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Abstract

For di¤erent purposes, economists may use di¤erent topologies on types. We char-

acterize the relationship among these various topologies. First, we show that for any

general types, convergence in the uniform-weak topology implies convergence in both

the strategic topology and the uniform strategic topology. Second, we explicitly con-

struct a type which is not the limit of any �nite types under the uniform strategic

topology, showing that the uniform strategic topology is strictly �ner than the strategic

topology. With these results, we can linearly rank various topologies on the universal

type space, which gives a clear picture of the relationship between the implication of

types for beliefs and their implication for behaviors.
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1 Introduction

If two agents have similar beliefs on some payo¤-relevant uncertainty, do they always make

similar decisions? In the single-person-decision-making setup, where proximity of beliefs

about uncertainty can be measured by the standard weak�-topology, the answer is clearly yes.

The answer is much more complicated in the multi-person-game setup where agents�beliefs

about each other�s beliefs play a crucial role in determining the outcome of the interaction.

In this setup, do similar beliefs still imply similar behaviors?

One compact way to formulate the complicated object of �beliefs about beliefs�is to

use the notion of types developed by Harsanyi (1967/1968). A player�s type speci�es a belief

over the set of unknown relevant parameters and opponents� type pro�les. Mertens and

Zamir (1985) shows that the set of all coherent hierarchies of beliefs is the universal type

space and Harsanyi�s idea su¤ers no loss of generality.

In practice, an ideal formulation of an economic situation may involve a very compli-

cated type space which is hard to analyze directly. For reasons of tractability, economists

may therefore replace this ideal formulation with some simpler type space in order to solve

a simpler problem. To make this approximation meaningful, we should require that these

simpler types be "close" to the true types so that they will exhibit "similar" behaviors in

games. To measure the "closeness" of types, we need to de�ne a topology on types.

Two kinds of information are encapsulated in a type. On the one hand, de�ned directly

on hierarchies of beliefs, a type contains an agent�s belief information. On the other hand, as

shown in Dekel, Fudenberg, and Morris (2006) [hereafter DFM], any two di¤erent Mertens-

Zamir types have di¤erent behaviors in some game, and hence, the behaviors of an agent are

also implicitly encoded in a type. We can therefore de�ne topologies on types according to

these two aspects. Examples of "belief" topologies include the product topology introduced

by Mertens and Zamir (1985) and the uniform-weak topology introduced by Di Tillio and

Faingold (2007). Examples of "behavior" topologies are the strategic topology and the uni-

form strategic topology both introduced by DFM. A careful study of the connection among

these topologies will reveal the relationship between the belief implication of types and the

behavior implication of types, which is the main theme of this paper.
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The product topology is used by Mertens and Zamir to achieve their homeomorphism

result. A sequence of types tn converges to a type t in the product topology if and only if

the kth-order belief of tn converges to that of t for any k. Since proximity of tails of the

hierarchies of tn and t is not required, it is now well known that we may have two types

which are close under the product topology but exhibit very di¤erent strategic behaviors

(see Rubinstein (1989)).

This raises the question as to whether there exists a topology under which nearby types

always have similar strategic behavior (see Monderer and Samet (1989), Monderer and Samet

(1996), Kajii and Morris (1998), and Dekel, Fudenberg, and Morris (2006)). In particular,

DFM propose the strategic topology which is just strong enough to guarantee that for every

�nite game, the correspondence which maps types into "�interim-correlated-rationalizable
("-ICR) actions is continuous. More precisely, DFM show that upper-hemicontinuity of the

"-ICR correspondence under strategic convergence is equivalent to product convergence, and

it is precisely the lower-hemicontinuity property which makes strategic convergence a more

stringent requirement.

DFM also introduce the notion of uniform strategic convergence, which adds to the

notion of strategic convergence the additional requirement that the degree of similarity of

"-ICR actions is uniform over all bounded �nite games. In contrast to the strategic topology,

the uniform strategic topology has its own importance, especially when applied to mechanism

design. We discuss this importance further in Section 5.1.

Though useful, DFM�s de�nitions of strategic topologies are complex since they involve

direct reference to best replies, which are tied to games. In particular, we are not able to

tell whether a sequence of types converges in the strategic topology, unless we study the

behaviors of all these types in all �nite games. To address this issue, Di Tillio and Faingold

(2007) propose the uniform-weak topology. A sequence of types tn converges to a type t

in the uniform-weak topology if and only if the kth-order belief of tn converges to that of t

for any order k and the rate of convergence is uniform over k. Di Tillio and Faingold show

that around any �nite type, the strategic topology is fully characterized by the uniform-weak

topology.

To characterize the relationship among these various topologies, we �rst study the im-
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plication of uniform-weak convergence around general types. Our �rst main result (Theorem

1) shows that uniform-weak convergence always guarantees uniform strategic convergence

(hence also strategic convergence) around any types. This gives a su¢ cient condition for

uniform strategic convergence (hence, also for strategic convergence), which is easy to use.1

Coupled with Di Tillio and Faingold�s result, we see that around �nite types, uniform-weak

convergence, strategic convergence and uniform strategic convergence are all equivalent.

In a recent paper, Ely and Peski (2007) propose an insightful partition of the universal

type space into regular and critical types. Regular types are types around which the strategic

topology is equivalent to the product topology. Around critical types the strategic topology

is strictly �ner. Ely and Peski (2007) o¤er this surprisingly concise characterization of critical

types: a type is critical if and only if for some p > 0, it has common p-belief for some closed

proper subset in the universal type space. Therefore, �nite type spaces as well as other type

spaces typically considered in applications consist entirely of critical types.

Our �rst main result leaves open the question as to whether Di Tillio and Faingold�s

equivalence result on �nite types can be extended to all critical types, i.e., does strategic

convergence also imply uniform-weak convergence around any critical type? To answer this

question, we construct an in�nite critical type which cannot be approximated by any sequence

of �nite types under the uniform strategic topology. This result, coupled with our �rst main

result and DFM�s denseness result for �nite types under the strategic topology, shows that

the Di Tillio and Faingold�s equivalence result does not hold for a general critical type.

Moreover, in sharp contrast to DFM�s denseness result, our second main result (Theorem

2) shows that �nite types are nowhere dense under the uniform strategic topology.2 Hence,

by our �rst main result, �nite types are nowhere dense under the uniform-weak topology as

well.

Given two topologies = and =0, let "= � =0" mean that = is weakly �ner than =0

1As shown in Di Tillio and Faingold (2007), the uniform-weak topology is a generalized notion of the

common p-belief introduced by Monderer and Samet (1989).
2DFM conjecture that �nite types are not dense under the uniform strategic topology. They aim to use

their Proposition 2 to prove this conjecture. However, Chen and Xiong (2008) prove that their Proposition

2 is not true by constructing a counterexample. Hence, prior to the current paper, whether �nite types were

dense under the uniform strategic topology was an open question.
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and let "= � =0" mean that = is strictly �ner than =0. Our main contribution can be
summarized as follows. Our �rst main result shows that [uniform-weak topology]�[uniform
strategic topology].3 Coupled with DFM�s denseness result, our second main result shows

that [uniform strategic topology]�[strategic topology]. Moreover, DFM show that [strate-

gic topology]�[product topology]. Therefore, we show that these topologies are related as
follows.

[uniform-weak topology] � [uniform strategic topology] � [strategic topology] � [product topology].

The next section of this paper contains basic de�nitions and notations. In Section 3, we

present our �rst main result and a sketch of the proof. We turn to the issue of non-denseness

of �nite types in Section 4. In Section 5, we o¤er some discussion about related issues. All

proofs are relegated to the Appendix.

2 Preliminaries

Throughout this paper, for any arbitrary separable metric space Y with metric dY , let �(Y )

be the space of all probability measures on the Borel �-algebra of Y endowed with the weak*-

topology. It is well known that the weak*-topology is metrizable with the Prohorov distance

� de�ned as

� (�; �0) = inf f
 > 0 : � (E) � �0 (E
) + 
 for every Borel set E � Y g , 8�, �0 2 �(Y )

where E
 � fy0 : infy2E dY (y0; y) < 
g. Unless explicitly noted, all product spaces will be
endowed with the product topology and subspaces with the relative topology. Every �nite

or countable set is endowed with the discrete topology and denote the cardinality of a �nite

set E by jEj. Moreover, let supp� denote the support of a measure � de�ned on a �nite set.
Finally, for any E � Y and y 2 Y , let 1E be the indicator function on E and �y be the point
mass on y.

For simplicity, assume that there are two players, player 1 and player 2. Given a player

i 2 f1; 2g, let �i denote the other player in f1; 2g. The basic uncertainty is a �nite set which
3Whether [uniform-weak topology]�[uniform strategic topology] is true remains an open question, for

which we do not have an answer.
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is denoted by �. Let Y 0 = � and Y 1 = Y 0 ��(Y 0). Then, for k � 2 de�ne recursively

Y k =
��
�; �1; :::; �k

�
2 Y 0 ��

�
Y 0
�
� � � � ��

�
Y k�1

�
: margY l�2�

l = �l�1, 8l = 2; :::; k
	
.

Then, the Mertens-Zamir universal type space is de�ned as

T =
��
�1; �2; :::

�
2 �1k=0�

�
Y k
�
: margY l�2�

l = �l�1, 8l � 2
	
.

For each k � 1, let �k : T ! �
�
Y k�1

�
be the natural projection. For every player i and

k � 1, let Ti and Y ki denote the copies of T and Y k respectively, write �ki : Ti ! �
�
Y k�1�i

�
for �k, and de�ne T ki = �ki (Ti). An element ti 2 Ti is a type of player i. For simplicity, we
will write tki instead of �

k
i (ti) for the k

th-order belief of type ti.4 By the result of Mertens

and Zamir (1985), Ti (endowed with product topology) is homeomorphic to �(�� T�i).
Let ��i denote this homeomorphism. In the Mertens-Zamir construction, for any type ti, the

marginal distribution of ��i (ti) on Y
k�1
�i agrees with the distribution tki .

Let �0 be the discrete metric on Y 0 = �, i.e., �0 (�; �0) = 1 if � 6= �0 and �0 (�; �) = 0.
For k � 1, let �k be the Prohorov metric on �

�
Y k�1

�
with respect to the metric dk�1 on

Y k�1 de�ned recursively as

dk�1
��
�; :::; �k�1

�
;
�
�0; :::; �k�1

��
= maxf�0(�; �0); �k�1(�1; �1); :::; �k�1(�k�1; �k�1)g.

As de�ned by Di Tillio and Faingold (2007), the uniform-weak topology is generated by the

metric

duw (t; s) � sup
k�1

�k
�
tk; sk

�
for types t and s in T .

Following DFM, we assume that there is a �xed exogenous boundM > 0 for the payo¤s

of all �nite games we consider. Let G = (Ai; gi)i=1;2 be a �nite game where Ai is a �nite set

of actions for player i and gi : Ai�A�i��! [�M;M ] is the payo¤ function. For 
 � 0, we
will use the following recursive de�nition of 
�interim-correlated-rationalizable set which is
equivalent to the �xed-point de�nition (see Dekel, Fudenberg, and Morris (2007)). Let

R (G; 
) � (Ri (G; 
))i=1;2 �
��
Ri (ti; G; 
)ti2Ti

��
i=1;2

� \1k=0Rk (G; 
)

4Note that T ki = �ki (Ti) and hence when we write tki 2 T ki without specifying the type ti, tki should be

understood as the kth-order belief of some type ti 2 Ti.
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where

R0 (G; 
) �
�
(Ai)ti2Ti

�
i=1;2

,

Rk (G; 
) �
�
Rki (G; 
)

�
i=1;2

�
��
Rki (ti; G; 
)ti2Ti

��
i=1;2

, 8k � 1,

and ai 2 Rki (ti; G; 
) if and only if there exists a measurable function ��i : ��T�i ! �(A�i)

such that5

supp��i (�; t�i) � Rk�1�i (t�i; G; 
) for �
�
i (ti)� almost surely (�; t�i) ;Z

��T�i
[gi (ai; a

0
i; �) � ��i (�; t�i)]��i (ti) [(�; dt�i)] � �
 for all a0i 2 Ainfaig where

gi (ai; a
0
i; �) � (gi (ai; a�i; �)� gi (a0i; a�i; �))a�i2A�i .

For any � 2 �(Ai), let gi (ai; �; �) 2 <jA�ij denote the vector of expected payo¤ di¤erence
under �, i.e.,

gi (ai; �; �) �

0@X
a0i2Ai

� (a0i) [gi (ai; a�i; �)� gi (a0i; a�i; �)]

1A
a�i2A�i

Observe that Rki (ti; G; 
) depends only on the k
th-order belief of type ti.

Through the following two lemmas, we will reach an alternative characterization of the


�ICR set which will be used in the proof of Theorem 1. Their proofs can be found in

Appendix A.1. First, in the de�nition of Rki (ti; G; 
) above, a conjecture ��i is a measurable

function from � � T�i to �(A�i). Since we will study the in�uence of kth-order beliefs
on Rki (ti; G; 
), the following de�nition and lemma o¤er a useful alternative de�nition of

Rki (ti; G; 
).

De�nition 1 R
0

i (ti; G; 
) = Ai for all ti and i. For k � 1, ai 2 R
k

i (ti; G; 
) if and only if

there exists a measurable function ��i : �� T k�1�i ! �(A�i) such that

supp��i
�
�; tk�1�i

�
� Rk�1�i (t�i; G; 
) for t

k
i � almost surely

�
�; tk�1�i

�
; (1)Z

��T k�1�i

�
��i

�
�; tk�1�i

�
� gi (ai; a0i; �)

�
tki
��
�; dtk�1�i

��
� �
 for all a0i 2 Ai, (2)

where �� T 0�i � �.
5Throughout the paper ���stands for the inner product of two vectors with the same dimension.
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Lemma 1 R
k

i (ti; G; 
) = R
k
i (ti; G; 
) for every integer k � 0, every ti, and every player i.

Hereafter, a measurable function ��i from��T k�1�i to�(A�i) which satis�es condition

(1) is said to be a valid conjecture. Moreover, an action ai which satis�es condition (2) is said

to be a 
�best reply under ��i for type ti. Second, the following result shows that proving
ai 2 R

k

i (ti; G; 
) is equivalent to proving that for any mixed action � 2 �(Ainfaig), we can
�nd a valid conjecture ��i (which may vary with �) such that playing ai is 
-better than

playing �. Note that this equivalent characterization reverses the quanti�er of (2) which

requires a valid conjecture ��i working for all a0i (and hence for all � 2 �(Ainfaig)).6

Lemma 2 For any positive integer k, any 
 � 0, any �nite game G, and any type ti 2 Ti,
ai 2 Rki (ti; G; 
) if and only if for every � > 0 and � 2 �(Ainfaig) there is a valid conjecture
��i [�] : �� T k�1�i ! �(A�i) for ti under whichZ

��T k�1�i

�
gi (ai; �; �) � ��i [�]

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
� �
 � �.

For each ti 2 Ti, de�ne hi (tijai; G) to be the minimal 
 under which an action ai is

�rationalizable for ti in G, i.e.,

hi (tijai; G) = min f
 : ai 2 Ri (ti; G; 
)g .7

Fix � 2 (0; 1). Let Gm be the collection of all games where each player has m actions and the
payo¤s are bounded byM . Let G be the collection of all two-player �nite games with payo¤s
bounded by M . Following DFM, we de�ne the strategic topology and the uniform strategic

topology on types to be the topologies generated by the metrics ds and dus respectively,

where

ds (ti; si) �
1X
m=1

�m sup
ai2Ai(G);G2Gm

jhi (tijai; G)� hi (sijai; G)j for types ti and si in Ti;

dus (ti; si) � sup
ai2Ai(G);G2G

jhi (tijai; G)� hi (sijai; G)j for types ti and si in Ti.

Clearly, dus (ti; si) � ds (ti; si).
6This minimax step is conceptually di¤erent from the standard equivalence between the never-best reply

and a strictly dominated strategy, though the technical content is similar.
7DFM�s Proposition 1 shows that the minimum exsits.
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3 duw�convergence ) dus�convergence

We are now ready to state our main result as follows.

Theorem 1 For any " > 0 and two types ti and si in Ti with duw (ti; si) � ", we have

dus (ti; si) � 6M" and hence ds (ti; si) � 6M".

Theorem 1 is an immediate consequence of the following proposition.

Proposition 1 For any �nite game G, any "; 
 � 0, and any types ti and si in Ti with
�k
�
tki ; s

k
i

�
� ", we have Rki (ti; G; 
) � Rki (si; G; 
 + 6M") for every integer k � 0.

The formal proof of Proposition 1 is long and will be presented in Appendix A.2. Here

we o¤er a sketch to highlight the essential ideas. We prove this proposition by induction on

k and divide the proof of the induction step into �ve sub-steps. We now provide a roadmap

by describing the role of each step.

First, for ai 2 Rki (ti; G; 
), there is some valid conjecture ��i under which ai is a 
�best
reply for type ti. Our goal is to show that ai 2 Rki (si; G; 
 + 6M") by �nding another valid
conjecture �0�i under which ai is a (
 + 6M")�best reply for type si. By Lemmas 1 and 2,
it su¢ ces to show that for every � > 0 and � 2 �(Ainfaig), there exists a valid conjecture
�0�i such thatZ

��T k�1�i

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
� �
 � 6M"� �. (3)

To �nd the desired �0�i, we observe �rst that s
k
i must assign a large probability to�

Tk�1�i
�"
where Tk�1�i is the set of

�
�; tk�1�i

�
s where ��i randomizes among 
�rationalizable

actions of player �i (step 1). Then, we de�ne �0�i = ��i on Tk�1�i and it is immaterial how

we de�ne �0�i outside
�
Tk�1�i

�"
so long as it is valid. To de�ne �0�i on

�
Tk�1�i

�" nTk�1�i , we

�rst �nd a �nite partition f�mg of �(A�i) such that in each partition cell, there is some
representative probability vector qm which supnorm-approximates every q in �m. We then

use the pre-image of f�mg under �i to induce a partition
�
F �m
	
on Tk�1�i (step 2).
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Second, step 3 obtains a suitable measurable extension of �0�i from F
�
m to

�
F �m
�"
so that

the induction hypothesis can be invoked to take care of the validity of �0�i. Third, in step 4,

we solve the double-counting problem which arises when we specify �0�i on the intersection

of
�
F �m
�"
and

�
F �

0

m0

�"
. Here we will see the advantage of allowing �0�i to depend on �. Given

�, there is one obvious way to achieve (3) by maximizing gi (ai; �; �) � �0�i
�
�; tk�1�i

�
� i.e., to

assign �0�i according to the extension on
�
F �m
�"
obtained in step 3 whenever gi (ai; �; �)�qm �

gi (ai; �; �
0) � qm0

. Step 5 illustrates the idea of proving (3) under �0�i.

3.1 Step 1: focus on the support of tki

Let Tk�1�i �
��
�; tk�1�i

�
2 �� T k�1�i : supp��i

�
�; tk�1�i

�
� Rk�1i

�
tk�1�i ; G; 


�	
. Since ��i is

valid, tki
�
Tk�1�i

�
= 1. Moreover, with �k

�
tki ; s

k
i

�
� ", we have ski

��
Tk�1�i

�"� � 1 � ". Since
the payo¤ has a uniform bound M , how to de�ne �0�i on the complement of

�
Tk�1�i

�"
is not

important because the payo¤ resulted from this region is at most M". For
�
�; tk�1�i

�
in Tk�1�i ,

we can take care of its validity by simply choosing �0�i to be identical to ��i. The key issue

is to suitably de�ne �0�i for
�
�; tk�1�i

�
in
�
Tk�1�i

�"
but outside Tk�1�i , which will be discussed

in step 3.

3.2 Step 2: discretize �(A�i)

For the conjecture �0�i that we are about to de�ne, we will prove ai 2 Rki (si; G; 
 + 6M")
by showing that (3) holds. However, it is not obvious how the condition �k

�
tki ; s

k
i

�
� " can

be applied to evaluate the payo¤ di¤erence. To solve this problem, we discretize the simplex

�(A�i). Note that �(A�i) is a (jA�ij � 1)-dimensional compact set. Therefore, for any
positive integer h, we can �nd a �nite partition f�mg�m=1 of �(A�i) such that qm 2 �m

is a representative element of �m, and the supnorm of (qm � q) is no more than 1
h
for any

q 2 �m.

We can partition Tk�1�i into N = j�j �� sets
�
F �m
	
where for each � and m,

F �m � f
�
�; tk�1�i

�
2 Tk�1�i : ��i

�
�; tk�1�i

�
2 �mg.

Then, we can approximate the expected payo¤ of ti under ��i by replacing ��i
�
�; tk�1�i

�
with

10



qm if
�
�; tk�1�i

�
belongs to F �m . This approximation has at most an error of

2M jA�ij
h

which can

be arbitrarily small if h is su¢ ciently large.

3.3 Step 3: measurable extension of the conjecture

We now specify �0�i for
�
�; tk�1�i

�
in
�
Tk�1�i

�"
but outside Tk�1�i . By step 1, we have de�ned

�0�i = ��i on Tk�1�i . By step 2, T
k�1
�i = [�;mF �m and

�
Tk�1�i

�"
= [�;m

�
F �m
�"
. Hence, one

way to solve the problem is to extend the conjecture on F �m to
�
F �m
�"
for each (�;m). We

have to take care of two requirements to guarantee the validity of �0�i. First, �
0
�i must be

measurable. Second, for any
�
�; tk�1�i

�
2
�
F �m
�"
, �0�i

�
�; tk�1�i

�
must be close to qm so that

the approximation in step 2 is still valid. These requirements are handled by the following

lemma whose proof can be found in Appendix A.2.1.

Lemma 3 Consider a separable metric space (Y; dY ), a Borel set F � Y , and " > 0.

Suppose f : F ! Z is a measurable function from F to another measurable space Z. Then,

there is a measurable function f " : F " ! Z such that f " = f on F , and for every y 2 F "nF ,
f " (y) = f (y0) for some y0 2 F with dY (y; y0) < ".

The lemma guarantees that for
�
�; tk�1�i

�
within

�
F �m
�"
but outside F �m, we can de�ne

�0�i
�
�; tk�1�i

�
to be equal to ��i

�
�0; sk�1�i

�
for some

�
�0; sk�1�i

�
in F �m and still preserve mea-

surability. The validity of �0�i will then be granted by the induction hypothesis. Moreover,

by doing so we reduce the comparison of the expected payo¤s to the much more tractable

task of evaluating the probability di¤erences on the sets
�
F �m
�"
and F �m subject to a dou-

ble counting problem to be discussed in the next step. That is, the expected payo¤s for

ti under ��i and for si under �0�i can be approximated by
P

�;m [gi (ai; �; �) � qm] tki
�
F �m
�

and
P

�;m [gi (ai; �; �) � qm] ski
��
F �m
�"�

respectively, for which the condition �k
�
tki ; s

k
i

�
� " is

readily applied.

11



3.4 Step 4: the double-counting problem

The double-counting problem mentioned in step 3 arises because f
�
F �m
�"g�;m may not par-

tition
�
Tk�1�i

�"
. Namely, for

�
�; tk�1�i

�
in
�
F �m
�" \ �F �0m0

�"
, should we de�ne �0�i following the

extension on
�
F �m
�"
or the one on

�
F �

0

m0

�"
? To solve this problem, it is important to recall

Lemma 2 which allows us to �x � 2 �(Ainfaig) before �nding the conjecture �0�i to prove
(3). Then, for every

�
�; tk�1�i

�
in
�
F �m
�" \ �F �0m0

�"
, we can simply assign �0�i to follow the

extension on
�
F �m
�"
if gi (ai; �; �)�qm � gi (ai; �; �0)�qm

0
. This will make the expected value

of
�
gi (ai; �; �) � �0�i (�; t�i)

�
as large as possible and help us to rationalize ai.

Formally, we can relabel the elements in fF �mg�;m as follows. Let
�
F �m
	
�;m
= fF �nmn

gNn=1
such that

gi (ai; �; �1) � qm1 � � � � � gi (ai; �; �N) � qmN .

For notational simplicity, we often write Fn instead of F �nmn
when no confusion may arise. By

the way we order Fn, we should assign �0�i
�
�; tk�1�i

�
to follow the extension on (Fn)

" with

n being the smallest number such that (Fn)
" contains

�
�; tk�1�i

�
. Formally, this amounts to

modifying the sets f(Fn)"g to the sets fEng which are de�ned as follows, and de�ne �0�i
following the extension in step 3 on each En.

E1 = (F1)
" and En = (Fn)

" n
�
[n�1l=1 El

�
for n � 2.

With this modi�cation, fEngNn=1 partitions
�
Tk�1�i

�"
, and we can approximate the payo¤ of

si under �0�i by
PN

n=1 [gi (ai; �; �n) � qmn ] ski [En] without double-counting.

3.5 Step 5: combining sets

The last step is to show that the di¤erence of the two approximated payo¤s is not large, i.e.,

NX
n=1

[gi (ai; �; �n) � qmn ]
�
ski (En)� tki (Fn)

�
� �4M". (4)

Let An = gi (ai; �; �n) �qmn and Bn = ski (En)� tki (Fn). For notational convenience, we also
relabel fAngNn=1 andfBng

N
n=1 in a reverse order, i.e., let C

n = AN�n+1 and Dn = BN�n+1 for

every n = 1; :::; N .

12



The following claim will be useful in showing (4) and is formally proved in Appen-

dix A.2.2. It follows basically from our construction that [ln=1En = [ln=1 (Fn)
" and the

assumption �k
�
tki ; s

k
i

�
� ".

Claim 1 We have
Pl

n=1B
n � �" and

Pl
n=1D

n � " for 1 � l � N .

We now sketch the idea for the proof of (4). First, recall from the previous step that

A1 � A2 � � � � � AN .

For heuristic purpose, assume that N = 3 and A3 � 0. We prove that
P3

n=1A
nBn � �2M"

in two steps. If fBng are all nonnegative, then
P3

n=1A
nBn � 0 > �2M". If fBng are

all non-positive, then
P3

n=1A
nBn � 2M

P3
n=1B

n � �2M" because of Claim 1 and our

assumption that jAnj � 2M for all n.

The main problem is to deal with the situation in which B1, B2, and B3 have di¤erent

signs. For example, suppose B1 > 0, B2 < 0, and B3 < 0. We use the following trick. Since

B1 > 0 and A1 � A2, we will not increase the value of
P3

n=1A
nBn if B1 is �moved�from

being multiplied by A1 to being multiplied by A2. That is,
P3

n=1A
nBn � A2 (B1 +B2) +

A3B3. Then, we check the sign of B1 +B2. If (B1 +B2) � 0, then

3X
n=1

AnBn � A2
�
B1 +B2

�
+ A3B3 � 2M

�
B1 +B2 +B3

�
� �2M",

where second inequality follows because both (B1 +B2) and B3 are non-positive and jAnj �
2M ; the last inequality follows fromClaim 1. If (B1 +B2) > 0, then the value ofA2 (B1 +B2)+

A3B3 decreases if B1+B2 is further �moved�from being multiplied by A2 to being multiplied

by A3, i.e. A2 (B1 +B2) + A3B3 � A3 (B1 +B2 +B3). Hence,

3X
n=1

AnBn � A2
�
B1 +B2

�
+ A3B3 � A3

3X
n=1

Bn � �2M",

where the last inequality follows from jA3j � 2M and Claim 1.

Our argument takes advantage of the property that An is decreasing in n so that

�moving�a positive B toward being multiplied by a smaller A does not increase the value.

After all these �moves�are done, only the last term may have a positive coe¢ cient B. If

13



the last term is negative, we go back to the single-signed case. If the last B is positive, since

fAng are all nonnegative, we can simply throw out AnBn without increasing the value and
also go back to the single-signed case.8 The general proof involves dividing the summationPN

n=1A
nBn into two groups. One group has all the nonnegative Ans and the other group

has all the negative Ans. For both groups, we can invoke a similar trick and Claim 1 and

conclude
PN

n=1A
nBn � �4M" (see the proofs of Claims 2 and 3 in Appendix A.2 for details).

4 Non-denseness of �nite types

In this section, we �rst show by an example that �nite types are not dense under the

uniform strategic topology. We achieve this goal by directly constructing an (in�nite) type

t�i such that d
us(t�i ; ti) � M

16
for any �nite type ti. Based upon the example, we go one

step further to show that the set of �nite types is nowhere dense in the universal type

space, i.e., the complement of the uniform strategic closure of �nite types is open and dense.

Finally, we remark t�i is a critical type in the sense of Ely and Peski (2007) and comment on

the implication of our example to the relationship between the strategic topology and the

uniform-weak topology around critical types.

Throughout this section, consider the case that � = f0; 1g. This simpli�cation allows
us to follow Morris (2002) to de�ne the iterated expectations of a type t = (�1; �2; :::) 2 T
which will be used later. Let �0 : Y

0 ! [0; 1] be de�ned as �0 = 1f�=1g and

b�k (t) = �k (�k) � Z
Y k�1

�k�1d�k, 8k � 1.

De�ne b� (t) � �b�k (t)�1
k=1

2 [0; 1]1. Say a sequence of iterated expectations x 2 [0; 1]1 is

generated by a type t if x = b� (t). We know that every x 2 [0; 1]1 can be generated by some

type t 2 T (see (Morris, 2002, Example)).

We are now ready to de�ne the type t�i . Let t
�
i be the type which has the following

8Note that we cannot simply delete all AnBn such that Bn > 0. Consider the special case we discuss

here for example. While we have
P3

n=1A
nBn � A2B2 + A3B3, we cannot apply Claim 1 to show that

A2B2 + A3B3 � �2M". Recall that B2 + B3 = ski (E2 [ E3) � tki (F2 [ F3). Since (E2 [ E3) may not be
equal to (F2 [ F3)", we cannot get B2 +B3 � �" from �k

�
tki ; s

k
i

�
� ".

14



iterated expectations

�b� n(n�1)
2

+1
(t�i ) ; :::;

b� n(n+1)
2

(t�i )
�
=

8<: (1; 1; ::::; 1) , if n is odd;

(0; 0; ::::; 0) , if n is even.

That is, b� (t�i ) = (1; 0; 0; 1; 1; 1; 0; 0; 0; 0; :::). For notational convenience, denote
a0 = (

1

2
;
1

2
; :::;

1

2
; :::);

an = (b�n (t�i ) ;b�n+1 (t�i ) ;b�n+2 (t�i ) ; :::) for n = 1; 2; :::.
Note that an 6= am for n 6= m. For k = 1; 2; :::, let (an)k be the kth element of the sequence
an. One feature of an, which will be useful later in the proof, is that (an)k = (an+k�1)1.

Let bTi � bT�i � Ti � T�i be the smallest (w.r.t. set-inclusion) belief-closed subset such
that t�i 2 bTi. Observe that 0 (and 1) is the minimum (and maximum) that a kth-order

expectation can achieve. Since b� (t�i ) = (1; 0; 0; 1; 1; 1; 0; 0; 0; 0; :::), there is a unique type t�i
in Ti which has the following hierarchy of beliefs:

� �rst-order belief: point mass on � = 1;

� second-order belief: point mass on [player �i believes � = 0 with probability 1];

� third-order belief: point mass on [player �i believes with probability 1 that player i
believes with probability 1 that � = 0], and so on.

Let t (1) = t�i . Moreover, let t (n) denote the unique type in T that generates the iterated

expectations an, for n � 2. Hence,

�� [t (n)] [b�1 (t (n)) ; t (n+ 1)] = 1 for n � 1. (5)

That is, type t�i believes his opponent is t (2) with probability 1; type t (n) believes his

opponent is t (n+ 1) with probability 1 (cf. (Morris, 2002, Example) and Mertens and

Zamir (1985)). Therefore, b� �bTi [ bT�i� = fa1; a2; :::g.
We now show that �nite types are not dense under the uniform strategic topology. We

provide an outline of our argument here, and the rigorous proof can be found in Appen-

dix A.3.1. It is helpful to consider �rst the following modi�ed version of the higher-order
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expectation (HOE) game due to Morris (2002).9

Ai = fa0; a1; a2; a3; :::g;

gi
�
(ai;n)

1
n=1 ; (a�i;n)

1
n=1 ; �

�
=

8>>><>>>:
0, if (ai;n)

1
n=1 = a

0;

M � inf

8<: � (ai;1 � �)2 ;� (ai;2 � a�i;1)2 ;
:::;� (ai;n � a�i;n�1)2 ; :::

9=; , if (ai;n)1n=1 6= a0.
While G = (Ai; gi)i=1;2 is a game with in�nitely many actions, we will show how it can be

modi�ed to a �nite game in Appendix A.3.1. In this game, a player�s actions are a0, a1,

a2,.... The action a0 always generates the maximal payo¤ 0.10 If the player chooses an with

n � 1, he gets the in�mum over the quadratic losses between the �rst coordinate of player

i�s action and �, the quadratic loss between the second coordinate of player i�s action and

player �i�s �rst coordinate, and so on. That is, it is a coordination game in which a player
tries to match the state of nature and his opponent�s action. The players can achieve the

maximal payo¤ 0 by either taking the safe action a0 or having perfect coordination with

nature as well as every coordinate of his opponent�s action.

First, we have a1 2 Ri (t�i ; 0) because for each k each player of type t (n) 2 bTi can
rationalize an by holding the belief that t (n+ 1) will choose the action an+1. Second, we

show that for some positive but small enough 
, a1 =2 Ri (ti; 
) for every �nite type ti. Let
Ti�T�i � Ti�T�i be the smallest belief-closed subset such that ti 2 Ti. Suppose instead that
a1 is 
�rationalizable for ti. Then, (A) player i must believe most of his opponent�s types
(which are in the support of ��i [ti]) are playing a

2 so as to get almost perfect coordination;

9One may wonder if we can use the original HOE game, in which the payo¤ is de�ned as,

gi
�
(ai;n)

1
n=1 ; (aj;n)

1
n=1 ; �

�
= M �

"
��1 (ai;1 � �)2 �

1X
k=2

�k (ai;k � aj;k�1)2
#
,

such that �k > 0 and
1X
k=1

�k = 1:

Consider two types t and t0 such that their expectations di¤er only at the N th-order. On the one hand, we

should choose a �N large enough so that the game separates t and t0 in the sense that the minimal 
 to


�rationalize some action under these types di¤ers. On the other hand, the player chooses ai;N � b�N [t0] only
if both players almost truthfully report all their kth-order expectation for every k up to N , which requires

those �k�s to be large enough. Since
P1

k=1 �k = 1, it does not seem obvious to us how to resolve this tension

for a large N .
10We add this safe action a0 to make it easier to rule out certain actions as not being 
�rationalizable.
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and (B) a2 must be 
�rationalizable for these opponents. Pick one t�i which is believed to
play a2 by ti. Since a2 is 
�rationalizable for t�i, we can similarly get (A) player �i must
believe most of player i�s types in the support of ���i [t�i] are playing a

3; and (B) a3 must

be 
�rationalizable for these player i�s types. Doing this inductively, we can get an in�nite
chain of 
�rationalization.

ti = bt (1)! bt (2)! bt (3)! bt (4)! bt (5)! � � � such that (6)bt (k) 2 Ti if k is odd and bt (k) 2 T�i if k is even;bt (k + 1) is in the support of �� �bt (k)� ; and ak is 
 � rationalizable for bt (k) .
Since ti is a �nite type, some type in Ti must recur in this in�nite chain. That is, we can

�nd bt (n) = bt (m) = et (1) 2 Ti such that an and am are both 
�rationalizable for et (1) and
an 6= am.

Recall that a player can always achieve the maximal payo¤ by taking the safe action

a0. Since 
 is small enough, in order to make an 
�rationalizable for et (1), an+1 must be

�rationalizable for most of et (1)�s opponent�s types in the support of �� �et (1)�; to make am

�rationalizable for et (1), am+1 must be 
�rationalizable for most of et (1)�s opponent�s types
in the support of ��

�et (1)�. Hence, there exists some type et (2) in the support of �� �et (1)�
such that an+1 and am+1 are both 
�rationalizable for et (2). Similarly, we can pick et (k) in
this way for all k � 2. Hence, we can construct another common chain of 
�rationalization
for both an and am:

et (1)! et (2)! et (3)! et (4)! et (5)! � � � such thatet (k) 2 Ti and �an+k�1; am+k�1	 � Ri �et (k) ; 
� if k is odd;et (k) 2 T�i and �an+k�1; am+k�1	 � R�i �et (k) ; 
� if k is even.
Since the players are also trying to coordinate with nature in this game, we also have the

property (C) for a small enough 
 and any action a 
�rationalizable for a type t, (a)1 = 0 i¤b�1 (t) 2 [0; 12 ]. We then reach a contradiction by applying property (C) to this common chain
of rationalization for an and am. First, an 6= am implies (an)k� = 1 6= 0 = (am)k� for some k�.
Second, by the de�nitions of an and am, (an+k

��1)1 = (a
n)k� = 1 6= 0 = (am)k� = (am+k

��1)1,
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but property (C) implies,

(an+k
��1)1 = (am+k

��1)1 = 0 if b�1 �et (k�)� 2 [0; 12];
(an+k

��1)1 = (am+k
��1)1 = 1 if b�1 �et (k�)� =2 [0; 12],

because both an+k
��1 and am+k

��1 are 
�rationalizable for et (k�) in the common chain above.
This is a contradiction. Therefore, a1 =2 Ri (ti; 
).

In the rigorous proof for Proposition 2 in Appendix A.3.1, we formalize the argument

above. We make the game �nite by truncating an into its �rst N coordinates and proceed in

four steps. In step 1, we show that if N is su¢ ciently large, we can still �nd an and am in the


�rationalization chain in (6), such that the N -truncation of an and am are distinct. Step 2
proves properties (A) and (C). Step 3 constructs the common chain of 
�rationalization for
an and am as above. Step 4 derives the contradiction. In the proof, 
 = M

16
is small enough

to achieve our goal.

Proposition 2 dus(t�i ; ti) � M
16
for any �nite type ti. Hence, �nite types are not dense under

dus.

In fact, Proposition 2 can be used to prove a stronger result.

Theorem 2 Finite types are nowhere dense under dus.

Since the uniform-weak topology is �ner than the uniform strategic topology by The-

orem 1, �nite types are nowhere dense under duw as well. The proofs of Proposition 2 and

Theorem 2 are relegated to Appendix A.3.1 and A.3.2, respectively.

Recall that Ely and Peski (2007) de�ne a critical type to be a type around which the

strategic topology is strictly stronger than the product topology. Recall also that Di Tillio

and Faingold (2007) show that the strategic topology is equivalent to the uniform-weak

topology around �nite types. As shown in Ely and Peski (2007), every �nite type is critical

but not conversely. In particular, the type t�i we construct is an in�nite critical type. To see

this, recall that bTi� bT�i � Ti�Tj is the smallest belief-closed set such that t�i 2 bTi. Clearly,
18



bTi � bT�i is of common 1-belief under t�. By monotonicity of the common 1-belief operator,
the closure of bTi � bT�i (under the product topology in Ti � Tj) is of common 1-belief at t�i .
Consider the types

�
t1; t2

�
2 Ti � Tj under which both t1 and t2 have the �rst-order belief

Pr(� = 1) = Pr(� = 0) = 1
2
. For all (t1; t2) 2 bTi � bT�i, the �rst-order beliefs of t1 and t2

are either Pr(� = 1) = 1 or Pr(� = 0) = 1. Thus,
�
t1; t2

�
does not belong to the closure ofbTi � bT�i. Hence, the closure of bTi � bT�i is a proper closed subset of Ti � Tj. By (Ely and

Peski, 2007, Theorem 3), we conclude t� is a critical type. Since �nite types are dense under

the strategic topology by (Dekel, Fudenberg, and Morris, 2006, Theorem 3), Proposition 2

shows that strategic convergence to an in�nite critical type does not imply uniform-weak

convergence to this critical type.

5 Discussion

5.1 The uniform strategic topology

DFM study the uniform strategic topology in contrast to the strategic topology they propose.

The denseness result from Section 4 demonstrates one di¤erence between the two topologies.

In particular, our example shows that it is sometimes hard to approximate complicated types

with �nite types when we require uniformity of this approximation among all �nite games.

However, such a uniform approximation may still be relevant.

Suppose we are facing a mechanism design problem where agents�information is mod-

eled with a complicated type space T . DFM�s denseness results on strategic topology states

that given any �xed game G, we can �nd a simple type space T 0 to approximate T in terms

of strategic behaviors in G. However, to solve a mechanism design problem is to search for a

mechanism (game form) among all possible games. Hence, to ensure that the optimal solu-

tion on T 0 incurs approximately no loss of accuracy, it is crucial that the strategic behaviors

under T 0 approximate those under T in all mechanisms instead of merely in some G. Thus,

the uniform strategic topology is free of such a problem so long as the mechanism is searched

within bounded �nite games.11

11Suppose that G0 is the optimal mechanism for the simpler type space T 0, which is close to the true type
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5.2 Comparison of our proof to that of Di Tillio and Faingold

(2007)

Di Tillio and Faingold (2007) prove that the uniform-weak topology is �ner than the strategic

topology around �nite types. Our �rst main result extends this to all types. In Di Tillio

and Faingold�s proof, they exploit the fact that in a �nite type space, there is a minimal

uniform-weak distance between any two di¤erent types within this type space. Thus, when

duw(tni ; ti) is su¢ ciently small relative to the minimum uniform-weak distance of the �nite

type space containing ti, the two types tni and ti must believe in approximately the same set

of opponents with approximately the same distribution, and no double-counting problem is

involved. In our proof, we take advantage of the �niteness of games and solve the double-

counting problem by applying the minimax argument.

5.3 In�nite order implications of Theorem 1

It is natural to doubt whether one can obtain information about the entire hierarchy of

beliefs of types. Therefore, types which are close under the product topology may still be

deemed indistinguishable from a practical viewpoint. In accordance with this idea, extensive

studies have been carried out on �nite-order implications of notions associated with a type.

In particular, Lipman (2003) shows that common-prior types are dense under the product

topology, while Weinstein and Yildiz (2007) show that in a �xed game without common-

knowledge restrictions on payo¤s, types with unique rationalizable actions are open and

dense.

As pointed out by DFM, neither the result in Lipman (2003) nor the result in Weinstein

and Yildiz (2007) holds when we consider the strategic topology instead of the product

space T in the strategic topology. The behaviors of T and T 0 in G0 might still be quite di¤erent. This is

especially true if G0 has a lot of actions. Recall that the strategic distance ds (ti; si) for types ti and si in Ti
is a weighted sum of the di¤erence between the behaviors of ti and si in all bounded �nite game. If G0 has m

actions with m being large, ds (ti; si) assigns a small weight �m on the di¤erence between the behaviors of

ti and si in G0. Therefore, even if ds (ti; si) is small, the two types ti and si may still exhibit quite di¤erent

behaviors in G0. However, this problem can be avoided if we approximate T by T 00 which is close to T in

the uniform strategic topology.
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topology. DFM show that there is an open set in the strategic topology which consists

entirely of types with noncommon priors or multiple rationalizable actions. That is, in

these cases strategic open sets are rich enough to separate noncommon-prior types from

common-prior types, or types with multiple rationalizable actions from types with unique

rationalizable actions. A straightforward consequence of Theorem 1 is that these strategic

open sets identi�ed in DFM�s examples must contain uniform-weak open sets. Hence, neither

Lipman�s result nor that of Weinstein and Yildiz�s holds in the uniform-weak topology.

5.4 The distance d��

The uniform-weak topology is a natural way of strengthening the product topology. In DFM�s

Proposition 2, they propose a metric d�� which also implies uniform strategic convergence.

Two types are close under d�� if they have uniformly close expectations on all bounded

functions measurable with respect to the kth-order beliefs for some k. However, this metric

d�� is too strong in the sense that even when we restrict attention to �nite-order beliefs, the

topology it generates is still strictly stronger than the standard weak� topology.

In particular, consider an example in Chen and Xiong (2008). Suppose that � = f0; 1g.
Let t be a complete information type under which it is common 1-belief that "� = 1." Let

ftng be a sequence of types under which both players believe "� = 1" with probability�
1� 1

n

�
and it is common 1-belief that both players believe "� = 1" with probability

�
1� 1

n

�
(cf. Monderer and Samet (1989)). Then, it is common

�
1� 1

n

�
-belief that "� = 1" under tn,

and moreover, duw (tn; t) ! 0. By Theorem 1, we have dus (tn; t) ! 0. However, as shown

in Chen and Xiong (2008), tn does not converge to t under d��. In contrast to the result of

Di Tillio and Faingold (2007), this example also demonstrates that even if the limit type is

a �nite type, the (uniform) strategic convergence does not imply the d���convergence.
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A Appendix

A.1 Alternative characterizations of the 
�ICR set

A.1.1 Proof of Lemma 1

Recall that R
0

i (ti; G; 
) = R
0
i (ti; G; 
) = Ai and for k � 1, ai 2 Rki (ti; G; 
) i¤ there exists

a measurable function ��i : �� T�i ! �(A�i) such that

supp��i (�; t�i) � Rk�1�i (t�i; G; 
) for �
�
i (ti)� almost surely (�; t�i) ; (7)Z

��T�i
[gi (ai; a

0
i; �) � ��i (�; t�i)]��i (ti) [(�; dt�i)] � �
 for all a0i 2 Ai, (8)

and ai 2 R
k

i (ti; G; 
) i¤ there exists a measurable function ��i : � � T k�1�i ! �(A�i) such

that

supp��i
�
�; tk�1�i

�
� Rk�1�i (t�i; G; 
) for t

k
i � almost surely

�
�; tk�1�i

�
; (9)Z

��T k�1�i

�
gi (ai; a

0
i; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
� �
 for all a0i 2 Ai (10)

where �� T 0�i � �.

Lemma 1 R
k

i (ti; G; 
) = R
k
i (ti; G; 
) for every integer k � 0, every ti, and every player i.

Proof. We prove this claim by induction on k. For k = 0, the lemma holds by de�nition.

Now suppose that the lemma holds for some nonnegative integer k � 1.

(R
k

i (ti; G; 
) � Rki (ti; G; 
)) Suppose ai 2 R
k

i (ti; G; 
). Then, there exists a mea-

surable function ��i : � � T k�1�i ! �(A�i) such that (9) and (10) hold. Now consider

���i : ��T�i ! �(A�i) such that ���i (�; t�i) � ��i
�
�; tk�1�i

�
for all (�; t�i) 2 ��T�i. Note

that ���i is measurable because ��i is measurable and � � T�i is a second countable space
endowed with the Borel �-algebra (see (Aliprantis and Border, 1999, 4.43 Theorem)). First,

(7) follows because the marginal distribution of ��i (ti) on ��T k�1�i agrees with tki and both
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(9) and the induction hypothesis hold. Second, for all a0i 2 Ai,Z
��T�i

�
gi (ai; a

0
i; �) � ���i (�; t�i)

�
��i (ti) [(�; dt�i)]

=

Z
��T k�1�i

�
gi (ai; a

0
i; �) � ��i

�
�; tk�1�i

��
��i (ti)

��
�; dtk�1�i

��
=

Z
��T k�1�i

�
gi (ai; a

0
i; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
� �


where the �rst equality is due to the de�nition of ���i and the second is again because the

marginal distribution of ��i (ti) on �� T k�1�i agrees with tki . Therefore, (8) holds and hence

ai 2 Rki (ti; G; 
).

(R
k

i (ti; G; 
) � Rki (ti; G; 
)) Suppose ai 2 Rki (ti; G; 
). Hence, there exists measurable
function ��i : � � T�i ! �(A�i) such that (7) and (8) hold. Since � � T�i is a compact
metric space, it is a standard Borel space. Hence, there is a regular conditional distribution of

��i (ti) on ��T k�1�i (see (Dudley, 2002, 10.2.2. Theorem)). De�ne ���i : ��T k�1�i ! �(A�i)

as

���i
�
�; tk�1�i

�
�
Z
��T�i

��i

�e�; s�i� ��i (ti) h�e�; ds�i� je� = �; sk�1�i = t
k�1
�i

i
, 8
�
�; tk�1�i

�
2 ��T k�1�i .

Then, since ��i is a measurable function from � � T�i to <jA�ij, by (Dudley, 2002, 10.2.5.
Theorem), ���i is a version of the conditional expectation of ��i conditional on

�
�; tk�1�i

�
.

Hence, ���i is measurable. Again, (9) follows because the marginal distribution of �
�
i (ti) on

�� T k�1�i agrees with tki and both (7) and the induction hypothesis hold. Moreover, for all

a0i 2 Ai,Z
��T k�1�i

�
gi (ai; a

0
i; �) � ���i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
=

Z
��T k�1�i

�Z
��T�i

[gi (ai; a
0
i; �) � ��i (�; s�i)]��i (ti)

h
(�; ds�i) je� = �; sk�1�i = t

k�1
�i

i�
��i (ti)

��
�; dtk�1�i

��
=

Z
��T�i

[gi (ai; a
0
i; �) � ��i (�; t�i)]��i (ti) [(�; dt�i)] � �


where the �rst equality is because the marginal distribution of ��i (ti) on � � T k�1�i agrees

with tki and is also because of the de�nition of �
�
�i, and the second equality follows from the

law of iterated expectation (see (Dudley, 2002, 10.2.1. Theorem)). Therefore, (8) holds and

hence ai 2 R
k

i (ti; G; 
).
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A.1.2 The proof of Lemma 2

Lemma 2 For any positive integer k, any 
 � 0, any �nite game G, and any type ti 2 Ti,
ai 2 Rki (ti; G; 
) if and only if for every � > 0 and � 2 �(Ainfaig) there is a valid conjecture
��i [�] : �� T k�1�i ! �(A�i) for ti under whichZ

��T k�1�i

�
gi (ai; �; �) � ��i [�]

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
� �
 � �. (11)

Proof. Recall �rst a Minimax Theorem due to Fan (1952). Let f be a real-valued function

de�ned on a product space X � Y . Say f is convex-like on X if for every x, x0 2 X and

c 2 [0; 1], there is some x00 2 X such that f (x00; y) � cf (x; y)+ (1� c) f (x0; y) for all y 2 Y .
Say f is concave-like on Y if for every y, y0 2 Y and c 2 [0; 1], there is some y00 2 Y such

that f (x; y00) � cf (x; y) + (1� c) f (x; y0) for all x 2 X.

Fan�s Minimax Theorem Let X be a compact Hausdor¤ space and Y an arbitrary set

(not topologized). Let f be a real-valued function on X�Y such that for every y 2 Y , f(�; y)
is lower semi-continuous on X. If f is convex-like on X and concave-like on Y , then

min
x2X

sup
y2Y

f(x; y) = sup
y2Y

min
x2X

f(x; y).

To apply this result, de�ne

X = �(Ain faig) ;

Y =
�
��i : �� T k�1�i ! �(A�i) : ��i is a valid conjecture

	
;

f (�; ��i) =

Z
��T k�1�i

[gi (ai; �; �) � ��i (�; t�i)] tki
��
�; dtk�1�i

��
, 8� 2 X, ��i 2 Y .

Obviously, f is convex-like on X, concave-like on Y , and f(�; ��i) is lower semi-continuous
on X for every ��i. Hence, by Fan�s Minimax Theorem, we have min�2X sup��i2Y f(x; y) =

sup��i2Y min�2X f(x; y). First, sup��i2Y min�2X f(x; y) � �
 if and only if for any � > 0,
there is a conjecture ��i 2 Y such that f (�; ��i) � �
� � for all � 2 X. By Lemma 1 and
DFM�s Lemma 1, sup��i2Y min�2X f(x; y) � �
 is therefore equivalent to ai 2 Rki (ti; G; 
).
Similarly, min�2X sup��i2Y f(x; y) � �
 is equivalent to for every � > 0 and � 2 X, there is
some valid conjecture ��i [�] 2 Y such that (11) hold.�
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A.2 The proof of Proposition 1

A.2.1 The proof of Lemma 3

Lemma 3 Consider a separable metric space (Y; dY ), a Borel set F � Y , and " > 0.

Suppose f : F ! Z is a measurable function where Z is a measurable space. Then, there

is a measurable function f " : F " ! Z such that f " = f on F , and for every y 2 F "nF ,
f " (y) = f (y0) for some y0 2 F with dY (y; y0) < ".

Proof. Since F is a subset of a separable metric space, it is also separable under the

relative topology (see (Dudley, 2002, p.32)). Let fy1; y2; :::g be a countable dense subset
of F . For any y 2 Y , let B (y; ") denote the "-open ball around y. First, we claim that

F " = [1m=1B (ym; "). Clearly, F " � [1m=1B (ym; "). To see F " � [1m=1B (ym; "), suppose
y 2 F ". Then, there is some y0 2 F such that dY (y; y0) < ". Hence, B (y; ") \ F 6= ?.
Since B (y; ") \ F is relatively open in F and fy1; y2; :::g is dense in F , there is m such that

ym 2 B (y; ") \ F . Hence, dY (ym; y) < " and therefore y 2 B (ym; ").

We modify the sets in fB (ym; ")g1m=1 to
�
Bm
	1
m=1

such that

B1 = B (y1; ") and Bm = B (ym; ") n
�
[m�1l=1 Bl

�
for m � 2.

Observe that
�
Bm
	1
m=1

partitions F ". Moreover, for anym 2 Z+, since the sets in fB (ym; ")g1m=1
are open and hence measurable, Bm is also measurable. We now de�ne f " as

f " (y) =

8<: f (y) , if y 2 F ,
f (ym�) if y =2 F and y 2 Bm�.

Then, by de�nition f " satis�es the property that f " = f on F , and for every y 2 F "nF ,
f " (y) = f (y0) for some y0 2 F with dY (y; y0) < ".

Finally, we show that f " is measurable. Let Z 0 � Z be an arbitrary measurable set.

Then,

(f ")�1 (Z 0) = f�1 (Z 0) [
[

fm2Z+:f(ym)2Z0g

�
BmnF

�
,

where BmnF = fy 2 Y : y 2 Bm and y =2 Fg.
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Since f is a measurable function and Z 0 is measurable, f�1 (Z 0) is also measurable. For

each m, the set
�
BmnF

�
is measurable. Hence, the set [fm2Z+:f(ym)2Z0g

�
BmnF

�
is also

measurable, because it is a countable union of measurable sets. Therefore, (f ")�1 (Z 0) is

measurable, and f " is a measurable function.�

A.2.2 The proof of Proposition 1

Proposition 1 For any �nite game G, any "; 
 � 0, and any types ti and si in Ti with
�k
�
tki ; s

k
i

�
� ", we have Rki (ti; G; 
) � Rki (si; G; 
 + 6M") for every integer k � 0.

Proof. Let G be a �nite game. Since G is �xed, we will drop hereafter the explicit reference

ofG from our notation for expositional ease. We prove the proposition by induction. Suppose

ai 2 Rki (ti; 
). By Lemma 1, there is a valid conjecture ��i : � � T k�1�i ! �(A�i) for ti

such thatZ
��T k�1�i

�
gi (ai; a

0
i; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
� �
 for all a0i 2 Ainfaig. (12)

Our goal is to show that ai 2 Rki (si; 
 + 6M").

Consider �rst the case of k = 1. By De�nition 1, � � T k�1�i = � and hence ��i is

a measurable function from � to �(A�i). Let �0�i = ��i. Since R0�i (t�i; 
) = A�i, �0�i
is trivially valid. If " � 1, the claim trivially holds because the payo¤ is bounded by M

and hence Rki (si; G; 
 + 6M") = Ai. Now suppose " < 1. Then, since we endow � with the

discrete metric, (�0)" = �0 for any �0 � �. Hence, js1i (�0)� t1i (�0)j � " since �1 (t1i ; s1i ) � ".
Let A� = gi (ai; a0i; �) � �0�i (�) and B� = s1i (�)� t1i (�). Then,X

�2�

A�B� =
X

f�2�:B�<0g
A�B� +

X
f�2�:B��0g

A�B� � �4M"

where the last inequality is due to
��A��� � 2M and js1i (�0)� t1i (�0)j � " in particular for

�0 =
�
� 2 � : B� < 0

	
and for �0 =

�
� 2 � : B� � 0

	
. Therefore, by (12),

P
�2�A

�s1i (�) �
�
 � 4M". Hence, ai 2 Rki (si; 
 + 6M").

Now consider the induction step. By Lemma 2, to prove ai 2 Rki (si; 
 + 6M"), it

su¢ ces to show that for every � > 0 and � 2 �(Ainfaig), there is a valid conjecture �0�i
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under which we haveZ
��T k�1�i

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
� �
 � 6M"� �. (F)

Since player �i has jA�ij actions, let kq� q0kjA�ij � max
n
jq1 � q01j ; :::;

���qjA�ij � q0jA�ij���o for
any q and q0 in �(A�i). Pick an arbitrary positive integer h. We can discretize �(A�i) with

a �nite partition f�mg�m=1 such that for eachm there is some qm 2 �m with kq� qmkjA�ij �
1=h for any q 2 �m. Consider

Tk�1�i �
��
�; tk�1�i

�
2 �� T k�1�i : supp��i

�
�; tk�1�i

�
� Rk�1i

�
tk�1�i ; 


�	
.

We can induce from f�mg and ��i a partition
�
F �m
	
on Tk�1�i such that for each � 2 � and

m = 1; :::;�,

F �m � f
�
�; tk�1�i

�
2 Tk�1�i : ��i

�
�; tk�1�i

�
2 �mg.12

Label
�
F �m
	
as fF �nmn

gNn=1 where N = j�j �� such that

gi (ai; �; �1) � qm1 � � � � � gi (ai; �; �N) � qmN .

Hereafter, we write Fn instead of F �nmn
whenever no confusion may arise. Hence, Tk�1�i =

[Nn=1Fn and
�
Tk�1�i

�"
= [Nn=1 (Fn)

".

De�ne E1 = (F1)
" and En = (Fn)

" n
�
[n�1l=1 El

�
for n � 2. Observe that fEngNn=1

partitions
�
Tk�1�i

�"
, and moreover, for any 1 � l � N , we have

l[
n=1

En =

l[
n=1

(Fn)
" ; (13)

N[
n=l+1

En =
�
Tk�1�i

�"�" l[
n=1

(Fn)
"

#
. (14)

We now proceed to de�ne the conjecture �0�i. We divide � � T k�1�i into three areas: (I)

Tk�1�i ; (II)
�
Tk�1�i

�" n Tk�1�i ; (III)
�
�� T k�1�i

�
n
�
Tk�1�i

�"
, and de�ne �0�i on these three areas

respectively.

First, for area (I), let �0�i = ��i. Second, since tk�1�i 7! Rk�1�i (t�i; 
 + 6M") is up-

per hemi-continuous under the product topology on T k�1�i , by Kuratowski-Ryll-Nardzewski

12We can make each �m measurable, so that each F �m is also measurable.
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Theorem (see Aliprantis and Border (1999)), there is a measurable selection r (�) with
r
�
tk�1�i

�
2 Rk�1�i (t�i; 
 + 6M") for all t

k�1
�i 2 T k�1�i . Then, we de�ne �

0
�i as r (�) on area

(III). Third, we extend the de�nition of �0�i from area (I) to area (II) by Lemma 3. Recall

that fFng is a partition of Tk�1�i . Since ��i is valid, it is measurable on Fn for every n. By

Lemma 3, there is a measurable function �n�i (�) on (Fn)
" such that �n�i = ��i on Fn and for

every
�
�; tk�1�i

�
2 (Fn)" there is some

�
�0; sk�1�i

�
2 Fn such that

dk�1
��
�; tk�1�i

�
;
�
�0; sk�1�i

��
< " and �n�i

�
�; tk�1�i

�
= ��i

�
�0; sk�1�i

�
.

Recall also that En � (Fn)", and moreover, fEng forms a partition of
�
Tk�1�i

�"
. In sum, we

de�ne the conjecture �0�i : �� T k�1�i ! �(A�i) as

�0�i
�
�; tk�1�i

�
=

8<: �n�i
�
�; tk�1�i

�
, if

�
�; tk�1�i

�
2 En;

�r(tk�1�i )
, if

�
�; tk�1�i

�
=2
�
Tk�1�i

�"
.

Observe that �0�i is valid in areas (I) and (III) by the de�nition of r (�) and the validity of
��i. In area (II), by the induction hypothesis and the extension �

n
�i de�ned above, �

0
�i is

also valid.

It remains to show that the inequality (F) holds under �0�i. It is a direct consequence
of the following three lemmas which we will prove later.

Lemma 4 We have

NX
n=1

[gi (ai; �; �n) � qmn ] tki [Fn] � �
 �
2M jA�ij

h
. (15)

Lemma 4 says that replacing on the left-hand side of (12) a0i by � and ��i by q
mn on

each Fn would induce at most a loss
2M jA�ij

h
.

Lemma 5 We have Z
��T k�1�i

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
�

NX
n=1

[gi (ai; �; �n) � qmn ] ski [En]� 2M"�
2M jA�ij

h
. (16)
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Lemma 5 says that by using
PN

n=1 [gi (ai; �; �n) � qmn ] ski [En] to approximate the left-

hand side of (16), we may incur two kinds of losses and both are small. One is due to the

error outside
�
Tk�1�i

�"
, which is at most 2M", and the other results from the approximation

of �0�i by q
mn on En, which is at most

2M jA�ij
h

.

Lemma 6 We have

NX
n=1

[gi (ai; �; �n) � qmn ]
�
ski (En)� tki (Fn)

�
� �4M". (17)

Lemma 6 is a generalization of step 5 in Section 3 which says that we only have to

compare the beliefs of tki and s
k
i on the probabilities of sets fEng and fFng. We will show

that the di¤erence of the two approximated payo¤s is at most 4M".

By adding up (15)�(17), we getZ
��T k�1�i

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
� �
 � 6M"� 4M jA�ij

h
.

Since 4M jA�ij
h

! 0 as h ! 1, we can choose h large enough so that (F) holds. Hence, for
every � > 0 and � 2 �(Ainfaig), there is a valid conjecture �0�i under which (F) holds.
Thus, by Lemma 2, ai 2 Rki (si; 
 + 6M").�

We now prove Lemmas 4�6.

Proof of Lemma 4 Recall that ai is a 
�best reply under �i for ti. Hence,

� 
 �
Z
Tk�1�i

�
gi (ai; �; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
. (18)

Since fFngNn=1 is a partition of Tk�1�i , we can writeZ
Tk�1�i

�
gi (ai; �; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
(19)

=
NX
n=1

Z
(�;tk�1�i )2Fn

�
gi (ai; �; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
.
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Since


��i ��; tk�1�i

�
� qmn




jA�ij

� 1=h for every
�
�; tk�1�i

�
2 Fn and jgi (ai; �; �)j � 2M , we

have
NX
n=1

Z
(�;tk�1�i )2Fn

�
gi (ai; �; �) � ��i

�
�; tk�1�i

��
tki
��
�; dtk�1�i

��
(20)

�
NX
n=1

[gi (ai; �; �n) � qmn ] tki [Fn] +
2M jA�ij

h
.

By combining (18)�(20), we get (15).�

Proof of Lemma 5 With �k
�
tki ; s

k
i

�
� " and tki

�
Tk�1�i

�
= 1, we have ski

��
Tk�1�i

�"� � 1� "
and hence ski

��
�� T k�1�i

�
n
�
Tk�1�i

�"� � ". Since jgi (ai; �; �)j � 2M , we haveZ
��T k�1�i

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
(21)

� �2M"+
Z
(Tk�1�i )

"

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
.

Recall that �0�i
�
�; tk�1�i

�
= �n�i

�
�; tk�1�i

�
for all

�
�; tk�1�i

�
2 En and fEngNn=1 is a partition of�

Tk�1�i
�"
. Therefore, we can writeZ

(Tk�1�i )
"

�
gi (ai; �; �) � �0�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
(22)

=
NX
n=1

Z
En

�
gi (ai; �; �) � �n�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
.

By the de�nition of �n�i, for every
�
�; tk�1�i

�
2 En, �

n
�i
�
�; tk�1�i

�
= ��i

�
�0; sk�1�i

�
for some�

�0; sk�1�i
�
2 Fn. Hence,



�n�i ��; tk�1�i
�
� qmn




jA�ij

� 1=h. Since jgi (ai; �; �)j � 2M , we have

NX
n=1

Z
En

�
gi (ai; �; �) � �n�i

�
�; tk�1�i

��
ski
��
�; dtk�1�i

��
(23)

�
NX
n=1

[gi (ai; �; �n) � qmn ] tki [En]�
2M jA�ij

h
.

Then, (16) follows by combining (21)�(23).�

Proof of Lemma 6 We want to show that
NX
n=1

[gi (ai; �; �n) � qmn ]
�
ski (En)� tki (Fn)

�
� �4M". (24)
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Recall that An = gi (ai; �; �n) � qmn and Bn = ski (En) � tki (Fn). Moreover, for notational
convenience, let Cn = AN�n+1 and Dn = BN�n+1 for n = 1; :::; N .

Let L be the integer such that An � 0 if and only if n � L. Then, (24) becomes

LX
n=1

AnBn +

N�LX
n=1

CnDn � �4M". (25)

We prove this lemma by establishing three claims. Claims 2 and 3 show that
PL

n=1A
nBn �

�2M" and
PN�L

n=1 C
nDn � �2M", which concludes the proof of (24) and the lemma. Claim

1 is a technical intermediate step which will be used in the proofs for Claims 2 and 3.

Claim 1 We have
Pl

n=1B
n � �" and

Pl
n=1D

n � " for 1 � l � N .

Proof. To see
Pl

n=1B
n � �", observe that

lX
n=1

Bn =
lX

n=1

ski [En]�
lX

n=1

tki [Fn] = s
k
i

�
[ln=1En

�
� tki

�
[ln=1Fn

�
� �". (26)

where the �rst equality is by the de�nition of Bn; the second equality follows from our

construction that sets in fFngNn=1 are pair-wise disjoint and sets in fEng
N
n=1 are pair-wise

disjoint; the last inequality follows because [ln=1En =
�
[ln=1Fn

�"
by (13) and �k

�
tki ; s

k
i

�
�

". To see
Pl

n=1D
n � ", note that by (14) and tki

�
Tk�1�i

�
= 1,

PN
n=N�l+1 t

k
i [Fn] = 1 �PN�l

n=1 t
k
i [Fn] and

PN
n=N�l+1 s

k
i [En] � 1�

PN�l
n=1 s

k
i [En]. Hence,

lX
n=1

Dn =
NX

n=N�l+1

ski [En]�
NX

n=N�l+1

tki [Fn] �
 
1�

N�lX
n=1

ski [En]

!
�
 
1�

N�lX
n=1

tki [Fn]

!
.

Hence,
Pl

n=1D
n � " by (26).�

Claim 2
PL

n=1A
nBn � �2M".

Proof. We establish this claim in two steps:

Step 1 For every integer l such that 1 � l � L, there exists a vector B 2 <l which has the
following properties: (1)

Pl
n=1B

n
=
Pl

n=1B
n; (2)

Pl0

n=1B
n � �" for every 1 � l0 � l; (3)Pl

n=1A
nBn �

Pl
n=1A

nB
n
; (4) B

n � 0 for n < l.
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We prove the existence of B by induction on l. If l = 1, let B = B1. Then, properties

(1) and (3) are obvious. Property (2) is due to Claim 1. Property (4) is vacuously true. Now

suppose for a positive integer l there is some Z =
�
Z
1
; :::; Z

l
�
2 <l which satis�es properties

(1)�(4). We now proceed to de�ne B as follows so that B is a (l + 1)-vector which makes

the statement true for the case (l + 1). Let B =
�
B
1
; :::; B

l
; B

l+1
�
where B

n
= Z

n
for every

n = 1; :::; l � 1, and

�
B
l
; B

l+1
�
=

8<:
�
Z
l
; Bl+1

�
, if Z

l � 0;�
0; Z

l
+Bl+1

�
, if Z

l
> 0.

Property (1) follows from the induction hypothesis. To see this, observe that

l+1X
n=1

B
n
=

l�1X
n=1

B
n
+B

l
+B

l+1
=

l�1X
n=1

Z
n
+ Z

l
+Bl+1 =

lX
n=1

Bn +Bl+1 =
l+1X
n=1

Bn

where the second equality follows because B
l
+B

l+1
= Z

l
+Bl+1 by our de�nition of B; the

third equality follows from the induction hypothesis that
Pl

n=1 Z
n
=
Pl

n=1B
n.

To see property (2), suppose �rst l0 � l. Then,

l0X
n=1

B
n
=

8<:
Pl0

n=1 Z
n
, if [l0 � l � 1] or [l0 = l and Z l � 0];Pl0�1

n=1 Z
n
, if l0 = l and Z

l
> 0.

Since
Pl0

n=1 Z
n � �" and

Pl0�1
n=1 Z

n � �" by the induction hypothesis, we have
Pl0

n=1B
n �

�". Second, suppose l0 = l + 1. Then,
Pl+1

n=1B
n
=
Pl+1

n=1B
n by property (1) proved above.

Hence,
Pl+1

n=1B
n
=
Pl+1

n=1B
n � �" by Claim 1.

We now prove property (3). Observe �rst that

AlB
l
+ Al+1B

l+1
=

8<: AlZ
l
+ Al+1Bl+1, if Z

l � 0;
Al+1

�
Z
l
+Bl+1

�
, if Z

l
> 0.

Moreover, Al+1
�
Z
l
+Bl+1

�
� AlZ

l
+ Al+1Bl+1 when Z

l
> 0, because Al+1 � Al. Hence,

AlB
l
+ Al+1B

l+1 � AlZ l + Al+1Bl+1. Then,

l+1X
n=1

AnB
n
=

l�1X
n=1

AnB
n
+ AlB

l
+ Al+1B

l+1 �
lX

n=1

AnZ
n
+ Al+1Bl+1 �

l+1X
n=1

AnBn,
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where the �rst inequality follows from the de�nition of B and the fact that AlB
l
+Al+1B

l+1 �
AlZ

l
+Al+1Bl+1; the second inequality is due to the induction hypothesis. Hence, property

(3) is satis�ed.

To see property (4), observe that

�
B
1
; :::; B

l
�
=

8<:
�
Z
1
; :::; Z

l�1
; Z

l
�
, if Z

l � 0;�
Z
1
; :::; Z

l�1
; 0
�
, if Z

l
> 0.

Since Z
n � 0 for every 1 � n � l � 1 by the induction hypothesis, property (4) is also

satis�ed.

Step 2
PL

n=1A
nBn � �2M".

By step 1, we can �nd a L-vector B which satis�es properties (1)�(4). First, suppose

B
L � 0. Then, by property (4), Bn � 0 for every n � L. Hence,

LX
n=1

AnBn �
LX
n=1

AnB
n � 2M

LX
n=1

B
n � �2M",

where the �rst inequality follows from property (3); the second inequality follows because

B
n � 0 and jAnj � 2M for every n � L; the last inequality follows from property (2).

Second, suppose B
L
> 0. Then,

LX
n=1

AnBn �
LX
n=1

AnB
n �

L�1X
n=1

AnB
n � 2M

L�1X
n=1

B
n � �2M",

where the �rst inequality follows from property (3); the second inequality follows because

AL and B
L
are both nonnegative, i.e., ALB

L � 0; the third inequality follows from property
(4) and jAnj � 2M for every n; the last inequality follows from property (2).

Claim 3
PN�L

n=1 C
nDn � �2".

Proof. Observe that
PN�L

n=1 C
nDn =

PN�L
n=1 (�Cn) (�Dn). Since Cn is increasing in n and

Cn � 0 for all N � L � n � 1, it follows that (�Cn) is decreasing in n and (�Cn) � 0

for all N � L � n � 1. Moreover, Claim 1 implies that
Pl

n=1 (�Dn) � �" for 1 � l � N .
Hence, following the proof of Claim 2, and replacing An, Bn, and L in the proof with (�Cn),
(�Dn), and (N � L) respectively, we get

PN�L
n=1 C

nDn � �2".�
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A.3 Proofs of Proposition 2 and Theorem 2

A.3.1 Proof of Proposition 2

Proposition 2 dus(t�i ; ti) � M
16
for any �nite type ti. Hence, �nite types are not dense under

dus.

Proof. Pick any �nite type ti. Let Ti� T�i � Ti�T�i be the smallest belief-closed set such
that ti 2 Ti. Since ti is a �nite type, jTi � T�ij <1. For simplicity, we abbreviate jTi � T�ij
as jT j. Henceforth, we �x

N = 20 jT j .

We will consider a �nite game with every player�s action space being the N -truncation of a0,

a1, a2,... where for every n � 0, an is de�ned as in Section 4. From now on, for every n � 0,
we will abuse notation and denote the �nite truncation of an = ((an)1 ; :::; (a

n)N) also by a
n.

Consider the following �nite game, G = (Ai; gi)i=1;2 where for i = 1; 2, Ai = fa0; a1; a2; :::g
and for any ai = ((ai)1 ; :::; (ai)N) 2 Ai, a�i = ((a�i)1 ; :::; (a�i)N) 2 A�i and � 2 �,

gi [ai; a�i; �] =

8>>><>>>:
0, if ai = a0;

M �min

8<: � [(ai)1 � �]
2 ;� [(ai)2 � (a�i)1]

2 ;

:::;�
�
(ai)N � (a�i)N�1

�2
9=; , if ai 6= a0. (27)

Since the game is now �xed, we will simplify the notation in this proof by writing Ri (ti; 
)

instead of Ri (ti; G; 
). We prove that dus(t�i ; ti) � M
16
by establishing the following two

claims:

Claim 4 a1 2 Ri (t�i ; 0).

Proof. Let t (1) = t�i . De�ne bR (0) 2 ��2Ai�bTi�
i=1;2

by bRi (t (k) ; 0) = �ak	 if k is odd andbR�i (t (k) ; 0) = �ak	 if k is even. By equation (5), for any odd k, �k�i : �� T�i ! �(A�i)

such that �k�i (�; t�i) � �ak+1 for all (�; t�i), ak is a 0�best reply for type t (k) under �k�i.
The case with an even k is similar. Hence, R (0) satis�es the 0�best reply property in the
type space bTi � bT�i. Hence, Ri (t (k) ; 0) � Ri (t (k) ; 0).�
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Claim 5 a1 =2 Ri
�
ti;

M
16

�
.

Proof. In this proof, it is convenient for us to denote by �si;��i 2 �(A�i ��� T�i) the
measure induced from a conjecture ��i and a type si, i.e., for any measurable set E � T�i
and

�
a�i; �

�
2 A�i ��,

�si;��i (E � f(a�i; �)g) �
Z
E

��i
�
�; t�i

�
[a�i] �

�
i (si)

��
� = �; dt�i

��
.

Clearly, marg��T�i�si;��i = �
�
i [si]. We prove the result in four steps.

Step 1 [(am)1 ; :::; (a
m)C ] 6= [(an)1 ; :::; (an)C ] for any C � 18, n 6= m, and n � C.

We denote the kth block in a1 as

Bk =

8>>>>>><>>>>>>:

(1; 1; :::; 1)| {z }
k times

if k is odd;

(0; 0; :::; 0)| {z }
k times

if k is even.

Hence, a1 = (B1; B2; B3; :::). Say a block is interior in al if Bk =
��
al
�
l1
; :::;

�
al
�
l2

�
for some

2 � l1 < l2 � C � 1, and
�
al
�
l1�1

6=
�
al
�
l1
,
�
al
�
l2
6=
�
al
�
l2+1

. Observe that since n 6= m, an

and am cannot have an interior block at the same position. That is, there is no l1 and l2

such that 2 � l1 < l2 � C � 1 and for some Bk,�
(am)l1 ; :::; (a

m)l2
�
=
�
(an)l1 ; :::; (a

n)l2
�
= Bk,

and (am)l1�1 = (a
n)l1�1 6= (a

n)l1 ; (a
m)l2 = (a

n)l2 6= (a
n)l2+1 :

Hence, to prove [(am)1 ; :::; (a
m)C ] 6= [(an)1 ; :::; (a

n)C ], it su¢ ces to show [(an)1 ; :::; (a
n)C ]

contains an interior block. For n � C, suppose that an starts with part of Bh+1. That is,

we have deleted (B1; :::; Bh) from a1 to get an. Also, to get an, we need to delete exactly the

�rst n� 1 coordinates of a1. Hence,

h(h+ 1)

2
� n� 1) h2 � 2n� 2,

where h(h+1)
2

corresponds to the number of coordinates in (B1; :::; Bh).
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The �rst two blocks in an are (parts of) Bh+1 and Bh+2, so the combined coordinates are

at most 2h+3. If 2h+3 � C � 1, an contains Bh+2 as an interior block. Since h �
p
2n� 2

and n � C, we have 2h+3 � 2
p
2C � 2+ 3. With C � 18, we have 2

p
2C � 2+ 3 � C � 1.

Therefore, an contains Bh+2 as an interior block if C � 18. Since an and am cannot have an
interior block at the same position, we conclude [(am)1 ; :::; (a

m)C ] 6= [(an)1 ; :::; (an)C ].

Step 2 For any positive integer 1 � n � N � 1, i = 1; 2, ti 2 Ti, and an 2 Ri
�
ti;

M
16

�
which

is a M
16
�best reply to a valid conjecture ��i, we have

1. (an)1 = 0 i¤ b�1 �ti� 2 [0; 12 ];
2. �ti;��i (a

n+1) � 3
4
.

To see (1), let a�i = ((a�i)1 ; :::; (a�i)N) 2 A�i. Let � � �ti;��i and E� (�) �
R
(�) d�.

For n � 1, we have E� [gi (an; a�i; �)] � E�
�
�M � [(an)1 � �]

2�. Since � 2 f0; 1g, �2 = �.

Since marg��T�i� = �
�
i

�
ti
�
, E� (�) = b�1 �ti�. Hence,

E�
�
�M � [(an)1 � �]

2� =
8<: �b�1 �ti�M if (an)1 = 0;�b�1 �ti�� 1�M if (an)1 = 1.

However, gi (a0; a�i; �) = 0 for any a�i. Therefore, to make an 2 Ri
�
ti;

M
16

�
, we must have

b�1 �ti� 2
�
0;
1

16

�
�
�
0;
1

2

�
, if (an)1 = 0;

b�1 �ti� 2
�
15

16
; 1

�
�
�
1

2
; 1

�
, if (an)1 = 1.

We now prove (2). Suppose � (an+1) = �. We have

� E� [gi (an; an+1; �)]� E� [gi (a0; an+1; �)] � 0;

� E� [gi (an; a0; �)] � E� [gi (a0; a0; �)] � �M
4
, which is because gi (an; a0; �) � �M

4
and

gi (a
0; a0; �) = 0;

� E� [gi (an; am; �)] � E� [gi (a0; am; �)] � �M for any m =2 f0; n + 1g. To see this, note
that N � 1 � 18 and hence by step 1,�

(am)1 ; :::; (a
m)N�1

�
6=
h�
an+1

�
1
; :::;

�
an+1

�
N�1

i
= [(an)2 ; :::; (a

n)N ] :
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Therefore,

E� [gi (an; a�i; �)]� E�
�
gi
�
a0; a�i; �

��
� �� (0) + (1� �)� (�M

4
).

To make an a M
16
�rationalizable action for t, we must have

(1� �)� (�M
4
) � �M

16
.

That is, � � 3
4
.

Step 3 Suppose that for distinct m;n � N � 1 and some �nite type ti, we have fan; amg �
Ri
�
ti;

M
16

�
. Then, there is some �nite type t�i such that fan+1; am+1g � R�i

�
t�i;

M
16

�
.

Since an 2 Ri
�
ti;

M
16

�
, an is a M

16
�best reply for ti under some valid conjecture �n�i. Let

�n � �ti;�n�i. By property (2) in step 2, �
n (an+1) � 3

4
. Similarly, am 2 Ri

�
ti;

M
16

�
and am is

a M
16
�best reply for ti under some valid conjecture �m�i. Let �m � �ti;�m�i. By property (2)

in step 2, �m (am+1) � 3
4
. Since marg��T�i�

n =marg��T�i�
m = ��i

�
ti
�
, �n (an+1) � 3

4
, and

�m (am+1) � 3
4
, we must have

��i
�
ti
� ��

t�i : �
n(an+1; t�i) > 0

	�
= �n

��
(a�i; t�i) : �

n(an+1; t�i) > 0
	�

� �n
���
an+1; t�i

�
: �n(an+1; t�i) > 0

	�
� 3

4
;

Similarly, ��i
�
ti
�
(ft�i : �m(am+1; t�i) > 0g) � 3

4
. Hence,�

t�i : �
n(an+1; t�i) > 0

	
\
�
t�i : �

m(am+1; t�i) > 0
	
6= ?.

Let t�i 2 ft�i : �n(an+1; t�i) > 0g \ ft�i : �m(am+1; t�i) > 0g. Since �n(an+1; t�i) > 0 only if
an+1 2 R�i

�
t�i;

M
16

�
and �m(am+1; t�i) > 0 only if am+1 2 R�i

�
t�i;

M
16

�
, we have fan+1; am+1g �

R�i
�
t�i;

M
16

�
.

Step 4 a1 =2 Ri
�
ti;

M
16

�
.

Suppose instead that a1 2 Ri
�
ti;

M
16

�
. By property (2) in step 2, we can construct a

chain of rationalization where the �rst jT j+ 1 elements are as follows

ti = bt (1)! bt (2)! :::! bt (jT j)! bt (jT j+ 1)! � � �

such that bt (k) 2 Ti if n is odd and bt (k) 2 T�i if k is even;
bt (k + 1) is in the support of �� �bt (k)� ; and ak is M

16
� rationalizable for bt (k) .
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Recall that jT j = jTi�T�ij, there exists bt (n) = bt (m) � et (1) 2 Ti such that n < m � jT j+1.
Thus, an 2 Ri

�et (1) ; M
16

�
and am 2 Ri

�et (1) ; M
16

�
. By repeatedly applying step 3, we can

construct two chains of rationalization (for an and am, respectively), which have the common

�rst 19 jT j � 1 elements as follows,

et (1)! et (2)! :::! et (19 jT j � 2)! et (19 jT j � 1)! � � �

such that for k � 19 jT j � 1,

et (k) 2 Ti and �an+k�1; am+k�1	 � Ri�et (k) ; M
16

�
if k is odd;

et (k) 2 T�i and �an+k�1; am+k�1	 � R�i�et (k) ; M
16

�
if k is even.

By the de�nition of an and am, we haveh
(an)1 ; (a

n)2 ; :::; (a
n)19jT j�2 ; (a

n)19jT j�1

i
=

�
(an)1 ;

�
an+1

�
1
; :::;

�
an+19jT j�3

�
1
;
�
an+19jT j�2

�
1

�
;h

(am)1 ; (a
m)2 ; :::; (a

m)19jT j�2 ; (a
m)19jT j�1

i
=

�
(am)1 ;

�
am+1

�
1
; :::;

�
am+19jT j�3

�
1
;
�
am+19jT j�2

�
1

�
.

Since 19 jT j � 1 � 18, n 6= m, and n � 19 jT j � 1, by step 1 (an)k� 6= (am)k� for some
1 � k� � 19 jT j � 1, i.e.

�
an+k

��1�
1
= 0 < 1 =

�
am+k

��1�
1
. By Property (1) in step 2,�

an+k
��1�

1
= 0 implies b�1 �et (k� � 1)� 2 [0; 12 ], but �am+k��1�1 = 1 implies b�1 �et (k� � 1)� =2

[0; 1
2
], which is a contradiction. Hence, a1 =2 Ri

�
ti;

M
16

�
.�

A.3.2 Proof of Theorem 2

Theorem 2 Finite types are nowhere dense under dus.

Proof. Let T F denote the closure of the set of �nite types under dus. It su¢ ces to

show that for any �nite type ti, there is a sequence of types fti (n)g1n=1 � TinT F such
that dus

�
ti (n) ; ti

�
! 0. Let s�i be the unique type whose iterated expectation is y

� =

(0; 1; 0; 0; 1; 1; 1; 0; 0; 0; 0; :::). Recall t��i 2 T�i is the unique type which generates the iterated
expectations x� = (1; 0; 0; 1; 1; 1; 0; 0; 0; 0; :::). Hence, ��i (s

�
i )
��
� = 0; t�i = t

�
�i
	�
= 1. For

each positive integer n, consider �n 2 �(�� T�i) such that for any Borel set E � �� T�i,

�n [E] �
�
1� 1

n

�
��i (ti) [E] +

1

n
��i (s

�
i ) [E] . (28)
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Since ��i is a homeomorphism between Ti and �(�� T�i), there is some type ti (n) with
��i (ti (n)) = �n. Recall that for any si 2 Ti, the marginal distribution of ��i (si) on Y k�1�i

agrees with etki . Hence, by (28), for any k � 1 and Borel set E � Y k�1�i , we have

(ti (n))
k [E] =

�
1� 1

n

�
t
k
i [E] +

1

n
(s�i )

k [E] . (29)

We now divide the rest of the proof into the following two steps.

Step 1 dus
�
ti (n) ; ti

�
! 0 as n!1.

We show that duw
�
ti (n) ; ti

�
! 0 as n ! 1, which implies dus

�
ti (n) ; ti

�
! 0 by

Theorem 1. To see that �k
�
ti (n)

k ; t
k
i

�
� 1

n
for every k, observe that by (29), we have

(ti (n))
k [E] =

�
1� 1

n

�
t
k
i [E] +

1

n
(s�i )

k [E] �
�
ti
�k �
E1=n

�
+
1

n

for any Borel set E � Y k�1. Hence, �k
�
ti (n)

k ; t
k
i

�
� 1

n
.

Step 2 ti (n) 2 T nT F for every n � 8.

We prove this claim by showing that dus (ti (n) ; ti) � M
2n
for any �nite type ti and

n � 8. Pick any �nite type ti. Let Ti � T�i � Ti � T�i be the smallest belief-closed set such
that ti 2 Ti. Since ti is a �nite type, jTi � T�ij < 1. Following the proof of Proposition
2 in Appendix A.3.1, we can construct a �nite game G = (Aj; gj)j=i;�i (as de�ned in (27))

with an action a1 for player �i such that a1 2 R�i
�
t��i; G; 0

�
, but a1 =2 R�i

�
t�i; G;

M
16

�
for

any t�i 2 T�i. Moreover, the payo¤s in G are always between �M and 0. Based upon

G, we de�ne another �nite game G0 =
�
A0j; g

0
j

�
j=i;�i where A

0
i = Ai � fz1; z2g, A0�i = A�i,

g0�i [(ai; z) ; a�i; �] = g�i(ai; a�i; �), and

g0i [(ai; z) ; a�i; �] = gi(ai; a�i; �) +

8>><>>:
M
n
, if z = z1;

M , if z = z2, a�i = a1;

0, if z = z2, a�i 6= a1.

Since the payo¤s in G are between �M and 0, it follows that the payo¤s in G0 are between

�M and M . We now divide the proof of step 2 into the following three substeps.

Step 2.1 a1 2 R�i
�
t��i; G

0; 0
�
.

Let bTi � bT�i � Ti � T�i be the smallest belief-closed subset such that t��i 2 bT�i. Since
a1 2 R�i

�
t��i; G; 0

�
, it su¢ ces to show that R�i (s�i; G; 0) � R�i (s�i; G0; 0) for all s�i 2 bT�i.
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Let ai 2 Ri (si; G; 0). Then, there is some valid conjecture ��i such that ai is a 0�best reply
to ��i. Hence, there is a function zsi : Ai ! fz1; z2g such that (ai; zsi (ai)) is a 0�best reply
for si under ��i in G0. De�ne bR (0) 2 ��2Aj�bTj�

j=i;�i
as

bRi (si; 0) = f(ai; z) : ai 2 Ri (si; G; 0) and z = zsi (ai)g , 8si 2 bTi,bR�i (s�i; 0) = R�i (s�i; G; 0) , 8t�i 2 bT�i.
We claim that bR (0) has the 0�best reply property in G0 for the type space bTi � bT�i. By
our construction, it su¢ ces to check player �i. Let a�i 2 R�i (s�i; G; 0). Hence, there is a
valid conjecture �i such that a�i is a 0�best reply under �i for type s�i in G. We de�ne a
new conjecture �0i such that �

0
i (�; si) [ai; z] = �i (�; si) [ai] if z = zsi (ai); �

0
i (�; si) [ai; z] = 0

otherwise. Then, by choosing any action a0�i, player �i gets exactly the same payo¤ under
the conjecture �0i in G

0 as the payo¤ under the conjecture �i in G. Hence, a�i remains a

0�best reply to �0i in G0. Therefore, R�i (s�i; G; 0) � R�i (s�i; G0; 0).

Step 2.2 a1 =2 R�i
�
t�i; G

0; M
16

�
for any t�i 2 T�i.

Since a1 =2 R�i
�
t�i; G;

M
16

�
, it su¢ ces to show that R�i

�
t�i; G

0; M
16

�
� R�i

�
t�i; G;

M
16

�
for t�i 2 T�i. De�ne eR �M16� 2 ��2Ai�Ti�

i=1;2
as

eRi�ti; M
16

�
=

�
ai : (ai; z) 2 Ri

�
ti; G

0;
M

16

��
, 8ti 2 Ti;

eR�i�t�i; M
16

�
= R�i

�
t�i; G

0;
M

16

�
, 8t�i 2 T�i.

We show that eR �M
16

�
has the M

16
�best reply property in G for the type space Ti � T�i.

First, for ai 2 eRi �ti; M16�, there is (ai; z) belonging to Ri �ti; G0; M16�. Hence, there is a valid
conjecture ��i such that (ai; z) is a M

16
�best reply under ��i for type ti in G0. Then, ai is a

M
16
�best reply under ��i in G, because for any a0i, we haveZ

��T�i
[gi (ai; a

0
i; �) � ��i (�; t�i)]��i (ti) [(�; dt�i)]

=

Z
��T�i

[g0i ([ai; z] ; [a
0
i; z] ; �) � ��i (�; t�i)]��i (ti) [(�; dt�i)]

� �M
16
.

Second, for a�i 2 eR�i �t�i; M16�, there is a valid conjecture �0i such that a�i is a M
16
�best
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reply under �0i for type t�i in G
0. De�ne a new conjecture �i in G such that

�i (�; ti) [ai] =
X

z2fz1;z1g

�0i (�; ti) [ai; z] .

Note that by choosing any action a0�i, player �i gets exactly the same payo¤ under the
conjecture �0i in G

0 as the payo¤ under the conjecture �i in G. Therefore, a�i remains a
M
16
�best reply under �i for type t�i in G. Therefore, R�i

�
t�i; G

0; M
16

�
� R�i

�
t�i; G;

M
16

�
.

Step 2.3 dus (ti (n) ; ti) � M
2n
for every n � 8.

Consider the following conjecture for player i.

b��i (�; t�i) �
8<: �a1, if t�i = t��i;

some measurable selection from R�i (t�i; G; 0) , otherwise.

By step 2.1, b��i is valid in G0. Let ai be a 0�best reply under b��i for type ti (n) in G. We
now show that for n � 8, (ai; z2) 2 Ri (ti (n) ; G0; 0) and (ai; z2) =2 Ri

�
ti; G

0; M
2n

�
to conclude

that dus (ti (n) ; ti) � M
2n
.

First, we show that (ai; z2) 2 Ri (ti (n) ; G0; 0). Since ai is a 0�best reply under b��i for
type ti (n) in G and b��i is valid in G0, it remains to verify thatZ

��T�i
[g0i ([ai; z2] ; [ai; z1] ; �) � b��i (�; t�i)]��i (ti (n)) [(�; dt�i)] � 0.

Recall that ��i (ti (n)) = �
n and ��i (s

�
i )
��
� = 0; t�i = t

�
�i
	�
= 1. Hence, ��i (ti (n))

��
� = 0; t�i = t

�
�i
	�
�

1=n by (28). By our de�nition of b��i,Z
��T�i

[g0i ([ai; z2] ; [ai; z1] ; �) � b��i (�; t�i)]��i (ti (n)) [(�; dt�i)]
� 1

n
�M +

�
1� 1

n

�
� 0� M

n
= 0.

Second, we show that (ai; z2) =2 Ri
�
ti; G

0; M
2n

�
for n � 8. For any t�i 2 T�i, since a1 =2

R�i
�
t�i; G

0; M
16

�
by step 2.2, we have a1 =2 R�i

�
t�i; G

0; M
2n

�
for n � 8. Since ��i (ti) [T�i] = 1,

any valid conjecture �0�i which
M
2n
�rationalizes ai for ti must satisfy �0�i (�; t�i) [a1] = 0 for

any (�; t�i) with a positive probability under ��i (ti). Thus,Z
��T�i

�
g0i ([ai; z2] ; [ai; z1] ; �) � �0�i (�; t�i)

�
��i (ti (n)) [(�; dt�i)] = 0�

M

n
< �M

2n
.

Therefore, (ai; z2) =2 Ri
�
ti; G

0; M
2n

�
for n � 8.�
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