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Abstract

We study elections with three candidates under plurality voting. A candidate is a Condorcet

loser if the majority of the voters place that candidate at the bottom of their preference rank-

ings. We �rst show that a Condorcet loser might win the election in a three-way race. Next we

introduce to the model an endorser who has private information about the true probability distri-

bution of the preferences of the voters. Observable endorsements facilitate coordination among

voters who may otherwise split their votes and lead to the victory of the condorcet loser. When

the endorser has an ideological bias towards one of the candidates, the coordination impact of

endorsements remains unaltered, moreover the endorser successfully manipulates the outcome

of the election in favor of his bias, even if his ideological bias is known by the voters. The

results are true for any endorsement cost and any magnitude of bias as long as the electorate is

large enough.
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Introduction

Consider an election with three candidates under plurality voting. A candidate is a Condorcet

loser if it loses to any other candidate in a two-way race. In particular, a candidate that the major-

ity of the voters place at the bottom of their preference ranking is a Condorcet loser. However a

Condorcet loser might win the election in a three-way race.

As Fey (1997) states, a situation where a Condorcet loser wins arose in the 1970 New York

senatorial election. There were two liberal candidates, Richard L. Ottinger and Charles E. Goodell,

who received more than 60% of the votes cast but split this share in such a way that the conservative,

James R. Buckley, won the election with just 39% of the votes. Both Ottinger, who ended up with

37% of the vote, and Goodell, with 24% of the vote, were credible candidates. The liberal majority

in the electorate was unable to coordinate its support behind one of the two liberals in the race, and

the result was a conservative victory.

In our model there is a Condorcet loser (labeled C), which creates the coordination problem

among the majority of the voters that �nd the Condorcet loser the least preferable candidate. There

is heterogeneity among these voters about their preferences over the non-Condorcet loser (main-

stream) candidates (labeled A and B). We assume that candidate C gets a commonly known frac-

tion of the vote totals. This fraction is more than one third to allow for the possibility that C wins,

and is less than one half to allow for the possibility that C loses if the majority can coordinate their

votes on one of the mainstream candidates, A or B.

This model is equivalent to a model where there is a least preferred status-quo, and there are

2 alternatives competing to replace the status-quo. The decision to replace the status-quo is deter-

mined by a supermajority voting among N voters. For example, suppose there is an incumbent in
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of�ce, and there is voting among a group of decision makers (for example stockholders) either to

keep the incumbent or replace it with one of the two alternative candidates. If the voting rule is

q-rule, that is if the number of voters is N and at least dqNe votes are needed for an alternative to

replace the incumbent, and none of the voters prefer the incumbent to any of the alternatives, then

this model turns out to be identical to ours.

Pre-election activities may help voters coordinate their votes on one of two similar candidates.

During the 1987 general election in the U.K., a group called TV87 formed, whose sole purpose was

to instruct voters how to best vote strategically to prevent a Conservative victory. In Turkey, where

there are multiple parties, the media groups tend to favor one of the many central candidates in order

to coordinate the votes of the mainstream voters. The media groups get rewards in return for their

support when the party they support gets elected.

Parties attract a certain number of voters regardless of their electoral situation. Every party

has loyal voters who stay with their party through periods of boom and bust. Moreover, there are

"protest" voters who are not interested in the winner of the election, but are casting their ballots for

a particular party to protest an alternative mainstream party. The number of such "loyal" voters and

"protest" voters may depend on the current political and economic situations.

In this paper, we study the coordination problem that a group of voters face when there are

"loyal voters" (extremists) for each candidate, and the expected fraction of each extremist voter

type is uncertain. We model pre-election activities by political candidate endorsements, where the

endorser has some pre-election information about the distribution of the preferences (in particular

the expected fraction of the extremist voters) across the electorate. We have in mind situations

where the endorser has more detailed information from polls, or the endorser is a media group

that has more access to public opinion. Endorsements are modeled as investment opportunities;
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endorsing a candidate is costly, but if the candidate gets elected, the rewards are big enough to cover

the cost of endorsement.

Due to the private information of the endorser, endorsing a candidate might inform voters about

the degree to which others support speci�c candidates. Therefore endorsements can help coor-

dination between groups of voters who might otherwise split their votes among several similar

candidates, allowing the election of another, who is much less preferred. With this pre-election

information, voters can form expectations about which candidates are likely to win elections and

they can cast optimal votes. In this respect, this paper is investigating similar situations as Rietz,

Myerson and Weber (1998) do.

We show in theorem 2 that an endorser who is motivated only by monetary rewards is able to

coordinate non-extremist voters on a mainstream candidate who is stronger against the Condorcet

loser. In our main theorem (theorem 3) we show that if the endorser has also an ideological bias

towards one of the mainstream candidates then he always (in all voting equilibria) manages to suc-

cessfully manipulate the outcome of the election in his favor even if his bias is common knowledge

across the electorate. The possibility of miscoordination leads the voters to vote for the candidate

that is endorsed even if the cost of endorsement is low and the magnitute of the political bias is large

provided that the electorate is large enough.

The coordination impact of endorsements continue in some equilibria when there are multiple

endorsers even if they have different biases. In such equilibria the endorsers endorse the same

candidate at all states of nature. However there is only one endorser whose recommendation the

voters follow. If one of the endorsers doesn't have any bias, then there is an equilibrium where none

of the other endorsers has any manipulation power. There are also equilibria where the coordination

impact of endorsements is absent. The reason is that when there are multiple endorsers, there may
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be coordination problems among the endorsers that is akin to the coordination problem of the voters

in the absence of an endorser.

In the �nal section we discuss some of our assumptions and how they are related to our results.

We emphasize that even a very small cost of endorsement, and a very small return on endorsement

activity when the endorsed candidate gets elected is enough to generate our results. However with-

out any cost of endorsement or any incentive for the endorser to correctly predict the winner of the

election, voters may still fail to coordinate their votes and candidate C may win the election in some

voting equilibria. Our results are robust to small imperfection of the endorser's information about

the true state of nature, provided that the imperfection decreases at an exponential rate with the size

of the electorate. In particular in a model where the endorser observes the preferences of a tiny

fraction of the electorate, all our results would be true.

Proposition 1 is proven in the main text, the proofs of all other results are in the appendix.

Related Literature

The problem we are analyzing is one where a group of decision makers should coordinate their

votes to prevent the victory of a least preferred option. Rietz, Myerson and Weber (1998) do an

experimental study where voters have the option of sending a costly message to the other voters

revealing their types, and the costly message is interpreted as campaign contributions.

The methodology and techniques of our paper closely resemble to those used in information

agregation in voting games. In particular Austen-Smith and Banks (1996) and Feddersen and Pe-

sendorfer (1997) analyzed how voters with different private signals about the candidates' charac-

teristics make their decisions when they have to choose one of two candidates. The uncertainty in
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our model is not on a particular characteristic of a candidate, but on the distribution of preference

intensities across the electorate.

Other papers that analyze voting equilibria in multi-candidate elections are Palfrey (1989), My-

erson and Weber (1993) and Fey (1997).

There has been a recent interest in models where a group of decision makers need to coordinate

their votes in order to prevent an unpreferred third option. In these models, a group of voters

need to agree (supermajority rule) on one of 2 available options in order to defeat a status quo

(or disagreement). The voters differ in the intensity of their preferences for the 2 options, and the

preferences are drawn from a distribution as in our model.

In Eliaz, Ray and Razin (2007) voters can either cast a vote for one of the options, or declare

neutrality which counts a vote for each of the alternatives. They show that there is an equilibrium

where the option that a minority of the voters prefers gets chosen more frequently.

In another recent paper Myatt (2007) studies the same problem where each voter has a single

vote. Each voter knows her own preference and a signal both of which imperfectly informs her

about a common value parameter that affects the preferences of all voters in the electorate.

A class of Pre-election activities, in particular campaign contributions have been modeled in

Myerson and Morton (1992). In their model, there are two candidates both of whom choose their

policy platforms and campaign levels. Campaigns in favor of a candidate i help candidate i win the

election through changing the preferences of voters directly towards candidate i.
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The Model

3 candidates compete in an election. The winner of the election is the candidate who gets most

of the votes (plurality voting). Candidates are denoted j 2 fA;B;Cg. Candidate C gets a given

fraction of vote totals with probability 1. This fraction is denoted �. The remaining (1��) fraction

of voters may vote for candidate A; B or C. 1The total number of voters is a �nite number n+11�� ,

�(n+1)
1�� of which cast votes for C, and n+1 of which weakly prefers A and B to C. Preferences for

this (1� �) fraction of voters (i.e. n+ 1 voters) depend on a preference parameter x 2 [0; 1] = X

and the outcome of the election. For a voter type x, let u(j; x) denote the utility difference between

candidate j and candidateC for j 2 fA;Bg. A voter is anA(orB) extremist if he prefers candidate

A(or B) to both B(or A) and C, and is indifferent between B(or A) and C.2

Each voter knows his preference type but is uncertain about the types of other voters. Nature

�rst selects a parameter (called the state of nature) � 2 � � f(z1; z2; z3) 2 R3jz1 + z2 + z3 =

1; z1 � 0; z2 � 0; z3 � 0g according to a probability distribution G over �. Throughout the paper

we assume that G has full support with a continous density function g. The preference type of each

of the n+1 voters is realized according to the realization of � = (z�1 ; z�2 ; z�3). At a state of nature �,

a voter is an A extremist with probability z�1 , a B extremist with probability z�2 and not an extremist

with probability z�3 . When a voter is not an extremist, his preference type x 2 (0; 1) is chosen

according to a probability distribution F with support X .

De�nition 1 Candidate A is called viable at a state of nature � if z�1 + z�3 > �
1�� . Similarly

1Throughout the paper we assume that the number of voters and the number of votes are integers, but we don't explic-
itly use the correct notation. The reader should think of the closest integer to the referred number whenever appropriate.

2We model the preference types of voters by a one dimensional parameter, however this is without loss of generality.
One could think of p = u(A; x)=u(B; x) for when p 2 [0; 1] to be the probability that makes a voter type x indifferent
between a lottery where A wins for sure, and a lottery where B wins with probability p and C wins with probability
1� p. If p > 1, then 1=p 2 [0; 1] is the probability that makes a voter type x indifferent between a lottery where B wins
for sure, and a lottery where A wins with probability 1=p and C wins with probability 1� 1=p.
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Candidate B is called viable at a state of nature � if z�2 + z�3 > �
1�� .

A candidate j is viable at a state of nature �; if the expected vote fraction of that candidate would

exceed that of candidate C if all non-extreme voters voted for j. We make the following structural

assumptions that characterize a voting game with a Condorcet loser:

Assumption 1 1=3 < � < 1=2:

Assumption 1 says that candidate C might both win and lose the elections. Without this assump-

tion candidate C would not be a Condorcet loser and there would not be a coordination problem.

Assumption 2 u(A; 0) = 1; u(A; 1) = 0; u(B; 0) = 0; u(B; 1) = 1:

Assumption 2 is a normalization of the utilities of the extreme preference types. It follows from

the de�nition of an extremist and this normalization that preference types x = 0 are extremists of

candidate A, and types x = 1 are extremists of candidate B.

Assumption 3 u(A; �) is a strictly decreasing continous function and u(B; �) is a strictly increasing

continuous function.

Assumption 3 is a description of the structure of the utilities. The bigger the preference type is,

the more that voter enjoys the victory of B; and the smaller the preference type is, the more that

voter enjoys the victory of A.

Assumption 4 F (�) is a continous probability distribution function with F (0) = 0.

Assumption 4 says that the probability distribution function of non-extreme voter types is con-

tinous. The probability that a non-extremist voter has a preference type 0 is set to 0. Note that F (�)
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is the probability distribution function of voter types conditional on a voter not being an extremist.

We allow for the possibility of a probability mass for the extreme preference types at the �rst stage

of the resolution of uncertainty and these are denoted by z�1 and z�2 . In the rest of the paper we

maintain assumptions 1-4.

Since the probability of being an extremist is state dependent, we de�ne the probability distrib-

ution of voter types at each state of nature � as follows:

F�� (x) � z�1 + z�3 � F (x) for each x 2 [0; 1]; F�(x) � F
�
� (x) for x < 1, F�(1) � F

�
� (1) + z

�
2 .

Note that F� is weakly increasing, right-continous, F�(0) � 0 and F�(1) = 1; therefore F� is a

probability distribution function and there are potentially two mass points at x = 0 and x = 1. We

denote a voting game by V (g; F; n + 1) where g is the density function over the states of nature,

F is the c.d.f. over preference types and n + 1 is the number of voters who put candidate C at the

bottom of their preference rankings.

Strategies and Equilibrium

A mixed strategy for voter i, �i, is a measurable function from a voter's type to the probability of

voting for candidate A, i.e, �i : X ! [0; 1]

We de�ne a voting equilibrium �� to be a symmetric Nash equilibrium in which no voter uses

a weakly dominated strategy. The implication of this is that, voters with x = 0 always vote for A,

and voters with type x = 1 always vote for B.

The only times a voter can in�uence the outcome of the election is if his vote is pivotal, i.e.,

exactly ( a
1�a)n of the other n voters voted for A or for B. Hereon q denotes

�
1�� . As q > 1=2 (by

assumption 1), the two events can't realize together.
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Given a symmetric strategy pro�le �, one can compute the probability that a vote is pivotal in a

race between A and C, or between B and C as a function of the parameter �. Let

t(�; �) =

Z
X
�(x)dF�(x) (1)

denote the probability that a randomly selected voter votes for A when the state of nature is �:

When a voter who is not an extreme type learns his type x 2 (0; 1), he updates his beliefs about

� using Bayes' rule. In particular, the density of the posterior probability that the true state � is

calculated (by Bayes' rule) as:

g0(�; x) =
z�3g(�)R

�

z�3dG(�)
(2)

Note that the expression for g0 doesn't depend on x, so hereon we drop this dependence.

Let pivA, pivB denote the events that a vote is pivotal betweenA and C, andB and C respectively.

These events are mutually exclusive, and the probabilities assigned to these events by a voter who

is not an extreme type are given by:

Pr(pivAj�) = Eg0
��

n

qn

�
� t(�; �)qn � (1� t(�; �))n�qn

�
(3)

Pr(pivBj�) = Eg0
��

n

qn

�
� (1� t(�; �))qn � t(�; �)n�qn

�
(4)

Where the expectation is taken using the density function g0.

A strategy is characterized by a cutpoint if there is a cutpoint x such that a voter votes for A

whenever his preference type is smaller than x and for B whenever his preference type is bigger
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than x.

De�nition 2 A strategy � has a cutpoint structure if there is a cutpoint x� with the property that

0 < x� < 1 and �(x) = 1 for x < x�; �(x) = 0 for x > x�:

In proposition 1 we show that the set of voting equilibria is non-empty and all voting equilibria

have a cutpoint structure.

Proposition 1 There is at least one voting equilibrium �. Every voting equilibrium � has a cutpoint

structure with a cutpoint x� such that Pr(pivAj�) � u(A; x�) = Pr(pivBj�) � u(B; x�).

Proof. : First we demonstrate that any best response to a weakly undominated strategy has a cutpoint

structure.

Note that the implication of weakly undominated strategies is that voters with preference types

x = 0 always vote for A and those with preference types x = 1 always vote for B. Since G has

full support, for any � 2 (0; 1) we have Pr(F�(0) > �) > 0 and Pr(F�� (1) < 1� �) > 0 and the

probability that a voter votes for A and that a voter votes for B are strictly positive for any weakly

undominated strategy �. In particular Pr(pivAj�) and Pr(pivBj�) are both positive. A voter with

a preference type x votes for A(B) whenever Pr(pivAj�) � u(A; x) > (<) Pr(pivBj�) � u(B; x).

By assumption 2 and 3, there is a unique cutpoint 0 < x� < 1 such that Pr(pivAj�) � u(A; x�) =

Pr(pivBj�) � u(B; x�), and voters with preference types x < x� vote for A, voters with preference

types x > x� vote for B. Since Pr(pivAj�) and Pr(pivBj�) are bounded below by a positive

number, and bounded above by a number less than 1, any cutpoint strategy that is a best response to

some weakly undominated strategy is bounded away from the boundaries.

Let a be the cutpoint of a strategy � and x� be the cutpoint of the best response: Putting this into

equation (1) we get:
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t(�; �) = F�� (a) (5)

where F�� (x) was de�ned in the text such that F
�
� (x) = z

�
1 + z

�
3F (x). Then,

u(B; x�)

u(A; x�)
=
Pr(pivAj�)
Pr(pivBj�) =

Eg0 [(F
�
�i
(a))nq � (1� F��i (a))

n�nq]

Eg0 [(F
�
�i
(a))n�nq � (1� F��i (a))

nq]

We showed that any best response to a weakly undominated strategy has a cutpoint structure

and the cutpoint is away from 0 and 1, in particular in some interval ["; 1� "]. To demonstrate

existence, consider the following function:

	 : ["; 1� "]! ["; 1� "]

	(a) :
u(B;	(a))

u(A;	(a))
=
Eg0 [(F

�
�i
(a))nq � (1� F��i (a))

n�nq]

Eg0 [(F
�
�i
(a))n�nq � (1� F��i (a))

nq]

For any cutpoint a 2 ["; 1� "], let 	(a) be the unique cutpoint of the best response to the strat-

egy � characterized by cutpoint a. F�� (a) is continuous in a, and thus
Pr(pivAj�)
Pr(pivBj�) is continuous in

a and the continuity and monotonicity of
u(B; :)

u(A; :)
implies that 	(a) is a continuous function. Thus,

by Brouwer �xed point theorem, the map 	 has a �xed point, and hence the game has a voting

equilibrium.

Coordination Failures

In this section we study the equilibrium behavior of cutpoints in large electorates. A point x 2 [0; 1]

is a limit equilibrium cutpoint if there is a sequence xn converging to x where xn is an equilibrium

cutpoint of the game V (g; F; n). We say that there is full coordination if 0 or 1 is a limit equilibrium
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cutpoint.

In theorem 1 we provide a necessary condition for a point to be the limit of a sequence of cut-

points as the electorate gets large. Using this partial characterization, we show that full coordination

is impossible.

Theorem 1 A necessary condition for a point x to be a limit equilibrium cut point is:

u(B; x)

u(A; x)
=

R q
maxf q�F (x)

1�F (x) ;0g
g(z; 1� z � q�z

F (x) ;
q�z
F (x))dzR 1�q

maxf 1�q�F (x)
1�F (x) ;0g

g(z; 1� z � 1�q�z
F (x) ;

1�q�z
F (x) )dz

Proof. In the appendix.

Corollary 1 Full coordination is impossible when G has a continous density function g.

Observe that the term

R q
maxf q�F (x)

1�F (x) ;0g
g(z; 1� z � q�z

F (x) ;
q�z
F (x))dzR 1�q

maxf 1�q�F (x)
1�F (x) ;0g

g(z; 1� z � 1�q�z
F (x) ;

1�q�z
F (x) )dz

is the ratio of the areas over the lines line1 = f� 2 �jz�1 + z�3F (x) = qg and line2 = f� 2

�jz�1 + z�3F (x) = 1 � qg. An immediate consequence of theorem 1 is that as long as G has a

continous density function (a smoothness condition), full coordination is never achieved in the limit

as the electorate size gets large.

Endorsements and Coordination

In this section we assume that there is an endorser who can support any of the candidates A orB, or

choose to remain silent. As a benchmark to highlight how an endorsement activity can achieve full
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coordination, we �rst assume that the endorser does not have a strict preference over the candidates

in this section. The endorser observes the true state of nature �.3 After observing �, the endorser

endorses any of the candidates A or B at a cost l, or remains silent without any cost. If he endorses

a candidate and that candidate wins the election, the endorser receives an amount of money r > l,

otherwise receives 0. The endorser is assumed to be an expected utility maximizer.

We model this scenario by a two-stage game where in the �rst stage the endorser observes the

true state of nature �, and takes an action from the set AI = fA;B;�g. Action A corresponds to

endorsing candidate A, action B corresponds to endorsing candidate B, and action � corresponds

to remaining silent. At the second stage of the game, each voter observes the endorsement activity

and his own preference type, and then all voters simultaneously cast their votes. At the end of the

second stage, the winner is announced, and the endorser earns r if the candidate he endorsed wins

the election, and earns 0 otherwise. There are three possible outcomes for the endorser; �l; 0 and

r� l. Therefore we need to consider only preferences over lotteries over these outcomes. We denote

utilities by u(�) and assume that it is increasing in the outcomes. We normalize the utilities so that

u(0) = 0.

For any �nite set R, let �(R) denote the set of all probability distributions over R. A mixed

strategy for the endorser is a map s : �! �(AI). A mixed strategy for voter i, �i, is a measurable

function from a voter's type and the endorser's action set to a probability of voting for candidate A,

i.e, �i : X �AI ! [0; 1].

We de�ne a voting equilibrium (s; ��) to be a Bayesian Nash Equilibrium of the above game

in which no voter uses weakly dominated strategies, and each voter uses the same strategy. The

implication of this is that, voters with a type x = 0 always vote for A, and voters with type x = 1
3We discuss how to relax perfect observability of the true state of nature later.
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always vote for B.

A strategy for voters has a cutpoint structure in this game if there are cutpoints xA; xB; x� such

that the voter votes for A after observing the action k of the endorser whenever the preference type

is smaller than xk and for B whenever the preference type is bigger than xk.

De�nition 3 A strategy for the voters � has a cutpoint structure in this game if there are cutpoints

xk with the property that 0 < xk < 1 and �(x; k) = 1 for x < xk; �(x; k) = 0 for x > xk:

Given a symmetric strategy pro�le � for the voters, let

t(�; �; k) =

Z
X
�(x; k)dF�(x) (6)

denote the probability that a randomly selected voter votes for A when the state of nature is �

and the investor's action is k. Then the probability that A wins the election after the action k of the

investor and the strategy � of the voters is calculated as:

pr(Awinsj�; �; k) =
nX

r=nq+1

�
n

r

�
� t(�; �; k)r � (1� t(�; �; k))n�r (7)

The right hand side of the above equation is the probability with which at least nq + 1 voters

vote for A. We will use the notation mn(t(�; �; k)) to express the probability that at least nq + 1

voters out of n voters vote for A when the probability that a randomly selected voter votes for A is

t(�; �; k).

Proposition 2 The game with endorser has a voting equilibrium, and in all voting equilibria the

strategies of the voters have a cutpoint structure.
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This proposition �rst establishes an existence result for a voting equilibrium, and says that every

voting equilibrium has a cutpoint structure. Having characterized the equilibrium structure, now we

study the behavior of the cutpoints when the electorate is large. In the next proposition we show

that asymptotically all non-extreme type voters vote for the candidate the endorser endorses.

Proposition 3 Let xnA; xnB; be the equilibrium cutpoints after observing support for A and B in the

voting game with n+1
1�a voters. For each " > 0, there is a N" such that for n > N", in any voting

equilibrium, xnA > 1� " and xnB < ".

Proposition 3 says that endorsements coordinate the voters to vote for the endorsed candidate.

The intuition for the result is as follows. Note that since the fraction of C votes is more than 1/3,

for a �xed voter strategy either the probability that A wins or B wins should converge to 0 in large

elections. Also in equilibrium the endorser endorses a candidate only if the probability that the

candidate wins given the equilibrium voter behavior is strictly positive when the electorate is large.

Suppose at some state of nature � endorser endorses candidate A. Then the probability that B wins

the elections at � gets very close to 0. Since the endorser endorses candidate A, voters infer from

the endorsement activity that the probability that B may win is much less than the probability with

which A may win. This in turn implies that the probability that their vote is pivotal in a close race

between B and C approaches to 0 much faster than the probability that their vote is pivotal in a

close race between A and C. Hence for any non-extremist voter, voting for A yields a better payoff

than voting for B.

We emphasize that there is a tension between the probability of winning and the pivotal prob-

abilities in other voting models in large elections. In our model the two probabilities move in the

same direction. The reason is that the required fraction of votes of non-extremist voters for coor-
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dination exceeds 1/2. Hence if A is winning with a positive proability (in the limit), the pivotal

probability in a race between A and C goes to zero at a much slower rate than the pivotal probability

in a race between B and C.

For an outside observer the equilibrium behavior of the voters looks like as if they are willing

to vote for a winning candidate. This behavior emerges in equilibrium since the probability that a

weaker candidate wins the elections converges to zero.

Our result would lose its strength if the endorser could verify the state of nature to the voters

(either costlessly or by paying a cost and getting some positive returns after he veri�es it). Because

then there would always be an equilibrium where candidate C wins4 when both candidatesA andB

are viable. There would still be other equilibria where coordination is achieved, however equilibria

where coordination failure is a possibility would remain.

It is critical for our result that the endorsement activity is rewarded conditional on the outcome

of the elections. This gives the right incentives to the endorser for undertaking the appropriate

endorsement activity after observing the state of nature. We only require that the reward is more

than the cost of endorsement.

Typically in costly signalling models, there is also a babbling equilibrium where the voters

ignore the message and the sender knowing this doesn't send any costly messages. In our model

this is not true. The reason is that, by the full support assumption, the state space is rich enough

to include at least a state for each candidate where the expected fraction of the extremists for that

candidate is big enough to ensure the victory of that candidate. At such a state of nature, it is a

dominant action for the endorser to support that candidate. There is also a state where both types
4In an earlier version of this paper we studied the case when the state of nature is known by the voters. We proved that

there is a sequence of equilibria where the cutpoints converge to the median voter, and hence the voters split their votes
and C wins with a probability that approaches 1.
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of extremists are big enough that a victory of C is inevitable. In such states, the endorser remains

silent. Therefore there is no babbling equilibrium in our model when the electorate is large enough.

The information that the endorser provides to the voters is coarse. In particular the voters don't

know the state of nature after observing the endorsement activity. This enables the endorser to

pool states where the victory of A is inevitable with those states where A is more viable than B.

Hence coarseness of information delivers the uniqueness (in the limit) of equilibrium cutpoints by

eliminating babbling equilibrium.

The result doesn't hinge on the fact that the endorser's action set doesn't include an option to

support candidate C. All our results would be still true when we include such an option.

De�nition 4 Candidate A (B) is said to be more viable than B (A) at state � 2 � if A is viable at �

and z�1 > z�2 (z�1 < z�2).

A candidate j 2 fA;Bg is more viable than the candidate j0 = fA;Bgnj if j is viable, and the

expected fraction of j extremists is more than that of j0: In theorem 2 we show that endorsements

achieve full coordination on the more viable candidate.

Theorem 2 For any � 2 � and for n large enough:

1. If A is more viable than B then the endorser endorses A w.p.1, and candidate A wins the

election with a probability close to 1.

2. If B is more viable than A, then the endorser endorses B w.p.1, and candidate B wins the

election with a probability close to 1.

3. If neither A nor B is viable, then the endorser remains silent, and candidate C wins the

election with a probability close to 1.
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Theorem 2 says that, the endorser endorses a candidate if and only if it is viable, and the expected

fraction of extremists for that candidate is more than the other candidate. The endorser remains

silent if none of the mainstream candidates is viable. When theorem 2 is combined with proposition

3 it follows immediately that the endorsed candidate wins the elections with a probability close to 1.

The intuition is as follows. By proposition 3, in all voting equilibria almost all of the non-extremist

voters vote for the endorsed candidate. So the endorser has more chances of getting the reward if

he endorses the candidate that has more expected number of extremist voters. And if neither of the

candidates is viable, the victory of C is inevitable, so the endorser remains silent.

Endorsements and Manipulation

In this section we introduce an ideological bias to the preferences of the endorser. We assume that

the endorser prefers candidate B to candidates A and C all other things being equal. All our results

would go through if the roles of candidates B and A were reversed. The preferences of the endorser

are represented by the following Von-Neumann utility function.

U(x; y) : fA;B;�g � fA;B;Cg ! R, where the �rst component is the endorsed candidate,

and the second one is the winner of the election. In particular,

U(x; y) = 1fx=yg � u(r � l) + 1fy=Bg � v + 1fx 6=y&x 6=�g � u(�l):

The endorser's preferences are common knowledge and he is an expected utility maximizer.

Endorser has a positive bias towards candidate B and its magnitude is v. Note that we normalize

the utility functions so that u(0) = 0. We assume that l > 0, r > l and v > 0.

Proposition 4 The game with a biased endorser has a voting equilibrium, and in all voting equi-
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libria the strategies of the voters have a cutpoint structure.

This proposition characterizes the equilibrium behavior of the voters. Using this result, in propo-

sition 5 we show that the endorser achieves full coordination across the electorate.

Proposition 5 Let xnA; xnB; be the equilibrium cut points after observing support for A and B in this

voting game with n+11�a voters. For each " > 0, there is a natural number N" such that for n > N",

in any symmetric equilibrium, cutpoint xnA > 1� " and cutpoint xnB < ".

Proposition 5 says that voters continue to follow the endorser, that is almost all non-extreme

preference types vote for the endorsed candidate. The next theorem is the main result of our paper:

Theorem 3 For any � 2 �, and for large enough n:

1. If B is viable then the endorser endorses B w.p.1, and candidate B wins the election with a

probability close to 1.

2. If A is viable and B is not viable then the endorser endorses A w.p.1, and candidate A wins

the election with a probability close to 1.

3. If neither A nor B is viable then the endorser stays silent w.p.1, and candidate C wins the

election with a probability close to 1.

This theorem says that, as long as candidate B is viable, the endorser endorses B, and B wins

the elections with a probability close to 1. Candidate A is supported only if B is not viable and

A is viable. The reason is that, as the number of voters gets large, the endorser cannot change the

outcome of the election in favor of B, because B has no chance of winning no matter what the

non-extreme preference types do.
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Manipulation with Imperfect Information

In this section, we answer the question: Can the endorser manipulate the elections when he observes

the state of nature only imperfectly? If the precision of the information doesn't increase fast enough

as the electorate size increases, then coordination problems remain in some equilibria, and the

manipulation power of the endorser might be gone. The reason is the following: In the game

without the endorser, the impossibility of full coordination doesn't depend on the prior probability

distribution of the states of nature. When the endorser has imperfect information about the true state

of nature, the endorsement activity can at best transmit endorser's (imperfect) information. But this

additional information changes the distribution over states of nature without changing the support of

the distribution. Therefore full coordination would be impossible similar to the corollary of theorem

1.

However, if the precision of the endorser's information also increases fast enough with the

electorate size, all our results continue to hold5. For the following analysis we assume that the

endorser has acces to the results of a poll that informs him/her about the number of A extremists

and number of B extremists in a group of voters of size s � n where s 2 (0; 1) is a �xed number.

Let p = (p1; p2; p3) denote a vector that contains the frequencies of A extremists, B extremists and

non-extremists in the poll. We assume that the voters are truthful in polls. As the number of voters

n increases, p becomes a very accurate estimate of the state of nature �. The only difference we

bring to the model is that the endorser doesn't observe the state of nature �; instead observes the

outcome of the poll p.
5In particular suppose for each electorate size of n, the endorser observes a signal from a set Yn. A suf�cient condition

on the precision of the signals for our results to hold is the following: For each � > 0, 9� < 1 and an integerN such that
whenever n > N : for each y 2 Yn; 9�y 2 � satisfying Pr(j� � �yj > � j y) < �n. In lemma 2 in the appendix we
show that this is satis�ed when the endorser observes the poll results.
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Theorem 4 When the endorser observes the summary statistic p, theorem 2 and theorem 3 continue

to hold.

Theorem 4 states that our results (both coordination and manipulation effects of endorsements)

are robust to imperfect information provided that endorser's information gets more precise with the

electorate size. However if the endorser's information structure remains �xed (and imperfect) as the

electorate size gets larger, our results (in particular the uniqueness of equilibrium behavior) don't

hold anymore.

Robustness to Model Assumptions

In this section we analyze different scenarios that link the assumptions of our model to the manipu-

lation result.

Costless observation: If each voter observes the realization of the state of the nature, then there

is always an equilibrium where the votes of the non-extremist voters are split among candidates A

and B, and candidate C wins the elections. This result covers situations where the state of nature is

revealed to the public exogeneously, or by a sender who has no cost of revealing information, and

doesn't have any incentives to predict the outcome of the election.

Rewards: Suppose we assumed that the endorser is only motivated with the outcome of the

election, and there is no monetary reward for when the endorsed candidate wins the elections.

In other words, the endorser's reward is independent of his endorsement. No matter how costly

(costless) the endorsement activity is, there is a babbling equilibrium where the voters ignore the

endorser's messages if there is any. In such equilibria any equilibrium in the original game without

endorsements remain to be equilibria.
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Constant fraction of C supporters: We assume that �, the fraction of C votes, is constant across

all states of nature. None of our results would change if �was also part of the description of the state

of nature, and the endorser observed � before the endorsement decision as long as � > 1=3 (part of

Assumption 1) at all states of nature. That is we require that the existence (or lack) of coordination

problem is common knowledge across the electorate. When � is allowed to be less than 1=3, it

becomes possible that a voter can be pivotal between a race between A and B (a possibility that

never occurs when � > 1=3), and the manipulation power of the endorser may be gone.

Constant rewards across states of nature: We assume that the amount of rewards that the en-

dorser receive is constant (and bigger than the cost of endorsement) across the states of nature. If

the rewards were less than or equal to the cost of endorsement when say A is viable and B is not

(a situation where the endorser is not needed for coordination), then the uniqueness result doesn't

hold. However we could interpret the rewards as follows: The endorser may be hurt if he doesn't

take sides with the winning candidate. In this interpretation, �ri becomes the cost of not endorsing

the winning candidate. As long as the cost of not endorsing the candidate is more than the cost of

endorsements, that is as long as ri � li > 0, all of our results continue to hold.

Endorsement is a binary decision: We assume that there are only two levels of endorsement,

for example endorsing at an intermediate level is not allowed. Let c(e) : [0; 1] ! R+ and r(e) :

[0; 1] ! R+ be increasing, continous and bounded functions interpreted as the cost of endorsing

a candidate and the reward of endorsing a winning candidate an intensity level e respectively. If

c(0) = r(0) = 0 and there exists an e� > 0 with r(e�) � c(e�) > 0, then theorems 2 and 3 would

continue to hold. The endorser would choose an intensity level e� = max r(e)� c(e) whenever he

endorses a candidate.

Multiple Endorsers:

23



If there are many endorsers with similar or divergent ideological preferences, there exist equi-

libria where all endorsers end up endorsing the same candidate. In such equilibria voters follow the

recommendation of only one endorser. In other words the manipulation power is given to only one

endorser. If this endorser has a bias he manipulates the outcome as in theorem 3 and if he doesn't

have a bias then he manages to coordinate the electorate. In all such equilibria full coordination is

achieved, and the probability that candidate C wins gets close to 0 at any state of nature where either

A or B is viable.

In the presence of multiple endorsers there is less scope for manipulation because a purely

money motivated endorser is suf�cient for coordination across the electorate. In this equilibrium all

other endorsers lose their manipulation power. Note that all else equal, endorsers prefer to endorse

the winning candidate. When the electorate coordinates on one endorser, then other endorsers enjoy

the opportunity to collect the pro�ts by endorsing the same candidate.

However there may also be equilibria where the voters coordinate on a candidate only if both

endorsers endorse the same candidate, but they split the votes when the endorsers endorse differ-

ent candidates. In this case there is a mixed strategy equilibrium where the endorsers randomize

between endorsing A and B when both candidates are viable6.

Summary

We study elections with 3 candidates where the majority of the voters prefer to avoid the victory of

candidate C. However the existence of 2 other candidates (A and B) creates a coordination problem,

that is if the voters split their votes among A and B, C gets elected.
6For example when there are 2 endorsers with biases in different directions, a mixed strategy equilibrium that re-

sembles the mixed strategy equilibrium of the battle of the sexes game exists. If the endorsers have biases in the same
direction then a mixed strategy equilibrium that resembles the mixed strategy equilibrium of a coordination game exists.
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When there is uncertainty about the preferences across the electorate, voters never fully manage

to coordinate their votes on one of the mainstream candidates. Even when the uncertainty about

the distribution of the preferences is resolved exogeneously there is an equilibrium where the voters

split their votes in such a way that C wins again.

We model political endorsements as investment opportunities by media groups, or people who

are better informed about the probability distribution of the preferences across the electorate. En-

dorsing a candidate is a costly and publicly observable activity, and the endorser gets private bene�ts

if the endorsed party wins the elections.

We show that political endorsements always (in all voting equilibria) manage to prevent the

victory of C by fully coordinating the voters on one of the mainstream candidates A or B. If the

endorser is only money motivated coordination is achieved on the stronger mainstream candidate.

If the endorser also has an ideological bias towards one of the mainstream candidates then coordi-

nation is achieved on his more preferred candidate instead of the stronger candidate resulting in a

manipulation.

We view our results as suggesting that pre-election activities by media goups in large elections

may coordinate voters when disagreement is extremely undesirable. Coordination failures disappear

most prominently when the parties are allowed to give private bene�ts to the endorser if they win

the elections.

Enabling coordination gives the endorser manipulation power over the election outcome. How-

ever we would like to emphasize that our model doesn't leave out the possibility that candidate C

wins the elections even in the presence of an endorser. First, there is uncertainty about the states of

nature. In all scenarios we analyze the probability that neither candidate A nor B is viable is strictly

positive. Second, our results are true for large elections. For instance, even when A is viable, and
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the endorser endorses A, the exact number of each preference type is determined from a probability

distribution. Therefore, our model allows the endorser to make mistakes, and candidate C may win

the elections, however the probability of this approaches to zero as the electorate gets larger.

In the paper we don't allow the endorser to support the Condorcet loser, however all results

would hold if we allowed this. In all voting equilibria of this scenario, the endorser would endorse

the Condorcet loser whenever neither candidate A nor B is viable.
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Proof of Theorem 1:

We start by proving the following lemma:

Lemma 1 Let ffn(:)gn=1;2;::: be a sequence of continous functions and fn : [0; 1] ! [a; b] for

some positive a and b, and the sequence of functions fn converge to f (in the sup norm). Let

Sn =
R 1
0 (k

q(1� k)1�q)nfn(k)dk. Then limn!1
p
nSn

fn(q)(qq(1�q)1�q) exists, and is independent of f .
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Proof.

p
nSn

(qq(1� q)1�q)n =
p
n

Z 1

0
(
kq(1� k)1�q
(qq(1� q)1�q))

nfn(k)dk

=
p
n

Z q

0
(
kq(1� k)1�q
(qq(1� q)1�q))

nfn(k)dk +
p
n

Z 1

q
(
kq(1� k)1�q
(qq(1� q)1�q))

nfn(k)dk

Let Ln =
p
n
R q
0 (

kq(1�k)1�q
(qq(1�q)1�q))

nfn(k)dk, Un =
p
n
R 1
q (

kq(1�k)1�q
(qq(1�q)1�q))

nfn(k)dk:

Fix " > 0. Let r(t) = ( tq(1�t)1�q
(qq(1�q)1�q)). Let t1; t2; :::; tn="+1 be numbers between 0 and q such

that r(ti) = (1� (i�1)"
n ).

Observation: r is an increasing and concave function in the interval [0; q]. Therefore ti � ti+1

is decreasing in i.

Step 1: Ln �
p
n(
Pn="
i=1 r(ti)

n(ti � ti+1)maxk2[ti+1;ti] fn(k))

Step 2:
p
n(
Pn="

i=b
p
nc r(ti)

n(ti � ti+1)maxk2[ti+1;ti] fn(k))! 0 because
p
n(1�

p
n"
n )n ! 0

Step 3:
p
n(t1 � t2)!

q
"

q(1�q) , r(ti)
n ! e�(i�1)".

Step 4:
P1
i=1 e

�(i�1)" < 1 therefore
p
n(
Pn="
i=1 r(ti)

n(ti � ti+1)) has a limit independent

of fn. Each fn is bounded above, and tbpnc ! t1 hence maxk2[t1;tbpnc] fn(k) ! f(q) and

lim
p
n(
Pn="
i=1 r(ti)

n(ti � ti+1)maxk2[ti+1;ti] fn(k)) = f(q) lim
p
n(
Pn="
i=1 r(ti)

n(ti � ti+1))

Step 5: Ln �
p
n(
Pn="
i=2 r(ti)

n(ti�ti+1)mink2[ti;ti�1] fn(k)), similar to the previous steps, we

have lim
p
n(
Pn="
i=2 r(ti)

n(ti � ti+1)mink2[ti;ti�1] fn(k)) = f(q) lim
p
n(
Pn="
i=1 r(ti)

n(ti � ti+1))

Step 6: f(q) lim
p
n(
Pn="
i=1 r(ti)

n(ti�ti+1))�f(q) lim
p
n(
Pn="
i=1 r(ti)

n(ti�ti+1)) =
q

"
q(1�q)

Step 7: Since the choice of " is arbitrary, limLnf(q) exists and is independent of f .

step 8: Similarly limUnf(q) exists and is independent of f , therefore
limSn
f(q) exists and is independent

of f .
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Proof of theorem 1. If xn ! x, then u(B;xn)u(A;xn)
! u(B;x)

u(A;x) . The equilibrium condition is that

u(B; xn)

u(A; xn)
=
Eg0 [(F

�
� (xn))

nq � (1� F�� (xn))n�nq]
Eg0 [(F

�
� (xn))

n�nq � (1� F�� (xn))nq]
.

Equivalently,

u(B; xn)

u(A; xn)
=

R 1�z�1
0

R 1
0 (z

�
1 + z

�
3F (xn))

nq � (1� z�1 � z�3F (xn))n�nq � g(z�1 ; 1� z�1 � z�3 ; z�3) � d(z�1)d(z�3)R 1�z�1
0

R 1
0 (z

�
1 + z

�
3F (xn))

n�nq � (1� z�1 � z�3F (xn))nq � g(z�1 ; 1� z�1 � z�3 ; z�3) � d(z�1)d(z�3)

For each xn, let fn(k) =
R k
maxf k�F (xn)

1�F (xn) ;0g
g(z1; 1 � z1 � k�z1

F (xn)
; k�z1F (xn)

)dz1 for k 2 [0; 1], and

f(k) =
R k
maxf k�F (x)

1�F (x) ;0g
g(z1; 1� z1 � k�z1

F (x) ;
k�z1
F (x) )dz1. Then we have:

u(B; xn)

u(A; xn)
=

R 1
0 (k

q(1� k)1�q)nfn(k)dkR 1
0 (k

1�q(1� k)q)nfn(k)dk

Since xn ! x, fn converges to f . Since g is bounded above, there is a uniform upper bound

for each fn. By lemma 1 and by a change of variables for the denominator (u = 1 � k), we have

lim

R 1
0 (k

q(1� k)1�q)nfn(k)dkR 1
0 (k

1�q(1� k)q)nfn(k)dk
= f(q)

f(1�q) . We also have lim
u(B;xn)
u(A;xn)

= u(B;x)
u(A;x) , hence

u(B;x)
u(A;x) =

f(q)
f(1�q) .

Proof of Proposition 2:

Proof. The action set for the endorser is to support A, to support B, or stay silent after observing

the true state of nature, �. We denote this by AI = fA;B;�g: The action set for a voter is to

vote for A or B. We allow mixed strategies for the endorser. Then a strategy for the endorser is a

collection fs�g, where s� is a probability distribution over the set AI . Let's de�ne pr(Aj�i; �; j) as

the probability that A wins the election when the state of nature is �i, voters use strategy � and the
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endorser chooses the action j 2 AI .

The endorser's best response to any symmetric strategy � of the voters is as follows: Observing

�;

the endorser endorses A (s�(A) > 0) only if:

pr(Aj�; �;A) � u(r � l) + (1� pr(Aj�; �;A)) � u(�l) � u(0) = 0 or;

pr(Aj�; �;A) � �u(�l)
u(r � l)� u(�l) ; and pr(Aj�; �;A) � pr(Bj�; �;B)

the endorser endorses B (s�(B) > 0) only if:

pr(Bj�; �;B) � �u(�l)
u(r � l)� u(�l) ; and pr(Bj�; �;B) � pr(Aj�; �;A)

the endorser stays silent (s�(�) > 0) only if:

pr(Aj�; �;A) � �u(�l)
u(r � l)� u(�l) and pr(Bj�; �;B) �

�u(�l)
u(r � l)� u(�l)

Fix a positiveinteger n. Let A� � f� 2 �jmn(z�1) �
�u(�l)

u(r � l)� u(�l) andm
n(z�1) � mn(1�

z�1)g, A� is the set of states at which the endorser endorses A irrespective of the strategy of the

non-extremist voters. By the full support assumption G(A�) > 0 and s�(A) = 1 for every � 2 A�

and any equilibrium strategy s. Similarly there is a positive measure subset of � called B� such

that s�(B) = 1 for every � 2 B�

Now, we will show that any best response of the voters to a strategy which is weakly undomi-

nated for the voters has a cutpoint structure.

30



The pivotal probabilities after observing action k of the endorser are as follows:

Pr(pivAj�; k) =
Z
�

�
g0(�) � s�(k)R

� g
0(�j) � s�j (k)d�j

�
�
�
n

qn

�
� t(�i; �; k)qn � (1� t(�i; �; k))n�qn � d�

Pr(pivBj�; k) =
Z
�

�
g0(�) � s�(k)R

� g
0(�j) � s�j (k)d�j

�
�
�
n

qn

�
� t(�i; �; k)n�qn � (1� t(�i; �; k))qn � d�

Note that all the above probabilities are non zero for k 2 fA;Bg. A voter votes for A(B) if

Pr(pivAj�; k) � u(A; x) > (<) Pr(pivBj�; k) � u(B; x). As the pivotal probabilities are non zero,

there are unique numbers xA and xB each strictly between 0 and 1, and each satisfy Pr(pivAj�; k) �

u(A; xk) = Pr(pivBj�; k) � u(B; xk) for k 2 fA;Bg. By assumption 3, after observing the action

k of the investor, voter types with x < xk vote for A and those types with x > xk vote for B. These

cutpoints are bounded away from 0 and 1 (say between " and 1� "). This follows the same lines in

the proof of proposition 1.

For any 2 cutpoints xA; xB 2 ["; 1 � "], �A(xA; xB) = f�jmn(F�(xA)) >
�u(�l)

u(r � l)� u(�l)

and F�(xA) > F�(xA)g; and similarly de�ne �B(xA; xB) and ��(xA; xB). �A(xA; xB) and

�B(xA; xB) are non-empty and open sets, and ��(xA; xB) may be an empty set. Observe that

the best response of the endorser when the state is in the set �A(xA; xB) (�B(xA; xB)) is to endorse

candidate A (B) w.p.1. Combining this with the full support assumption and the assumption that
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there are no jumps, we have the best response 	 of the voter cutpoints as:

	(xA; xB; A) :
u(B;	(xA; xB; A))

u(A;	(xA; xB; A))
=

R
�A(xA;xB)

g0(�) �
�
n
qn

�
� F�(xA)qn � (1� F�(xA))n�qn � d�R

�A(xA;xB)
g0(�) �

�
n
qn

�
� (1� F�(xA))qn � F�(xA)n�qn � d�

	(xA; xB; B) :
u(B;	(xA; xB; B))

u(A;	(xA; xB; B))
=

R
�B(xA;xB)

g0(�) �
�
n
qn

�
� F�(xB)qn � (1� F�(xB))n�qn � d�R

�B(xA;xB)
g0(�) �

�
n
qn

�
� (1� F�(xB))qn � F�(xB)n�qn � d�

Note that the expressions on the right hand side of the equalities are continous in xA and xB ,

hence 	(xA; xB; A) and 	(xA; xB; B) are continous functions of xA and xB . To show the exis-

tence of the equilibrium consider the function:

� : ["; 1� "]2 ! ["; 1� "]2 such that:

�(x; y) = (	(x; y;A);	(x; y;B))

� is a continous function, hence by Brouwer �xed point theorem, the map � has a �xed point.

Let x�A; x
�
B be a �xed point. If ��(x

�
A; x

�
B) is non-empty, then x

�
� is the solution to

u(B; x��)

u(A; x��)
=

R
��(x�A;x

�
B)
g0(�) �

�
n
qn

�
� F�(x��)qn � (1� F�(x��))n�qn � d�R

��(x�A;x
�
B)
g0(�) �

�
n
qn

�
� (1� F�(x��))qn � F�(x��)n�qn � d�

if ��(x�A; x
�
B) is empty, then we set x

�
� any equilibrium cutpoint if the voters believed w.p 1

that the state of nature is � = (1=3; 1=3; 1=3). Clearly these cutpoints constitute an equilibrium.

Proof of Proposition 3:

Proof. By large sample properties of binomial distribution, we know that for each � > 0, 9N� such

that for n > N�,mn(p) � u(0)� u(�l)
u(r � l)� u(�l) implies p > q� �. Let � be such that q� � > 1=2. In
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any voting equilibrium of the game with n > N�, endorser endorses A only if the randomly chosen

voter votes for A with probability more than q � �:

Also the equilibrium cutpoint xnA satis�es:

u(B; xnA)

u(A; xnA)
=

R
�A(x

n
A;x

n
B)
g0(�) �

�
n
qn

�
� F�(xnA)qn � (1� F�(xnA))n�qn � d�R

�A(x
n
A;x

n
B)
g0(�) �

�
n
qn

�
� (1� F�(xnA))qn � F�(xnA)n�qn � d�

Note that � 2 �A(xnA; xnB) implies F�(xnA) > q � � > 1=2 for n > N�. But this implies,

u(B; xnA)

u(A; xnA)
>

�
q � �

1� (q � �)

�(2q�1)n

As right hand side goes to in�nity as n ! 1, xnA ! 1: A very similar analysis shows that

xnB ! 0.

Proof of Theorem 2:

Proof. 1. At �, A is more viable than B implies that F�� (1) > 1� F�(0). Since F� is continuous in

the interior, there is an � > 0 such that F�(1� �) > 1� F�(0). By proposition 3, we know that for

n large enough xnA; x
n
B are in � neighborhood of 1 and 0. So F�(x

n
A) � F�(1 � �) > 1 � F�(0) �

1� F�(xnB), that is supporting A has a better chance of getting the payoff r. Since A is also viable,

F�� (1) > q, and there is a � such that F�(1 � �) > q. For large enough n, xnA > 1 � �, and

F�(x
n
A) > q. For large enough n, m

n(F�(x
n
A)) >

�u(�l)
u(r � l)� u(�l) by large sample properties of

binomial distribution. This with the inequality F�(xnA) > 1�F�(xnB) implies that endorser endorses

A w.p.1 after observing � for large enough n.

2. Same as 1.
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3. In this case, F�(xnA) � F�� (1) < q, and 1 � F�(xnB) � 1 � F�(0) < q, so mn(F�(x
n
A)) <

�u(�l)
u(r � l)� u(�l) , and m

n(1 � F�(xnB)) <
�u(�l)

u(r � l)� u(�l) for n large enough, and the proba-

bility that C wins goes to 1, so the endorser stays silent.

Proof of Proposition 4:

Proof. We �rst characterize the best responses of the endorser to weakly undominated strategies of

voters, �. Let v(jj�i; �) be the expected payoff of the endorser if he endorses candidate j, when the

voters use the strategy �. Then,

v(Aj�i; �) = u(�l) � (1� pr(Aj�i; �; A)) + u(r � l) � pr(Aj�i; �; A) + v � pr(Bj�i; �; A)

v(Bj�i; �) = u(�l) � (1� pr(Bj�i; �; B)) + (v + u(r � l)) � pr(Bj�i; �; B)

v(�j�i; �) = v � pr(Bj�i; �;�)

s�i(j) > 0 only if v(jj�i; �) = maxfv(Aj�i; �); v(Bj�i; �); v(�j�i; �)g

Fix n > 1. Let � be a cutoff strategy with the cutoffs xA = 0, xB = 1, x� = 1. Let A� � f� 2

�jv(Aj�; �) > v(Bj�; �) and v(Aj�; �) > v(�j�; �)gg,A� is the set of states at which the endorser

endorses A irrespective of the strategy of the non-extremist voters. By the full support assumption

G(A�) > 0 (note that for � = (1; 0; 0), v(Aj�; �) > v(Bj�; �) and v(Aj�; �) > v(�j�; �), since

the function v is continous in �, G(A�) has positive measure) and s�(A) = 1 for every � 2 A� and

any equilibrium strategy s. Similarly there is a positive measure subset of � called B� such that

s�(B) = 1 for every � 2 B�

The rest of the proof follows similar lines as proposition 2 hence we skip it and refer the reader

to the working paper version of this paper for details.

34



Proof of Proposition 5 and Theorem 3:

Proof. Step 1. xnB ! 0.

If the endorser endorses B at a state of nature �, then:

u(�l) � (1 � pr(Bj�; �;B)) + (v + u(r � l)) � pr(Bj�; �;B) � v � pr(Bj �; �;�). Since v is

non-negative, we obtain:

u(�l) � (1� pr(Bj�; �;B)) + (v + u(r � l)) � pr(Bj�; �;B) � 0

which is true only if mn(1 � F�(xnB)) �
�u(�l)

v + u(r � l)� u(�l) . When n is large, this is true only

if 1 � F�(xnB) > q � � for each � > 0. The rest of the proof for xnB ! 0 is identical to that of

proposition 3.

Step 2. The endorser endorses B whenever B is viable.

At any �i where candidate B is viable pr(Bj�i; �; B) gets close to 1 as n increases since xnB ! 0.

Then optimality of endorsing candidate B follows.

Step 3. xnA ! 1.

At a state of nature � the endorser endorses A only if:

i) u(�l) � (1� pr(Aj�; �;A)) + u(r � l) � pr(Aj�; �;A) + v � pr(Bj�; �;A) � v � pr(Bj �; �;�),

and ii) candidate B is not viable (otherwise s/he would endorse candidateB from step 1). If B is not

viable, then pr(Bj�; �;A) ! 0 and pr(Bj �i; �;�) ! 0. Then we have the following inequality,

mn(F�(x
n
A)) �

�u(�l)
u(r � l)� u(�l) > 0. For n big enough, this is true only if F�(x

n
A) > q � � for

each � > 0. Again the rest of the proof is identical to that of proposition 3.

Step 4. The endorser endorses A whenever A is viable and B is not viable, and doesn't endorse any

candidate if neither of them is viable.
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Step 2 established that endorser endorses B whenever it is viable. At any �i where candidate A

is viable but B is not, since xnA ! 1, pr(Aj�i; �; A) ! 1 and optimality of endorsing candidate

A follows. When neither A nor B is viable, both pr(Aj�i; �; �) and pr(Bj�i; �; �) go to 0, hence

staying silent becomes optimal.

Proof of Theorem 4:

We start by some de�nitions. Let Tn = f( a1sn ;
a2
sn ;

a3
sn)ja1+a2+a3 = sn, ai 2 Z+ for i 2 f1; 2; 3gg

be the set of all possible poll outcomes in the game when there are n voters. Let tn = (t1n; t2n; t3n)

denote a generic element of Tn and let Pn be the probability distribution over outcomes W =

�� Tn.

A strategy for the endorser � is a mapping from the set of all poll outcomes Tn to the set of all

probability distributions over AI . We use the following lemma about Pn.

Lemma 2 8" > 0, � = (�1; �2; �3) 2 �, tn 2 Tn, 9� < 1 and a N s.t. for n>N, Pn(j�i � tinj >

") < �n for each i 2 f1; 2; 3g.

Proof of Lemma 2. By the central limit theorem,
p
sn(�i � tin) ! N(0; �i(1 � �i)) where

N(0; �i(1��i)) is the normal distribution with mean 0 and variance �i(1��i). Let "� = "

max�i2[0;1]
p
�i(1��i)

=

2", thenPn(j�i�tij > ") = Pn(
p
snj�i�tijp
�i(1��i)

>
p
sn"p

�i(1��i)
)! 2

R1
"
p
sn

��

1
2
p
�
e�y

2
dy �

R1
"�
p
sn

1p
�
e�y

2
dy:

Using the following well known inequality for normally distributed random variables,

Z 1

x

1

2
p
�
e�y

2
dy <

1

2
p
�
e�x

2
=x

we obtain: Z 1

"�
p
sn

1p
�
e�y

2
dy <

e�("
�)2sn

p
� � "�

p
sn
< (e�("

�)2s)n
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for n large enough (for n satisfying
p
� � "�

p
sn > 1). Since e�("�)2s < 1; picking � = e�("

�)2s

proves the assertion.

Proof of theorem 4. step 1: There is a N such that for any n > N , Pn(t 2 Tnj �(t)(A) = 1) > 0,

Pn(t 2 Tnj �(t)(B) = 1) > 0 and Pn(t 2 Tnj �(t)(?) = 1) > 0. This follows from Lemma 2

and the full support assumption on �. G(� 2 �j z�1 > q + �) > 0 for some � > 0. Consequently,

there is an integer N1 such that for n > N1, Pn(t1 > q + �
2 j z

�
1 > q + �) > 1 � �n1 for some

�1 < 1. Using Lemma 2 again, there is an integer N2 such that for n > N2, Pn(�1 > q + �
4 j

t1 > q+
�
4 ) > 1��

n
2 for some �2 < 1. Therefore, by the law of large numbers, there is an integerN3

such that for n > N3; �(t)(A) = 1 for t such that t1 > q + �
2 . Choosing N = maxfN1; N2; N3g,

for n > N , Pn(t 2 Tnj �(t)(A) = 1) > G(� 2 �j z�1 > q + �)(1� �n1 ) > 0. The same argument

can be used to prove Pn(t 2 Tnj �(t)(B) = 1) > 0 and Pn(t 2 Tnj �(t)(?) = 1) > 0.

step 2: Let xnB denote an equilibrium cutpoint for when B is endorsed and the number of voters is

n. Let xB be a limit point of a sequence of cutpoints. For each � > 0 there is an integer N(�)

such that if the endorser endorses B after observing some poll outcome t 2 Tn, then t2 + t3(1 �

F (xB)) � q � � for n > N(�). This follows from the law of large numbers, because otherwise

if t2 + t3(1 � F (xB)) < q � �, then t2 + t3(1 � F (xnB)) < q � � for n large enough, and

Pn(z�2 + z
�
3F (x

n
B) � q��jt)! 0 (since by the law of large numbers the posterior probability that

� is � away from t goes to zero for any positive �), hence the endorser wouldn't endorse B whether

he has a bias for B or not.

step 3: Let Pn(tj�) be the conditional probability that poll outcome is t at the state of nature �. Let

p(t; �) =

 
g(�) � Pn(tj�) � �(t)(B)P

t2Tn
R
�j2� g(�j) � P

n(tj�j) � �(t)(B)d�j

!
be the joint probability that the sate of

nature is � and the poll outcome is t conditional on the endorser endorsing candidate B. Then the
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cutpoint xnB satis�es:

u(B; xnB)

u(A; xnB)
=

X
t2Tn

R
�2� p(t; �) �

�
n
qn

�
� (F�(xnB))qn � (1� F�(xnB))n�qnd�X

t2Tn
R
�2� p(t; �) �

�
n
qn

�
� (F�(xnB))n�qn � (1� F�(xnB))qnd�

Pick " = 2q�1
4 , let � be the number that satis�es the assertion in lemma 2. Choose � such that

i)
mink2(q��;q+�)(k)

q � (1� k)1�q

(1� q)1�q � (q)q > �, ii) mink2(q��;q+�)(k)q � (1 � k)1�q > 1=2 and iii)

� < 2q�1
4 :Take a convergent subsequence of xnB converging to some number xB . Let �B be the set

of states � for which 1� F�(xB) 2 (q � �; q + �). The following inequality follows:

u(B; xnB)

u(A; xnB)
� (1� �n)(1=2)n + �n(q)qn(1� q)qnX

t2Tn
R
�2�B p(t; �) � d�mink2(q��;q+�)(k)

qn � (1� k)n�qn

This is because: if �(t)(B) > 0, t2 + t3(1 � F (xnB)) � q � �. But then for any � such

that F�(xnB) � 1=2; j�i � tij > " for some i 2 f1; 2; 3g, and by Lemma 2, the probability that

F�(x
n
B) � 1=2 is less than �n conditional on �(t)(B) > 0. For F�(xnB) � 1=2, F�(xnB)

q(1 �

F�(x
n
B))

1�q � 1=2. F�(xnB)
q(1 � F�(xnB))1�q is maximized at F�(xnB) = q > 1=2, so an upper

bound for the pivotal probability in a race between B and C is (1� �n)(1=2)n+ �n(q)qn(1� q)qn.

The probability that the state of nature � is in �B conditional on the endorser endorsing candidate B

is
X

t2Tn
R
�2�B p(t; �)d�. Since � > 0, as n gets large, this probability stays bounded above some

lower bound b strictly between 0 and 1.

Since � was chosen such that
mink2(q��;q+�)(k)

q � (1� k)1�q

(1� q)1�q � (q)q > �, andmink2(q��;q+�)(k)q �

(1� k)1�q > 1=2, (1� �n)(1=2)n + �n(q)qn(1� q)qnX
t2Tn

R
�2�A p(t; �)d� �mink2(q��;q+�)(k)

qn � (1� k)n�qn
goes to 0.

u(B; xnB)

u(A; xnB)
! 0 gives us xnB ! 0.

Similarly
u(B; xnA)

u(A; xnA)
! 1, hence xnA ! 1.
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step 4: Steps 1-3 established that xnA ! 1 and xnB ! 0. In words, non-exremist voters follow the

recommendation of the edorser. To show that theorem 2 holds, we make the following observations:

8� > 0 9N� s.t if the number of voters is more than N� then:

i) if t1 > t2 + � and t1 + t3 > q + � then t = (t1; t2; t3) 2 �A

ii) if t2 > t1 + � and t2 + t3 > q + � then t = (t1; t2; t3) 2 �B

iii) if t1 + t3 < q � � and t2 + t3 < q � � then t = (t1; t2; t3) =2 �A [ �B

proof of i) : Pn(�1 > �2 and �1+�3 > q+�=2 j t1 > t2+� and t1+t3 > q+�)! 1 by the law

of large numbers. Since xnA ! 1, the probability with which A wins the elections if the endorser

endorses A after observing t goes to 1, and the probability with which A wins if A is endorsed

becomes strictly larger than the probability with which B wins if B is endorsed. Therefore t 2 �A.

Proofs of ii) and iii) are similar to the proof of i).

Since � is arbitrary, the probability that t 2 �A for when A is more viable than B gets arbitrarily

close to 1 by the law of large numbers. This proves that the probability with which A wins the

elections when A is more viable than B gets close to 1. Theorem 3 follows from steps 1-3 in a

similar way.

39


