<A, <14 n=1,..., N}

:min{(rlrl?lzlﬂn)llN :Di (A]_Xl,...,ANXN)Zl,O<An <1, n:l,...,N}
. / /
=m.n{(|-|r§':1;|n)1 (N Ak N/H(y)210</]nsln:1...,N}

:min{(|'|r'}':1)ln)1/N :(ﬂr'}'zl)ln)l/N > H(y)/(|‘|r'}':1 xn)llN],O<)|n <1, n=L...,N}

I'N
=HWANN, ) =1/D5(y.%).
SinceDF(y, x) =1 /Di(y, X) we have shown that ( 3) impli&u(y, X) =DF(X, y)

To prove the converse we first show that

/N
Rwv (¥, 01X . OnXn) = Ru (¥, x)/(|-| rﬁ'zlo*n)l ,0<d,<,n=1..,N. (34)

17



To see this,

. /N
Rw (¥, 911 OnXn) =minf (ﬂ r'?':Mn)l L (AM01Xq,. -, ANONXN) O L(Y),
0<A,<1,0<d,<Ln=1...,N }

-1/N . I'N
= (ﬂ r’?lzldn) min{ (ﬂ N:1An5n)1 (01X, ANONXN) D L(Y),
0<A,<10<3,<Ln=1...,N}

~1/N ~ WN - .
= (|_| rl?lzldn) min (I_I r'?':Mn)l F (M4, ANONXN) D L(Y),
0<A,<10<d,<Ln=1..,N }

=Rwu (Y, X)(I_I N9 )_1/ N

where A, = A,d,,n=1,...,N. Thus (34) holds.

Next, assume that the Debreu-Farrell and the nhchiive Russell

measures are equal, then

/' N
Rat (%3150, %) = R (v /([N 8n ) = DF (y, 3130, O Xn)

thus

/' N
Rut (¥:%) = DF (Y, 81%0,.., S xn ) (11, 6 )

and

IN
DF(y,X) = DF(Y,01%,...,ON XN )(ﬂ r'?':15n)1

18



Now we take, =1/x,,n=1,...,N then

/' N
DF(y,x) = DF(y1... ;L)(|‘| rﬁ'zlo*n)l
Moreover, since the Debreu-Farrell measure is ieddpnt of units of
measurement (Russell (1987), p. 215), x, can be scaled so that

Xy >0,n=1...,N. Thus by takingd (y) = DF(yJ},...1), and using (11) we have

proved our claim.
Proof of Theorem 2:

First consider

A(y,Xl—Jl,...,XN _JN) =

1 N
:max{ﬁnglsn (X, =0, —S,,....Xy —Oy —Sy) I L(y)},

:{%

Mz

1(Sn —0n*+0n): (X —(3 +51),.... XN = (ON *+SN)) U L(Y)},

n +A(Y, X),

ﬁMZ

_L
N

wheres, 20,0, 20n=1,...,N

' This was pointed out to us by R.R. Russell.
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This is equivalent to

1 N
Ay, X) N 215n + A(Y, X = Op,..., XN ~ON)
n=

Taked, = x, and define-F(y) =A(y,0), then since equality between the directional
distance function and the additive measure holds,

_ N
B (v, xa™) = Ay, %) :% S Xn ~ F(Y).

n=1

Next, let xOJC(L(y)), then for some O Isoql(y), andd =0,
Bi (y,xa™) = By (y, %+ 81N aN) = By (v, xaN) + .

Since X0 Isoql(y), Dj(y,xaN)=4d.
Next,

A(y,X)= max{ g Sh: g Xy —Sp)/ N —F(y)zo}

1 n=1

(Xn +I0—=57)/N —F(y)zo}
- 1

Xn !N —F(y)zﬁsN}

since X0 Isoql(y), thus D; (y,x2\) = A(y, x).

20



