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ABSTRACT

We propose a Bayesian procedure for exploiting small, possibly long-lag linear predictability in the
innovations of a finite order autoregression. We model the innovations as having a log-spectral density
that is a continuous mean-zero Gaussian process of order 1/√�T. This local embedding makes the problem
asymptotically a normal-normal Bayes problem, resulting in closed-form solutions for the best forecast.
When applied to data on 132 U.S. monthly macroeconomic time series, the method is found to improve
upon autoregressive forecasts by an amount consistent with the theoretical and Monte Carlo calculations.
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1 Introduction

Low-order autoregressions provide good benchmark forecasts for many economic time series,
yet there is reason to suspect that some small amount of linear predictability remains be-
yond the initial autoregressive approximation. One indication of this residual predictability
is the difference between autoregressive lag lengths estimated by the Akaike Information
Criterion (AIC) and the Bayes Information Criterion (BIC). In empirical applications with
macroeconomic data, this difference is substantially larger than what asymptotic theory
would lead one to expect for an exact pth-order autoregression (AR(p)). For example, in
Section 4 we examine a data set, taken from Stock and Watson (2005), which contains 132
monthly macroeconomic time series for the United States from 1959:1 — 2003:12. The first
two columns in Table 1 report the empirical distribution of the difference between AIC-
and BIC-selected lags, computed using a maximum lag length (pmax) of 18, along with the
asymptotic distribution of this difference computed for white noise.1 In theory, AIC should
exceed BIC by 3 or more 12.0% of the time; empirically, AIC exceeds BIC by 3 or more
61.4% of the time. It thus appears that there is some small amount of predictability in the
BIC residuals that is pushing AIC to include substantially more lags. Yet, as we report
in Section 4, this predictability is sufficiently small that the mean squared forecast error
(estimated using the pseudo out-of-sample method described in Section 4) of AIC exceeds
BIC, at least at short horizons. Thus there appears to be residual predictability beyond the
BIC-selected autoregression, but the estimation error introduced by longer autoregressions
overwhelms this small residual predictability and degrades the forecasts. Framed in terms
of AIC/BIC asymptotics for stationary time series, this suggests the presence of residual
predictability that lies in a 1/

√
T neighborhood of no predictability.

This paper proposes a structure for exploiting this small residual linear predictability.
Consider the univariate Gaussian AR(p),

β(L)yt = α+ ut (1)

= α+ σet, t = 1, . . . , T,

where β(z) = 1 − β1z − · · · − βpz
p has its roots outside the unit circle, σ > 0 and et is a

1If the process is an AR(p0) and the information criteria are used to choose a lag up to pmax ≥ p0, then
BIC estimates p0 consistently and AIC overestimates p0 by ∆p; the overestimation ∆p is asymptotically
distributed as ∆p ∼ argmax0≤d≤pmax−p0

Pd
j=1(Z

2
j − 2), where Zj are independent standard normals. This

distribution depends only weakly on pmax−p0 if pmax−p0 is large. Unreported results show the small sample
distribution for T = 510 and Gaussian errors to closely match the asymptotic approximation, at least for an
AR(0).
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mean-zero stationary Gaussian process. We model et as having a small amount of residual
predictability by supposing that the spectral density of et, fe(ω), is local-to-flat, specifically,

fe(ω) =
1

2π
eG(ω)/

√
T (2)

where
R π
−πG(ω)dω = 0. This setup captures the notion that after a prewhitening with a

parametric model, there remains residual predictability of order 1/
√
T . On the one hand,

by Kolmogorov’s formula (Brockwell and Davis (1991, p. 191)), the optimal one-step ahead
linear predictor of et has variance V [et|et−1, et−2, . . .] = 2π exp

³R π
−π ln fe(ω)dω/2π

´
= 1. On

the other hand, ignoring this local predictability yields an error variance of approximately
V [et] =

R π
−π fe(ω)dω ≈

1
2π

R π
−π

³
1 +G(ω)/

√
T + 1

2
G(ω)2/T

´
dω = 1+T−1 1

4π

R π
−πG(ω)

2dω, so
that the increase in the mean square forecast error is of order 1/T , the same order that arises
from standard 1/

√
T parameter uncertainty. Also, the 1/

√
T rate in (2) ensures contiguity

to the model with white noise ut (Dzhaparidze (1986), p. 66); this implies in particular that
any consistent lag-selection rule for p (such as BIC) remains asymptotically unaffected by
the slight misspecification of the AR(p).
The local perturbation G cannot be consistently estimated. Instead we model G as an

unobserved continuous Gaussian process on [−π, π] with a known covariance kernel. The
optimal forecast of yT+1 under quadratic loss thus becomes a Bayes problem of computing
the posterior mean of yT+1 under such a prior in the spectral domain. We show that the
local-to-flat spectral density assumption provides substantial computational simplifications.
In particular, the posterior mean of uT+1 is approximately a linear function of the autoco-
variances of ut, and the log-likelihood is approximately quadratic in these autocovariances.
Asymptotically, the posterior mean of uT+1 thus becomes a standard normal-normal

Bayes problem with a straightforward closed form solution. In the special case where p =
0 and G is a constant c times demeaned Brownian motion on [−π, π], the approximate
posterior mean for the jth autocovariance is simply the jth sample autocovariance of ut
with a shrinkage factor of c2/(c2 + 2π2j2). When p > 0, β(L) needs to be estimated, so
only the OLS residuals ût are directly observed. The appropriate shrinkage of the sample
autocovariances of ût then involves an additional linear regression step. Formally, we show
that with a sample size independent, non-dogmatic prior over β(L), and an independent
Gaussian process prior on G, this approximation to the posterior mean of yT+1 is within
op(T

−1/2) of the exact posterior mean.
This result is particularly useful because computation of the exact posterior mean is

challenging. Carter and Kohn (1997), Liseo, Marinucci, and Petrella (2001), Choudhuri,
Ghosal, and Roy (2004a), McCoy and Stephens (2004), and Rosen, Stoffer, andWood (2009),
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among others, consider Bayesian inference in time series models with priors in the spectral
domain. They resort to computationally intensive Markov Chain Monte Carlo techniques to
obtain posteriors. What is more, their samplers are all based on the Whittle (1957, 1962)
approximation of the likelihood. The pseudo-posteriors obtained in this fashion thus contain
an approximation error that could be as large as Op(1).2

Alternatively, one might approximate the spectral density prior (2) by a corresponding
prior on the coefficients of a long-lag AR(q) with q À p. Under the demeaned Wiener
process specification for G, the resulting prior on the AR coefficients j = p+ 1, p+ 2, . . . is
approximately independent mean-zero Gaussian with variance proportional to 1/(Tj2). This
rate of decay corresponds to the rate of decay the ’Minnesota’ prior (cf. Doan, Litterman,
and Sims (1984)) imposes for j = 1, 2, . . .. For G a demeaned Wiener process, our forecast
might thus be interpreted as the approximate posterior under a "local" Minnesota prior on
prewhitened data, which is implemented without estimation of a long-lag AR(q).
If the baseline AR model (1) for yt is locally misspecified for low frequencies, then the

function G in (2) has most of its variation close to zero.3 A large literature considers good
forecasting rules in the presence of low frequency phenomena, such as structural breaks or
time varying means (cf. Chernoff and Zacks (1964), Clements and Hendry (1998), Pesaran,
Pettenuzzo, and Timmermann (2006), for example). Such concerns are seamlessly accommo-
dated in our framework by picking a prior for G with more variation close to the origin. The
shrinkage of the sample autocovariances of ut is then performed in a way that the resulting
forecast tracks low frequency movements in the mean of yt.
From a decision theoretic perspective, a Bayesian approach to forecasting is entirely

natural, as the resulting forecast is efficient relative to the prior and thus admissible by
construction. In contrast, in the literature on optimal lag selection for forecasting (Shibata
(1980), Ing and Wei (2005), Schorfheide (2005), among others) attention is restricted to the
class of OLS forecasts, which might be dominated by another forecasting function.4 From
a more technical perspective, the quadratic approximations to the log-likelihood underlying
our results are similar to those employed by Müller and Petalas (2010) in the context of

2In the light of the results of Choudhuri, Ghosal, and Roy (2004b), one would expect that the Whittle
approximation induces errors in posterior means of autocovariances no larger than Op(T

−1/2) for sufficiently
smooth spectral densities, but the approximation error for forecasts computed from the Whittle likelihood
is Op(1) in general.

3The spectral density of yt in (1) is fy(ω) = σ2fe(ω)/|β(eiω)|2, with i =
√
−1. Thus, G in (2) equivalently

represents a local misspecification in the log spectral density of yt.
4For instance, Ing and Wei (2005, Section 4) provide evidence that AIC based OLS forecasts are not in

general admissible under squared loss.
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the estimation of parameter time variation of order 1/
√
T . Finally, there is an interesting

connection to the recent paper by Golubev, Nussbaum, and Zhou (2010): These authors
establish a general but non-constructive equivalence between spectral density estimation
and estimation of a nonparametric function on the unit interval, observed with Gaussian
noise. In the local-to-flat spectrum framework, this link becomes quite explicit: The as-
ymptotically normal-normal Bayes problem for the autocovariances of et corresponds to a
Gaussian functional estimation problem with Gaussian prior, and the optimal forecast of
eT+1 in (2) under the belief that G is equal to Ĝ (where

R π
−π Ĝ(ω)dω = 0) has varianceR π

−π fe(ω)e
−Ĝ(ω)/

√
Tdω ≈ 1 + T−1 1

4π

R π
−π(G(ω) − Ĝ(ω))2dω, so that the impact on the mean

squared forecast error of estimation error in G becomes asymptotically proportional to the
L2-norm of the estimation error of G.
A heuristic derivation, including the simplifying steps arising from the local-to-flat spec-

trum assumption, details on the suggested forecast and the formal theoretical result are
given in Section 2. The result covers a general VAR model, with unknown intercept and
error variance, and -step ahead forecasts of yT+ . Under a mixture prior on G (for example,
we consider the case that G is c times demeaned Brownian motion and multiple values of
c are used), it is possible to combine forecasts by Bayesian model averaging (BMA), and
we provide a simple expression for the model averaging weights. Our main result is that
difference between the approximate posterior mean of yT+ and the exact posterior mean
(which is the optimal forecast under quadratic loss) is op(T−1/2) for all fixed horizons .
Section 3 reports a Monte Carlo simulation which confirms the main features of the

theory. The simulations focus on the case that the process G is c times a demeaned Brownian
motion. The cases that the prior is correctly specified are seen to map out an asymptotic
efficiency envelope. The BMA forecast comes reasonably close to this envelope. Even if the
prior is misspecified, for example if ut is a finite-order moving average with coefficients of
order 1/

√
T , the forecasts based on the scaled Brownian motion prior capture much of the

additional predictability in the process. Moreover, when there is no predictability, the cost
of using the BMA forecasts is found to be small. These findings suggest that the demeaned
Brownian motion prior provides a flexible way to exploit small remaining predictability in
autoregressive residuals for general unspecified forms of that predictability.
Section 4 assesses the performance of the smooth-spectrum forecasts via a pseudo out-

of-sample forecasting experiment using the U.S. monthly macro data set examined in Table
1. Table 1 suggested that there is a small additional linear predictability, at least in some
series. The final 6 columns of Table 1 report the asymptotic distribution of the difference
between AIC- and BIC-selected lags in model (2) with G a demeaned Brownian motion of
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scale c, for a true lag length of p0 = 0 and p0 = 3.5 At least qualitatively, these differences
match the empirical results in the first column quite closely. Accordingly, the approximately
optimal forecasts computed from this model with c = 20 have median improvements of the
mean squared forecast error, relative to BIC, of 1.2% at the one month horizon. For some
series, the improvement is substantially greater and for only a few series do we find that
this procedure imposes much of a cost, relative to using BIC: the 10% and 90% percentiles
of relative mean squared forecast errors, relative to BIC, are 0.964 and 1.014, respectively.
The magnitudes of these improvements are also in line with the theoretical expressions in
Section 2 and the Monte Carlo results of Section 3.

2 Theoretical Results

This section provides an informal derivation of the approximately best forecast, first for
the case of no autoregressive component, then with an autoregressive component. We then
provide a detailed description of the suggested forecast in a VAR with unknown mean and
scale. The section concludes with a statement of the main theorem, which is proven in the
appendix.

2.1 Heuristic Derivation

We begin by obtaining an expression for approximate posterior mean of yT+1 in the case
that β(L) = 1, so that yt = ut and ut is observed. For simplicity, we assume α = 0 and
σ = 1 known (so that ut = et), and that T is odd.
Given G, the jth autocovariance of ut is

E[utut−j|G] =
Z π

−π
eiωjfe(ω)dω = 2

Z π

0

cos(ωj)fe(ω)dω, j = 0,±1,±2, . . . (3)

with i =
√
−1. Define the autocovariances, scaled by

√
T ,

γj(G) =

( √
T (E[u2t |G]− 1) for j = 0√
TE[utut−j|G] for j = ±1,±2, . . .

5The asymptotic distribution of ∆p described in footnote 1 then changes to ∆p ∼
argmax0≤d≤pmax−p0

Pd
j=1(κj+p0Z

2
j −2), where Zj are independent standard normals and κj = 1+c2/2π2j2.
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Let γ(G) = (γ1(G), . . . , γT (G))
0, and

Γ(G) =

⎛⎜⎜⎜⎜⎝
γ0(G) γ1(G) · · · γT−1(G)

γ1(G) γ0(G) · · · ...
...

...
. . . γ1(G)

γT−1(G) · · · γ1(G) γ0(G)

⎞⎟⎟⎟⎟⎠
so that with UT the (reversed) vector of observations on ut, UT = (uT , . . . , u1)

0, we have

V (G) = E[UTU
0
T ] = I + T−1/2Γ(G).

The dependence of γ(G), Γ(G) and V (G) on T is suppressed to simplify notation.
Given G, the optimal forecast of uT+1 is uT+1|T (G) = T−1/2γ(G)0V (G)−1UT . Thus

u∗T+1|T = T−1/2E[γ(G)0V (G)−1UT |UT ] is the exact posterior mean of uT+1, where the expec-
tation is taken over the posterior of G (or, equivalently, over the posterior of (γ(G), V (G))).
We are interested in obtaining a simple approximate expression upT+1|T ≈ u∗T+1|T .
The derivation proceeds in four steps. The first is to approximate uT+1|T (G). Under the

local model (2),

fe(ω) =
1

2π
eT

−1/2G(ω) ≈ 1

2π

¡
1 + T−1/2G(ω)

¢
so that

γj(G) ≈ γ̃j(G) =
1

π

Z π

0

cos(ωj)G(ω)dω. (4)

Thus V (G) ≈ I, so uT+1|T (G) = T−1/2γ(G)0V (G)−1UT ≈ T−1/2γ(G)0UT and the posterior
mean is approximately

u∗T+1|T ≈ T−1/2γ∗0UT (5)

where γ∗ is the posterior mean of γ(G).
The second step is to approximate the exact Gaussian likelihood by the Whittle (1957,

1962) likelihood. Let zj be the jth element of the periodogram,

zj =

¯̄̄̄
¯ 1√
2πT

TX
t=1

ute
iωjt

¯̄̄̄
¯
2

, where ωj = 2πj/T, j = 1, · · · , (T − 1)/2.

The Whittle log-likelihood is

ln p(YT |G) ≈ −
(T−1)/2X
j=1

ln fe(ωj)−
(T−1)/2X
j=1

zj
fe(ωj)

=

T/2X
j=1

lj(T
−1/2δj(G)) (6)
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where δj(G) =
√
T (2πfe(ωj) − 1) and lj(x) = − ln(1 + x) − 2πzj

1+x
+ ln 2π. As noted in

the introduction, the Whittle approximation is often employed to facilitate computation of
posteriors in models with priors in the spectral domain. At the same time, direct use of
(6) for inference about fe(ωj) amounts to a non-parametric regression problem with log-chi
squared distributed errors, which requires non-Gaussian posterior sampler techniques (cf.
Carter and Kohn (1997)). What is more, the Whittle likelihood approximation potentially
induces non-trivial errors in posterior means.
The third and key step of our approximation exploits the local embedding of fe(ωj) to

address both these issues. On the one hand, for nearly flat fe(ω), the approximation (6)
becomes highly accurate. On the other hand, since δj(G) ≈ G(ωj) is O(1) for fixed G, we
can further approximate lj by a second order Taylor series

T/2X
j=1

lj(δj(G)) ≈
T/2X
j=1

¡
lj(0) + T−1/2l0j(0)δj(G) +

1
2
T−1l00j (0)δj(G)

2
¢

=

T/2X
j=1

³
lj(0) + T

−1/2
j z̄jδj(G)− 1

2
T−1 (1 + 2z̄j) δj(G)

2
´

(7)

where z̄j ≡ 2πzj − 1. Because G(ω) is continuous and 1
T

PT/2
j=1 z̄j ≈ 0, 1

T

PT/2
j=1 z̄jδj(G)

2 ≈
1
T

PT/2
j=1 z̄jG(ωj)

2 ≈ 0 (see Müller and Petalas (2010)). Thus the term z̄jδj(G)
2 in (7) vanishes

and, upon completing the square, we have

ln p(YT |G) ≈ −12
T/2X
j=1

¡
z̄j − T−1/2δj(G)

¢2
+ function of {z̄j}. (8)

The sample information about the spectral density of ut (or, equivalently, G) is thus captured
asymptotically by the Gaussian pseudo-model

Z̄|δ(G) ∼ N (T−1/2δ(G), I), (9)

where Z̄ = (z̄1, . . . , z̄(T−1)/2)0 and δ(G) = (δ1(G), . . . , δ(T−1)/2(G))
0. Note, however, that (9)

is only an accurate approximation to the likelihood as a function of δ(G)–the sampling dis-
tribution of the centred periodogram ordinates z̄j does not, of course, become approximately
Gaussian, even asymptotically.
The fourth step in the approximation is to use the pseudo-model in the frequency do-

main to obtain a corresponding time domain model and hence an approximate posterior of
γ(G). From (3), γj(G) ≈ 1

π

R π
0
cos(ωj)G(ω)dω ≈ 2

T

PT/2
l=1 cos(ωlj)δl(G) = T−1/2q0jδ(G),

7



where qj = 2T−1/2(cos(ω1j), · · · , cos(ω(T−1)/2j))0. Thus γ(G) ≈ T−1/2Q0δ(G), where
Q = (q1, . . . , q(T−1)/2). Similarly, let

ŝj = T−1/2
TX

t=j+1

utut−j = 2T
−1/2

T/2X
l=1

cos(ωlj)z̄l

so the vector of sample autocovariances of ut, scaled by
√
T , is ŝ = Q0Z̄. From (9) and

Q0Q = I, we therefore have the approximate pseudo-model

ŝ|γ(G) ∼ N (γ(G), I). (10)

The Gaussian prior for G implies via (4) an approximately Gaussian prior for γ(G),

γ(G) ≈ N (0,Σ), where Σjl =
1

π2

Z π

0

Z π

0

cos(rj)kG(r, s) cos(sl)drds (11)

and kG(r, s) = E[G(r)G(s)] is the covariance kernel of the stochastic process G. Note that
if

G(s) = J(s)− 1
π

Z π

0

J(r)dr, (12)

that is G is the demeaned version of the stochastic process J , then Σjl in (11) can be
alternatively computed with kG(r, s) replaced by kJ(r, s) = E[J(r)J(s)], since

R π
0
cos(sj)ds =

0 for j = 1, 2, . . ..
Combining (10) and (11), the approximate posterior mean of γ is

γ∗ ≈ γp = Σ(I + Σ)−1ŝ (13)

which can be seen as a generalized shrinkage estimator of γ. With (5), the approximate
posterior mean of uT+1 is thus

u∗T+1|T ≈ upT+1|T = T−1/2U 0
Tγ

p = T−1/2Σ(I + Σ)−1ŝ.

We now present explicit expressions for Σ and for the approximate posterior mean γp =

(γp1, · · · , γpT )0 in three cases.
Demeaned Brownian motion. Let J(ω) = cW (ω), where W is Brownian motion on [0, π]
with E[W (π)2] = 1, and via (12), G is distributed as a demeaned Brownian motation
G(s) = cWμ(s) = cW (s)− c

π

R π
0
W (r)dr. Then kJ(r, s) = c2

π
min(r, s) for r, s ≥ 0, and direct

evaluation of Σjl yields

Σjl =

(
0, j 6= l
c2

2π2j2
, j = l

, and γpj =
c2

c2 + 2π2j2
ŝj (Brownian motion prior). (14)
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Thus the approximate posterior mean of uT+1, u
p
T |T+1, is computed using shrinkage estimates

of the autocovariances of ut, with the shrinkage factor given in (14).
Demeaned integrated Brownian Bridge. Let J(ω) = cIB(ω), where IB(ω) =
1
π

R ω
0

¡
B(s)− s

π
B(π)

¢
ds, with W as above. Then

Σjl =

(
0, j 6= l
c2

2π4j4
, j = l

, and γpj =
c2

c2 + 2π4j4
ŝj (integrated Brownian Bridge prior).

Demeaned Brownian motion restricted to a frequency band. A focus on deviations from the
flat spectral density in a particular frequency band [ω, ω̄], 0 ≤ ω < ω̄ ≤ π, is obtained by G
that are constant for ω /∈ [ω, ω̄]. To be specific, suppose the baseline model is assumed to be
misspecified for frequencies lower than ω̄ (i.e. ω = 0). One suitable process is then given by

J(ω) =

(
c√
ω̄
W (ω) for 0 ≤ ω < ω̄

c√
ω̄
W (ω̄) otherwise

where W is a standard Wiener process with E[W (π)2] = 1. The scaling by 1/
√
ω̄ ensures

that the total variation in J is comparable to the demeaned Brownian motion case, since
E[J(1)2] = c2. The covariance kernel of J is kJ(r, s) = c2min(r, s, ω̄)/ω̄ for r, s ≥ 0, and Σ

has j, lth element(
c2

ω̄π2
j cos(ω̄j) sin(ω̄i)−l cos(ω̄l) sin(ω̄l)

l3j−lj3 for j 6= l
c2

ω̄π2
2ω̄j−sin(2ω̄j)

4j3
for j = j

(Brownian motion prior on [0, ω̄]). (15)

We now discuss the extension to a baseline AR(p) model, but maintain α = 0 and σ = 1
known. Suppose that β(L) is estimated as β̂(L) by OLS for a given lag length p, which is
asymptotically equivalent to the posterior mean of a Bayes estimation with a non-dogmatic
prior on β(L). The task then is to forecast ûT+1, where ût = β̂(L)yt, so ût is the AR(p)
residual for t = 1, . . . , T .
The approximate posterior mean of ûT+1, û

p
T+1|T , is obtained following the steps for the

case β(L) = 1, except using the spectral density for the residuals. Because ût = β̂(L)yt, the
spectral density of ût is,

fû(ω) =

¯̄̄
β̂(eiω)

¯̄̄2
|β(eiω)|2

fe(ω) =
1

2π

¯̄̄
β̂(eiω)

¯̄̄2
|β(eiω)|2

eG(ω)/
√
T

≈ 1

2π
[1 + T−1/2μ(ω)0b+ T−1/2G(ω)] +O(T−1)

9



where b = T 1/2(β − β̂) is Op(1) and

μ(ω) =
∂

∂β

¯̄̄
β̂(eiω)

¯̄̄2
|β(eiω)|2

¯̄̄̄
¯̄̄
β=β̂

.

As before, set δj(G) =
√
T (2πfû(ωj)−1), so δj(G) ≈ μ(ωj)

0b+G(ωj). With this redefined
notation for δ, the argument leading to (8) applies directly (because δj remains Op(1), so
after prewhitening, the relevant spectral density remains local-to-flat). Thus ŝ|γû(G, b) ∼
N (γû(G, b), I), where ŝ now collects the autocovariances of ût scaled by

√
T , γû(G, b) =

T−1/2Q0δ(G) = mb + γ(G), m = T−1/2Q0μ and μ = (μ(ω1), . . . , μ(ω(T−1)/2))
0. The T × p

matrix m has a simple form. Let Ψ(L) = β(L)−1 and Ψ̂(L) = β̂(L)−1, so Ψ̂0 = 1 and Ψ̂j is
the jth term in the MA representation of β(L). Then

m =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

Ψ̂1 1 0 · · · 0

Ψ̂2 Ψ̂1 1 · · · 0
...

...
...

. . .
...

Ψ̂T−1 Ψ̂T−2 Ψ̂T−3 · · · Ψ̂T−p

⎞⎟⎟⎟⎟⎟⎟⎠ .

With an approximate N (0,Σ) prior on γ(G), where Σ is given in (11), γû(G, b) = mb+

γ(G) implies γû(G, b)|b ∼ N (mb,Σ). Thus ŝ|γû(G, b) ∼ N (γû(G, b), I) yields

ŝ|b ∼ N (mb, I + Σ), (16)

so E[γû(G, b)|ŝ, b] = mb+Σ(I +Σ)−1(ŝ−mb). With a continuous prior on β, the prior on b
is asymptotically flat, so that the posterior for b simply reflects the shape of the integrated
likelihood (16), E[b|ŝ] = (m0(I + Σ)−1m)−1m0(I + Σ)−1ŝ. Combining these expressions and
using the identity I −Σ(I + Σ)−1 = (I + Σ)−1, we obtain the approximate posterior mean,

γ∗û ≈ γpû = Σ(I + Σ)−1ŝ+ (I + Σ)−1m(m0(I + Σ)−1m)−1m0(I + Σ)−1ŝ.

The approximate posterior mean ûpT+1|T of ûT+1may then be computed analogously to (13),

that is, ûpT+1|T = T−1/2Û 0
Tγ

p
û, where ÛT is the vector of AR(p) residuals, ÛT = (ûT , . . . , û1)

0,

and the approximate posterior mean of yT+1 is then given by y
p
T+1|T = β̂1yT+. . .+β̂pyT−p+1+

ûpT+1|T .

10



Conditional heteroskedasticity
In the presence of conditional heteroskedasticity, the sampling distribution of ŝ has an

asymptotic covariance matrix that is no longer proportional to the identity matrix. In
general, we have T Var[ŝj] = Var[T−1/2

PT
t=j+1 utut−j] ≈ E[u2tu

2
t−j] = dj, so that

ŝ|γ ∼ N (γ,D) (17)

with D = diag(d1, d2, · · · , dT ). The sampling distribution of ŝ thus differs from the pseudo-
model (10). In analogy to results of Müller (2009) and Müller and Petalas (2010), one would
therefore expect that one obtains better forecasts by employing the pseudo-model (17) that
reflects the actual sample information about γ. Proceeding as above, in the case where
β(L) = 1, we obtain with ŝD = D−1/2ŝ, γD(G) = D−1/2γ(G) and ΣD = D−1/2ΣD−1/2 that
γpD = ΣD(I + ΣD)

−1ŝD, so that now

γp = D1/2γpD = D1/2ΣD(I + ΣD)
−1ŝD.

Similarly, with a baseline AR(p) model and mD = D−1/2m, we have instead of (16) that

ŝD|b ∼ N (T−1/2mDb, I + ΣD),

so that now

γpû = D1/2γpD,û

= D1/2ΣD(I + ΣD)
−1ŝD +D1/2(I + ΣD)

−1mD(m
0
D(I + ΣD)

−1mD)
−1m0

D(I + ΣD)
−1ŝD.

The approximate posterior mean γpû is thus D
1/2γpD,û, where γ

p
D,û is obtained by comput-

ing the posterior mean as before with ŝ, Σ and m replaced by ŝD, ΣD and mD. The
matrix D is usually unknown, but can be estimated via d̂j = T−1

PT
t=j+1 u

2
tu
2
t−j and

D̂ = diag(d̂1, d̂2, · · · , d̂T ).

2.2 Suggested Forecast and Formal Results

Consider the VAR generalization of (1)

yt = α+ β1yt−1 + . . .+ βpyt−p + ut

= α+ β1yt−1 + . . .+ βpyt−p + Pet, t ≥ 1 (18)

where {yt}Tt=−p+1 are observed k × 1 vectors, {yt}0t=−p+1 are fixed values independent of
θ = (α, β1, · · · , βp), βj ∈ Rk×k, j = 1, · · · , p, P is a full rank lower-triangular k × k matrix,

11



and {et} is a zero mean stationary Gaussian process. Suppose the spectral density of {et} is

fe(ω) =
1

2π
exp[T−1/2G(ω)]

whereG is a fixed Hermitian k×k matrix valued function on [−π, π] withG(−ω) = G(ω)0 andR π
−πG(ω)dω = 0, so that the jth autocovariance of et is given by E[ete

0
t−j] =

R π
−π e

ijωfe(ω)dω.
Let A∗ be the conjugate transpose of a complex matrix A. We consider the following

class of priors for G.

Condition 1 Under the prior measure,
(a) G(ω) is a k × k Hermitian matrix for all ω ∈ [−π, π], and G(−ω) = G(ω)0 a.s.;
(b)

R π
−π G(ω)dω = 0 a.s.;

(c) vec(G(ω)) is a k2 × 1 mean-zero complex Gaussian process on [−π, π], with a.s.
bounded sample paths and covariance kernel kG(r, s) = E[vec(G(s)) vec(G(r))∗], r, s ∈
[−π, π];
(d) k2(r, s) = ∂2kG(r, s)/∂r∂s exists and is continuous for all s 6= r,R π

−π
R π
−π ϕ(r)

∗k2(r, s)ϕ(s)dsdr < ∞, k∆(s) = lim →0[∂kG(r, s)/∂r|r=s− − ∂kG(r, s)/∂r|r=s+ ]
exists and

R π
−π ϕ(s)

∗k∆(s)ϕ(s)ds < ∞, for all k2 × 1 complex valued functions ϕ withR π
−π ϕ(s)

∗ϕ(r)ds = 1.

Parts (a) and (b) ensure that with prior probability one, et has a well defined spectral
density, and V [et|et−1, et−2, . . .] = Ik. Part (c) imposes a mean-zero Gaussian process prior
for G. Loosely speaking, the differentiability assumptions on the covariance kernel kG in
part (d) ensure that under the prior, sample paths of G are at least as smooth as a Brownian
motion. Note that a bounded modulus of the elements in k2(r, s) and k∆(s) over r, s ∈ [−π, π]
is sufficient (but not necessary) for the existence of the integrals in part (d).
For computational reasons, it makes sense to avoid large matrix inversions. Since all

priors satisfying Condition 1 imply an eventual decay in γ̃j(G) =
1
2π

R π
−π e

ijsG(s)ds → 0 as
j → ∞ almost surely, treating γ̃j(G) = 0 for j ≥ N under the prior only induces a very
minor additional approximation error for large enough N . Thus, define the Nk2 × Nk2

matrix Σ with j,lth k2 × k2 block equal to

1

4π2

Z π

−π

Z π

−π
eijskG(r, s)e

−ilrdrds (19)

so that Σ is the prior covariance matrix of vec(γ̃1(G), γ̃2(G), · · · , γ̃N(G)) (cf. (4) of the
heuristic discussion).
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Condition 1 allows for a wide range of priors on the local-to-flat spectral density of
et. Smoothness assumptions can be expressed continuously by letting G be a (demeaned)
fractional Brownian with Hurst parameterH ≥ 1/2 (with the Brownian motion caseH = 1/2

the least smooth choice allowable under Condition 1 (d)), or integrated fractional Brownian
motions. Condition 1 also covers the three priors for which Σ is worked out in Section 2.1.
When yt is a vector, one can choose to treat all k2 elements of the autocovariance

function of et symmetrically by letting the k2 elements of G be i.i.d. copies of the real
scalar Gaussian process Ḡ under the prior. With kḠ(r, s) = E[Ḡ(r)Ḡ(s)], this leads to
kG(r, s) = kḠ(r, s)⊗ Ik2, and Σ has a corresponding Kronecker structure Σ = Σ̄⊗ Ik2, where
Σ̄ is a N × N matrix with i, jth element constructed from kḠ as in (11). For example,
with a demeaned Wiener process prior for Ḡ, one obtains the diagonal Nk2 × Nk2 matrix
Σ = (c2/2π2) diag(1/12, 1/22, · · · , 1/N2)⊗ Ik2.
Alternatively, one might want to allow for relatively greater non-flatness in the k diagonal

elements of the spectrum, as residual cross-equation correlations might be expected to be
relatively smaller than residual autocorrelations in the individual series in et. It might also
make sense in some applications to treat the individual series in et asymmetrically, based on
assumptions about frequencies and magnitudes of cross equation correlations, or different
smoothness properties of individual and cross spectra.
The approximately best steps ahead forecast of yt in the VAR system (18) under a

Condition 1 prior is computed as follows: Let α̂ and β̂ be the OLS estimates of α and β from
a regression of yt on a constant and p lagged values, and denote by ût the OLS residuals. Let
P̂ the k×k lower diagonal matrix that satisfies P̂ P̂ 0 = T−1

PT
t=1 ûtû

0
t, set b̂et = P̂−1ût, and let

Ψ̂j, j = 1, 2, . . . be k×k matrices satisfying (Ik− β̂1x− · · ·− β̂pxp)−1 = Ik+Ψ̂1x+Ψ̂2x
2+ . . ..

Define the Nk × pk matrix

Ψ̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
Ik 0 0 · · · 0

Ψ̂0
1 Ik 0 · · · 0

Ψ̂0
2 Ψ̂0

1 Ik · · · 0
...

...
...

. . .
...

Ψ̂0
N−1 Ψ̂0

N−2 Ψ̂0N−3 · · · Ψ̂0N−k

⎞⎟⎟⎟⎟⎟⎟⎠ ,

the Nk2 × pk2 matrix m̂ = Ψ̂ ⊗ Ik, and the Nk2 ×Nk2 block diagonal matrix D̂ with jth
k2 × k2 block equal to T−1

PT
t=j+1

b̂et−jb̂e0t−j ⊗ b̂etb̂e0t. Further, define the Nk2 × 1 vector b̂s,
which is the vec of the k × Nk matrix with jth k × k block equal to T−1/2

PT
t=j+1

b̂etb̂e0t−j,
j = 1, · · · , N , and the Nk2 × 1 vector

γp = Σ(D̂ + Σ)−1b̂s+ D̂(D̂ + Σ)−1m̂(m̂0(D̂ + Σ)−1m̂)−1m̂0(D̂ + Σ)−1b̂s.
13



Let γpj , j = 1, · · · , N be the k × k matrices such that vec(γp1, γ
p
2, · · · , γpN) = γp and define

ûpT+l|T = T−1/2P̂
N−lX
t=0

γpt+l
b̂eT−t, l = 1, · · · , .

The approximately best forecast of yT+ , y
p
T+ |T , then is obtained by iterating the VAR (18)

forward by periods, using the OLS estimates for α and β(L), with future disturbances set
equal to ûpT+l|T .
These calculations are quite insensitive to N , as long as N is not chosen too small. A

reasonable default is N = bT 3/4c. If conditional heteroskedasticity is not a concern, then D̂

can be set equal to INk2. Also, if P is known (or partially known), then P̂ can be replaced
by the true P (or any other consistent estimator).
The main result of the paper is as follows.

Theorem 1 Suppose that {yt}Tt=1 is generated from (18) with G any fixed and bounded
function, and θ = θ0 so that (18) is causal. Assume further that the prior on G satisfies
Condition 1, and the prior on θ = (α, β1, · · · , βp) is a sample size independent, bounded
Lebesgue probability density w satisfying supt≥1

R
Eθ[||yt||2]w(θ)dθ < ∞ when G = 0. Let

y∗T+ |T be the posterior mean for yT+ under this prior, assuming knowledge of P . If w(θ0) > 0
and w is continouus at θ0, and N →∞ with N/T → 0, then

T 1/2||y∗T+ |T − ypT+ |T ||
p→ 0.

Moreover, if the prior is a mixture of n Gaussian processes as above, with kernels

kG(i)(r, s) = E[(vecG(i)(r))(vecG(i)(s))
∗],

i = 1, · · · , n and mixture weights pi ≥ 0,
Pn

i=1 pi = 1, then the same results holds with y
p
T+ |T

a corresponding convex combination of n versions of ypT+ |T , computed using Σ(i) (with j, lth
block as in (19) with kG replaced by kG(i)) instead of Σ, with weights proportional to

pi det(D̂ + Σ(i))
−1/2 det(m̂0(D̂ + Σ(i))

−1m̂)−1/2

× exp[−1
2
b̂s0(D̂ + Σ(i))

−1b̂s+ 1
2
b̂s0(D̂ + Σ(i))

−1m̂(m̂0(D̂ + Σ(i))
−1m̂)−1m̂0(D̂ + Σ(i))

−1b̂s].
3 Monte Carlo Results

This section reports selected results from a Monte Carlo study of the forecasting performance
of the approximate posterior mean in the univariate case. We report the results of three
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experiments. In all three experiments, the results for multi-step ahead forecasts are for
cumulative values, that is, forecasts of yT+1 + · · ·+ yT+ .
The first experiment checks the results of the theorem in a special case by quantifying the

discrepancy between the exact (y∗T+1|T ) and approximate (y
p
T+1|T ) posterior mean of yT+1 in

the case that the prior G is correctly specified demeaned Brownian motion. The data were
generated as in (1) and (2), with β(L) = 1. The estimators were implemented including an
intercept and a fixed number p of autoregressive lags, p = 0, . . . , 6. In all the Monte Carlo
work the approximate posterior mean ypT+1|T was computed as described in Section 2.2 using

the demeaned Brownian motion prior (so Σ is given by (14)), and D̂ = IN .
The results of this first experiment are reported in Table 2. The entries are

T (MSFEposterior mean — MSFEAR)/MSFEAR, that is, the scaled relative increase of the mean
squared forecast error of the approximate and exact posterior mean, relative to the MSFE
of the simple AR forecast with the same lag length. A value less than zero indicates an
improvement upon the AR forecast. The scaling by T is such that the entries of Table 2
stabilize as T →∞. To get some sense for the magnitude of the entries, note that estimat-
ing an AR(p) by OLS for forecasting an exact AR(p0) (i.e. G = 0) with p0 < p leads to an
asymptotic scaled relative deterioration of p−p0 over a forecast using the more parsimonious
AR(p0) model. Roughly speaking, the entries of Table 2 (and Figures 1-4 below) are thus in
units of "unnecessarily estimated parameters".
As can be seen in Table 2, consistent with Theorem 1, the discrepancy between the

scaled MSFEs for the exact and approximate posterior means tends to zero as T increases.
In addition, the smaller c and the larger p and T , the more accurate the approximate
posterior mean. Intuitively, estimating β(L) soaks up some of the variability of G, making
the quadratic approximation of the log-likelihood more accurate. The exact posterior mean
is only a substantially better forecast for large c and very small p, which is unlikely to be a
much of a concern in practice, as highly variable realizations of G would lead one to include
some AR lags in small samples.
The second experiment examines the performance of the posterior mean forecast using

the prior G ∼ cWμ and some lag-length selection for the AR(p) under a data generating
process where β(L) = 1 and G ∼ c0Wμ. Specifically, for a given Monte Carlo draw, y

p
T+ |T

was computed with either no autoregressive component, or with an AR(p) with BIC-selected
lag length (AR(BIC)), with 0 ≤ p ≤ 4), for c on a unit grid of 0 to 20 and for = 1, 2, 3,
and 4. In addition, the Bayes model averaging (BMA) forecast was computed using an equal
weighted prior over the grid of c, weighted by the normalized Bayes factor given in Theorem
1. The unadjusted -step ahead iterated OLS AR(BIC) forecast was also retained. This
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exercise was repeated on a grid of c0 and evaluated for T = 200, with 20,000 Monte Carlo
repetitions.
Figures 1 and 2 plot T (MSFEf — MSFEBIC)/MSFEBIC, where MSFEf is a candidate

forecast, similar to the entries of Table 2. Each line in the plot corresponds to the relative
MSFE of a given forecast (a given value of c) as a function of the true DGP c0. The lower
envelope of these lines maps out the forecast gains possible using the Bayes procedure with
correct c0 (up to our asymptotic approximation), and each forecasting procedure achieves this
envelope when c = c0. Figure 1 shows the results when no AR component is estimated, Figure
2 shows the results when an AR(BIC) component is estimated. Evidently improvements over
the benchmark linear forecast are obtained for a wide range of c 6= c0. The main case in which
ypT+ |T is worse than BIC is when c0 is very small (recall that c0 = 0 corresponds to no residual
predictability), especially when c is large. This is not surprising since larger values of c yield
less shrinkage and introduce more estimation error which, when c0 = 0, simply adds noise to
the forecast. The BMA forecast is never very far from the envelope and is only worse than the
AR forecast for c0 ≤ 2.5. These conclusions hold whether p = 0 (no AR term is estimated;
Figure 1) or an AR(BIC) is estimated (Figure 2), although not surprisingly the magnitude
of the gains is less when an AR term is estimated. The magnitude of the forecasting gains
depend on the true amount of residual predictability; when an AR(BIC) term is estimated,
a typical value for the relative scaled MSFE gains is —1.5, which corresponds to percentage
MSFE improvements of 1.5% with T = 100 or 0.75% with T = 200.
The third experiment examines the performance using the prior G = cWμ under a

non-stochastic local-to-flat spectral density. Specifically, data are generated according to
a MA(1), with MA coefficients on a grid from −4/

√
T to 4/

√
T . The AR(BIC), approxi-

mate ypT+ |T , BMA, and AR(AIC) forecasts ( = 1 and 4 are reported here) were computed,
where the maximum AIC and BIC lag lengths were 0 ≤ p ≤ 4(T/100)1/3. This experiment
was repeated for T = 50, 100, 200, and 400, with 20,000 Monte Carlo repetitions each.
The results are summarized in Figures 3 and 4, which (like Figures 1 and 2) plot T (MSFEf

— MSFEBIC)/MSFEBIC, where MSFEf is the MSFE of the candidate forecast. Consistent
with the theory, if there is no residual predictability then the Bayes procedures simply add
noise. For moderate amounts of residual predictability, the Bayes procedures improve upon
the AR(BIC) forecast. The BMA forecasts improve upon AR(BIC) for all values of the MA
coefficient except for those very close to zero, in which case the BMA procedure produces
only a very small deterioration of the forecast. AR(AIC) improves upon AR(BIC) for larger
amounts of predictability, but BMA uniformly improves upon AR(AIC).
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4 Empirical Analysis

This section reports the results of an empirical comparison of the pseudo out-of-sample fore-
casting performance of the univariate posterior mean forecasts ypT+ |T , relative to unadjusted
AR forecasts. The data set consists of monthly data on 132 U.S. monthly macroeconomic
time series, including data on real output, employment, wages and prices, monetary variables,
interest rates and exchange rates, and miscellaneous other indicators of monthly economic
activity from 1959:1 — 2003:12. The data set and data transformations are taken from Stock
and Watson (2005) and the reader is referred to that article for details. As in Stock and
Watson (2005), for variables transformed to growth rates or changes, -step ahead forecasts
are forecasts of cumulative changes, for example, of cumulative employment growth over the
next months, or of the cumulative change in the rate of price inflation over the next
months. Nominal series, such as prices, are modeled in changes of inflation, and the -step
ahead forecasts are of average inflation over the next months.
Forecasts were computed recursively with the first forecast date being the earliest date

that 198 observations on the transformed variable were observed (so for real variables the
first forecast date is 1975:7). The final forecast date is 2003:12 — , and forecasts were
computed for horizons up to 12 months ahead. At each date, the AR forecasts and AR
component of the posterior mean forecasts were computed using lag length estimated by
BIC, where 0 ≤ p ≤ 18. We consider two types of priors on G for the posterior mean
forecasts: First, a demeaned Brownian motion of scale c (cf. (14) of Section 2.1 above), and
second, a sum of an independent demeaned Brownian motion of scale c, and a (demeaned)
truncated Brownian motion that varies only over frequencies below ω̄ = 2π/96 of fixed scale
20 (cf. (??) and (15) of Section 2.2). The latter is motivated by an expectation that the
baseline AR model exhibits relatively more pronounced misspecification below business cycle
frequencies (=cycles with periods of 96 months or more). The posterior mean forecasts were
computed for c fixed and equal to c = 0, 10, 20, 30, and two BMA forecasts for 0 ≤ c ≤ 20
and for 0 ≤ c ≤ 40.
The results for the full data set are summarized in Table 3. All posterior mean procedures

provide improvements over the AR(BIC) forecasts, with mean and median relative MSFE
over the 132 series below unity at all horizons. The improvements are rather insensitive to
the choice of c and to the use of BMA averaging instead of a fixed c. Imposing additional
misspecification below business cycle frequencies leads to further improvements in forecast
performance at longer horizons. The mean relative reduction in the MSFE in the one month
ahead BMA (0 ≤ c ≤ 40) forecast is 0.011. Because of the recursive design, the sample size
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varies, but the average sample size is approximately 350. The improvement of 0.011 thus
corresponds roughly to a scaled improvement of 350×0.011 = 3.8 in the units of Table 2 and
Figures 1-4, and is at the upper end of the range of improvements reported there.
For some series, the improvements are even greater and, in the context of the literature

that has used this data set, are in fact quite substantial: 10% of the series have relative
reductions in MSFEs of 6% or more for most of the posterior mean forecasting procedures
at the six month horizon. At the same time, the cost from using the procedure is small,
for example the 90% percentile of relative MSFEs is at most 1.011 at all horizons reported
for all the demeaned Wiener process BMA procedures. At longer horizons, also AR(AIC)
outperforms AR(BIC), with very large improvements at the 10% percentile. At the same
time, the cost associated with using AIC is also large in the sense that for some series
using the additional lags results in a marked deterioration of the AR(AIC) forecasts, with
90% percentiles exceeding 1.077 at the four reported horizons. Interestingly, in results not
reported here, it appears that the residual predictability found in Table 3 is particularly
pronounced in the nominal series.

5 Conclusion

This paper develops a framework to study slight misspecifications of finite order VARs by
modeling driving disturbances with a local-to-flat spectral density. We focus on the impact of
the misspecification on forecasts, and derive a computationally straightforward modification
of standard VAR based forecasts that effectively exploits this residual predictability in large
samples. Monte Carlo and empirical evidence suggests that the large sample results provide
meaningful approximations for practically relevant sample sizes.
The suggested framework and some of our theoretical results could also be applied to

study other issues involving slightly misspecified VARs. For instance, our likelihood approx-
imations naturally lead to computationally straightforward tests of the null hypothesis of
correct specification that maximize weighted average power in large samples. One could also
consider the problem of the estimation of the spectral density, or the impact of the slight
misspecification on standard large-sample inference about the VAR parameters, in analogy
to Müller and Petalas (2010) and Li and Müller (2009). A potentially difficult but interesting
extension could be a combination of locally varying VAR parameters as in Stock and Watson
(1996) with the slight misspecification in the spectral domain considered here.
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A Appendix: Proof of Theorem 1
Notation and Preliminaries: Let |A| =

√
trA∗A, and denote by ||A||2 the largest eigenvalue of

A∗A, so that ||· || is a submultiplicative matrix norm, and ||A|| ≤ |A|. Recall the following identities
for conformable matrices A,B,C,D:

(A⊗B)(C ⊗D) = AC ⊗BD (20)

vec(ABC) = (C 0 ⊗A) vecB (21)

||A⊗B|| = ||A|| · ||B|| (22)

||A−B|| ≤ |A−B| = || vec(A−B)||. (23)

Let Γ(G) be the kT × kT symmetric block Toeplitz matrix with jth k × k block in the lower
block diagonals equal to

γj(G) =
T 1/2

2π

Z π

−π
eiωj(exp[T−1/2G(ω)]− Ik)dω, j ≥ 0 (24)

and γ(G) is the k2(T + )× 1 vector that is the vec of the k × (T + )k matrix with blocks γj(G),
j = 1, · · · , T + . Let V (G) = IkT + T−1/2Γ(G), so that e = (e01, e

0
2, · · · , e0T )0 ∼ N (0, V (G)),

conditional on G.
Similarly, let Γ̃(G) be the kT × kT symmetric block Toeplitz matrix with jth k × k block in

the lower block diagonals equal to

γ̃j(G) =
1

2π

Z π

−π
eiωjG(ω)dω, j ≥ 0 (25)

and γ̃(G) is the k2N×1 vector that is the vec of the k×Nk matrix with blocks γ̃j(G), j = 1, · · · , N .
Note that γ̃0(G) = 0 from

R π
−πG(ω)dω = 0. Also, let DΓ(G) = Γ(G)− Γ̃(G).

Let Λ be the Nk2 ×Nk2 diagonal matrix diag(1, 1/2, 1/3, · · · , 1/N) ⊗ Ik2 . Note that by (22)
and Lemma 4 (ii), ||Λ−1ΣΛ−1|| = O(1). Define the T × (kp+ 1) matrix

X̄ =

⎛⎜⎜⎜⎝
1 y00 y0−1 · · · y0−p+1
1 y01 y00 · · · y0−p+2
...

...
...

. . .
...

1 y0T−1 y0T−2 · · · y0T−p

⎞⎟⎟⎟⎠
and note that with θ0 = (α0, β01, β

0
2, · · · , β0p) = (α0, β0),

P−1(y1, · · · , yT ) = P−1θ0X̄ 0 + (e1, · · · , eT )
(IT ⊗ P−1)y = (X̄ ⊗ P−1) vec θ0 + e

= X vec θ0 + e

where y = vec(y1, · · · , yT ) and X = X̄ ⊗ P−1.
Let μ(θ) = limt→∞Eθ[yt], and denote by wμ : R(k+1)×p 7→ R the prior density of (μ(θ), β)

induced by w. Let μ0 = μ(θ0). It is clear that the posterior mean of yT+ is equal to the sum
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of μ0 and the posterior mean of yT+ − μ0 given data {yt − μ0}Tt=−p+1, where the latter posterior
is computed using the prior w0 on θ such that the prior w0μ on (μ(θ), β) induced by w0 satisfies
w0μ((μ, β)) = wμ((μ+ μ0, β)), for all (μ, β). Also note that ypT+ |T is equivariant to translations of

{yt}Tt=−p+1. It thus suffices to show the result for yT+ − μ0 given data {yt − μ0}Tt=−p+1 and using
prior w0. Noting that w0((0, β0)) = w((α0, β0)), this amounts to showing the result for α0 = 0
and prior w0. Thus, from now on, we will assume α0 = 0 and replace w with w0. Note that
θ 7→ (μ(θ), β) is a continuous and invertible function at θ0, so that w0(θ) is continuous and positive
at (0, β0), since w is continuous and positive at θ0 by assumption.

All subsequent convergences and expectations with respect to the data are for the model where
(IT ⊗ P−1)y ∼ N (X vec θ0, ITk). Corresponding convergences in probability under the data gen-
erating process assumed in the Theorem follow from contiguity, which is shown for a fixed G in
Dzhaparidze (1986), Theorem 4, page 64 for the univariate case. For brevity, we omit the concep-
tually straightforward extension of the contiguity proof.

Let h = (a0, b0)0 = T 1/2 vec(θ−θ0), where a is k×1. The log-likelihood ratio of the model where
(IT ⊗P−1)y ∼ N (X vec θ, V (G)1/2) to the model where (IT ⊗P−1)y ∼ N (X vec θ0, ITk), evaluated
at (IT ⊗ P−1)y = X vec θ0 + e ∼ N (X vec θ0, ITk), is

lnLT (G,h) = −12 ln detV (G)−
1
2(e− T−1/2Xh)0V (G)−1(e− T−1/2Xh) + 1

2e
0e

= −12 ln detV (G)−
1
2e
0(V (G)−1 − IkT )e+ T−1/2e0V (G)−1Xh− 1

2T
−1h0X 0V (G)−1Xh.

Let A(b) be the pk × pk companion matrix of the VAR with parameter β satisfying vecβ =
vecβ0 + T−1/2b,

A(b) =

⎛⎜⎜⎜⎜⎜⎝
β1 β2 · · · βp−1 βp
Ik 0 · · · 0 0
0 Ik · · · 0 0
...

...
. . .

...
...

0 0 · · · Ik 0

⎞⎟⎟⎟⎟⎟⎠
define YT = vec(yT , yT−1, · · · , yT−p+1) and J1 as the first k columns of Ipk. Note that yT+ can be
written as

yT+ =
X
l=1

J 01A(b)
−lJ1(PeT+l + T−1/2a) + J 01A(b) YT .

Let R be the Tk × Tk matrix such that vec(eT , eT−1, · · · , e1) = Re. Note that E[Ree0R0] =
RV (G)R0 6= V (G), but R−1 = R0 = R, and ||R|| = 1. Sinceµ

eT+l
Re

¶
∼ N

µ
0,

µ
Ik + T−1/2γ0(G) T−1/2(γl(G), · · · , γT+l−1(G))

T−1/2(γl(G), · · · , γT+l−1(G))0 RV (G)R

¶¶
,

we have, using (21)

E[eT+l|e] = T−1/2(γl(G), · · · , γT+l−1(G))(RV (G)R)−1Re
= T−1/2((RV (G)R)−1Re⊗ Ik)

0(∆lγ(G))

= T−1/2eT+l|T (G)
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where ∆l is the Tk2×(T+ )k2 matrix such that ∆lγ(G) = vec(γl(G), · · · , γT+l−1(G)). Conditional
on (h,G, e), the difference between the posterior mean of yT+ and J 01A(0) YT , multiplied by T

1/2,
is

fT (G,h) = T 1/2J 01(A(b) −A(0) )YT +
X
l=1

J 01A(b)
−lJ1(a+ PeT+l|T (G))

= T 1/2J 01(A(b) −A(0) )YT

+
X
l=1

(J1(a+ P ((RV (G)R)−1Re⊗ Ik)
0(∆lγ(G)))⊗ J1)

0 vec(A(b) −l)

where the second equality uses (21). Let ê = e− T−1/2Xĥ, where

ĥ = (â0, b̂0)0 = (T−1X 0X)−1T−1/2X 0e.

We will use the approximation

f̃T (G,h) = T 1/2J 01(A(b̂) −A(0) )YT +
X
l=1

((A(b̂)l−1ỸT )
0 ⊗ J 01A(b̂)

−lJ1)(b− b̂)

+
X
l=1

J1(a+ P (R̃ê⊗ Ik)
0(∆̃lγ̃(G))⊗ J1)

0 vec(A(b̂) −l)

where the Nk×kT matrix R̃ satisfies R̃ê = vec(êT , êT−1, · · · , êT−N+1), ∆̃l is the Nk2×Nk2 matrix
such that ∆̃lγ̃(G) = vec(γ̃l(G), · · · , γ̃N (G), 0, · · · , 0) (so that ∆̃l = ∆̄l⊗Ik2 with ∆̄l a N×N matrix
with ones on the (l − 1)th upper diagonal, and zero elsewhere), and

ỸT = YT − (1, · · · , 1)0 ⊗ (T−1/2
N−1X
t=0

Ψ̂ta)−A(b̂)NYT−N

with YT−N = vec(yT−N , yT−N−1, · · · , yT−N−p+1). Note that f̃T (G,h) is linear in γ̃(G) and h.
Let ŝ be theNk2×1 vector which is the vec of the k×Nk matrix with blocks ŝj = T−1

P
t êtê

0
t−j ,

j = 1, · · · , N . Define m to be the Nk2 × pk2 matrix with k2 × pk2 blocks equal to

mj = (P
0Ψ0j−1, P

0Ψ0j−2, · · · , P 0Ψ0j−p)⊗ P−1

for j = 1, · · · , N, where (Ik − β01x− · · ·− β0px
p)−1 =

P∞
j=−∞Ψjx

j (so that Ψj = 0 for j < 0, and
Ψ0 = Ik). Note that

m0m =

⎛⎜⎜⎜⎝
NX
j=1

⎛⎜⎜⎜⎝
Ψj−1P
Ψj−2P
...

Ψj−pP

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Ψj−1P
Ψj−2P
...

Ψj−pP

⎞⎟⎟⎟⎠
0⎞⎟⎟⎟⎠⊗ (P−10P−1) (26)

21



N→∞→ lim
t→∞

⎛⎜⎜⎜⎝
E[yty

0
t] E[yty

0
t−1] · · · E[yty

0
t−p+1]

E[yt−1y0t] E[yty
0
t] · · · E[yty

0
t−p+2]

...
...

...
E[yt−p+1y0t] E[yt−p+2y0t] · · · E[yty

0
t]

⎞⎟⎟⎟⎠⊗Ω−1.
where Ω = PP 0, and it is not difficult to see that m̂0m̂−m0m

p→ 0. Also, by Lemma 8 (ii), m̂0ŝ
p→ 0.

Define M̂ = (I +Σ)−1m̂ and Ŝ = (I +Σ)−1ŝ.
Note that by Lemma 5 (i),

f̃T (G,h) = T 1/2J 01(A(b̂) −A(0) )YT +
X
l=1

J 01A(b̂)
−lJ1[a+ P (R̃ê⊗ Ik)

0∆̃l(γ̃(G) + m̂(b− b̂))].

The approximation of the likelihood proceeds as follows

lnLT (G,h) = −12 ln detV (G)−
1
2e
0(V (G)−1 − I)e+ T−1/2e0V (G)−1Xh− 1

2T
−1h0X 0V (G)−1Xh

≈ 1
2T

−1/2e0Γ̃(G)e− 1
2T

−1/2 tr Γ̃(G)− 1
4T

−1 tr Γ̃(G)2 + T−1/2e0Xh

−T−1e0Γ̃(G)Xh− 1
2T

−1h0X 0Xh

≈ 1
2T

−1/2ê0Γ̃(G)ê− 1
2T

−1/2 tr Γ̃(G)− 1
4T

−1 tr Γ̃(G)2 − T−1(h− ĥ)0X 0Γ̃(G)e

+T−1ĥ0X 0Xh− 1
2T

−1h0X 0Xh

≈ ŝ0γ̃(G)− 1
2 γ̃(G)

0γ̃(G)− (b− b̂)0m̂0γ̃(G) + b̂0m̂0m̂b− 1
2b
0m̂0m̂b+ â0Ω−1a− 1

2a
0Ω−1a

≈ −12 ||ŝ− γ̃(G)− m̂(b− b̂)||2 − 1
2(a− â)0Ω−1(a− â) + 1

2 ||ŝ||
2 + 1

2 b̂
0m̂0m̂b̂+ 1

2 â
0Ω−1â

= ln L̃T (G,h).

so that the approximate log-likelihood ln L̃T (G,h) is quadratic in (h, γ̃(G)).
Define ST (G) = 1[sup−π≤ω≤π ||G(ω)|| ≤ T κ] for some 0 < κ < 1/6. Let Ey stand for inte-

gration over the sampling distribution of e (and y,X, etc.) in the model where (IT ⊗ P−1)y ∼
N (X vec θ0, ITk) and e ∼ N (0, ITk), EG integration over G, Eh integration over N (ĥ, C−1T Ipk2+k),
where CT is defined in Lemma 7. Also, let w0c (h) = w0(θ), where vec θ = vec(θ0) + T−1/2h.

Proof of Theorem 1:
We start with the first claim. We show

EG

R
w0c (h)fT (G,h)LT (G,h)dh

EG

R
w0c (h)LT (G,h)dh

− EG

R
w0c (0)f̃T (G,h)L̃T (G,h)dh

EG

R
w0c(0)L̃T (G,h)dh

p→ 0 (27)

via

EG

Z
||w0c(h)fT (G,h)LT (G,h)− w0c (0)f̃T (G,h)L̃T (G,h)||dh

p→ 0 (28)

EG

Z
|w0c (h)LT (G,h)− w0c (0)L̃T (G,h)|dh

p→ 0. (29)
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These imply (27) if we can show that d̃−1T = Op(1) with d̃T = EG

R
L̃T (G,h)dh. Write E∗h for the

integration over the ball in Rpk2+k of volume 1 and centered at zero, so that d̃T ≥ E∗hEGL̃T (G,h).
Then

d̃−1T ≤
1

E∗hEGL̃T (G,h)
≤ exp[−E∗hEG ln L̃T (G,h)]

where the second inequality follows from Jensen, and

−2E∗hEG ln L̃T (G,h) = EGγ̃(G)
0γ̃(G) +E∗h(b

0m̂0m̂b) +E∗h(a
0Ω−1a)

= trΣ+ tr(m̂0m̂E∗h[hh
0]) + tr(Ω−1E∗h(aa

0)) = Op(1)

using Lemma 4 (i). We are thus left to show (28) and (29). We focus on (28), which is strictly
more difficult.

Now Z
EG||w0c (h)fT (G,h)LT (G,h)− w0c (0)f̃T (G,h)L̃T (G,h)||dh

≤
Z

EG||ST (G)w0c (h)fT (G,h)LT (G,h)− w0c(0)f̃T (G,h)L̃T (G,h)||dh

+

Z
EG(1− ST (G))w0c (h)||fT (G,h)||LT (G,h)dh.

The last term converges in probability to zero by Lemma 2 (ii). By Hoelder, Lemma 7 (ii), Jensen
and Minkowksi, we obtainZ

EG||ST (G)w0c (h)fT (G,h)LT (G,h)− w0c (0)f̃T (G,h)L̃T (G,h)||dh

≤
Z
(EG(L̃T (G,h)

4))1/4 · (EG||ST (G)w0c (h)fT (G,h)
LT (G,h)

L̃T (G,h)
− w0c (0)f̃T (G,h)||4/3)3/4dh

= ζTEh(EG||ST (G)w0c (h)fT (G,h)
LT (G,h)

L̃T (G,h)
−w0c (0)f̃T (G,h)||4/3)3/4

≤ ζT (EhEG||ST (G)w0c (h)fT (G,h)
LT (G,h)

L̃T (G,h)
−w0c (0)f̃T (G,h)||4/3)3/4

≤ ζT (EhEG||ST (G)w0c (h)fT (G,h)
LT (G,h)

L̃T (G,h)
−w0c (0)ST (G)f̃T (G,h)||4/3)3/4

+ζTw
0
c (0)(EGEh||(1− ST (G))f̃T (G,h)||4/3)3/4

where ζT = Op(1), and by Hoelder and Lemmas 2 (i) and 6 (i),

(EGEh||(1− ST (G))f̃T (G,h)||4/3)3/4 ≤ (EG(1− ST (G)))1/4 · (EhEG||f̃T (G,h)||2)1/2
p→ 0.

Now apply Lemma 1 with Ec = EhEG, x1 = ST (G)UT (h)fT (G,h), x̃1 = ST (G)UT (h)f̃T (G,h),
x2 = w0c (0), x̃2 = w0c (h), x̃j = ST (G) for j > 2 and xj various products in ST (G)LT (G,h)/L̃T (G,h)
and x̃j = 1, so that Lemmas 3 and 6 imply

EhEGST (G)||w0c (h)fT (G,h)
LT (G,h)

L̃T (G,h)
− w0c (0)f̃T (G,h)||4/3

p→ 0
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as was left to be shown. We therefore established (27).
Now by Lemma 9,

EG

R
w0c (0)f̃T (G,h)L̃T (G,h)dh

EG

R
w0c (0)L̃T (G,h)dh

− T 1/2J 01(A(b̂) −A(0) )YT

=
X
l=1

J 01A(b̂)
−lJ1[â+ P (R̃ê⊗ I)0∆̃l(γ

p + m̂bp)]

=
X
l=1

J 01A(b̂)
−lJ1[â+ P (R̃ê⊗ I)0∆̃l(ŝ− Ŝ + M̂(m̂0M̂)−1m̂0Ŝ)]

and the first claim follows from Lemma 5 (ii).
The second claim follows from the same arguments as in the proof of Theorem 4 of Müller and

Petalas (2010), using (29) and the last claim of Lemma 9.

Lemma 1 (i) Let x1 and x̃1 be sequences (in T ) of random vectors, and let xj and x̃j, j = 2, · · · , l
be sequences (in T ) of scalar random variables, and denote by Ec a conditional expectation.

(i) If Ec||x̃1||2 = Op(1), Ec||x1− x̃1||2
p→ 0, and for all K ∈ N and j ≥ 2, Ec|x̃j |K = Op(1) and

Ec|xj − x̃j |K
p→ 0, then Ec||

Ql
j=1 xj −

Ql
j=1 x̃j ||4/3

p→ 0.

(ii) For all j ≥ 2, if Ec[x̃j
K ]

p→ 1 for all K ∈ N, then Ec|x̃j − 1|K
p→ 0 for all K ∈ N.

Proof. (i) Define zj(0) = ||x̃j || and zj(1) = ||xj − x̃j ||. Then

||
lY

j=1

xj −
lY

j=1

x̃j || ≤
X
v∈Sv

lY
j=1

zj(vj)

almost surely, where Sv is the set of all vectors v = (v1, · · · , vl)0 ∈ Rl with elements vj equal to zero
or one, and v0v ≥ 1. Let #Sv be the number of elements in Sv. Then, for any p > 1, by convexity

(
1

#Sv

X
v∈Sv

lY
j=1

zj(vj))
p ≤ 1

#Sv

X
v∈Sv

lY
j=1

zj(vj)
p

Furthermore, by Hoelder,

Ec||
lY

j=1

xj −
lY

j=1

x̃j ||4/3 ≤ (#Sv)4/3
X
v∈Sv

lY
j=1

³
Eczj(vj)

4pj/3
´1/pj

for any pj > 1,j = 1, · · · , l such that
Pl

j=1 1/pj = 1. The result now follow from setting p1 = 3/2.
(ii) By Jensen, it suffices to consider even K. The result then follows from applying the premise

to (x̃j − 1)K =
PK

j=0 bK,jx̃
j
j(−1)K−j , where bK,j are the binomial coefficients.
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Lemma 2 (i) TKEG(1− ST (G))→ 0 for all finite K.
(ii) EG

R
(1− ST (G))w0c (h)||fT (G,h)||LT (G,h)dh

p→ 0.
(iii) ST (G)||DΓ(G)|| ≤ 2T−1+κ a.s. and ST (G)T−1 trDΓ(G)

2 ≤ 4kT−2+4κ a.s.
(iv) ST (G)||Γ̃(G)|| ≤ Tκ a.s. and ST (G)||Γ(G)|| ≤ 2T κ a.s.
(v) ST (G)||V (G)−1|| ≤ 1 + 4T κ−1/2 a.s. for T > 64.
(vi) ST (G)||γ(G)− γ̃(G)|| ≤ 2kT−1+2κ a.s.
(vii) ST (G)||γ(G)|| ≤ 2kT κ a.s.
(viii) EGST (G)

PT
j=N+1 |γj(G)|2 → 0.

Proof. Define ScT (G) = 1− ST (G), and dT (G,ω) = T 1/2 exp[T−1/2G(ω)]− T 1/2Ik −G(ω).
(i) By the Isoperimetric Inequality, the tail of the random variable sup−π≤ω≤π ||G(ω)|| is dom-

inated by a normal with sufficiently large mean and variance, so that EGScT (G)→ 0 exponentially
fast.

(ii) For any ε > 0, by Markov

P (EG

Z
ScT (G)w0c (h)||fT (G,h)||LT (G,h)dh > ε) ≤ ε−1EyEG

Z
ScT (G)w0c (h)||fT (G,h)||LT (G,h)dh

= EG

Z
ScT (G)w0c (h)Ey|G,h||fT (G,h)||dh

where Ey|G,h denotes integration over (e, y,X) in the model (IT ⊗ P−1)y ∼ N (X vec θ, V (G)),
where vec θ = vec θ0 + T−1/2h.

Define FT (G,h) = T−1/2fT (G,h) + J 01A(0) YT , which is the conditional mean of yT+
given (y, h,G) by definition of fT (G,h). Therefore Ey|G,h[||FT (G,h)||2] ≤ Ey|G,h[||yT+ ||2] ≤
supt≥1Ey|G,h[||yt||2]. Furthermore, Ey|G,h[||J 01A(0) YT ||2] can also be be bounded in terms of
supt≥1Ey|G,h[||yt||2].

Now in model (18), supt≥1Ey|G,h[||yt||2] ≤ supt≥1Eθ[||yt||2] · sup−π≤ω≤π || exp[T−1/2G(ω)]||.
Furthermore, sup−π≤ω≤π || exp[T−1/2G(ω)]|| ≤ sup−π≤ω≤π exp[T

−1/2||G(ω)||] and by Cauchy-
Schwarz

EG

Z
ScT (G) sup

−π≤ω≤π
|| exp[T−1/2G(ω)]||dh ≤ (EGScT (G)) ·

µ
EG exp[2T

−1/2 sup
−π≤ω≤π

||G(ω)||]
¶1/2

.

But EG exp[2T
−1/2 sup−π≤ω≤π ||G(ω)||] = O(1), so that

EG

Z
ScT (G)w0c(h)Ey|G,h||fT (G,h)||dh ≤ (C1 + C2T

k/2+1/2

Z
sup
t≥1

Eθ[||yt||2]w(θ)dθ) ·EGScT (G)

for some large enough C1 and C2, and the result follows from the result of part (i), since ε > 0 was
arbitrary.

(iii) By definition, exp[T−1/2G(ω)] =
P∞

j=0(T
−1/2G(ω))j/j!. Thus,

sup
−π≤ω≤π

ST (G)||dT (G,ω)|| ≤
∞X
j=2

(Tκ−1/2)j

j!
≤ 2T−1+2κ (30)
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almost surely, and the first result follows from Lemma 3.1 (i) of Davis (1973). Furthermore, by
Lemma 3.1 (iii) of Davies (1973), ST (G)T−1 trDΓ(G)

2 ≤ 1
2π

R π
−π |ST (G)dT (G,ω)|2dω ≤ 4kT−2+4κ.

(iv) Follows from Lemma 3.1 (i) of Davis (1973), the norm inequality, and part (iii).
(v) Follows from ||V (G)−1|| ≤ 1/(1− T−1/2||Γ(G)||) and part (iv).
(vi) By construction, γj(G) − γ̃(G)j =

1
2π

R π
−π e

ijωdT (G,ω)dω. Thus, by Lemma 3.1 (iii) of
Davies (1973), ST (G)||γ(G) − γ̃(G)||2 ≤ 1

2π

R π
−π |ST (G)dT (G,ω)|2dω ≤ 4kT−2+4κ a.s., as in the

proof of part (iii).
(vii) Follows from the norm inequality and part (vi).
(viii) EGST (G)

PT
j=N+1 |γj(G)|2 ≤ 4kT−2+4κ+EG

PT
j=N+1 |γ̃j(G)|2 = 4kT−2+4κ+trΣNT → 0,

where ΣNT is defined in the proof of Lemma 3 (xi).

Lemma 3 For any fixed K > 0,

EhEGST (G) exp[KξT (G,h)]
p→ 1

where ξT (G,h) is one of the following expressions:
(i) ln detV (G)− trΓ(G) + 1

2 trΓ(G)
2

(ii) e0(V (G)−1 − I)e− e0(−T−1/2Γ(G) + T−1Γ(G)2)e
(iii) T−1/2e0V (G)−1Xh− (T−1/2e0Xh− T−1e0Γ(G)Xh)
(iv) T−1h0X 0V (G)−1Xh− T−1h0X 0Xh
(v) T−1e0Γ(G)2e− T−1 trΓ(G)2

(vi) T−1/2e0DΓ(G)e− T−1/2 trDΓ(G)
(vii) T−1 trΓ(G)2 − T−1 tr Γ̃(G)2

(viii) T−1e0DΓ(G)Xh
(ix) T−3/2ĥ0X 0Γ̃(G)Xh
(x) T−3/2ĥ0X 0Γ̃(G)Xĥ
(xi) T−1 12 tr Γ̃(G)

2 − γ̃(G)0γ̃(G)
(xii) T−1h0X 0Xh− a0Ω−1a− b0m̂0m̂b
(xiii) T−1ĥ0X 0Xh− â0Ω−1a− b̂0m̂0m̂b
(xiv) T−1(h− ĥ)0X 0Γ̃(G)e− (b− b̂)0m̂0γ̃(G)
(xv) ŝ0m̂(b− b̂)
(xvi) lnw0c (h)− lnw0c (0)

Proof. Note that by Lemma 2 (i)

EhEG exp[KST (G)ξT (G,h)]−EhEGST (G) exp[KξT (G,h)] = EG(1− ST (G))→ 0

so it suffices to show the claim for EhEG exp[KST (G)ξT (G,h)]. We repeatedly rely on ||T−1/2e|| =
Op(1), ||T−1/2X|| = Op(1) and ||ĥ|| = Op(1). Also, note that it suffices to show that

EyEhEG exp[KST (G)ξT (G,h)]→ 1 (31)

for any K, since by Jensen, Ey(EhEG exp[K
0ST (G)ξT (G,h)])2 ≤ EyEhEG exp[2K

0ST (G)ξT (G,h)],
so that (31) with K = K 0, 2K 0 implies EhEG exp[KST (G)ξT (G,h)]→ 1 in quadratic mean.

26



(i) By Lemma A1.1 of Dzhaparidze (1986), for any matrix A with ||A|| < 1,

| ln det(I +A)− trA+ 1
2 trA

2| ≤ 1
3

||A|| · (trA2)
(1− ||A||)3 ≤

1
3

T ||A||3
(1− ||A||)3

where the second inequality follows from trA2 ≤ T ||A||2. Since by Lemma 2 (iv),
ST (G)||KT−1/2Γ(G)||→ 0, for large enough T ,

ST (G)K| ln det(I + T−1/2Γ(G))− T−1/2 trΓ(G) + 1
2T

−1 trΓ(G)2|

≤ K 1
3ST (G)T

−1/2 ||Γ(G)||3
(1− T−1/2||Γ(G)||)3

→ 0

uniformly in G, where the convergence follows from Lemma 2 (iv).
(ii) With V (G)−1 = I − T−1/2Γ(G) + T−1Γ(G)2V (G)−1, we find

|ST (G)Ke0(V (G)−1 − I + T−1/2Γ(G)− T−1Γ(G)2)e|
= |ST (G)T−3/2Ke0Γ(G)3V (G)−1e| ≤ T−1/2||T−1/2e||2ST (G)K||V (G)−1|| · ||Γ(G)||3

p→ 0

uniformly in G, where the convergence follows from Lemma 2 (iv) and (v).
(iii)

Eh exp[ST (G)KT−1/2e0(V (G)−1 − I + T−1/2Γ(G))Xh]

= Eh exp[ST (G)KT−3/2e0Γ(G)2V (G)−1Xh]

= exp[12ST (G)T
−3C−1T K2||e0Γ(G)2V (G)−1X||2 + ST (G)KT−3/2e0Γ(G)2V (G)−1Xĥ]

≤ exp[12ST (G)C
−1
T K2||T−1/2e||2||T−1/2X||2||V (G)−1||2T−1||Γ(G)2||

+ST (G)KT−1/2||T−1/2e|| · ||Γ(G)2|| · ||V (G)−1|| · ||T−1/2X|| · ||ĥ||] p→ 1

uniformly in G, where the convergence follows from Lemma 2 (iv) and (v).
(iv)

EhST (G) exp[KT−1h0X 0(V (G)−1 − I)Xh]

≤ ST (G)Eh exp[||V (G)−1 − I||KT−1h0X 0Xh]

= ST (G) det(Ipk2+k − CT ||V (G)−1 − I||KT−1X 0X)−1/2
p→ 1

uniformly in G, since ST (G)||V (G)−1 − I|| ≤ 1/(1− T−1/2ST (G)||Γ(G)||)−1 − 1→ 0 uniformly in
G from Lemma 2 (iv).

(v)

Ey exp[
1
2ST (G)KT−1e0Γ(G)2e− 1

2ST (G)KT−1 trΓ(G)2]

= exp[−12 ln det(I − ST (G)KT−1Γ(G)2)− 1
2ST (G)KT−1 trΓ(G)2]

and for large enough T ,

ST (G)KT−1 trΓ(G)2−ST (G)K2T−2 trΓ(G)4 ≤ ln det(I−ST (G)KT−1Γ(G)2) ≤ ST (G)KT−1 trΓ(G)2
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uniformly in G, because ||ST (G)KT−1Γ(G)2||→ 0 by Lemma 2 (iv), and for |x| < 1/2, −x− x2 ≤
ln(1− x) ≤ −x. With trA4 ≤ ||A||2 trA2 ≤ T ||A||4, T−2ST (G) trΓ(G)4 ≤ ST (G)T−1||Γ(G)||4 → 0
uniformly in G by Lemma 2 (iv).

(vi)

Ey exp[ST (G)KT−1/2(e0DΓ(G)e− trDΓ(G))]

= exp[−ST (G)KT−1/2 trDΓ(G)] det(I − ST (G)2KT−1/2DΓ(G))
−1/2

≤ exp[−ST (G)KT−1/2 trDΓ(G)] exp[
1
2(ST (G)2KT−1/2 trDΓ(G) + ST (G)4K2T−1 trDΓ(G)

2]

= exp[ST (G)4K2T−1 trDΓ(G)
2]→ 1

uniformly in G by Lemma 2 (iii), where the inequality follows for sufficiently large T , because
||ST (G)2KT−1/2DΓ(G)||→ 0, and for |x| < 1/2, ln(1− x) ≥ −x− x2.

(vii)

ST (G)T−1| trΓ(G)2 − tr Γ̃(G)2| ≤ ST (G)T−1 trDΓ(G)
2 + 2ST (G)T−1| trDΓ(G)Γ̃(G)|

≤ ST (G)T−1 trDΓ(G)
2 + 2ST (G)(T−1 trDΓ(G)

2)1/2||T−1/2Γ̃(G)||→ 0

uniformly in G by Lemma 2 (iii) and (iv).
(viii)

Eh exp[ST (G)KT−1e0DΓ(G)Xh]

= exp[12ST (G)C
−1
T K2T−2e0DΓ(G)XX 0DΓ(G)e+ ST (G)KT−1e0DΓ(G)Xĥ]

≤ exp[12C
−1
T K2||T−1/2e||2||T−1/2X||2ST (G)||DΓ(G)||2]

× exp[K||T−1/2e|| · ST (G)||DΓ(G)|| · ||T−1/2X|| · ||ĥ||]
p→ 1

uniformly in G by Lemma 2 (iii).
(ix)

Eh exp[ST (G)KT−3/2ĥ0X 0Γ̃(G)h]

= exp[12ST (G)C
−1
T K2T−3ĥ0X 0Γ̃(G)2Xĥ+ ST (G)KT−3/2ĥ0X 0Γ̃(G)ĥ]

≤ exp[C−1T K2ST (G)||T−1/2Γ̃(G)||2||T−1/2X||2||ĥ||2 + ST (G)KT−1||ĥ||2||T−1/2X|| · ||Γ̃(G)||] p→ 1

uniformly in G by Lemma 2 (iv).
(x)

exp[ST (G)KT−3/2ĥ0X 0Γ̃(G)Xĥ] ≤ exp[ST (G)||T−1/2Γ̃(G)|| · ||T−1/2X||2||ĥ||2]
p→ 1

uniformly in G by Lemma 2.
(xi) By Lemma 3.1 of Davies (1973),

P∞
j=−∞ |γ̃j(G)|2 = 1

2π

R π
−π |G(ω)|2dω <∞ a.s. Thus

|γ̃(G)0γ̃(G)− 1
2T

−1 tr Γ̃(G)2| ≤ T−1
NX
j=1

j|γ̃j(G)|2 +
TX

j=N+1

|γ̃j(G)|2
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≤ N

T

NX
j=1

|γ̃j(G)|2 +
TX

j=N+1

|γ̃j(G)|2 =: εγ(G)

and a straightforward argument shows εγ(G) → 0 for all G with square summable |γ̃j(G)|. Fur-
thermore,

EG exp[2Kεγ(G)] ≤ (EG exp[4K
N

T

NX
j=1

|γ̃j(G)|2])1/2 · (EG exp[4K
TX

j=N+1

|γ̃j(G)|2])1/2.

It is easy to see that EG exp[4K
N
T

PN
j=1 |γ̃j(G)|2] = O(1). Since trΣ = O(1) by Lemma 4 (i),

trΣNT → 0, where ΣNT is the prior covariance matrix of γ̃NT (G) = vec(γ̃N+1(G), · · · , γ̃T (G)).
Therefore also ||ΣNT ||→ 0, and for large enough T ,

EG exp[4K
TX

j=N+1

|γ̃j(G)|2] = det(I − 8KΣNT )
−1/2

= exp[−12 ln det(I − 8KΣNT )]

≤ exp[1216K trΣNT ]→ 1

where ln det(I − 8KΣNT ) ≥ 16K trΣNT because for 0 ≤ x < 1/2, ln(1 − x) ≥ −2x.
Thus exp[Kεγ(G)] has uniformly bounded second moments, so that εγ(G) → 0 implies
EG exp[Kεγ(G)]→ 1.

(xii) Clearly, m̂0m̂−m0m
p→ 0, so that from a law of large numbers, with D̂X = diag(Ω

−1, m̂0m̂),

T−1X 0X − D̂X
p→ 0.

Thus,
Eh exp[

1
2Kh0(T−1X 0X − D̂X)h] ≤ det(I − CTK(T

−1X 0X − D̂X))
−1/2 p→ 1.

(xiii) In the notation of the proof of part (xii)

Eh exp[Kh0(T−1X 0X − D̂X)ĥ] = exp[
1
2C

−1
T K2ĥ0(T−1X 0X − D̂X)

2ĥ+Kĥ0(T−1X 0X − D̂X)ĥ]
p→ 1.

(xiv) Note that for any K 0,

EhEG exp[K
0(b− b̂)0(m̂−m)0γ̃(G)] = Eh exp[K

02(b− b̂)0(m̂−m)0Σ(m̂−m)(b− b̂)]

≤ Eh exp[K
02||Λ−1ΣΛ−1|| · ||(m̂−m)0Λ2(m̂−m)||]

and ||(m̂−m)0Λ2(m̂−m)|| p→ 0 follows from θ̂
p→ θ0, and ||Λ−1ΣΛ−1| = O(1) by Lemma 4 (ii). The

convergence of Eh exp[K
02||Λ−1ΣΛ−1||·||(m̂−m)0Λ2(m̂−m)||] p→ 1 now follows as in the proof of part

(xii). By Cauchy-Schwarz, it thus suffices to show the claim for T−1(h−ĥ)0X 0Γ̃(G)e−(b−b̂)0m0γ̃(G).
The first k × 1 block of T−1X 0Γ̃(G)e is equal to

T−1X
j=1

T−1
TX

t=j+1

P−10γ̃j(G)et−j +
T−1X
j=1

T−1
TX

t=j+1

P−10γ̃j(G)
0et
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=
T−1X
j=1

⎛⎝T−1
TX

t=j+1

e0t−j ⊗ P−10

⎞⎠ vec(γ̃j(G)) + T−1X
j=1

⎛⎝T−1
TX

t=j+1

e0t ⊗ P−10

⎞⎠vec ¡γ̃j(G)0¢

=
T−1X
j=1

⎛⎝T−1
TX

t=j+1

(et−j ⊗ P−1 + Ckk(et ⊗ P−1))

⎞⎠0 vec(γ̃j(G))
= ξ̄(j)0 vec(γ̃j(G))

where Ckk is the commutation matrix that satisfies C 0kk vec(γ̃j(G)) = vec
¡
γ̃j(G)

0¢, and the following
k2 × 1 blocks of T−1X 0Γ̃(G)e are given by, i = 1, · · · , p

T−1X
j=1

T−1
TX

t=j+1

[yt−i ⊗ P−10]γ̃j(G)et−j +
T−1X
j=1

T−1
TX

t=j+1

[yt−j−i ⊗ P−10]γ̃j(G)
0et

=
T−1X
j=1

vec

⎛⎝P−10γ̃j(G)T
−1

TX
t=j+1

et−jy
0
t−i

⎞⎠+ T−1X
j=1

vec

⎛⎝P−10γ̃j(G)
0T−1

TX
t=j+1

ety
0
t−j−i

⎞⎠
=

T−1X
j=1

⎛⎝(T−1 TX
t=j+1

et−jy
0
t−i)

0 ⊗ P−10

⎞⎠ vec(γ̃j(G)) + T−1X
j=1

⎛⎝(T−1 TX
t=j+1

ety
0
t−j−i)

0 ⊗ P−10

⎞⎠ vec ¡γ̃j(G)0¢

=
T−1X
j=1

⎛⎝T−1
TX

t=j+1

(et−jy
0
t−i ⊗ P−1 + Ckk(ety

0
t−j−i ⊗ P−1))

⎞⎠0 vec(γ̃j(G))
= m̄(i)0j vec(γ̃j(G)).

Thus

T−1X 0Γ̃(G)e =

µ
ξ̄
0
γ̃(G) + ξ̄

0
NT γ̃NT (G)

m̄0γ̃(G) + m̄0
NT γ̃NT (G)

¶
where γ̃NT (G) = vec(γ̃N+1(G)

0, · · · , γ̃T (G)0), the jth k2 × k block of ξ̄ and ξ̄NT equals ξ̄(j) and
ξ̄(j + 1), respectively, and the jth k2 × k2p block of m̄ and m̄NT equals m̄j = (m̄(1)

0
j , · · · , m̄(p)0j)0

and m̄N+j = (m̄(1)
0
N+j , · · · , m̄(p)0N+j)0, respectively.

Thus

T−1(h− ĥ)0X 0Γ̃(G)e− (b− b̂)0m0γ̃(G) = (a− â)0ξ̄
0
γ̃(G) + (a− â)0ξ̄

0
NT γ̃NT (G)

+(b− b̂)0m̄0
NT γ̃NT (G) + (b− b̂)0(m̄−m)0γ̃(G)

and by repeated applications of Cauchy-Schwarz and Eh exp[xT |||ĥ−h||] = Op(1) for all xT = Op(1),
it suffices to show that ξ̄0Λ2ξ̄

p→ 0, ξ̄0TNΛ
2
TN ξ̄TN

p→ 0, m̄0
NTΛ

2
TNm̄NT

p→ 0, and (m̄−m)0Λ2(m̄−m) p→
0, where ΛTN = diag((N + 1)−1, · · · , T−1) ⊗ Ik2 . These claims follow from Markov’s inequality
after noting that Ey|ξ̄(j)|2 → 0 and Ey|m̄j −mj |2 → 0 for all j, and supj≥N |mj |→ 0.

(xv) Eh exp[Kŝ0m̂(b− b̂)] ≤ exp[12K2CT ŝ
0m̂m̂0ŝ]

p→ 1 by Lemma 8 (ii).
(xvi) Immediate from dominated convergence.

Lemma 4 (i) trΣ = O(1).
(ii) ||Λ−1ΣΛ−1|| = O(1).
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Proof. (i) Let kG,l(r, s) be the lth diagonal element of kG(r, s). Note that kG,l(r, s) is a non-
negative definite kernel, so that by by Mercer’s Theorem, there exist orthonormal functions ϕl,j ∈
L2[−π, π] and nonnegative numbers νl,j such that kG,l(r, s) =

P∞
j=1 νl,jϕl,j(r)ϕl,j(s)

∗ (where νl,j are
the eigenvalues and ϕl,j are the eigenfunctions of kG,l(r, s)), and

R π
−π kG,l(s, s)ds =

P∞
j=1 νl,j . Note

that
R π
−π ϕl,j(s)ds = 0, since

R π
−π G(s)ds = 0 a.s.. Since the functions {φj(ω)}∞j=0 = {eijω/

√
2π}∞j=0

form a basis of L2[−π, π], we have

2π trΣ ≤ 2π lim
N→∞

trΣ

=
k2X
l=1

∞X
j=1

Z π

−π

Z π

−π
φj(s)kG,l(s, r)φj(r)dsdr

=
k2X
l=1

∞X
j=1

Z π

−π

Z π

−π
φj(s)

Ã ∞X
i=1

νl,iϕl,i(r)ϕl,i(s)

!
φj(r)dsdr

=
k2X
l=1

∞X
j=1

∞X
i=1

νl,i(

Z π

−π
φj(s)ϕl,i(s)ds)

2

=
k2X
l=1

∞X
i=1

νl,i = tr

Z π

−π
kG(s, s)ds.

(ii) The j, lth k × k block of Λ−1ΣΛ−1 is equal to

jl

4π2

Z π

−π

Z π

−π
eirje−islkG(r, s)drds.

Let k1(r, s) = ∂kG(r, s)/∂r. By integration by parts,

j

Z π

−π
eirjkG(r, s)dr = −i

Z π

−π
eirjk1(r, s)dr =: gj(s)

where

dgj(s)

ds
= −i d

ds

µZ s

−π
eirjk1(r, s)dr +

Z π

s
eirjk1(r, s)dr

¶
= −i

Z π

−π
eirjk2(r, s)dr − ieisjk∆(s).

Thus, by another application of integration by parts,

l

Z π

−π
e−islgj(s)ds = i

Z π

−π
e−isl

dgj(s)

ds
ds

=

Z π

−π

Z π

−π
eirje−islk2(r, s)drds+

Z π

−π
eisje−islk∆(s)ds.
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Now let v = (v01, · · · , v0N)0 be such that v0v = 1, where vj is k2 × 1. Then

2πv0Λ−1ΣΛ−1v =
1

2π

NX
j,l=1

v0j

µZ π

−π

Z π

−π
eirje−islk2(r, s)drds+

Z π

−π
eisje−islk∆(s)ds

¶
vl

=

Z π

−π

Z π

−π

⎛⎝ 1√
2π

NX
j=1

vje
irj

⎞⎠0 k2(r, s)
⎛⎝ 1√

2π

NX
j=1

vje
−isj

⎞⎠ drds

+

Z π

−π

⎛⎝ 1√
2π

NX
j=1

vje
isj

⎞⎠0 k∆(s)
⎛⎝ 1√

2π

NX
j=1

vje
−isj

⎞⎠ ds

=

Z π

−π

Z π

−π
ϕ(r)∗k2(r, s)ϕ(s)drds+

Z π

−π
ϕ(s)∗k∆(s)ϕ(s)ds

with ϕ(s) = 1√
2π

PN
j=1 vje

−isj , and the result follows.

Lemma 5 (i)
P

l=1((A(b̂)
l−1ỸT )0⊗J 01A(b̂)

−lJ1)(b− b̂) =
P

l=1 J
0
1A(b̂)

−lJ1P (R̃ê⊗ I)0∆̃lm̂(b− b̂).

(ii)P (R̃ê ⊗ I)0∆̃l(ŝ − Ŝ + M̂(m̂0M̂)−1m̂0Ŝ) = P (R̃ê ⊗ Ik)
0∆̃l[(IN ⊗ P 0P̂−10 ⊗ P−1P̂ )][Σ(D̂ +

Σ)−1b̂s+ D̂
ĉ
M(m̂0ĉM)−1m̂0Ŝ] + op(1) for l = 1, · · · , , where ĉM = (D̂+Σ)−1m̂ and b̂S = (D̂+Σ)−1b̂s.

Proof. (i) Define μ̂j = (P 0Ψ̂0j−1, P
0Ψ̂0j−2, · · · , P 0Ψ̂0j−p), and μ̂ the Nk × pk matrix with block

rows equal to μ̂j , j = 1, · · · , N . Note that m̂ = μ̂ ⊗ P−1. From yT−l =
PN−1

t=0 Ψ̂t(P êT−t−l +

T−1/2â) + J 01A(b̂)
NYT−N−l, we obtain

ỸT =

⎛⎜⎜⎜⎝
PN

t=0 Ψ̂tP êT−tPN+1
t=0 Ψ̂t−1P êT−t

...PN+p
t=0 Ψ̂t−p+1P êT−t

⎞⎟⎟⎟⎠ = (∆̄1μ̂)
0R̃ê

so that A(b̂)l−1ỸT = (∆̄lμ̂)
0R̃ê, where ∆̄l is the Nk ×Nk matrix such that ∆̄lμ̂ has tth block row

equal to (P 0Ψ̂0t+l−2, P
0Ψ̂0t+l−3, · · · , P 0Ψ̂t+l−p−1), t = 1, · · · , T . Now for l = 1, · · · , , using (21),

((A(b̂)l−1ỸT )
0 ⊗ J 01A(b̂)

−lJ1)(b− b̂)

= (((∆̄lμ̂)
0R̃ê)0 ⊗ J 01A(b̂)

−lJ1)(b− b̂)

= J 01A(b̂)
−lJ1PP

−1(b− b̂)(∆̄lμ̂)
0R̃ê

= J 01A(b̂)
−lJ1P ((∆̄lμ̂)

0R̃ê⊗ P−10)0 vec(b− b̂)

= J 01A(b̂)
−lJ1P [(∆̃lm̂)

0(R̃ê⊗ I)]0(b− b̂)

= J 01A(b̂)
−lJ1P (R̃ê⊗ I)0∆̃lm̂(b− b̂).

(ii) Note that ŝ−Ŝ = Σ(I+Σ)−1ŝ, ŝ−D̂b̂S = Σ(D̂+Σ)−1b̂s and (IN⊗P⊗P )ŝ = (IN⊗P̂⊗P̂ )b̂s, so
that b̂s = (IN⊗ P̂−1P ⊗P̂−1P )ŝ. Furthermore, ||D̂−I|| ≤ |D̂−I|, and |D̂−I|2 =PN

i=1 |d̂j−Ik2 |2 =
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PN
i=1 vec(d̂j − Ik2)

0 vec(d̂j − Ik2). By standard arguments, maxj E|d̂j − Ik2 |2 = O(T−1), so that
E[|D̂ − I|2] = O(N/T ) = o(1), and thus ||D̂ − I|| = op(1). Therefore, also ||D̂|| = Op(1) and
||D̂−1|| ≤ 1/(1− ||D̂ − I||) p→ 1.

Further, note that

||Λŝ|| = Op(1) (32)

||ΛR̃ê||2 = Op(1) (33)

||Λ−1Σ(I +Σ)−1Λ−1|| = O(1) (34)

||Λ−1m̂|| = Op(1) (35)

||(m̂0(I +Σ)−1m̂)−1|| = Op(1) (36)

where (32) follows from ||Λŝ||2 = ŝ0Λ2ŝ = Op(1) by Lemma 8 (i); with ê = e−T−1/2Xĥ, (33) follows
from (a+ b)0A(a+ b) ≤ a0Aa+ b0Ab+ 2[(a0Aa)(b0Ab)]1/2, Eye

0R̃0Λ2R̃0e = tr[R̃(Eyee
0)R̃0Λ2] = O(1)

and T−1ĥXΛ2Xĥ ≤ ||ĥ||2T−1||X||2 = Op(1); (34) follows from ||Λ−1(IN − (IN + Σ)−1)Λ−1|| ≤
||Λ−1ΣΛ−1|| = O(1) by Lemma 4 (ii), since for any eigenvalue λi of Σ, the corresponding eigenvalue
of IN − (IN + Σ)−1 is given by λi/(1 + λi) ≤ λi; (35) follows, since with probability converging
to one, θ̂ is such that ||Ψ̂j || decays exponentially fast in j; (36) follows from v0m̂0(I + Σ)−1m̂v ≥
v0m̂0m̂v/(1 + ||Σ||) ≥ ||(m̂0m̂)−1||−1/(1 + ||Σ||) for any any pk2 × 1 vector v with ||v|| = 1, and
||(m̂0m̂)−1||−1 p→ ||(m0m)−1||−1 > 0 via m̂0m̂

p→ m0m.
Moreover, also

Σ(D̂ +Σ)−1 −Σ(I +Σ)−1 = (I +Σ)−1 − D̂(D̂ +Σ)−1

= (I +Σ)−1[D̂ +Σ− (I +Σ)D̂](D̂ +Σ)−1

= (I +Σ)−1Σ(I − D̂)(D̂ +Σ)−1

so that

Λ−1[Σ(D̂ +Σ)−1 −Σ(I +Σ)−1]Λ−1 = [Λ−1(I +Σ)−1ΣΛ−1][I − D̂][Λ(D̂ +Σ)−1Λ−1]

and

Λ(D̂ +Σ)−1Λ−1 = Λ(D̂ +Σ)−1D̂Λ−1D̂−1

= D̂−1 − [Λ(D̂ +Σ)−1Λ][Λ−1ΣΛ−1]D̂−1

so that by ||(D̂+Σ)−1|| ≤ ||D̂−1|| p→ 1, ||Λ|| = O(1), ||I− D̂|| p→ 0, ||D̂−1|| = Op(1) and by Lemma
4 (ii),

||Λ(D̂ +Σ)−1Λ−1|| = Op(1)

||Λ−1(Σ(D̂ +Σ)−1 −Σ(I +Σ)−1)Λ−1|| = op(1).

The result now follows from (22), ||PP̂−1−Ik||
p→ 0, ||P−1P̂−Ik||

p→ 0 and repeated applications
of the norm inequality.

Lemma 6 (i) EhEG||f̃T (G,h)||2 = Op(1).

(ii) EhEGST (G)||fT (G,h)− f̃T (G,h)||2
p→ 0.
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Proof. By definition and Lemma 5 (i)

f̃T (G,h) = T 1/2J 01(A(b̂) −A(0) )YT +
X
l=1

(J1[a+ P (R̃e⊗ I)0(∆̃lγ̃(G))]⊗ J1)
0 vec(A(b̂) −l)

+
X
l=1

((A(b̂)l−1ỸT )
0 ⊗ J 01A(b̂)

−lJ1)(b− b̂)

= T 1/2J 01(A(b̂) −A(0) )YT +
X
l=1

(J1[a+ P (R̃e⊗ I)0(∆̃lγ̃(G))]⊗ J1)
0 vec(A(b̂) −l)

+
X
l=1

J 01A(b̂)
−lJ1(b− b̂)A(b̂)l−1ỸT

= T 1/2J 01(A(b̂) −A(0) )YT +
X
l=1

J 01A(b̂)
−lJ1[a+ P (R̃ê⊗ I)0∆̃l[γ̃(G) + m̂(b− b̂)]].

By Minkowki’s inequality, it suffices to consider each summand in f̃T (G,h) and ST (G)fT (G,h) −
ST (G)f̃T (G,h) separately.

Note that for any positive integer q, by a direct calculation, (cf. Lütkepohl (2005), page 96)

∂ vecA(b)q

∂b0
=

q−1X
i=0

(A(b)0)q−1−i ⊗ (A(b)iJ1),

and with gA : R 7→ Rk2p2 defined as gA(λ) = vec(A(b̂+ λ(b− b̂))q) for some positive integer q, we
have

vec(A(b)q)− vec(A(b̂)q)

=

Z 1

0

gA(λ)

dλ
dλ

= T−1/2
Z 1

0

q−1X
i=0

(A(b̂+ λ(b− b̂))0)q−1−i ⊗A(b̂+ λ(b− b̂))iJ1)dλ · (b− b̂). (37)

(i) Let Ā0 = sup0≤λ≤1 ||A(λb̂)|| = Op(1). Then

||T 1/2J 01(A(b̂) −A(0) )YT ||2 = ||(YT ⊗ J1)
0
Z 1

0

−1X
i=0

(A(λb̂)0) −1−i ⊗A(λb̂)iJ1)dλ · b̂||2

≤ ||YT ||2||J1||4||b̂||2
−1X
i=0

Ā2 −20 = Op(1)

Eh||J 01A(b̂) −lJ1(a− â)||2 ≤ Ā2 −2l0 ||J1||4Eh||a− â||4

Eh||J 01A(b̂) −lJ1(b− b̂)A(b̂)l−1YT ||2 ≤ Ā2 −2l0 ||J1||4||YT ||2Eh||b− b̂||2 = Op(1)
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Furthermore, ||J 01A(b̂) −lJ1P || ≤ ||J1||2||P ||Ā −l
0 = Op(1), ê = e− T−1/2Xĥ, and

EGT
−1||(R̃Xb̂⊗ I)0∆̃lγ̃(G)||2 ≤ ||T−1/2X||2||b̂||2||∆̃l||2EG||γ̃(G)||2 = Op(1)

EyEG||(R̃e⊗ I)0∆̃lγ̃(G)||2 ≤ ||∆̃l||2EG||γ̃(G)||2 = O(1). (38)

EhT
−1||(R̃Xb̂⊗ I)0∆̃lm̂(b− b̂)||2 ≤ ||T−1/2X||2||b̂||2Eh||b− b̂||2||∆̃l||2||m̂||2 = Op(1)

EyEh||(R̃e⊗ I)0∆̃lm̂(b− b̂)||2 ≤ Eh||b− b̂||2||∆̃l||2||Λ−1m̂||2Ey||Λ(R̃e⊗ I)|| = O(1).

(ii) Define the Nk × (T + )k matrix ∆0l such that ∆
0
l γ(G) = vec(γl(G), · · · , γN (G), 0, · · · , 0). By

Minkowski, it suffices to show that EhEGST (G)||ξT (G,h)||2
p→ 0 for ξT (G,h) equal to any of

J 01[A(b)
−l −A(b̂) −l]J1a,

J 01A(b)
−lJ1P (((RV (G)R)

−1 − I)Re⊗ I)0(∆lγ(G)),

J 01A(b)
−lJ1P (e⊗ I)0[(R̃⊗ I)0∆0l − (R⊗ I)0∆l]γ(G),

J 01A(b)
−lJ1P (R̃e⊗ I)0[∆0l γ(G)− ∆̃lγ̃(G)],

J 01[A(b)
−l −A(b̂) −l]J1P (R̃e⊗ I)0(∆̃lγ̃(G)),

J 01A(b̂)
−lJ1P (R̃(e− ê)⊗ I)0(∆̃lγ̃(G)),

J 01A(b̂)
−lJ1(b− b̂)A(b̂)l−1(ỸT − YT ),

for l = 1, · · · , , as well as for ξT (G,h) equal to

T 1/2(YT ⊗ J1)
0(vec(A(b) )− vec(A(b̂) ))−

X
l=1

((A(b̂)l−1YT )
0 ⊗ J 01A(b̂)

−lJ1)(b− b̂). (39)

Let Ā1,q = Eh[||A(b)||q], and Ā2,q = supλ∈[0,1]Eh[||A(b̂+ λ(b− b̂))||q], which are Op(1) for any
fixed q, since ||A|| ≤ |A|, and multivariate normal distributions posses all moments. By Cauchy-
Schwarz

Eh[||J 01[A(b)q −A(b̂)q]J1a||2]2 ≤ ||J1||4Eh[||A(b)q −A(b̂)q||4]Eh[||a||4]

where clearly Eh[||a||4] = Op(1), and using (23), (37), Minkowski and Cauchy-Schwarz, we find

Eh||A(b)q −A(b̂)q||4 ≤ Eh|| vec(A(b)q −A(b̂)q)||4 (40)

≤ T−1Eh||
Z 1

0

q−1X
i=0

(A(b̂+ λ(b− b̂))0)q−1−i ⊗A(b̂+ λ(b− b̂))iJ1)dλ||4||b− b̂||4

≤ T−1||J1||4(Eh||b− b̂||8)1/2
q−1X
i=0

(Ā2,16q−16−16iĀ2,16i)
1/4 p→ 0.

Furthermore,

ST (G)Ey(∆lγ(G))
0[(RV (G)R)−1 − I)Ree0R(RV (G)R)−1 − I)⊗ I](∆lγ(G))

= ST (G)(∆lγ(G))
0[(RV (G)R)−1 − I)(RV (G)R)−1 − I)⊗ I](∆lγ(G))

= ST (G)(∆lγ(G))
0[R(V (G)−1 − I)2R⊗ I](∆lγ(G))
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= ST (G)T−1(∆lγ(G))
0[RΓ(G)V (G)−2Γ(G)0R⊗ I](∆lγ(G))

≤ ST (G)T−1||Γ(G)||2||V (G)−2|| · ||γ(G)||2 → 0

uniformly in G by Lemma 2 (iv), (v) and (vii). Also

EGST (G)Eyγ(G)[(R̃⊗ I)0∆0l − (R⊗ I)0∆l](ee
0 ⊗ I)[(R̃⊗ I)0∆0l − (R⊗ I)0∆l]γ(G)

≤ EGST (G)
TX

j=N+1

|γj(G)|2 → 0

by Lemma 2 (viii). Also

ST (G)Ey[∆
0
l γ(G)− ∆̃lγ̃(G)]

0(R̃eeR̃0 ⊗ I)0[∆0l γ(G)− ∆̃lγ̃(G)] ≤ ST (G)||γ(G)− γ̃(G)||→ 0

uniformly in G by Lemma 2 (vi), and

EhEGST (G)||J 01[A(b) −l −A(b̂) −l]J1P (R̃e⊗ I)0(∆̃lγ̃(G))||2

≤ ||J1||4||P ||2(EG||(R̃e⊗ I)0∆̃lγ̃(G)||2) · (Eh||A(b) −l −A(b̂) −l||2) p→ 0

since by (38), EG||(R̃e⊗ I)0∆̃lγ̃(G)||2 = Op(1) as above. Furthermore,

EGEh||J 01[A(b) −l −A(b̂) −l]J1P (R̃e⊗ I)0(∆̃lγ̃(G))||2 ≤
||J1||3Eh||A(b) −l −A(b̂) −l||2EG||P (R̃e⊗ I)0(∆̃lγ̃(G))||2

p→ 0

since Eh||A(b)q −A(b̂)q||2 p→ 0 from (40) and Jensen, and again EG||(R̃e⊗ I)0∆̃lγ̃(G)||2 = Op(1).
Furthermore,

EG||J 01A(b̂) −lJ1P (R̃(e− ê)⊗ I)0(∆̃lγ̃(G))||2 ≤ ||J 01A(b̂) −lJ1P ||2T−1EG||(R̃Xĥ⊗ I)0(∆̃lγ̃(G))||2

and

EG||(R̃Xĥ⊗ I)0(∆̃lγ̃(G))||2 ≤ tr(R̃Xĥĥ0X 0R̃0 ⊗ I)∆̃lΣ∆̃
0
l

≤ ||ĥ||2 tr(R̃XX 0R̃0 ⊗ I)∆̃lΣ∆̃
0
l = Op(1)

since, using Lemma 4 (ii),

Ey tr(R̃XX 0R̃0 ⊗ I)∆̃lΣ∆̃
0
l ≤ ||Λ−1Σ∆̃0lΛ−1|| trΛ(R̃Ey[XX 0]R̃0 ⊗ I)Λ = O(1).

Moreover

Eh||J 01A(b̂) −lJ1(b− b̂)A(b̂)l−1(ỸT − YT )||2 ≤ Ā2 −20 ||J1||4||YT − ỸT ||2Eh||b− b̂||2 p→ 0

since ||YT − ỸT ||
p→ 0 from

P∞
t=0 ||Ψ̂l+t−1|| = Op(1), T

−1/2||â|| p→ 0 and ||A(b̂)N || · ||YT−N ||
p→ 0.

Finally, using (37), the spectral norm of (39) is bounded above by

||YT || · ||J1||2||b− b̂|| · ||
Z 1

0

X
l=1

[(A(b̂+λ0(b− b̂))0) −l⊗A(b̂+λ0(b− b̂))l−1− (A(b̂)0) −l⊗A(b̂)l−1]dλ0||.

36



For any fixed integer q and λ0 ∈ [0, 1], from (23) and (37),

||A(b̂+λ0(b−b̂))q−A(b̂)q|| ≤ T−1/2||
Z 1

0

q−1X
i=0

(A(b̂+λ0λ(b−b̂))0)q−1−i⊗A(b̂+λ0λ(b−b̂))iJ1)dλ||·||b−b̂||

so that from the same argument as employed for (40), Eh supλ0∈[0,1] ||A(b̂+λ0(b−b̂))q−A(b̂)q||K
p→ 0

for any integer K. But for conformable matrices A,B,C,D, ||(A ⊗ B) − (C ⊗ D)|| ≤ ||A − C|| ·
||B||+ ||A|| · ||B −D||, so that this result, along with Minkowski and Cauchy-Schwarz, establishes
that also Eh||ξT (G,h)||2

p→ 0 with ξT (G,h) equal to (39).

Lemma 7 (i) EG exp[Kŝ0γ̃(G)] = Op(1) for any fixed K ∈ R.
(ii) EGL̃T (G,h)

4 ≤ ζ̃T exp[−124CT ||h− ĥ||2] uniformly in h, where CT ,C−1T and ζ̃T are Op(1)
and do not depend on h.

Proof. (i) EG exp[Kŝ0γ̃(G)] = exp[K2ŝ0Σŝ] ≤ exp[K2||Λ−1ΣΛ−1|| · ŝ0Λ2ŝ], so the result follows
from Lemmata 4 (ii) and 8 (i).

(ii) By Cauchy-Schwarz

EGL̃T (G,h)
4 ≤ (EG exp[8ŝ

0γ̃(G)])1/2

·(EG exp[−812 γ̃(G)
0γ̃(G)− 8(h− ĥ)0m̂0γ̃(G)− 1

28(h− ĥ)0m̂0m̂(h− ĥ) + 1
28ĥ

0m̂0m̂ĥ])1/2

and a direct calculation

EG exp[−8(h− ĥ)0m̂0γ̃(G)− 812 γ̃(G)
0γ̃(G)]

= det(I + 8Σ)−1/2 exp[128(h− ĥ)0m̂0(I + (8Σ)−1)−1m̂(h− ĥ)]

≤ exp[128(h− ĥ)0m̂0(I + (8Σ)−1)−1m̂(h− ĥ)].

Since I − (I + (8Σ)−1)−1 = (I + 8Σ)−1, we obtain

EG exp[−812 γ̃(G)
0γ̃(G)− 8(h− ĥ)0m̂0γ̃(G)− 1

28(h− ĥ)0m̂0m̂(h− ĥ) + 1
28ĥ

0m̂0m̂ĥ]

≤ exp[−128(h− ĥ)0m̂0(I + 8Σ)−1m̂(h− ĥ)] ≤ exp[−124CT ||h− ĥ||2]

where CT is the smallest eigenvalue of 2m̂0(I + 8Σ)−1m̂, and

CT = 2||(m̂0(I + 8Σ)−1m̂)−1||−1 ≥ 2||(m̂
0m̂)−1||−1

1 + 8||Σ||
CT ≤ 2||m̂||2.

From m̂0m̂ − m0m
p→ 0 and (26), we have CT = Op(1) and C−1T = Op(1). Also, by part (i),

EG exp[8ŝ
0γ̃(G)] = Op(1). Thus

EGL̃T (G,h)
4 ≤ ζ̃T exp[−124CT ||h− ĥ||2]

where CT and ζ̃T = Op(1).

37



Lemma 8 (i) ŝ0Λ2ŝ = Op(1).
(ii) m̂0ŝ

p→ 0.

Proof. (i) Define s just as ŝ, but with êt replaced by et. Then Eys
0Λ2s = tr[(Eyss

0)Λ2] = O(1),
because the elements of Eyss

0 are uniformly bounded. Furthermore, recall that êt = et−T−1/2X 0
tĥ,

where X 0
t = (1, y

0
t−1, · · · , y0t−p)⊗ P−1, so that the jth k2 × 1 block of s− ŝ is given by

T−1 vec
P

t[etĥ
0Xt+j +X 0

tĥet+j + T−1/2X 0
tĥĥ

0Xt+j ] =

T−1
P

t[(X
0
t+j ⊗ et)ĥ+ (e

0
t+j ⊗Xt)ĥ+ T−1/2(X 0

t+j ⊗X 0
t) vec(ĥĥ

0)].
(41)

Thus, letting dXe, deX and dXX be Nk2× (p+1)k2, Nk2× (p+1)k2 and Nk2× (p+1)2k4 matrices
with jth k2 block of rows equal to T−1

P
(X 0

t+j ⊗ et), T−1
P
(e0t+j ⊗Xt) and T−3/2

P
(X 0

t+j ⊗X 0
t),

respectively, we have ŝ = s+dXeĥ+deX ĥ+dXX vec(ĥĥ
0). It thus suffices to show s0Λ2s = tr ss0Λ2 =

Op(1), ĥ0d0XeΛ
2dXeĥ ≤ ||ĥ||2 tr dXed

0
XeΛ

2 = Op(1), ĥ0d0eXΛ
2deX ĥ ≤ ||ĥ|| tr deXd0eXΛ2 = Op(1) and

vec(ĥĥ0)0d0XXΛ
2dXX vec(ĥĥ

0) ≤ || vec(ĥĥ0)||2 tr dXXd
0
XXΛ

2 = Op(1). These follow from Markov’s
inequality, since the diagonal elements of Eyss

0, EydXed
0
Xe, EydeXd

0
eX and EydXXd

0
XX are readily

seen to be uniformly bounded, and trΛ2 = O(1).
(ii) Note that with ût defined as ût = 0 for t ≤ 0,

m̂0ŝ =
NX
j=1

⎛⎜⎝ vec(P−10ŝ0jP
0Ψ̂0j)

...
vec(P−10ŝ0jP

0Ψ̂0j−p+1)

⎞⎟⎠ =
NX
j=1

⎛⎜⎝ vec(Ω−1T−1/2
PT

t=1 ûtû
0
t−jΨ̂

0
j−1)

...
vec(Ω−1T−1/2

PT
t=1 ûtû

0
t−jΨ̂

0
j−p)

⎞⎟⎠

=

⎛⎜⎝ vec(Ω−1T−1/2
PT

t=1 ût
PN

j=1 û
0
t−jΨ̂

0
j−1)

...
vec(Ω−1T−1/2

PT
t=1 ût

PN
j=1 û

0
t−jΨ̂

0
j−p)

⎞⎟⎠ .

Furthermore, with Yt−1 = A(b̂)−1(Yt − T−1/2(1, · · · , 1)0 ⊗ â) for t = 0,−1,−2, . . .,

yt−l =
NX
j=1

Ψ̂j−lût−j + T−1/2
N−lX
j=0

Ψ̂j â+ J 01A(b̂)
N−l+1Yt−N+l−1

we have

T−1/2
TX
t=1

ût

NX
j=1

û0t−jΨ̂
0
j−l = T−1/2

TX
t=1

ût(yt−l − T−1/2
N−lX
j=0

Ψ̂j â− J 01A(b̂)
N−l+1Yt−N+l−1)

0 (42)

Now
PT

t=1 ûty
0
t−l = 0 and

PT
t=1 ût = 0 by the OLS first order condition, and T

−1/2||A(b̂)N−l+1|| p→
0, since with probability converging to one, ||A(b̂)|| < 1− εA/2 < 1, where εA = 1− ||A(0)||. Thus
(42) is op(1), and the result follows.

Lemma 9

bp =
EG

R
bL̃T (G,h)dh

EG

R
L̃T (G,h)dh

= (m̂0M̂)−1m̂0Ŝ
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γp =
EG

R
γ̃(G)L̃T (G,h)dh

EG

R
L̃T (G,h)dh

= ŝ− Ŝ + (M̂ − m̂)bp

ap =
EG

R
aL̃T (G,h)dh

EG

R
L̃T (G,h)dh

= â

EG

R
L̃T (G,h)dhR

L̃T (0, h)dh
= det(I +Σ)−1/2 det(m̂0M̂)−1/2 exp[−12 ŝ

0Ŝ + 1
2 Ŝ

0m̂(m̂0M̂)−1m̂0Ŝ]

where Ŝ = (I +Σ)−1ŝ and M̂ = (I +Σ)−1m̂.

Proof. Follows from "completing the squares", as ln L̃T (G,h) is quadratic in h and γ̃(G).
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Table 1 

Distributions of Estimated Lag Differences, AIC – BIC: 
Empirical (132 monthly U.S. macroeconomic time series) and Asymptotic 

 
ˆ AICp  – ˆBICp  Empirical Asymptotic 

   p0=0 p0=3 
  AR(0) c=10 c=20 c=40 c=10 c=20 c=40 

0 0.205 0.714 0.462 0.185 0.021 0.646 0.482 0.169 
1 0.098 0.114 0.196 0.175 0.043 0.132 0.157 0.116 
2 0.083 0.056 0.114 0.157 0.070 0.071 0.101 0.112 
3 0.098 0.034 0.071 0.122 0.089 0.044 0.070 0.103 
4 0.068 0.023 0.045 0.093 0.100 0.030 0.049 0.089 
5 0.030 0.016 0.031 0.069 0.100 0.021 0.035 0.079 
6 0.038 0.011 0.022 0.051 0.094 0.015 0.027 0.067 
7 0.045 0.008 0.016 0.037 0.086 0.011 0.020 0.057 
8 0.045 0.006 0.011 0.028 0.075 0.008 0.015 0.046 
9 0.030 0.005 0.008 0.021 0.064 0.006 0.012 0.039 
10 0.015 0.003 0.006 0.016 0.054 0.005 0.009 0.032 
11 0.053 0.003 0.005 0.012 0.046 0.004 0.008 0.026 
≥12 0.189 0.008 0.014 0.035 0.157 0.008 0.016 0.065 

 
Notes:  Entries are the probability of observing the indicated difference between AIC and 
BIC.  The empirical distribution is computed from the data set described in Section 4 
consisting of 132 U.S. monthly macroeconomic time series, 1959:1 – 2003:12, with the 
regressions all run on a balanced panel with T = 510 observations, and 0 ≤ p ≤ pmax=18 
for both AIC and BIC. The “Asymptotic AR(0)” reports the asymptotic distribution of 
ˆ AICp  – ˆBICp  in model (1) with white noise ut, and the remaining columns report the 

asymptotic distribution in model (1) and (2) with G distributed as c times a demeaned 
Brownian motion. 
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Table 2 
Mean Square Forecast Errors of  

Approximate and Small Sample Exact Bayes Procedures 
 

 p=0 p=1 P=2 p=3 p=6
c=5, T=100 

Exact Bayes *
1|T Ty +  -1.9 -0.4 -0.1 -0.1 -0.2

Approx. 1|
p

T Ty +  -1.8 -0.4 -0.1 -0.1 0.0
Difference -0.1 0.0 -0.1 -0.1 -0.2

c=5, T=200 
Exact Bayes *

1|T Ty +  -2.2 -0.3 -0.1 -0.1 -0.1
Approx. 1|

p
T Ty +  -2.2 -0.3 -0.1 0.0 -0.1

Difference 0.0 0.0 0.0 0.0 -0.1
c=5, T=400 

Exact Bayes *
1|T Ty +  -2.6 -0.3 -0.1 0.0 0.0

Approx. 1|
p

T Ty +  -2.6 -0.3 -0.1 0.0 0.0
Difference 0.0 0.0 0.0 0.0 0.0

c=10, T=100 
Exact Bayes *

1|T Ty +  -10.5 -3.3 -1.0 -0.5 -0.5
Approx. 1|

p
T Ty +  -7.5 -3.0 -0.9 -0.4 -0.2

Difference -2.9 -0.3 -0.1 -0.1 -0.3
c=10, T=200 

Exact Bayes *
1|T Ty +  -12.1 -2.7 -0.9 -0.8 -0.3

Approx. 1|
p

T Ty +  -10.8 -2.5 -0.9 -0.8 -0.2
Difference -1.3 -0.2 0.0 0.0 -0.1

c=10, T=400 
Exact Bayes *

1|T Ty +  -13.8 -2.8 -0.8 -0.4 -0.1
Approx. 1|

p
T Ty +  -12.9 -2.8 -0.9 -0.4 -0.1

Difference -0.9 0.0 0.0 0.0 0.0
c=20, T=100 

Exact Bayes *
1|T Ty +  -44.2 -19.7 -8.6 -5.6 -1.6

Approx. 1|
p

T Ty +  19.8 -9.2 -6.4 -4.2 -1.2
Difference -64.0 -10.5 -2.2 -1.3 -0.4

c=20, T=200 
Exact Bayes *

1|T Ty +  -50.0 -18.1 -9.6 -3.8 -0.8
Approx. 1|

p
T Ty +  -18.4 -13.6 -8.7 -3.4 -0.7

Difference -31.6 -4.4 -1.0 -0.4 -0.1
c=20, T=400 

Exact Bayes *
1|T Ty +  -58.0 -18.2 -6.1 -5.5 -1.3

Approx. 1|
p

T Ty +  -38.6 -15.6 -6.0 -5.3 -1.4
Difference -19.4 -2.6 0.0 -0.1 0.1
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Notes to Table 2:  Entries are Monte Carlo estimates of T(MSFEposterior mean – 
MSFEAR)/MSFEAR, where MSFEAR is the one-step ahead mean square forecast error of 
the AR(p) model estimated by OLS (where p is given in the column heading), and 
MSFEposterior mean is the small sample exact ( *

1|T Ty + ) and approximate ( 1|
p

T Ty + ) posterior 

mean of yT+1|T, respectively (computed using AR(p) residuals, for p given in the column 
heading), along with the difference of these two numbers. For the exact Bayes posterior, 
the prior on the AR(p) coefficients and the constant is N(0, Ip+1), independent of G. Based 
on 1000 Monte Carlo draws, with analytical integration over yT+1 - *

1|T Ty + . The exact 

Bayes procedure is implemented via importance sampling over G (discretely 
approximated with 2,000 steps) using the exact (not Whittle) likelihood, with the prior as 
proposal, using up to 1,000,000 draws.  
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Table 3 
Pseudo Out-of-Sample Mean Square Forecast Errors of Univariate Approximate 

Posterior Mean Forecasts, Relative to BIC, for 132 Monthly U.S. Macro Time 
Series, 1959:1 – 2003:12 

 
 A.  Demeaned Brownian motion prior  B.  Demeaned integrated 

Brownian motion prior  
ℓ c =10 c = 20 c = 30 BMA, 

0≤c≤20
BMA, 

0≤c≤40
c = 20 c = 30 BMA, 

0≤c≤40 
AIC 

Mean 
1 0.991 0.993 0.998 0.992 0.992 0.993 0.992 0.994 1.040 
3 0.987 0.986 0.990 0.987 0.986 0.990 0.988 0.990 1.033 
6 0.983 0.978 0.980 0.983 0.980 0.987 0.984 0.988 1.007 
12 0.986 0.981 0.983 0.985 0.983 0.989 0.985 0.989 1.007 

Median 
1 0.991 0.992 0.996 0.991 0.992 0.993 0.991 0.993 1.010 
3 0.992 0.991 0.994 0.993 0.993 0.994 0.994 0.995 1.011 
6 0.989 0.983 0.984 0.989 0.989 0.992 0.990 0.993 1.001 
12 0.991 0.988 0.991 0.992 0.991 0.992 0.990 0.993 1.002 

10% Percentile 
1 0.976 0.964 0.959 0.975 0.974 0.979 0.977 0.981 0.974 
3 0.963 0.944 0.940 0.965 0.959 0.969 0.959 0.970 0.943 
6 0.957 0.936 0.932 0.960 0.949 0.963 0.951 0.962 0.929 
12 0.957 0.935 0.930 0.955 0.946 0.963 0.957 0.966 0.935 

90% Percentile 
1 1.011 1.025 1.038 1.010 1.014 1.009 1.010 1.007 1.144 
3 1.009 1.021 1.036 1.007 1.011 1.006 1.009 1.005 1.160 
6 1.005 1.017 1.026 1.005 1.009 1.004 1.005 1.002 1.092 
12 1.006 1.019 1.033 1.007 1.012 1.004 1.005 1.003 1.127 

 
Notes: Entries are the relative mean square forecast error of cumulative ℓ-step ahead 
approximate posterior mean forecasts ( 1|

p
T Ty +  + … + |

p
T Ty +l ) for real series, and of average 

inflation over the next ℓ months for nominal series, relative to the BIC forecast with the 
same lag length  The posterior mean forecast in Panel A was computed using the value of 
c (or BMA-weighted average over c) given in the column heading, using the demeaned 
Brownian motion prior; Panel B uses the prior corresponding to the sum of demeaned 
Brownian motion of scale c plus a demeaned truncated Brownian motion with variation 
below frequencies corresponding to cycles of 96 months with fixed scale c = 20.  Lag 
lengths were chosen by BIC, with 0 ≤ p ≤ 18.  MSFEs were computed using recursive 
forecasts, with the first forecast made when there were 198 observations on the 
transformed variable (for real series,1975:7) and the final forecast made in 2003:12 – ℓ. 
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Figure 1 

Monte Carlo estimates of T (MSFEposterior mean – MSFEBIC)/MSFEBIC for cumulative 
forecasts, ℓ = 1,…, 4 

Experiment 2:  Estimator prior cWμ, DGP prior c0Wμ for c, c0 = 0,…, 20, T = 200 
No estimated AR component 

Dashed lines: MSFEs for fixed-c estimators; Solid line: BMA forecast 
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Figure 2 

Monte Carlo estimates of T(MSFEposterior mean – MSFEBIC)/MSFEBIC for cumulative 
forecasts, ℓ = 1,…, 4 

Experiment 2:  Estimator prior cWμ, DGP prior c0Wμ for c, c0 = 0,…, 20, T = 200 
AR(BIC) component, 0 ≤ p ≤ 4 

Dashed lines: MSFEs for fixed-c estimators; Solid line: BMA forecast 
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Figure 3 

Monte Carlo estimates of T(MSFEposterior mean – MSFEBIC)/MSFEBIC for ℓ = 1 
Experiment 3:  MA(1) DGP; estimator prior cWμ, c = 0,…, 20 

AR(BIC) component, 0 ≤ p ≤ 3, 4, 5, 6 for T = 50, 100, 200, 400 
Dashed lines: fixed-c estimators; Solid line: BMA; Heavy dash-dot: AIC 
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Figure 4 

Monte Carlo estimates of T(MSFEposterior mean – MSFEBIC)/MSFEBIC for cumulative 
forecasts, ℓ = 4 

Experiment 3:  MA(1) DGP; estimator prior cWμ, c = 0,…, 20 
AR(BIC) component, 0 ≤ p ≤ 3, 4, 5, 6 for T = 50, 100, 200, 400 

Dashed lines: fixed-c estimators; Solid line: BMA; Heavy dash-dot: AIC 
 


