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Abstract

For different purposes, economists may use different topologies on types. We char-
acterize the relationship among these various topologies. First, we show that for any
general types, convergence in the uniform-weak topology implies convergence in both
the strategic topology and the uniform strategic topology. Second, we explicitly con-
struct a type which is not the limit of any finite types under the uniform strategic
topology, showing that the uniform strategic topology is strictly finer than the strategic
topology. With these results, we can linearly rank various topologies on the universal
type space, which gives a clear picture of the relationship between the implication of
types for beliefs and their implication for behaviors.
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1 Introduction

If two agents have similar beliefs on some payoff-relevant uncertainty, do they always make
similar decisions? In the single-person-decision-making setup, where proximity of beliefs
about uncertainty can be measured by the standard weak*-topology, the answer is clearly yes.
The answer is much more complicated in the multi-person-game setup where agents’ beliefs
about each other’s beliefs play a crucial role in determining the outcome of the interaction.

In this setup, do similar beliefs still imply similar behaviors?

One compact way to formulate the complicated object of “beliefs about beliefs” is to
use the notion of types developed by Harsanyi (1967/1968). A player’s type specifies a belief
over the set of unknown relevant parameters and opponents’ type profiles. Mertens and
Zamir (1985) shows that the set of all coherent hierarchies of beliefs is the universal type

space and Harsanyi’s idea suffers no loss of generality.

In practice, an ideal formulation of an economic situation may involve a very compli-
cated type space which is hard to analyze directly. For reasons of tractability, economists
may therefore replace this ideal formulation with some simpler type space in order to solve
a simpler problem. To make this approximation meaningful, we should require that these
simpler types be "close" to the true types so that they will exhibit "similar" behaviors in

games. To measure the "closeness" of types, we need to define a topology on types.

Two kinds of information are encapsulated in a type. On the one hand, defined directly
on hierarchies of beliefs, a type contains an agent’s belief information. On the other hand, as
shown in Dekel, Fudenberg, and Morris (2006) [hereafter DFM], any two different Mertens-
Zamir types have different behaviors in some game, and hence, the behaviors of an agent are
also implicitly encoded in a type. We can therefore define topologies on types according to
these two aspects. Examples of "belief" topologies include the product topology introduced
by Mertens and Zamir (1985) and the uniform-weak topology introduced by Di Tillio and
Faingold (2007). Examples of "behavior" topologies are the strategic topology and the wuni-
form strategic topology both introduced by DFM. A careful study of the connection among
these topologies will reveal the relationship between the belief implication of types and the

behavior implication of types, which is the main theme of this paper.



The product topology is used by Mertens and Zamir to achieve their homeomorphism
result. A sequence of types t" converges to a type t in the product topology if and only if
the k*-order belief of " converges to that of ¢ for any k. Since proximity of tails of the
hierarchies of " and t is not required, it is now well known that we may have two types
which are close under the product topology but exhibit very different strategic behaviors

(see Rubinstein (1989)).

This raises the question as to whether there exists a topology under which nearby types
always have similar strategic behavior (see Monderer and Samet (1989), Monderer and Samet
(1996), Kajii and Morris (1998), and Dekel, Fudenberg, and Morris (2006)). In particular,
DFM propose the strategic topology which is just strong enough to guarantee that for every
finite game, the correspondence which maps types into ¢—interim-correlated-rationalizable
(e-ICR) actions is continuous. More precisely, DFM show that upper-hemicontinuity of the
e-ICR correspondence under strategic convergence is equivalent to product convergence, and
it is precisely the lower-hemicontinuity property which makes strategic convergence a more

stringent requirement.

DFM also introduce the notion of uniform strategic convergence, which adds to the
notion of strategic convergence the additional requirement that the degree of similarity of
e-ICR actions is uniform over all bounded finite games. In contrast to the strategic topology,
the uniform strategic topology has its own importance, especially when applied to mechanism

design. We discuss this importance further in Section 5.1.

Though useful, DFM’s definitions of strategic topologies are complex since they involve
direct reference to best replies, which are tied to games. In particular, we are not able to
tell whether a sequence of types converges in the strategic topology, unless we study the
behaviors of all these types in all finite games. To address this issue, Di Tillio and Faingold
(2007) propose the uniform-weak topology. A sequence of types t" converges to a type t
in the uniform-weak topology if and only if the k'"-order belief of ¢" converges to that of ¢
for any order k and the rate of convergence is uniform over k. Di Tillio and Faingold show
that around any finite type, the strategic topology is fully characterized by the uniform-weak
topology.

To characterize the relationship among these various topologies, we first study the im-



plication of uniform-weak convergence around general types. Our first main result (Theorem
1) shows that uniform-weak convergence always guarantees uniform strategic convergence
(hence also strategic convergence) around any types. This gives a sufficient condition for
uniform strategic convergence (hence, also for strategic convergence), which is easy to use.!
Coupled with Di Tillio and Faingold’s result, we see that around finite types, uniform-weak

convergence, strategic convergence and uniform strategic convergence are all equivalent.

In a recent paper, Ely and Peski (2007) propose an insightful partition of the universal
type space into reqular and critical types. Regular types are types around which the strategic
topology is equivalent to the product topology. Around critical types the strategic topology
is strictly finer. Ely and Peski (2007) offer this surprisingly concise characterization of critical
types: a type is critical if and only if for some p > 0, it has common p-belief for some closed
proper subset in the universal type space. Therefore, finite type spaces as well as other type

spaces typically considered in applications consist entirely of critical types.

Our first main result leaves open the question as to whether Di Tillio and Faingold’s
equivalence result on finite types can be extended to all critical types, i.e., does strategic
convergence also imply uniform-weak convergence around any critical type? To answer this
question, we construct an infinite critical type which cannot be approximated by any sequence
of finite types under the uniform strategic topology. This result, coupled with our first main
result and DFM’s denseness result for finite types under the strategic topology, shows that
the Di Tillio and Faingold’s equivalence result does not hold for a general critical type.
Moreover, in sharp contrast to DFM’s denseness result, our second main result (Theorem
2) shows that finite types are nowhere dense under the uniform strategic topology.” Hence,
by our first main result, finite types are nowhere dense under the uniform-weak topology as

well.

o~ m

Given two topologies & and </, let " > 3" mean that & is weakly finer than &’

!As shown in Di Tillio and Faingold (2007), the uniform-weak topology is a generalized notion of the

common p-belief introduced by Monderer and Samet (1989).
2DFM conjecture that finite types are not dense under the uniform strategic topology. They aim to use

their Proposition 2 to prove this conjecture. However, Chen and Xiong (2008) prove that their Proposition
2 is not true by constructing a counterexample. Hence, prior to the current paper, whether finite types were

dense under the uniform strategic topology was an open question.



and let "S > Q" mean that & is strictly finer than /. Our main contribution can be
summarized as follows. Our first main result shows that [uniform-weak topology]>[uniform
strategic topology].” Coupled with DFM’s denseness result, our second main result shows
that [uniform strategic topology|>[strategic topology]. Moreover, DFM show that [strate-
gic topology|>[product topology]. Therefore, we show that these topologies are related as

follows.

[uniform-weak topology| = [uniform strategic topology| > [strategic topology] > [product topology].

The next section of this paper contains basic definitions and notations. In Section 3, we
present our first main result and a sketch of the proof. We turn to the issue of non-denseness
of finite types in Section 4. In Section 5, we offer some discussion about related issues. All

proofs are relegated to the Appendix.

2 Preliminaries

Throughout this paper, for any arbitrary separable metric space Y with metric dy, let A (Y")
be the space of all probability measures on the Borel o-algebra of Y endowed with the weak™-
topology. It is well known that the weak*-topology is metrizable with the Prohorov distance

p defined as
p(p, /)y =1inf {y > 0: pu(E) < u' (EY) + for every Borel set £ C Y}, Vu, i’ € A(Y)

where E7 = {y' :inf cpdy (v/,y) < ~}. Unless explicitly noted, all product spaces will be
endowed with the product topology and subspaces with the relative topology. Every finite
or countable set is endowed with the discrete topology and denote the cardinality of a finite
set F by |E|. Moreover, let suppp denote the support of a measure p defined on a finite set.
Finally, for any £ C Y and y € Y, let 15 be the indicator function on E and d, be the point

mass on y.

For simplicity, assume that there are two players, player 1 and player 2. Given a player

i € {1,2}, let —i denote the other player in {1,2}. The basic uncertainty is a finite set which

3Whether [uniform-weak topology]=[uniform strategic topology] is true remains an open question, for

which we do not have an answer.



is denoted by ©. Let Y =0 and Y! = Y? x A (Y?). Then, for k¥ > 2 define recursively
Yk = {(«9,,u1, ...,uk) eY'x A (Yo) X o X A (Yk_l) - margy ol = pt T VIi=2, .., k} .
Then, the Mertens-Zamir universal type space is defined as
T = {(ul,;f, ) € XA (Yk) : margyopl = ptmt, VI > 2} .

For each k > 1, let 7¥ : T — A (Yk_l) be the natural projection. For every player ¢ and
k > 1, let 7; and Y} denote the copies of 7 and Y* respectively, write 7% : 7; — A (Yfi_ 1)
for 7%, and define 7;* = 7% (7;). An element ¢; € 7; is a type of player i. For simplicity, we
will write t¥ instead of 7% (¢;) for the k'*-order belief of type t;." By the result of Mertens
and Zamir (1985), 7; (endowed with product topology) is homeomorphic to A (O x 7_;).
Let 77 denote this homeomorphism. In the Mertens-Zamir construction, for any type ¢;, the

marginal distribution of 7 (¢;) on Y*! agrees with the distribution ¢¥.

Let p° be the discrete metric on Y? = O, i.e., p* (0,0") = 1if  # ¢ and p° (0, 60) = 0.
For k > 1, let p* be the Prohorov metric on A (Y’“_l) with respect to the metric d*~! on

Y*~1 defined recursively as

dk_l [(07 st :uk_l) ) (Qla s Vk_l)} = max{po(ﬁ, 0,)>pk_1<:u17 1/1)7 ) pk_l(ﬂk_l7 Vk_l)}'

As defined by Di Tillio and Faingold (2007), the uniform-weak topology is generated by the
metric
d“’ (t,s) = ilill) P (tk, sk) for types t and s in 7.

Following DFM, we assume that there is a fixed exogenous bound M > 0 for the payoffs
of all finite games we consider. Let G = (4, g;) i1, e a finite game where 4; is a finite set
of actions for player ¢ and g; : A; x A_; x © — [—M, M] is the payoff function. For v > 0, we
will use the following recursive definition of y—interim-correlated-rationalizable set which is

equivalent to the fixed-point definition (see Dekel, Fudenberg, and Morris (2007)). Let

R (G7 7) = (Ri (Ga 7))1‘:1,2 = ((RZ (ti7 G7 V)tieTi))iZLQ = QZO:ORk (G7 7)

4Note that 7* = 7% (7;) and hence when we write t¥ € 7 without specifying the type t;, t¥ should be

understood as the k"-order belief of some type t; € 7T;.



where

((Ai)tieﬂ-)i:lg ’

R (G,7)
Y (RE(G) Ly = ((RE (6 G er)) oy n s YR = 1,

R"(G,7)

and a; € R¥ (t;,G,~) if and only if there exists a measurable function o_; : ©x7_; — A (A_;)
such that’

suppo_; (0,t_;) € R*;* (t_;,G,~) for 7} (t;) — almost surely (6,t_;);

/ & (0, 0) @ 0 (0,¢)] 7 (£:) [(0, dt )] > — for all a! € A\ {a;} where
@XT,Z'
gi (as, a;,0) = (g; (ai,a_;,0) — g; (CLLG—@‘?Q))@_,-eA_i :

For any 3 € A(4;), let g; (a;, 3,0) € R4~ denote the vector of expected payoff difference

under 3, i.e.,

8i (aia 67 9) = Z 6 (a;) [gi (aiv a—q, 9) — i (a;’ a—i, 9)]

e AL
a;€A; a_;€EA_;

Observe that R¥ (t;, G,~) depends only on the k'*-order belief of type t;.

Through the following two lemmas, we will reach an alternative characterization of the
~v—ICR set which will be used in the proof of Theorem 1. Their proofs can be found in
Appendix A.1. First, in the definition of R¥ (¢;, G, ~) above, a conjecture o_; is a measurable
function from © x 7_; to A(A_;). Since we will study the influence of k*-order beliefs

on RF(t;,G,7), the following definition and lemma offer a useful alternative definition of

Definition 1 }_%? (t;,G,v) = A; for all t; and i. For k> 1, a; € ﬁf (t;, G,7) if and only if

there exists a measurable function o_; : © x T — A (A_;) such that

suppo_; (0,t"7') C F]:l (t_i,G,7) fort; — almost surely (0,t*;") ; (1)

/ [o_: (0,t%7") e g; (a;,a}, 0)] 7 [(0,dt";")] > —v for all ] € A;, (2)
oxTF !

where © x 79 = O.

>Throughout the paper “e” stands for the inner product of two vectors with the same dimension.

7



Lemma 1 }_%f (t;, G,v) = RF (t;,G,~) for every integer k > 0, every t;, and every player i.

Hereafter, a measurable function o_; from © x 7% to A (A_;) which satisfies condition
(1) is said to be a valid conjecture. Moreover, an action a; which satisfies condition (2) is said
to be a y—best reply under o_; for type t;. Second, the following result shows that proving
a; € ﬁf (ti, G,7) is equivalent to proving that for any mixed action 8 € A (A;\{a;}), we can
find a valid conjecture o_; (which may vary with ) such that playing a; is y-better than
playing 8. Note that this equivalent characterization reverses the quantifier of (2) which

requires a valid conjecture o_; working for all a; (and hence for all 3 € A (A;\{a;})).

Lemma 2 For any positive integer k, any v > 0, any finite game G, and any type t; € 7T;,
a; € R¥ (t;,G,v) if and only if for everyn > 0 and B € A (A;\{a;}) there is a valid conjecture
o_i[8]: 0 x TE = A(A) for t; under which

Lo s s8] (0.0 o (0000 = = o

For each t; € 7;, define h; (t;|a;, G) to be the minimal v under which an action a; is

~v—rationalizable for ¢; in G, i.e.,
hi (tilai, G) = min {7y : a; € R; (t;,G,7)} .

Fix o € (0,1). Let G™ be the collection of all games where each player has m actions and the
payoffs are bounded by M. Let G be the collection of all two-player finite games with payoffs
bounded by M. Following DFM, we define the strategic topology and the uniform strategic
topology on types to be the topologies generated by the metrics d® and d"® respectively,
where

d’ (ti,s;) = Z o sup |h; (ti|ai, G) — h; (si|a;, G)| for types t; and s; in T;;
aieAi(G),Gegm

hi (tilai, G) — h; (sila;, G)| for types t; and s; in 7;.

m=1

d* (ti,s1) = sup
a;€A;(G),Geg

Clearly, d"* (t;, s;) > d° (i, s).

6This minimax step is conceptually different from the standard equivalence between the never-best reply

and a strictly dominated strategy, though the technical content is similar.
"DFM’s Proposition 1 shows that the minimum exsits.

8



3 d"“—convergence = d"°—convergence
We are now ready to state our main result as follows.

Theorem 1 For any ¢ > 0 and two types t; and s; in T; with d* (t;,s;) < &, we have
d"® (t;,s;) < 6Me and hence d° (t;,s;) < 6Me.

Theorem 1 is an immediate consequence of the following proposition.

Proposition 1 For any finite game G, any €,v > 0, and any types t; and s; in 7; with
ok (tF, s¥) < e, we have Rf (t;,G,v) C R¥ (s;,G,~v + 6Me) for every integer k > 0.

191

The formal proof of Proposition 1 is long and will be presented in Appendix A.2. Here
we offer a sketch to highlight the essential ideas. We prove this proposition by induction on
k and divide the proof of the induction step into five sub-steps. We now provide a roadmap

by describing the role of each step.

First, for a; € R (t;, G,~), there is some valid conjecture o_; under which a; is a y—best
reply for type t;. Our goal is to show that a; € R¥ (s;, G,y + 6Me) by finding another valid
conjecture o’ ;, under which a; is a (7 4+ 6Me) —best reply for type s;. By Lemmas 1 and 2,
it suffices to show that for every n > 0 and 5 € A (A;\{a;}), there exists a valid conjecture

o', such that

/ (& (i, 3,0) 0 0’ (0,4"51) ] 47 [(0,dt*}")] > —y — 6Me — . (3)
oxTF !

To find the desired o’ ;, we observe first that s¥ must assign a large probability to
(T’:l)8 where T".! is the set of (H,t’izl)s where o_; randomizes among y—rationalizable
actions of player —i (step 1). Then, we define o’ ; = o_; on T*;! and it is immaterial how
on (T]:l)s\T]Sl, we

first find a finite partition {®™} of A (A_;) such that in each partition cell, there is some

we define o’ .

7

outside (T’Sl)E so long as it is valid. To define o’ ;

representative probability vector q™ which supnorm-approximates every q in ®”. We then

use the pre-image of {®™} under ¢; to induce a partition {F,fl} on T*! (step 2).

9



Second, step 3 obtains a suitable measurable extension of o’ ; from F? to (F,,fb)E so that
the induction hypothesis can be invoked to take care of the validity of ¢’ ;. Third, in step 4,
we solve the double-counting problem which arises when we specify ¢’ ; on the intersection
of (Fﬁl)8 and (Fﬁ:,)a. Here we will see the advantage of allowing ¢’ ; to depend on 5. Given
B, there is one obvious way to achieve (3) by maximizing g; (a;, 3,6) ® o’_; (9, tl:l)—i.e., to
assign o’_; according to the extension on (F,?l)s obtained in step 3 whenever g; (a;, 5,0)eq™ >

g (a;,3,0") e ™. Step 5 illustrates the idea of proving (3) under o’ ..

3.1 Step 1: focus on the support of t}

Let T*' = {(0.t";") €e © x T ' s suppo_; (0,t";') C R (¢*7',G,~v)}. Since o_; is
valid, t¥ (T*;!) = 1. Moreover, with p* (,s¥) < e, we have s¥ [(T*;')] > 1 —e. Since
the payoff has a uniform bound M, how to define ¢’ ; on the complement of (T’:l)8 is not
important because the payoff resulted from this region is at most Me. For (0, t':l) in T’:l,
we can take care of its validity by simply choosing ¢’ ; to be identical to o_;. The key issue
is to suitably define o’ ; for (6, t]:l) in (T”:l)6 but outside T*7!, which will be discussed

—7

in step 3.

3.2 Step 2: discretize A (A_;)

For the conjecture o’ ; that we are about to define, we will prove a; € RF (s;, G,y + 6Me)
by showing that (3) holds. However, it is not obvious how the condition p* (tF, s¥) < e can
be applied to evaluate the payoff difference. To solve this problem, we discretize the simplex
A (A_;). Note that A(A_;) is a (JA_;| — 1)-dimensional compact set. Therefore, for any
positive integer h, we can find a finite partition {@m}gzl of A(A_;) such that g™ € ™
is a representative element of ®™, and the supnorm of (@™ — q) is no more than % for any

qec o™
We can partition T*;" into N = [©] x A sets {F’} where for each § and m,
El ={(0,t%") e T" ro_; (0,5) € @™}
Then, we can approximate the expected payoff of ¢; under o_; by replacing o_; (9, t’:l) with

10



M|A_i]
h

q™ if (6’, t]:l) belongs to F? . This approximation has at most an error of 2 which can

be arbitrarily small if A is sufficiently large.

3.3 Step 3: measurable extension of the conjecture

We now specify o’ ; for (0,25’:1) in (T’:l)E but outside T*!. By step 1, we have defined
o', = o_; on T*;'. By step 2, T*;! = Uy,,F’, and (T’:l)‘E = Ugm (F2)°. Hence, one
way to solve the problem is to extend the conjecture on F? to (Fffl)s for each (6,m). We
have to take care of two requirements to guarantee the validity of ¢’ ;. First, o/, must be
measurable. Second, for any (G,tﬁzl) € (Ffl)s, o', (H,tljl) must be close to g™ so that
the approximation in step 2 is still valid. These requirements are handled by the following

lemma whose proof can be found in Appendix A.2.1.

Lemma 3 Consider a separable metric space (Y,dy), a Borel set F C Y, and ¢ > 0.
Suppose f: F — Z is a measurable function from F to another measurable space Z. Then,
there is a measurable function f°: F¢ — Z such that f* = f on F, and for every y € F°\F,
fe(y) = f () for somey' € F with dy (y,y') < €.

The lemma guarantees that for (6’, t’:l) within (F,fb)‘E but outside F?, we can define

o’ ; (0,t*;") to be equal to o_; (¢, s*;") for some (¢',s";') in F? and still preserve mea-
surability. The validity of ¢’ ; will then be granted by the induction hypothesis. Moreover,
by doing so we reduce the comparison of the expected payoffs to the much more tractable
task of evaluating the probability differences on the sets (Ffl)a and F’ subject to a dou-
ble counting problem to be discussed in the next step. That is, the expected payoffs for
t; under o_; and for s; under o, can be approximated by >, . [gi(ai, 3,0) e q™] t (F2)
and 3, [gi (i, 5,0) ® g™ s} [(F?)7] respectively, for which the condition p* (t¥, sF) < e is

readily applied.
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3.4 Step 4: the double-counting problem

The double-counting problem mentioned in step 3 arises because {(F&)E}gm may not par-
tition (T’:l)s. Namely, for (6, t':l) in (Fi)‘E N (Ff;,)g, should we define ¢’ ; following the
extension on (Fgl)e or the one on (Fﬁ:,)g? To solve this problem, it is important to recall
Lemma 2 which allows us to fix 5 € A (A;\{a;}) before finding the conjecture ¢’; to prove
(3). Then, for every (0,t*;") in (F2)" N (Fg,)g, we can simply assign o’ ; to follow the
extension on (ng)8 if g; (a;, 5,0) eq™ > g; (a;, 3,0)eq™ . This will make the expected value
of [gi (a;, B,0) o0, (0, t_i)] as large as possible and help us to rationalize a;.

Formally, we can relabel the elements in {F? }4,, as follows. Let { F? } o = LN

mnJn=1
such that

gi(a;, 3,01) eq™ > --- > g;(a;,3,0n) @ q"V.

For notational simplicity, we often write F;, instead of Ff{; when no confusion may arise. By
the way we order F,, we should assign o’ ; (6,¢*;") to follow the extension on (F,)° with
n being the smallest number such that (F,)° contains (0, t’:l). Formally, this amounts to
modifying the sets {(F,)°} to the sets {E,} which are defined as follows, and define o',

following the extension in step 3 on each FE,,.
Ei = (1) and E, = (F,)°\ (U/'E) for n > 2.

With this modification, {En}i\f:1 partitions (Tﬁ;l)g, and we can approximate the payoff of
s; under o’ ; by S [g; (as, 8,6,) ¢ g™ s¥ [E,] without double-counting.

(2

3.5 Step 5: combining sets

The last step is to show that the difference of the two approximated payoffs is not large, i.e.,
N

> lgi(ai B, 0,) e 4™ [} (En) — tF (F,)] > —4Me. (4)
n=1

Let A" =g, (a;,3,0,) e q™ and B" = s¥ (E,) —t (F,). For notational convenience, we also
relabel {A"}Y_ and{B"})_ in a reverse order, i.e., let C" = AN="+! and D" = BN—"* for

everyn =1,..., N.

12



The following claim will be useful in showing (4) and is formally proved in Appen-
dix A.2.2. Tt follows basically from our construction that U!_, E, = UL_, (F,)° and the

1771

assumption p* (t’-g s’-“) <e.
Claim 1 We have 22:1 B" > —¢ and 2221 D" <e for1<I<N.

We now sketch the idea for the proof of (4). First, recall from the previous step that

Al > A2 > ... > AN,

For heuristic purpose, assume that N = 3 and A% > 0. We prove that Zizl A"B™ > —2Me
in two steps. If {B"} are all nonnegative, then >0 _ A"B" > 0 > —2Me. If {B"} are
all non-positive, then Zi:l A"B" > 2M Zizl B™ > —2Me because of Claim 1 and our
assumption that |A"| < 2M for all n.

The main problem is to deal with the situation in which B!, B2 and B? have different
signs. For example, suppose B! > 0, B2 < 0, and B? < 0. We use the following trick. Since
B' > 0 and A' > A% we will not increase the value of Zizl A"B™ if B! is “moved” from
being multiplied by A! to being multiplied by A2. That is, S.°_, A"B" > A?(B' + B?) +
A3B3. Then, we check the sign of B! + B2. If (B! + B?) < 0, then

iA”B" > A*(B'+ B?) + A°B® > 2M (B' + B*> + B®) > —2Mz,

n=1
where second inequality follows because both (B! 4+ B?) and B? are non-positive and |A"] <
2M; the last inequality follows from Claim 1. If (B! 4+ B?) > 0, then the value of A? (B! + B?)+
A3 B3 decreases if B*+ B? is further “moved” from being multiplied by A2 to being multiplied
by A3 ie. A%(B'+ B%) + A3B3 > A3 (B! + B? + B?). Hence,

3 3

> A"B" > A*(B'+ B*) + A*B* > A*> " B" > —2Me,

n=1 n=1

where the last inequality follows from |A3| < 2M and Claim 1.

Our argument takes advantage of the property that A" is decreasing in n so that
“moving” a positive B toward being multiplied by a smaller A does not increase the value.

After all these “moves” are done, only the last term may have a positive coefficient B. If
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the last term is negative, we go back to the single-signed case. If the last B is positive, since
{A"} are all nonnegative, we can simply throw out A" B™ without increasing the value and
also go back to the single-signed case.® The general proof involves dividing the summation
25:1 A"B™ into two groups. One group has all the nonnegative A™s and the other group
has all the negative A"s. For both groups, we can invoke a similar trick and Claim 1 and

conclude 25:1 A"B"™ > —4Me (see the proofs of Claims 2 and 3 in Appendix A.2 for details).

4 Non-denseness of finite types

In this section, we first show by an example that finite types are not dense under the
uniform strategic topology. We achieve this goal by directly constructing an (infinite) type
t¥ such that d“s(tf,t;) > % for any finite type ¢;. Based upon the example, we go one
step further to show that the set of finite types is nowhere dense in the universal type
space, i.e., the complement of the uniform strategic closure of finite types is open and dense.
Finally, we remark ¢} is a critical type in the sense of Ely and Peski (2007) and comment on
the implication of our example to the relationship between the strategic topology and the

uniform-weak topology around critical types.

Throughout this section, consider the case that © = {0,1}. This simplification allows
us to follow Morris (2002) to define the iterated expectations of a type t = (uq, o, ...) € T
which will be used later. Let &, : Y — [0, 1] be defined as &, = 1gp_;} and

& (1) =&, (1) = /Yk_l Er—1dpy, Yk > 1.

Define E(t) = (Ek (t))k € [0,1]. Say a sequence of iterated expectations = € [0,1]™ is
=1

generated by a type t if © = g(t) We know that every x € [0,1]™ can be generated by some
type t € T (see (Morris, 2002, Example)).

We are now ready to define the type t;. Let ¢! be the type which has the following

8Note that we cannot simply delete all A”B™ such that B" > 0. Consider the special case we discuss
here for example. While we have 22:1 A"B"™ > A?B? + A3B3, we cannot apply Claim 1 to show that
A?B? + A3B3 > —2Me. Recall that B? + B® = s¥ (Ey U E3) — t¥ (F, U F3). Since (E2 U E3) may not be
equal to (Fy U F3)°, we cannot get B? + B® > —¢ from p* (t’? s’?) <e.

1%

14



iterated expectations

~ . ~ i (1,1,....,1), if n is odd;
<£n<n—1>+1 (7)o Entniny (Q)) =
2 2 (0,0,....,0), if n is even.

That is, E(tf) =(1,0,0,1,1,1,0,0,0,0,...). For notational convenience, denote

1

0 2o
g

@ =

~

11
272’
Sn (t;k) 7€n+1 (t;k) 7€n+2 (t;k) ) ) fOI‘ n = 17 27

a" = (
Note that a™ # a™ for n # m. For k = 1,2,..., let (a"), be the k" element of the sequence

a™. One feature of @, which will be useful later in the proof, is that (a™), = (a"™*1);.

Let T\z X f_i C 7; X T_; be the smallest (w.r.t. set-inclusion) belief-closed subset such
that ¢ € 7;. Observe that 0 (and 1) is the minimum (and maximum) that a k"-order
expectation can achieve. Since g(t:‘) = (1,0,0,1,1,1,0,0,0,0,...), there is a unique type t?
in 7; which has the following hierarchy of beliefs:

e first-order belief: point mass on 6 = 1;
e second-order belief: point mass on [player —i believes § = 0 with probability 1];

e third-order belief: point mass on [player —i believes with probability 1 that player i
believes with probability 1 that # = 0], and so on.

Let t (1) = tf. Moreover, let ¢ (n) denote the unique type in 7 that generates the iterated

expectations a”, for n > 2. Hence,

()] [E (t(n)),t(n+1)] =1 forn > 1. (5)
That is, type tf believes his opponent is t(2) with probability 1; type t(n) believes his
opponent is t(n + 1) with probability 1 (cf. (Morris, 2002, Example) and Mertens and
Zamir (1985)). Therefore, 3 (ﬁ U f_z> = {a',ad? ..}.

We now show that finite types are not dense under the uniform strategic topology. We
provide an outline of our argument here, and the rigorous proof can be found in Appen-

dix A.3.1. It is helpful to consider first the following modified version of the higher-order
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expectation (HOE) game due to Morris (2002).”

A ={d° a',a? d?, ..}

0, if (am):il
i |[(Qin 007 ) a‘*inoof 70 = 7 027_ 3,2 = W—g 2a
ol @l 0= 0 e |

y (ai,n - afi,nfl)2 XN

While G = (4, g;) =12 18 & game with infinitely many actions, we will show how it can be
modified to a finite game in Appendix A.3.1. In this game, a player’s actions are a°, a!,
a?,.... The action a° always generates the maximal payoff 0.!" If the player chooses a™ with
n > 1, he gets the infimum over the quadratic losses between the first coordinate of player
1’s action and 6, the quadratic loss between the second coordinate of player ¢’s action and
player —i’s first coordinate, and so on. That is, it is a coordination game in which a player
tries to match the state of nature and his opponent’s action. The players can achieve the

maximal payoff 0 by either taking the safe action a° or having perfect coordination with

nature as well as every coordinate of his opponent’s action.

First, we have a' € R;(¢f,0) because for each k each player of type ¢ (n) € T; can
rationalize a” by holding the belief that ¢ (n + 1) will choose the action a"*!. Second, we
show that for some positive but small enough vy, a' ¢ R; (;,) for every finite type t;. Let
T, xT_; C T;x7T_; be the smallest belief-closed subset such that ¢; € T;. Suppose instead that
a' is y—rationalizable for ¢;. Then, (A) player ¢ must believe most of his opponent’s types

(which are in the support of 7} [t;]) are playing a® so as to get almost perfect coordination;

90ne may wonder if we can use the original HOE game, in which the payoff is defined as,

gi [(@in)re ), (ajn)oe,, 0] = Mx |=X (a1 — Z)\k (@i — ajp— D2,
such that A\, > 0 and Z)‘k = 1.

Consider two types t and ¢’ such that their expectations differ only at the N**-order. On the one hand, we
should choose a Ay large enough so that the game separates ¢ and ¢ in the sense that the minimal v to
~-rationalize some action under these types differs. On the other hand, the player chooses a; v ~ EN [t'] only
if both players almost truthfully report all their k*"-order expectation for every k up to N, which requires
those Ax’s to be large enough. Since Y ,-; Ay, = 1, it does not seem obvious to us how to resolve this tension

for a large N.
10We add this safe action a to make it easier to rule out certain actions as not being y-rationalizable.
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and (B) a® must be y—rationalizable for these opponents. Pick one t_; which is believed to
play a® by t;. Since a? is y—rationalizable for ¢_;, we can similarly get (A) player —i must

3 must

believe most of player i’s types in the support of 7*, [t_;] are playing a®; and (B) a
be y—rationalizable for these player ¢’s types. Doing this inductively, we can get an infinite

chain of y—rationalization.

ti=1(1) = 1(2) »t(3) = t(4) —1(5) — - - -such that (6)
t(k) € T;if k is odd and (k) € T_; if k is even;

t(k+1) is in the support of 7* [tA(k)] . and o is v — rationalizable for 7 (k).

Since t; is a finite type, some type in T; must recur in this infinite chain. That is, we can
find ¢ (n) =t (m) = ¢ (1) € T such that a” and o™ are both y—rationalizable for ¢ (1) and

a™ # a™.

Recall that a player can always achieve the maximal payoff by taking the safe action

0

a®. Since v is small enough, in order to make a" y—rationalizable for t (1), a™*!

must be
~y—rationalizable for most of ¢ (1)’s opponent’s types in the support of 7* ftv(l)] ; to make a™
~y—rationalizable for t (1), a™+! must be y—rationalizable for most of ¢ (1)’s opponent’s types
in the support of 7* [tN(l)] Hence, there exists some type t (2) in the support of 7* E(l)}
such that a"t! and a™*! are both y—rationalizable for #(2). Similarly, we can pick ¢ (k) in
this way for all £ > 2. Hence, we can construct another common chain of y—rationalization

for both a™ and a™:

t(1) = t(2) = t(3) = t(4) — t(5) — ---such that
t(k) € Ty and {a"™* 1 a™ 1} C R, (£(k),7) if k is odd;
t(k) € T_; and {a" 1 a1 C R, (f(k) ,7y) if k is even.

Since the players are also trying to coordinate with nature in this game, we also have the
property (C) for a small enough v and any action a y—rationalizable for a type ¢, (a), = 0 iff
& () €o, 1]. We then reach a contradiction by applying property (C) to this common chain
of rationalization for a” and a™. First, a” # o™ implies (a")g» = 1 # 0 = (™)~ for some k*.

Second, by the definitions of a” and a™, (a"**" 1)} = (a")p = 1 # 0 = (@™)g= = (a™* 1)y,
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but property (C) implies,

@ = @) =0 E [F()] € 0, )
@) = @ = 1 [F()] ¢ 0. 5)

n+k*— m+k*—

! are y—rationalizable for ¢ (k*) in the common chain above.

This is a contradiction. Therefore, a' ¢ R; (¢;,7).

because both a Land a

In the rigorous proof for Proposition 2 in Appendix A.3.1, we formalize the argument
above. We make the game finite by truncating a” into its first /N coordinates and proceed in
four steps. In step 1, we show that if /V is sufficiently large, we can still find a™ and a™ in the
v—rationalization chain in (6), such that the N-truncation of a” and a™ are distinct. Step 2
proves properties (A) and (C). Step 3 constructs the common chain of y—rationalization for
a™ and a™ as above. Step 4 derives the contradiction. In the proof, v = 1—]‘/6[ is small enough

to achieve our goal.

Proposition 2 d“(t!,t;) > IMG for any finite type t;. Hence, finite types are not dense under
a"s.

In fact, Proposition 2 can be used to prove a stronger result.
Theorem 2 Finite types are nowhere dense under d".

Since the uniform-weak topology is finer than the uniform strategic topology by The-
orem 1, finite types are nowhere dense under d** as well. The proofs of Proposition 2 and

Theorem 2 are relegated to Appendix A.3.1 and A.3.2, respectively.

Recall that Ely and Peski (2007) define a critical type to be a type around which the
strategic topology is strictly stronger than the product topology. Recall also that Di Tillio
and Faingold (2007) show that the strategic topology is equivalent to the uniform-weak
topology around finite types. As shown in Ely and Peski (2007), every finite type is critical
but not conversely. In particular, the type ¢ we construct is an infinite critical type. To see

this, recall that i X T\,i C 7; x 7, is the smallest belief-closed set such that ¢} € i Clearly,
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ﬁ- x T ' ; is of common 1-belief under ¢*. By monotonicity of the common 1-belief operator,
the closure of ﬁ x T _; (under the product topology in 7; x 7;) is of common 1-belief at ¢;.
Consider the types (fl,z_fg) € 7; x T; under which both #; and ¢, have the first-order belief
Pr(f = 1) = Pr(f = 0) = L. For all (t1,15) € T; x T_;, the first-order beliefs of ¢; and t5
are either Pr(# = 1) = 1 or Pr(f = 0) = 1. Thus, (f1,%) does not belong to the closure of
ﬁ- X f_i. Hence, the closure of ﬁ X f_i is a proper closed subset of 7; x 7;. By (Ely and
Peski, 2007, Theorem 3), we conclude t* is a critical type. Since finite types are dense under
the strategic topology by (Dekel, Fudenberg, and Morris, 2006, Theorem 3), Proposition 2

shows that strategic convergence to an infinite critical type does not imply uniform-weak

convergence to this critical type.

5 Discussion

5.1 The uniform strategic topology

DFM study the uniform strategic topology in contrast to the strategic topology they propose.
The denseness result from Section 4 demonstrates one difference between the two topologies.
In particular, our example shows that it is sometimes hard to approximate complicated types
with finite types when we require uniformity of this approximation among all finite games.

However, such a uniform approximation may still be relevant.

Suppose we are facing a mechanism design problem where agents’ information is mod-
eled with a complicated type space T. DFM’s denseness results on strategic topology states
that given any fixed game GG, we can find a simple type space T" to approximate 7" in terms
of strategic behaviors in G. However, to solve a mechanism design problem is to search for a
mechanism (game form) among all possible games. Hence, to ensure that the optimal solu-
tion on 7" incurs approximately no loss of accuracy, it is crucial that the strategic behaviors
under 7" approximate those under T in all mechanisms instead of merely in some G. Thus,
the uniform strategic topology is free of such a problem so long as the mechanism is searched

within bounded finite games. '

11Quppose that G’ is the optimal mechanism for the simpler type space 1", which is close to the true type
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5.2 Comparison of our proof to that of Di Tillio and Faingold
(2007)

Di Tillio and Faingold (2007) prove that the uniform-weak topology is finer than the strategic
topology around finite types. Our first main result extends this to all types. In Di Tillio
and Faingold’s proof, they exploit the fact that in a finite type space, there is a minimal
uniform-weak distance between any two different types within this type space. Thus, when
d"(t?, t;) is sufficiently small relative to the minimum uniform-weak distance of the finite
type space containing t;, the two types ¢ and ¢; must believe in approximately the same set
of opponents with approximately the same distribution, and no double-counting problem is
involved. In our proof, we take advantage of the finiteness of games and solve the double-

counting problem by applying the minimax argument.

5.3 Infinite order implications of Theorem 1

It is natural to doubt whether one can obtain information about the entire hierarchy of
beliefs of types. Therefore, types which are close under the product topology may still be
deemed indistinguishable from a practical viewpoint. In accordance with this idea, extensive
studies have been carried out on finite-order implications of notions associated with a type.
In particular, Lipman (2003) shows that common-prior types are dense under the product
topology, while Weinstein and Yildiz (2007) show that in a fixed game without common-
knowledge restrictions on payoffs, types with unique rationalizable actions are open and

dense.

As pointed out by DFM, neither the result in Lipman (2003) nor the result in Weinstein
and Yildiz (2007) holds when we consider the strategic topology instead of the product

space T in the strategic topology. The behaviors of T' and T’ in G’ might still be quite different. This is
especially true if G’ has a lot of actions. Recall that the strategic distance d® (;, s;) for types ¢; and s; in 7;
is a weighted sum of the difference between the behaviors of ¢; and s; in all bounded finite game. If G’ has m
actions with m being large, d® (¢;, s;) assigns a small weight o™ on the difference between the behaviors of
t; and s; in G’'. Therefore, even if d* (¢;, s;) is small, the two types t; and s; may still exhibit quite different
behaviors in G’. However, this problem can be avoided if we approximate T by T" which is close to T in

the uniform strategic topology.
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topology. DFM show that there is an open set in the strategic topology which consists
entirely of types with noncommon priors or multiple rationalizable actions. That is, in
these cases strategic open sets are rich enough to separate noncommon-prior types from
common-prior types, or types with multiple rationalizable actions from types with unique
rationalizable actions. A straightforward consequence of Theorem 1 is that these strategic
open sets identified in DFM’s examples must contain uniform-weak open sets. Hence, neither

Lipman’s result nor that of Weinstein and Yildiz’s holds in the uniform-weak topology.

5.4 The distance d**

The uniform-weak topology is a natural way of strengthening the product topology. In DFM’s
Proposition 2, they propose a metric d** which also implies uniform strategic convergence.
Two types are close under d** if they have uniformly close expectations on all bounded
functions measurable with respect to the k'*-order beliefs for some k. However, this metric
d** is too strong in the sense that even when we restrict attention to finite-order beliefs, the

topology it generates is still strictly stronger than the standard weak* topology.

In particular, consider an example in Chen and Xiong (2008). Suppose that © = {0, 1}.
Let t be a complete information type under which it is common 1-belief that "0 = 1." Let
{t"} be a sequence of types under which both players believe "0 = 1" with probability
(1 — %) and it is common 1-belief that both players believe "6 = 1" with probability (1 — %)
(cf. Monderer and Samet (1989)). Then, it is common (1 — 1)-belief that "6 = 1" under ¢",
and moreover, d" (t",t) — 0. By Theorem 1, we have d** (t",t) — 0. However, as shown
in Chen and Xiong (2008), t" does not converge to ¢t under d**. In contrast to the result of

Di Tillio and Faingold (2007), this example also demonstrates that even if the limit type is

a finite type, the (uniform) strategic convergence does not imply the d**—convergence.
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A Appendix

A.1 Alternative characterizations of the y—ICR set
A.1.1 Proof of Lemma 1

Recall that R, (t;,G,7) = R? (t;,G,7) = A; and for k > 1, a; € R¥ (t;,G,~) iff there exists
a measurable function o_; : © x 7_; — A (A_;) such that
suppo_; (0,t_;) € R*7* (t_;,G,~) for 7} (t;) — almost surely (6,t_;); (7)

/ gi (ai,a,0)ec_; (0,t )] xF (t;)[(0,dt_;)] > —~ for all a, € A;, (8)
Ox7T_;

and a; € Ef (t;, G, ) iff there exists a measurable function o_; : © x 7% — A (A_;) such
that

suppo_; (6,¢";") C E]:l (t_;, G,v) for ti — almost surely (6,t*;'); 9)

/ gi (a;,al,0) o (0,t";1)] 5 [(0,dt";")] > — for all a} € 4, (10)
OxThr1

where © x 7% = ©.

Lemma 1 Rf (t;, G,v) = R¥ (t;,G,~) for every integer k > 0, every t;, and every player i.

Proof. We prove this claim by induction on k. For k£ = 0, the lemma holds by definition.

Now suppose that the lemma holds for some nonnegative integer k — 1.

(Ef (t;,G,v) C RE(t;,G,7)) Suppose a; € Ef (ti;,G,7v). Then, there exists a mea-
surable function ¢_; : © x 75! — A(A_;) such that (9) and (10) hold. Now consider
0%; 1O xT_; — A(A;) such that o*,; (0,t_;) = o_; (0,t";") for all (6,t_;) € © x T_;. Note
that o*;

2

endowed with the Borel o-algebra (see (Aliprantis and Border, 1999, 4.43 Theorem)). First,

is measurable because o_; is measurable and © x 7_; is a second countable space

(7) follows because the marginal distribution of 7} (¢;) on © x T*~! agrees with # and both
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(9) and the induction hypothesis hold. Second, for all a; € A;,
[ ls(ain) o 6.0 m (0 (0.de-)
@XT,Z'
= [ [ enai) eon (05 7 1) (6,657
oxTk !
_ / (g (as,al. 0) @ o (0,6551)] 5 [(0,dt*1)] > —
G)fo;l

where the first equality is due to the definition of o*

; and the second is again because the

marginal distribution of 7 (t;) on © x T*~! agrees with ¢*. Therefore, (8) holds and hence

a; € Rf (tlaGa’y)

(Rf (t;,G,7v) 2 RF(t;,G,~)) Suppose a; € R (t;,G,v). Hence, there exists measurable
function o_; : © x 7_; — A (A_;) such that (7) and (8) hold. Since © x 7_; is a compact
metric space, it is a standard Borel space. Hence, there is a regular conditional distribution of
7 (t;) on © x T571 (see (Dudley, 2002, 10.2.2. Theorem)). Define 0%, : © x 751 — A (A_))

as
o, (9,15’31) = /@XT_i o_i (5, s_i> i () [(5, ds_i) |5 — 0,51 = tlijl] Y (Q,t’:l) € OxTH .

Then, since o_; is a measurable function from © x 7_; to ®/4-il, by (Dudley, 2002, 10.2.5.

Theorem), o*, is a version of the conditional expectation of o_; conditional on (Q,tljl).
Hence, o*, is measurable. Again, (9) follows because the marginal distribution of 7} (¢;) on
O x TF~! agrees with t# and both (7) and the induction hypothesis hold. Moreover, for all

a € A,
/@HH (g (i, al, 0) @ o™, (0,457 5 [(0, dt"71)]
= i L Bt @ im0 [0t B = skt =] [ 00 [0,
- [ o) eo @) 0 (0.0) > =

where the first equality is because the marginal distribution of 7} (£;) on © x 7% agrees
with t¥ and is also because of the definition of o* ;, and the second equality follows from the
law of iterated expectation (see (Dudley, 2002, 10.2.1. Theorem)). Therefore, (8) holds and
hence a; € }_%f (ti, G, 7).
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A.1.2 The proof of Lemma 2

Lemma 2 For any positive integer k, any v > 0, any finite game G, and any type t; € 7T;,
a; € R¥ (t;,G,v) if and only if for every n > 0 and 3 € A (A;\{a;}) there is a valid conjecture
o_i[8]: 0 x TF Y — A(A)) for t; under which

/@ ., 800 5.0) e o [B] (6,657)] 17 [(6.d57)] > —y =, (11)

Proof. Recall first a Minimax Theorem due to Fan (1952). Let f be a real-valued function
defined on a product space X x Y. Say f is convex-like on X if for every z, 2/ € X and
¢ € [0, 1], there is some 2" € X such that f (2", y) < cf (z,y)+ (1 —¢) f(2',y) forally € Y.
Say f is concave-like on Y if for every y, v/ € Y and ¢ € [0, 1], there is some y” € Y such
that f (z,y") > cf (x,y) + (1 —¢) f (z,y) for all z € X.

Fan’s Minimax Theorem Let X be a compact Hausdorff space and Y an arbitrary set
(not topologized). Let f be a real-valued function on X XY such that for every y € Y, f(-,y)
s lower semi-continuous on X. If f is convex-like on X and concave-like on Y, then

min su ,y) =supmin f(x,y).
minsup f(z,y) = supmin /(z,y)

To apply this result, define

X = A(A\{a:});
Y = {O'_i cO X TEY S A(AL) 0o is a valid conjecture} :

f (6,0'_1') = / ) [gz (ai,ﬁ,Q) e 0_; (9,t_1)] tf [(Q,dtﬁzl)} , \V/B S X, o_; € Y.

Obviously, f is convex-like on X, concave-like on Y, and f(-,0_;) is lower semi-continuous
on X for every o_;. Hence, by Fan’s Minimax Theorem, we have mingecx sup, .y f(z,y) =
Sup, .y Mingex f(z,y). First, sup, .y mingex f(z,y) > —v if and only if for any n > 0,
there is a conjecture o_; € Y such that f (5,0_;) > —y—mn for all 5 € X. By Lemma 1 and
DFM’s Lemma 1, sup,, ..y mingex f(2,y) > —7 is therefore equivalent to a; € RF (t:,G, 7).
Similarly, mingex sup, .y f(z,y) > — is equivalent to for every n > 0 and € X, there is
some valid conjecture o_; [3] € Y such that (11) hold.H
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A.2 The proof of Proposition 1
A.2.1 The proof of Lemma 3

Lemma 3 Consider a separable metric space (Y,dy), a Borel set FF C Y, and ¢ > 0.
Suppose f : ' — Z is a measurable function where Z is a measurable space. Then, there

is a measurable function f¢ : F¢ — Z such that f = f on F, and for every y € F\F,
fe(y) = f () for some vy € F with dy (y,y') < e.

Proof. Since F' is a subset of a separable metric space, it is also separable under the
relative topology (see (Dudley, 2002, p.32)). Let {y1,%s,...} be a countable dense subset
of F. For any y € Y, let B(y,e) denote the e-open ball around y. First, we claim that
Fe = U2 B (Ym,e). Clearly, F* O U B (Ym,c). To see F'© C U B (Ym, <), suppose
y € F°. Then, there is some y' € F such that dy (y,y’) < . Hence, B (y,e) N F # @.
Since B (y,e) N F is relatively open in F' and {y1,y2, ...} is dense in F', there is m such that
Ym € B (y,e) N F. Hence, dy (Ym,y) < € and therefore y € B (y,, €).

We modify the sets in {B (ym, )}, to {Em}:zl such that

By = B (y1,¢) and By, = B (ym, ) \ [U"7'B)] for m > 2.

[e%s)
m=1

Observe that {Em}:jzl partitions . Moreover, for any m € Z, since the sets in { B (¢, €) }

are open and hence measurable, B,, is also measurable. We now define f¢ as

fly), ifyekF,

£ () = _
(®) f Yme) ify ¢ F and y € By,e.

Then, by definition f¢ satisfies the property that f© = f on F, and for every y € F°\F,

fe(y) = f(y) for some ¢y € F with dy (y,y') < e.

Finally, we show that f€ is measurable. Let Z’ C Z be an arbitrary measurable set.

Then,

(/72 = [H(Z)Hu U [Bi\F]
{meZy:f(ym)eZ'}
where B,\FF = {y€Y:y€ B, andy ¢ F}.
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Since f is a measurable function and Z’ is measurable, f~!(Z’) is also measurable. For
each m, the set [Em\F } is measurable. Hence, the set Ugnez. .fym)ezy [Em\F } is also
measurable, because it is a countable union of measurable sets. Therefore, (f¢)™" (Z') is

measurable, and f¢ is a measurable function.ll

A.2.2 The proof of Proposition 1

Proposition 1 For any finite game G, any €,v > 0, and any types t; and s; in 7; with
ok (tF, s¥) < e, we have R¥ (t;,G,~) C RF (s;, G, + 6Me) for every integer k > 0.

1991

Proof. Let G be a finite game. Since G is fixed, we will drop hereafter the explicit reference
of G from our notation for expositional ease. We prove the proposition by induction. Suppose
a; € RF (t;,7). By Lemma 1, there is a valid conjecture o_; : © x T — A(A_;) for t;
such that

/ [gi (a;,a,,0) 80, (H,tligl)] th [(9, dt’:l)] > —~ for all a; € A;\{a;}. (12)
@xT_’“;l
Our goal is to show that a; € R (s;,y + 6Me).

Consider first the case of k = 1. By Definition 1, © x 7% = © and hence o_; is
a measurable function from © to A(A_;). Let ¢, = o_;. Since R°,(t_;,7) = A_;, o',
is trivially valid. If ¢ > 1, the claim trivially holds because the payoff is bounded by M
and hence R¥ (s;, G, + 6Me) = A;. Now suppose ¢ < 1. Then, since we endow © with the
discrete metric, (©')° = ©' for any ©' C ©. Hence, |s} (0') — t! (©')| < e since p' (t},s}) < e.

Let A’ = g; (a;,a},0) @0’ (0) and B? = s} () — t! (). Then,

SAB' = Y A'B'+ Y A'B>—dMe

CISS) {oce:B?<0} {0ce:Bo>0}

where the last inequality is due to |A?| < 2M and |s! (©) — ¢} (6)| < € in particular for
©={0c0O:B"<0}andfor ® = {# € ©: B’ > 0}. Therefore, by (12), >ycq A%s} (6) >
—v — 4Me. Hence, a; € RF (s;,y + 6Me).

Now consider the induction step. By Lemma 2, to prove a; € RF (s;,v+6Me), it
suffices to show that for every n > 0 and 5 € A (A;\{a;}), there is a valid conjecture o',
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under which we have
/@ . gi (a;,B,0) e ', (0,8%1)] s [(0,dt";")] > —y — 6Me —n. (%)

Since player —i has [A_;| actions, let [l — q'||, , = max {|q1 A ‘q‘A_” — qllA_q-,\‘} for
any q and g’ in A (A_;). Pick an arbitrary positive integer h. We can discretize A (A_;) with
a finite partition {®™}>_ such that for each m there is some g™ € ®™ with ||q — a”lfja, <

1/h for any q € ™. Consider

T = {(0,t";") € © x T" " suppo_; (6,¢";") C R (¢571,7) } .

—1

We can induce from {®™} and o_; a partition {9} on T*! such that for each § € © and

m=1,..., A,
Fl={(0,45") e T* " ioy (H,tlf;l) € oM}l

Label {F?} as {Ffr }), where N =[] x A such that
gi(a;,3,01) eq™ > --- > g;(a;, 3,0n) @ q™".

Hereafter, we write F}, instead of Fg;; whenever no confusion may arise. Hence, Tlizl =

UN,F, and (T*;)" = UY, (F,)".

Define By = (F)° and B, = (F,)°\ (U5'E)) for n > 2. Observe that {E,}_

partitions (T’:l)a, and moreover, for any 1 <[ < N, we have

U E, = U (Fn)e; (13)

(14)

We now proceed to define the conjecture ¢/ ;. We divide © x T%~! into three areas: (I)

s i T X 17 v an efine o’ . on these three areas
T (1D (T )7\ TS (D) (0 x 7871\ (T, and define o’ hese th

respectively.

First, for area (I), let 0/, = o_;. Second, since t";' +— RF ' (t_;, v+ 6Me) is up-

per hemi-continuous under the product topology on T_k;l, by Kuratowski-Ryll-Nardzewski

12We can make each ®™ measurable, so that each FY, is also measurable.
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Theorem (see Aliprantis and Border (1999)), there is a measurable selection 7 (-) with

r (') € R¥M(to;, v+ 6Me) for all t*;' € T%'. Then, we define o’ ; as r(-) on area
(III). Third, we extend the definition of ¢’ ; from area (I) to area (II) by Lemma 3. Recall
that {F,,} is a partition of T]:l. Since o_; is valid, it is measurable on F}, for every n. By
Lemma 3, there is a measurable function X", (-) on (F,) such that \";, = o_; on F}, and for

every (0,t*;') € (F,)° there is some (¢',s";') € F, such that

dH((0,4551), (6, 877Y) < e and A, (0,857) =0 (0, 5%,1)

—1

Recall also that E, C (F,), and moreover, {E,} forms a partition of (T':l)s. In sum, we
define the conjecture o’ ; : © x 751 — A(A_;) as

A (0,8551) i (0,8571) € By

(5r<tk71), if (Q,tﬁ;l) ¢ (Tﬁ;l)a.

Observe that o', is valid in areas (I) and (III) by the definition of 7 (-) and the validity of

(2

o (Q,t]:l) =

o_;. In area (II), by the induction hypothesis and the extension A", defined above, o’ ; is

also valid.

It remains to show that the inequality (¥ ) holds under ¢’ ;. It is a direct consequence

of the following three lemmas which we will prove later.

Lemma 4 We have

2M |A_]

; (15)

N
> lgi(ai, B,0,) e q™ ]t [F] > —
n=1

Lemma 4 says that replacing on the left-hand side of (12) a} by 5 and o_; by @™ on

. IM|A_;
each F,, would induce at most a loss %

Lemma 5 We have

/ (i (a5, 3.0) 0 o, (0,¢57)] sE [ (6, dt* )]
oxTk1

2M |A_

[gl (aia /87 Hn) b qm”] S? [En] —2Me — h

WE

1

3
Il
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Lemma 5 says that by using 3.0, [g; (@i, 3,60,) ® @™ s¥ [E,] to approximate the left-
hand side of (16), we may incur two kinds of losses and both are small. One is due to the

error outside (T':l)g, which is at most 2Me, and the other results from the approximation

mn, oh i 2M|A_i|
of o’ ; by """ on E,, which is at most ~——".
Lemma 6 We have
N
> lgi(ai, B.0,) e g™ [} (Ey) — tF (F)] > —4Me. (17)

n=1

Lemma 6 is a generalization of step 5 in Section 3 which says that we only have to
compare the beliefs of t¥ and sF on the probabilities of sets {E,} and {F,}. We will show
that the difference of the two approximated payoffs is at most 4Me.

By adding up (15)—(17), we get

- _ AM|A_;
[ a0, (0.7 o (0,007 > = = ore = 2
X X
Since % — 0 as h — oo, we can choose h large enough so that (%) holds. Hence, for

every 7 > 0 and 5 € A (A;\{a;}), there is a valid conjecture o
Thus, by Lemma 2, a; € RY (s;,7+ 6Me).1

under which (%) holds.

—i
We now prove Lemmas 4—6.

Proof of Lemma 4 Recall that a; is a y—best reply under o; for ¢;. Hence,
—~ < ey . k-1 k k-1
v [ oo B0 e (0.650)] 8 [ (0], (19
Since {F,}Y_, is a partition of T*;?, we can write

[ o) e (0.5 (.05 19

—1i

Il
] =

/(9 T )eR, (& (i, B,0) @0 (6,4"51)] 1 [(6,dt*71)] .

1

3
Il
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Since ||0_Z» (G,t’if) — H‘A | < 1/h for every (0,15’:1) € F, and |g; (a;, 8,0)| < 2M, we

have
2 /< #i)er (& (@5, 5,0) 0 0 (6,657 7 [(6, 5] (20)
< Z gi (a:, 3,0,) e ™| tF [F,] + %

n=1

By combining (18)—(20), we get (15).H

Proof of Lemma 5 With o (5, sF) < e and ## (T*;') = 1, we have sF [(T*;!)] > 1-¢
and hence s [(© x T571) \ (T’iil) | <e. Since |g; (a;, 3,6)| < 2M, we have

[ lmas) oot (0450 s [0, (21)
OxT”;
> —2Me + i (ag,3,0) e a’, (0,t"1)] sF[(0,dt";1)] .

€ /(Tkil)s [g ( )} [( )]

Recall that o’ (60,¢*;") = A", (0,";") for all (0,t";') € E, and {E.}Y_ | is a partition of

(T’:l)a. Therefore, we can write

faey 85 005,020 0.8 [ 0.0 @)

= 3 [l s e (0] o [(0.007)).

By the definition of \",, for every (9 tk_l) € E,, \", (6’ tk_.l) =0 (9' k- 1) for some

(0’,3]:1) € F,. Hence, ||/\7iz» (Q,tlzl) — H‘A N < 1/h. Since |g; (a;, 5,0)| < 2M, we have

N
3 / [g: (s, 5,0) @ A, (6, #71)] 55 [ (6, dt* )] (23)
N
2M |A_|
> (ai ]tk (B, — .
= ;[gz<aw570n).q ]tz[ n] h
Then, (16) follows by combining (21)—(23).1
Proof of Lemma 6 We want to show that
N
S g (0, B,6.) o ™) [s5 (B,) -t (F,)] > —4Me. (24)
n=1
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Recall that A™ = g; (a;, 3,0,) e ™ and B" = s¥(E,) — tF (F,). Moreover, for notational

convenience, let C" = AN="*! and D" = BN="*! forn =1, ..., N.

Let L be the integer such that A" > 0 if and only if n < L. Then, (24) becomes
L N-L
Y A"B"+ > C"D" > —4Mke. (25)
n=1 n=1

We prove this lemma by establishing three claims. Claims 2 and 3 show that Zizl A"B™ >
—2Me and YN F C"D" > —2Me, which concludes the proof of (24) and the lemma. Claim

1 is a technical intermediate step which will be used in the proofs for Claims 2 and 3.
Claim 1 We have 2221 B" > —¢ and Z;Zl D" <e for1<I<N.

Proof. Tosce >.' _, B" > —¢, observe that
I I !
S Bt = sF[E) =Y th[F)] = s U ] —tf U F] > —e. (26)

n=1 n=1 n=1
where the first equality is by the definition of B™; the second equality follows from our
construction that sets in {Fn}fj:1 are pair-wise disjoint and sets in {En}f:[:l are pair-wise
disjoint; the last inequality follows because U!,_,E, = (U,_;F,)" by (13) and p* (t¥,sF) <
e. Tosee Y., D" < ¢, note that by (14) and ¥ (T*;!) = 1, N . tF[F)] =1 -
ZnN:_f ti [Fy] and Zr]:[:Nle st [En] < 1= 30,5 sF[E,]. Hence,

% n=1 1

Hence, Z;zl D™ < e by (26).1
Claim 2 YF_ A"B"» > —2Me.

Proof. We establish this claim in two steps:

Step 1 For every integer | such that 1 <1 < L, there exists a vector B € R which has the
following properties: (1) 32t B" ="' _ B (2) Zzzl B" > —¢ forevery 1 <1I' <1; (3)
St ABr > AYBY (4) B" <0 forn < L.
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We prove the existence of B by induction on [. If [ = 1, let B = B'. Then, properties
(1) and (3) are obvious. Property (2) is due to Claim 1. Property (4) is vacuously true. Now
suppose for a positive integer [ there is some Z = <71, e 7l> € R! which satisfies properties
(1)-(4). We now proceed to define B as follows so that B is a (I + 1)-vector which makes
the statement true for the case (I 4+ 1). Let B = <§1, o El,§l+1> where B" = Z" for every

n=1,...,0—1, and

o (7Z,Bl+1) . itZ <o
(B , B ) = —1 —l1
(o,Z +Bl+1), it Z' > 0.

Property (1) follows from the induction hypothesis. To see this, observe that

141 -1 -1 I I+1
Z ZB"+§Z+§Z“:ZZ”+7’+B”1:ZB"+B”1:ZB"
n=1 n=1 n=1 n=1 n=1

where the second equality follows because B + B =7 + B! by our definition of B; the
third equality follows from the induction hypothesis that 22:1 7" = 251:1 B".

To see property (2), suppose first I’ <. Then,

S S 7" it <l—1]or [I' =1and 7' < 0];

B . n=1
o U'—15n .oy —l
! Yomei1 2, ifl'=1and Z > 0.
Since z > —¢ and Zl ~1Z" > —¢ by the induction hypothesis, we have Z B" >
—e. Second suppose I =1+ 1. Then, Zi:;ll B" = Zi:;ll B™ by property (1) proved above.
Hence, ZZH ij:ll B™ > —¢ by Claim 1.

We now prove property (3). Observe first that

A7 o anipt 7 <o

AR +Az+1§l+1 _
ALt (Zl n B’“) L ifZ > 0.

Moreover, A1 (7 + Bl“) < A7+ AL B when 7' > 0, because A < A'. Hence,
AB 4 AB™ < A7 4 AWIBE Then,

+1 -1 I+1
Z A"B" = Z A"B" + AB + AHB < Z A"Z" + A BT < Z A"B",
=1 n=1 n=1
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where the first inequality follows from the definition of B and the fact that Al§l+Al+1§l+1 <
A7 + AFI B the second inequality is due to the induction hypothesis. Hence, property
(3) is satisfied.

To see property (4), observe that

. 71,...,7“1,71), it 7' < 0;

—1

BB =8 T B

< (Zl,...,Zl 1,0), it 7' > 0.
Since Z"* < 0 for every 1 < n < [ — 1 by the induction hypothesis, property (4) is also
satisfied.

Step 2 Y% | A"B" > —2Me.

By step 1, we can find a L-vector B which satisfies properties (1)-(4). First, suppose
B" < 0. Then, by property (4), B" <0 for every n < L. Hence,

L L L
> A"B" > A"B">2M > B" > -2Me,
n=1 n=1 n=1

where the first inequality follows from property (3); the second inequality follows because

B" <0 and |A"| < 2M for every n < L; the last inequality follows from property (2).

Second, suppose B" >0 Then,
L L L—1 L—1
S AB > AB Y A > S B > 20,
n=1 n=1 n=1 n=1

where the first inequality follows from property (3); the second inequality follows because
AL and B" are both nonnegative, i.e., AVB" > 0; the third inequality follows from property
(4) and |A"| < 2M for every n; the last inequality follows from property (2).

Claim 3 YV Fompr > —2¢.

Proof. Observe that >.° " D" = "V F (—C™) (—=D"). Since C™ is increasing in n and
C" < 0forall N—L >n > 1, it follows that (—C") is decreasing in n and (—C™) > 0
for all N — L > n > 1. Moreover, Claim 1 implies that Z;Zl (=D") > —efor 1 <[ < N.
Hence, following the proof of Claim 2, and replacing A", B", and L in the proof with (—C™),
(=D"), and (N — L) respectively, we get Zi\tf D™ > —2:.1
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A.3 Proofs of Proposition 2 and Theorem 2
A.3.1 Proof of Proposition 2

Proposition 2 d“*(t},t;) > 1—]% for any finite type t;. Hence, finite types are not dense under
a*s.

Proof. Pick any finite type t;. Let T; x T_; C 7; x T_; be the smallest belief-closed set such
that ¢; € T;. Since t; is a finite type, |T; X T_;| < co. For simplicity, we abbreviate |T; x T
as |T'|. Henceforth, we fix
N =20|T|.
We will consider a finite game with every player’s action space being the N-truncation of a°,
12

a', a®,... where for every n > 0, a” is defined as in Section 4. From now on, for every n > 0,

we will abuse notation and denote the finite truncation of a” = ((a"),, ..., (a™) ) also by a™.

Consider the following finite game, G = (4;, g;),_, , where fori = 1,2, A; = {a® a',a?, ...}
and for any a; = ((a;),, ..., (a;)n) € 4;, a—; = ((a—i)y, ..., (a—;)y) € A_; and 0 € O,

e 0.
0, if a; = a”;

gilai, a_i, 0] = M x min - [(%‘)1 _[f]z)a - [(C(Lz)2 )_ (ai;)l]z J , if a; # al. (27)

Since the game is now fixed, we will simplify the notation in this proof by writing R; (¢;,7)
3 us (p* M sah :
instead of R;(t;,G,7v). We prove that d"*(tj,¢;) > {z by establishing the following two

claims:
Claim 4 o' € R, (t},0).

Proof. Let ¢ (1) = ¢*. Define R (0) € ((2Ai)ﬁ), by Ri(t(k),0) = {a*} if  is odd and
R_; (t (k),0) = {a*} if k is even. By equation (5), for any odd k, 0%, : © x T_; — A (A_))
such that 0%, (0,t_;) = 61 for all (0,t_;), a* is a O—best reply for type ¢ (k) under o ..
The case with an even k is similar. Hence, R (0) satisfies the 0—best reply property in the

type space T} x T_;. Hence, R; (t(k),0) C R;(t(k),0).m
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Claim 5 CLl ¢ Rz (tz, IMG)

Proof. In this proof, it is convenient for us to denote by vy, , , € A(A_; x © x 7T_;) the

measure induced from a conjecture o_; and a type s;, i.e., for any measurable set £ C 7_;

and (d_i,a) € A—i X @,

Ve (B x {(@5,0)}) = [E oy (0,12) [a]«t (s:) [(0 = B.dt_.)] .

Clearly, margexr Vs, »_, = 7 [si]. We prove the result in four steps.
Step 1 [(a™);,....,(a™)s] # [(@™), ..., (a")s] for any C > 18, n #m, andn < C.

We denote the k" block in a' as

/

(1,1,...,1
~———— if k is odd;
k times
B, =
(0,0,...,0)
if k£ is even.
k times

Hence, a* = (By, Bs, Bs, ...). Say a block is interior in a' if By, = <(al)ll e (al)12> for some
2<l1 <l <C-—1,and (al)ll_l =+ (al)ll, (al)l2 #* (al)z2+1' Observe that since n # m, a”
and a™ cannot have an interior block at the same position. That is, there is no /; and [,

such that 2 <l; <l < C — 1 and for some By,

[(am)ll I (am)l2] = [(an)l1 s (a”)lJ = By,
and (am)ll—l = (an)ll_l # (an)zl ) (am)12 = (an)12 # (an)12+1 :

Hence, to prove [(a™),,...,(a™)s] # [(@™);, ..., (a")], it suffices to show [(a™),, ..., (a")c]
contains an interior block. For n < ('] suppose that a” starts with part of B;,;. That is,
we have deleted (By, ..., By) from a' to get a™. Also, to get a™, we need to delete exactly the

first n — 1 coordinates of a'. Hence,

MSn—l#ifﬁQn—?,

1
where %

corresponds to the number of coordinates in (By, ..., By).
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The first two blocks in a™ are (parts of) B, 11 and By, 2, so the combined coordinates are
at most 2h + 3. If 2h+3 < C'—1, a™ contains By, as an interior block. Since h < Von —2
and n < C, we have 2h + 3 < 2¢/2C — 2+ 3. With C > 18, we have 2/2C —2+3 < C — 1.
Therefore, a™ contains By o as an interior block if C' > 18. Since a™ and a™ cannot have an
interior block at the same position, we conclude [(a™),, ..., (a™)s] # [(a™), , ..., (@) ]
Step 2 For any positive integer 1 <n < N —1,i=1,2,t, € T;, and a" € R; (fi, 1M6) which
8 a %—best reply to a valid conjecture o_;, we have

To see (1), let a—; = ((a—)y ..., (a—i)y) € A_i. Let v =15, ,  and B, (1) = [ (-)dv.
For n > 1, we have B, [g; (a",a_;,0)] < E, [-M x [(a"), — 9]2]. Since 0 € {0,1}, 0°> = 0.
Since margeyr Vv = [Ei}, E, (0) = El (ﬂ) Hence,

—& (L) M if (am),
(El(fi)-— 1) M it (a7),

However, g; (a°,a_;,0) = 0 for any a_;. Therefore, to make a" € R; (fi, %), we must have

& (B) e %éﬂc:@%yﬁ(wh:m

& (@) e [%,1} C (%,1} Jif (a"), = 1.

0;
E, [-M x [(a"), — 0]°] = N

We now prove (2). Suppose v (a"™!) = a. We have

b EV [gi (anv an+1’ 0)] - EV [gi (aoa an+1’ 0)] < 0;

e E,[gi(a",a® 0)] —E, g (a®,a’,0)] < —2L which is because g; (a",a’,0) < —2 and

T 4
gi (CLO, aov 0) = 07

o B, [g;(a",a™,0)] —E, [g; (a®,a™,0)] < —M for any m ¢ {0,n + 1}. To see this, note
that N — 1 > 18 and hence by step 1,

(@)oo (@) a] # [ (@) (@) | = 1@ (@)4]
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Therefore,

E, [g; (a",a_;,0)] — By [gi (a”,a_,0)] <ax (0)+ (1 —a) x (—%)

To make a™ a %—ratlonahzable action for ¢, we must have
M M

1— ) > ——.
(1—a)x (-7) 21

That is, a > %.

Step 3 Suppose that for distinct m,n < N — 1 and some finite type t;, we have {a",a™} C

R; (%,-, 1—]%) Then, there is some finite type t_; such that {a™™', a™ ™'} C R_; (t_z, 16)

Since a" € R; (tl, %) a” is a ——best reply for ¢; under some valid conjecture 0" ,. Let
V" = vy, o . By property (2) in step 2, v" (a"*!) > 3. Similarly, a™ € R; ( i 16) and a™ is
a ——best reply for ¢; under some valid conjecture ™. Let v™ = Vi, om - By property (2)

in step 2, v™ (a™*!) > 3. Since margeoy7 V" :marg@XT_ium =7} [t;], v (a"*!) > 3, and

47
V™ (@™) > 2 we must have

6] ({to v (@) > 0}) = v [{(azity) v (@™ ) > 0}]
> [ ) ) > 0)] 2
Similarly, 77 [£;] ({t—; : v™(a™,¢_;) > 0}) > 2. Hence,
{t_; v (@ t) >0} n{t, s v (@™ t) > 0} # .

Let t; € {t_;: v"(a"™ t;) >0} N{t_; : v™(a™,t_;) > 0}. Since v™(a"™,¢_;) > 0 only if
a"tt e R_; (t-y, 3%) and v™(a™ ;) > Oonly if a™™ € R_; (t_;, %), we have {a" ™, a™ ™} C
R (t-i, 15)-

Step 4 a' ¢ R; (t;,1%).

Suppose instead that a' € R; (tl-, l—j‘g) By property (2) in step 2, we can construct a

chain of rationalization where the first |T'| + 1 elements are as follows
ti=t(1) =12 — .. t(T) = t(|T| +1) —
such that ¢ (k) € T} if n is odd and 7 (k) € T_; if k is even;

~ —~ M ~
t(k+1) is in the support of 7* [t (k)] ; and a* is 6 rationalizable for t (k) .
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Recall that |T| = |T} x T_;|, there exists ¢ (n) = ¢ (m) =t (1) € T} such that n < m < |T|+1.
Thus, a" € R; (£(1),2) and a™ € R; (£(1)

' 16 M ) By repeatedly applying step 3, we can
construct two chains of rationalization (for a™ and a™, respectively), which have the common

16

first 19|7| — 1 elements as follows,

t(1) = t(2) = ... = t(19|T) —2) = t(19|T] = 1) — ---
such that for £ < 19|7'| — 1,

~ ~ M
t(k) € T; and {a"™ ' o™} C R, (t (k), 1—6> if k is odd;
g n+k—1 _m+k—1 g M . .
t(k) € T_; and {a ,a }C R (t(k), 6 if k& is even.
By the definition of ¢” and a™, we have

[(an>1 @)y, (an)19|T\—2 ) (an>19|T|—1} - [(“n)l ; (an+1)1 1o (an+19|T|73)1 7 (a”“g‘T"Q)J )

[(am)1 @)y, (am)w\T\—z ’ (am)19|T|—1} = [(a™),, (am+1)1 1o (am+19‘T‘_3)1 ’ (am+1ng|_2)1} .

Since 19|T| —1 > 18, n # m, and n < 19|T| — 1, by step 1 (a"),. # (a™),. for some
1<k <19|T|—1,ie (a"71) =0< 1= (am1).
(a™™" 1), = 0 implies 3 (t(k*—1)) € [0, 3], but (@™**"~1), = 1 implies 3 (t(k* —1)) ¢

[0, %], which is a contradiction. Hence, a' ¢ R; (ti, %).I

By Property (1) in step 2,

A.3.2 Proof of Theorem 2

Theorem 2 Finite types are nowhere dense under d“°.

Proof. Let TF denote the closure of the set of finite types under d“s. It suffices to
show that for any finite type ¢;, there is a sequence of types {t;(n)} >, C T\TF such
that d“* (tl- (n) ,Zi) — 0. Let s} be the unique type whose iterated expectation is y* =
(0,1,0,0,1,1,1,0,0,0,0,...). Recall t*, € 7_; is the unique type which generates the iterated
expectations z* = (1,0,0,1,1,1,0,0,0,0, ...). Hence, 7} (s}) [{6 =0,t_; =¢*,}] = 1. For
each positive integer n, consider p™ € A (O x 7_;) such that for any Borel set £ C © x 7_;,

w1B1= (1= ) miG [E)+ 27 51 [B]. (28)
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Since 7} is a homeomorphism between 7; and A (© x 7_;), there is some type t¢; (n) with
7 (t; (n)) = p". Recall that for any s; € 7;, the marginal distribution of 7* (s;) on Y**

K3

agrees with %Z“ Hence, by (28), for any k¥ > 1 and Borel set £ C Yfi_ ! we have

(t: (m)" [B] = (1 - 1) e+ L ()t . (29)

We now divide the rest of the proof into the following two steps.
Step 1 d"* (t; (n),%;) — 0 as n — oc.

We show that d"* (¢; (n),%;) — 0 as n — oo, which implies d“* (¢; (n),%;) — 0 by
Theorem 1. To see that p* (ti (n)" ,ff) < & for every k, observe that by (29), we have

(t: (n)" [E] = (1 B 1) BB+ (1) 1B < ()" [B7] +

for any Borel set £ C Y*~!. Hence, p* (ti (n) fk> <1

Step 2 t; (n) € T\TT for every n > 8.

We prove this claim by showing that d“* (¢; (n),t;) > 2L for any finite type ¢; and
n > 8. Pick any finite type t;. Let T; x T"_; C 7; x T_; be the smallest belief-closed set such
that t; € T;. Since t; is a finite type, |T; X T_;| < oo. Following the proof of Proposition
ji_; (as defined in (27))

with an action a' for player —i such that a* € R_; (t*;,G,0), but a' ¢ R_; (t_;, G, %) for

2 in Appendix A.3.1, we can construct a finite game G = (A4;, g;)

any t_; € T;. Moreover, the payoffs in G are always between —M and 0. Based upon

G, we define another finite game G’ = (A;-,g}) . Where A} = A; x {z1,20}, A", = A_,,

j=i—
gl—z [(ai7 Z) y A—is 0] - g—i<ai7 a—s, 0)7 and
%, if 2 = 2q;
gz{ [(ai7 Z) y A—is 9] - gi(aia a_j, 0) + M, if z = 29, Q_; = al;
0, ifz=2,a_;+#a
Since the payoffs in GG are between —M and 0, it follows that the payoffs in G’ are between

—M and M. We now divide the proof of step 2 into the following three substeps.
Step 2.1a' € R_; (t*,,G',0).

Let ﬁ X f_i C 7; x T_; be the smallest belief-closed subset such that t*; € T ;. Since
at € R_; (t*_i, G, O), it suffices to show that R_; (s_;,G,0) C R_;(s_;,G’,0) forall s_; € T..
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Let a; € R; (s;, G,0). Then, there is some valid conjecture o_; such that a; is a 0—best reply
to o_;. Hence, there is a function z,, : A; — {21, 22} such that (a;, z, (a;)) is a 0—best reply

for s; under o_; in G’. Define R (0) € ((2Aj)Tj> ~ as
j=i,—1

R R; (5:,0) = {(a;,2) : a; € R;i (5;,G,0) and z = 2, (a;)}, Vs; € T,

~

R,i (S,i, O) = R,i (S,i, G, 0) y Vt,z € j:',i.

We claim that }/é(()) has the 0—Dbest reply property in G’ for the type space T, x T By
our construction, it suffices to check player —i. Let a_; € R_; (s_;, G,0). Hence, there is a
valid conjecture o; such that a_; is a 0—best reply under o; for type s_; in G. We define a
new conjecture o} such that o’ (6, s;) [a;, 2] = 0;(0,s;) [a;] if z = 25, (a;); 0% (0, 8:) [a;, 2] =0
otherwise. Then, by choosing any action a’ ;, player —i gets exactly the same payoff under
the conjecture o} in G’ as the payoff under the conjecture o; in G. Hence, a_; remains a
0—Dbest reply to o} in G’. Therefore, R_; (s—;,G,0) C R_; (s—;, G',0).

Step 2.2 a' ¢ R_; (t_;, G, ) for any t_; € T_;.

7 16

Since al ¢ R_i (t_i, G, 16)’
for t_; € T_;. Define R (1—6) ((2Ai) >._1 , as

R <tz’7 %) = {ai (@i, 2) € R; <ti7G/7 1%6) } , Vt; € T3

~ M
R_; (t_z, 16) R_; <t_z, G, ) , Vi, € T_;.

We show that R (M6) has the ¥ _best reply property in G for the type space T; x T_;

it suffices to show that R_; (t_;,G', 1) € R_; (t_;,G, %)
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First, for a; € R; (t ( 6 16) there is (a;, z) belonging to R; ( , G, 1—]\;5[) Hence, there is a valid
conjecture o_; such that (a;, 2) is a ——best reply under o_; for type t; in G’. Then, a; is a

—best reply under o_; in G, because for any a;, we have
| a8 s 0] 7 (1) (6.t
@XT,Z'
— [ lgillan ) ol 2] 0) s o 0t (1) (6.t
OxT_;

M
>
- 16
Second, for a_; € é_i (t_i, %) there is a valid conjecture o’ such that a_; is a ——best
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reply under ¢’ for type t_; in G'. Define a new conjecture ¢; in G such that
o (0,t:) [ai] = > 0} (0,t:) [as, 2]
ZG{z1,Z1}
Note that by choosing any action a’;, player —i gets exactly the same payoff under the
conjecture ¢ in G’ as the payoff under the conjecture o; in G. Therefore, a_; remains a

I—Ag—best reply under o; for type t_; in GG. Therefore, R_; (t_i, G, IMG) CR_; (t_i, G, 1—]%)

Step 2.3 d"* (t; (n),t;) > 2L for every n > 8.

Consider the following conjecture for player i.

0 (6, t*l) =
some measurable selection from R_; (t_;, G,0), otherwise.

By step 2.1, o_; is valid in G'. Let a; be a 0—best reply under 7 _; for type ¢; (n) in G. We
now show that for n > 8, (a;, 22) € R; (t; (n),G’,0) and (a;, 22) ¢ R; (t;, G', 2L) to conclude
that d" (; (n),t;) > 2.

First, we show that (a;, 22) € R; (t; (n),G’,0). Since a; is a 0—best reply under & _; for

type t; (n) in G and o_; is valid in G, it remains to verify that

/@ o (& ([ai, 2], [as, 21] , 0) @ T (0,1 3)] 7} (t: (n)) [(0,dt_;)] > 0.

Recall that 7} (; (n)) = p" and @} (s7) [{0 = 0,¢_; = t*,}] = 1. Hence, mi} (t; (n)) [{# = 0,t_; =¢*,}] >
1/n by (28). By our definition of 7_;,

/ & ([0 2] (a5, 2], 6) © s (6, £_0)] (£ (m) (6, )]
OxT_;

1 1 M
> —><M+<1——) x0——=0.
n n n
Second, we show that (a;, z2) ¢ R; (ti, G, %) for n > 8. For any t_; € T_;, since a' ¢
R_; (t_;,G', 2) by step 2.2, we have a' ¢ R_; (t_;,G',2%) for n > 8. Since 7} (t;) [T_;] = 1,
any valid conjecture ¢’_; which 2 —rationalizes a; for t; must satisfy o’_; (6,¢_;) [a'] = 0 for
any (0,t_;) with a positive probability under 7} (¢;). Thus,
M

/@H | (85 ([ai, 2], [as, z1], 0) @ 0 (0,1 _5)] 7} (i (n)) [(0,dt_;)] = 0 — % <5

Therefore, (a;, 22) ¢ R; (ti, G, %) forn > 8.1
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