
Sequential Contracting with Multiple Principals�

Alessandro Pavany Giacomo Calzolariz

November 19, 2008

Abstract

This paper considers dynamic games in which multiple principals contract sequentially and

non-cooperatively with the same agent. We �rst show that when contracting is private, i.e.

when downstream principals observe neither the mechanisms o¤ered upstream nor the decisions

taken in these mechanisms, then all PBE outcomes can be characterized through pure-strategy

pro�les in which the principals o¤er menus of contracts and delegate to the agent the choice

of the contractual terms. We then show that, in most cases of interest for applications, the

characterization of the equilibrium outcomes is further facilitated by the fact that the principals

can be restricted to o¤er incentive-compatible extended direct mechanisms in which the agent

reports the endogenous payo¤-relevant decisions contracted upstream in addition to his exoge-

nous private information. Finally we show how the aforementioned results must be adjusted to

accommodate alternative assumptions about the observability of upstream histories and/or the

timing of contracting examined in the literature.
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1 Introduction

There are many environments in which multiple principals contract sequentially and non-cooperatively

with the same agent.1 In politics, for example, a ruling administration (upstream principal) that

signs a procurement contract with a defense supplier (agent) expects its counterpart to contract

also with the next appointed administration (downstream principal). In organizations, an employer

who hires a worker anticipates that the latter will leave after a while and be hired by other em-

ployers. In a regulatory environment, a multinational �rm typically contracts �rst with domestic

authorities (upstream principals) and then with foreign ones. In commerce, a seller (upstream

principal) who sets up a menu of contract o¤ers usually expects her buyers (agents) to purchase

complementary products and services also from other vendors. In corporate �nance, a venture cap-

italist (upstream principal) who o¤ers a contract to an entrepreneur (agent) anticipates that the

latter will borrow also from other lenders and then contract with suppliers, retailers and, perhaps,

government agencies (downstream principals).2

Characterizing equilibrium outcomes in environments with competing principals is known to

be di¢ cult. Contrary to environments with a single principal, the agent can not be assumed to

select a contract by simply reporting his �type� i.e. his exogenous private information. First,

the agent may have private information also about the mechanisms o¤ered by other principals as

well as, in the case of sequential contracting, the decisions taken in these mechanisms. Second, a

principal may need to include in her mechanism also contracts that are selected by the agent only

o¤-equilibrium to punish deviations by other principals.3

Despite a fast growing literature on sequential common agency, no general characterization

results have been established for these games. This is what we aim to do in this paper by providing

results that facilitate the construction of equilibrium outcomes in environments in which contracting

is sequential.

We build our analysis on a benchmark model of private contracting in which principals do

not observe other principals�mechanisms, nor the decisions taken in these mechanisms. We also

assume that the sequence of bilateral relationships is exogenous in that the agent cannot choose

which principal to contract with at each date. Finally, we assume that some irreversible decisions

1 In what follows, we refer to a principal (equivalently, a mechanism designer) as the party who o¤ers the contract.

We also adopt the convention of using masculine pronouns for the agent and feminine pronouns for the principals.
2Models of sequential contracting have been used in political economy by [13], [29], and [5]; in sequential trade, by

[2], [20], [31], [1], and [8]; in regualtion, by [3], [17], [16] and [12]; in labor relationships, by [15] and [23]; in �nancial

contracting and insurance, by [7], [25], and [32].
3See [22], [27], [18], [19], [11], [28], and [26] for a discussion of the problems with standard direct revelation

mechanisms under simultaneous common agency and for possible solutions.
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are committed at each period.

Later in the paper, we discuss the intricacies that arise under alternative assumptions about

the sequence of contracting and/or the observability of upstream histories and show how our results

must be adapted to accommodate various alternative extensive forms examined in the literature.

Our �rst result shows that, when contracting is private, any social choice function4 that can

be sustained with any ad-hoc strategy space for the principals can also be sustained by restricting

the principals to o¤er menus of contracts and delegating to the agent the choice of the contractual

terms. We also show that any equilibrium outcome in the game in which the principals can o¤er

all possible menus is robust in the sense that it remains an equilibrium outcome in any game in

which the principals� strategy space is enlarged. These results show that the menu theorems of

simultaneous common agency (cfr [28], and [19]) extend to sequential common agency, provided

contracting is private.

Next, we prove the following two theorems, which are speci�c to sequential common agency.

First, when lotteries are feasible, then all social choice functions can be sustained through pure-

strategy pro�les, i.e. by restricting the principals not to mix over their menus and the agent not

to mix over the choice of a contract. Second, when information is complete (i.e. when the agent�s

type is common knowledge as typically assumed in menu auctions and moral hazard settings),

then all deterministic social choice functions can be sustained through Markov-perfect equilibria,

i.e. by restricting the agent�s strategy to depend on any given history only through its payo¤-

relevant component. Because deterministic social choice functions naturally arise when one restricts

attention to pure-strategy pro�les and deterministic contracts, these results provide a possible

justi�cation for focusing on Markov-perfect equilibria in certain applications.5

Based on the aforementioned results, we then show how the characterization of all Markov-

perfect equilibrium outcomes can be further simpli�ed by restricting the principals to o¤er menus

that can be conveniently described as extended direct mechanisms. In these mechanisms, the agent

reports his extended type, i.e. his exogenous private information along with the endogenous payo¤�

relevant decisions contracted upstream. An extended direct mechanism is thus a collection of

contracts, one for each extended type.

4 In the jargon of mechanism design and implementation theory, a social choice function (SCF) or, equivalently,

an outcome function, is a mapping from states (here the agent�s exogenous private information) to decisions.
5Note that a SCF can be deterministic even in the presence of stochastic outcomes. For example, in a moral

hazard setting, a principal�s decision coincides with the choice of a payment scheme that speci�es a reward for the

agent as a function of some (typically stochastic) performance measures. In these models, that a SCF is deterministic

simply means that (a) the agent does not mix over his choice of e¤ort and (b) the principals do not mix over their

choice of a reward scheme. The �nal outcome, i.e. the payment to the agent, may however be stochastic.
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Describing a menu as a direct mechanism has proved useful in games with a single mechanism

designer. The same can be done in sequential common agency by extending the notion of type to

account for the fact that the agent�s payo¤-relevant information also includes endogenous decisions.

However, there are two important di¤erences with respect to games with a single principal. First,

incentive-compatibility is endogenous: the agent�s incentives to reveal his extended type depend on

the mechanisms o¤ered downstream. Incentive-compatibility must thus be established by backward

induction. Second, an incentive-compatible mechanism must specify contracts also for extended

types that have zero measure on the equilibrium path. This is because a mechanism must include

also contracts that are used only o¤-equilibrium to punish deviations by upstream principals. In

an extended direct mechanism, such out-of-equilibrium contracts are simply those designed for

out-of-equilibrium extended types.

Another important di¤erence with respect to the single-principal case is that, when the agent�s

strategy is not Markov, certain social choice functions cannot be sustained with extended direct

mechanisms. With non-Markov strategies, a principal may need to give the same extended type of

the agent a menu of contracts to choose from. This is because she may need the agent to punish

deviations by upstream principals that altered the distribution of upstream payo¤-relevant decisions

but nevertheless led to equilibrium extended types. We �nd such a possibility intriguing from a

theoretical viewpoint, but not particularly signi�cant for the type of applications mentioned above.

Below, we conclude the introduction with a road map for our results and the related literature.

The rest of the paper is then organized as follows. Section 2 describes the benchmark model of

private contracting. Section 3 illustrates with an example why standard direct revelation mech-

anisms may fail to sustain certain outcomes and introduces the solution o¤ered by our extended

direct mechanisms. Section 4 contains the results for menus, while Section 5 contains the results

for extended direct mechanisms and shows how to put these mechanisms to work in applications.

Section 6 examines alternative extensive forms. Section 7 concludes. All proofs are either in the

Appendix or in the Supplementary Material.

1.1 A road map for the results and the related literature

Contrary to simultaneous common agency, when contracting is sequential there is no single model

that �ts all applications: sequential common agency can in fact be characterized by many di¤er-

ent extensive forms depending on the assumptions one makes about the observability of upstream

histories and the timing of the relevant decisions. Although it is di¢ cult to have a single uni�ed

framework, it is however possible to have results that help characterize equilibria in various dy-
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namic settings considered in applications. In what follows, we present a �road map�for our results

and the related literature. This road map is organized around two dimensions that play a key role

in most sequential contracting models: history observability and timing. Each of these two dimen-

sions is associated with speci�c issues/di¢ culties with equilibrium characterization. Furthermore,

di¤erent combinations of these two dimensions correspond to di¤erent environments considered in

the literature.

Observability of upstream histories. First, consider an environment in which downstream

principals observe upstream mechanisms, as for example in [17], [5], [21], [31], and [1]. Contrary

to private contracting, in these environments, restricting the principals to o¤er menus can be with

loss of generality. The reason is that payo¤-irrelevant details of the mechanisms can be used as

correlation devices for the principals�decisions. In the absence of alternative correlation devices,

restricting the principals to o¤er menus then precludes the sustainability of certain outcomes.

However, as discussed in Section 6, if one is interested only in pure-strategy pro�les (the case

considered in all applications that assume mechanism observability), then, not only can one restrict

the principals to compete in menus, it is actually safe to restrict them to o¤er menus that can be

described as extended direct mechanisms. This is so irrespective of whether the agent�s strategy

is Markov. In fact, because the principals can observe the upstream mechanisms, they can punish

upstream deviations by o¤ering the agent a di¤erent mechanism. There is thus no need to o¤er the

same extended type of the agent multiple contracts to choose from as a function of who deviated

upstream. All pure-strategy pro�les can thus be sustained with extended direct mechanisms.

Next, consider an environment in which downstream principals do not observe the mechanisms

o¤ered upstream, but observe the payo¤-relevant decisions taken in these mechanisms. In this

environment, restricting the principals�strategy space may mean restricting the extent to which

di¤erent principals can have di¤erent out-of-equilibrium beliefs about the mechanisms used up-

stream. When the agent�s strategy is non-Markov, this means restricting the principals� beliefs

about the agent�s behavior downstream. Such restrictions may preclude the possibility of sus-

taining certain outcomes, as shown in [9]. Assuming the principals compete in menus is thus not

without loss of generality. However, as discussed in Section 6, the problems with out-of-equilibrium

beliefs disappear if one restricts attention to Markov-perfect equilibria. This assumption is stan-

dard in the literature that assumes that upstream payo¤-relevant decisions are observable (cfr [13],

[5], [4]). Furthermore, because in these environments the principals directly observe the payo¤-

relevant decisions contracted upstream, there is no need for them to ask the agent to communicate

such information. By implication, all Markov-perfect equilibrium outcomes can be sustained with

standard direct revelation mechanisms in which the agent simply reports his exogenous type.
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Finally, consider an environment in which the downstream principals observe the entire up-

stream history, including the messages sent by the agent upstream. Because the only information

that is private to the agent is his exogenous type, one may restrict the principals to o¤er standard

direct revelation mechanisms. However, as shown in [6] for the single-principal case, what is not

without loss of generality is restricting the agent�s strategy to be truthful. The same is true with

multiple principals.

While the observability of upstream histories is exogenous in the literature discussed above, a

few recent papers consider environments in which the decision to disclose information to downstream

principals is endogenous. [8], for example, derive general conditions for the optimality of privacy

in sequential contracting, while [23] examines the interaction between information disclosure and

career concerns in a common agency model of the labor market.

Timing of contracting. The timing of contracting can also vary signi�cantly from one ap-

plication to another. First, the sequence of bilateral relationships can be endogenously determined

by the agent�s participation decisions, instead of being exogenously �xed as in our benchmark

model. This is the case, for example, when a buyer chooses in each period which seller to purchase

from. The sequence of bilateral relationships is endogenous, for example, in [2], [30], and [20]. In

this setting, principals necessarily observe part of the upstream history. In fact, they observe at

least the agent�s upstream participation decisions. Furthermore, if in period t the agent decides to

participate in principal j�s mechanism, then at any subsequent date, principal j necessarily knows

the payo¤-relevant decisions determined in period t. The problems with menus are then the same

as in the case of observable upstream payo¤-relevant decisions. However, because these problems

emerge only when the players�strategies are non-Markov, it remains possible to use menus to char-

acterize the entire set of social choice functions that can be sustained as Markov-perfect equilibria,

as discussed in Section 6. As for direct mechanisms, restricting attention to truthful equilibria

is not in general without loss of generality in these environments. The reason is that the agent

contracts with the same principal multiple times. Unless the principals can commit to long-term

mechanisms, having the agent report truthfully in each period precludes the possibility of sustaining

certain outcomes. The problems with truthtelling are the same discussed above for fully observable

histories. These problems however vanish if one assumes the agent contracts with each principal

at most once, or if one assumes that preferences are common knowledge and restricts attention to

pure-strategy equilibria, as in [5].

The sequentiality in the principals-agent decisions may also vary across applications. In our

benchmark model, a pair of irreversible decisions, one for the principal, the other for the agent, is
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committed in each period. There are environments in which instead the principals o¤er their mech-

anisms sequentially but where the agent takes decisions only after having observed all mechanisms.

Clearly, if the principals do not observe the mechanisms o¤ered by the other principals, these envi-

ronments are strategically equivalent to simultaneous common agency. In this case, we know from

[28] and [19] that all equilibrium outcomes can be sustained with menus. In [26], we show that if

one restricts attention to equilibria in which the agent�s strategy satis�es the analog of the Markov

property described above6, then all equilibrium outcomes can be characterized by (i) restricting

the principals to o¤er menus that can be conveniently described as incentive-compatible extended

direct mechanisms and (ii) by restricting the agent to follow a truthful strategy. The de�nition

of extended direct mechanisms is adjusted to take into account that all decisions are determined

simultaneously: the agent is thus asked to report his type along with the decisions he is inducing

(through the messages he is sending) with any of the other principals. In the Supplementary Mate-

rial, we show that the same mechanisms sustain all pure-strategy Markov equilibrium outcomes in

sequential games in which the principals observe the mechanisms o¤ered upstream before o¤ering

their own mechanism and in which the agent takes decisions with each principal at the end, after

having observed the mechanisms o¤ered by all principals.7 This extensive form corresponds to the

environments examined, for example, in [3], [7], [17], [29], and [32].

The extensive forms discussed above are clearly only a subset of the many extensive forms

considered in the literature. For example, the repeated common agency games of [5] and [24] do

not belong to any of these cases.8 Nor does the "agenda setting" game of [5].9 However, most

applications combine elements from the various extensive forms discussed above. We thus expect

our results to be of guidance in other settings as well.

2 The private contracting model

Players, actions and contracts. There are n 2 N principals who contract sequentially and non-
cooperatively with the same agent, A. Each principal Pi is indexed by the date i 2 N � f1; :::; ng
at which she contracts with the agent. Each Pi must select a contract xi : Ei ! Ai from a set Xi of
feasible contracts. A contract speci�es the action ai 2 Ai that Pi will take in response to the agent�s

6 In simultaneous games, the agent�s strategy is said to be Markov if the decisions the agent selects from each menu

depend on his type and the decisions he selects with the other principals, but not on the menus o¤ered by the latter.
7The reasons why menus or extended direct mechanisms may fail to sustain certain mixed-strategy equilibrium

outcomes are the same as in environments with observable upstream mechanisms.
8 In these papers, the agent simultaneously contracts with multiple principals at each period.
9 In this game, upstream decisions determine the sets of feasible decisions downstream.
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choice of action/e¤ort ei 2 Ei: Both Ei and Ai may have di¤erent interpretations depending on the
application under examination. In the relationship between a buyer and a seller, ai may represent

the price that the seller charges to the buyer when the latter chooses quantity/quality ei. Similarly,

when A performs a task on behalf of Pi, ai may represent the payment that Pi promises as a function

of the agent�s performance. Depending on the environment, the set of feasible contracts Xi may

also be more or less restricted. For example, in standard moral hazard models, ei is assumed to be

the agent�s private information, in which case xi is constant over Ei while the decision ai should be

interpreted as a payment scheme that rewards the agent as a function of some performance measure

correlated with the agent�s e¤ort. In contrast, in menu auctions, ei is assumed to be veri�able in

which case xi speci�es the transfer that Pi pays to the agent as a function of the �policy� that

the agent selects.10 A pro�le of contracts will be denoted by x � (x1; :::; xn): Similarly, pro�les

of principals�actions and of agent�s e¤orts will be denoted by a � (a1; :::; an) and e � (e1; :::; en)
respectively. We assume the sets Ei and Ai do not depend on upstream decisions.

Payo¤s. All players have expected utility preferences. A principal�s payo¤ is represented

by the function ui (�; e; a) : Similarly, the agent�s payo¤ is described by the function v (�; e; a) :

The variable � denotes the agent�s exogenous private information. Principals share a common

prior about � represented by the distribution F with support �. To avoid measure-theoretic

considerations, the sets �; E �
Q
iEi and A �

Q
iAi will be assumed to be �nite.

Mechanisms. Principals compete in mechanisms. A mechanism for Pi consists of a message

space Mi, a set of signals Si, and a mapping �i : Mi ! �(Xi � Si); when A sends a message

mi 2 Mi, Pi responds by selecting a contract from Xi and sending the agent a signal si 2 Si.11

The role of these signals is to control the agent�s posterior beliefs over Xi so as to fashion his e¤ort

decisions.12 Indeed, the mechanism �i can also be seen as a mapping �
0
i :Mi ! �(Xi ��(Xi));

where �(Xi) denotes the set of the agent�s posterior beliefs over Xi. In turn, such a mechanism

is equivalent to one where Pi randomizes over �(Xi), then informs the agent of the result of such

randomization� i.e. of the particular lottery di 2 �(Xi) selected� and �nally picks a contract xi
from Xi according to the lottery di after the agent chooses ei. Letting Yi denote the set of (feasible)

stochastic contracts yi : Ei ! �(Ai); we can then suppress the signals si and describe a mechanism
as a mapping �i :Mi ! Di such that, when A selects a message mi 2 Mi, Pi randomizes over Yi

10We assume that xi does not depend on the agent�s e¤ort at dates t 6= i: The results can however easily accom-

modate the case where xi :
Qn
i=1 Ei ! Ai and where the agent chooses e = (e1; :::; en) only at t = n+1. See Section

6 for a discussion.
11Throughout, for any measurable set Z; �(Z) will denote the set of probability measures over Z: Furthermore,

given any � 2 �(Z); we will denote by Supp[�] the support of �:
12See also [28] for a discussion of the role of signals in a mechanism.
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according to the lottery �i = �i(mi) 2 �(Yi) and then informs A of the contract yi : Ei ! �(Ai)
selected by the lottery �i before the agent chooses e¤ort ei. We denote by Di � �(Yi) the set

of feasible lotteries over Yi and by Im(�i) � f�i 2 �(Yi) : 9 mi 2 Mi s.t. �i(mi) = �ig the
set of lotteries in the range of �i. Once again, depending on the application of interest, the set

of feasible lotteries Di may be more or less restricted. For example, in certain applications, it is

customary to restrict the principals to o¤er deterministic mechanisms: this can be accommodated

by restrictingDi to contain only degenerate lotteries over deterministic contracts xi : Ei ! Ai:More
generally, the set of feasible lotteries Di incorporates all sorts of exogenous restrictions dictated by

the environment under examination. What is important to us, is that this set is a primitive of the

environment, not a choice of Pi.

To save on notation, in the sequel we will often denote a mechanism by �i, thus dropping the

speci�cation of the message spaceMi, when this does not create confusion. We then let �i denote

the set of feasible mechanisms for Pi and � � (�1; :::; �n) and ��i � (�1; :::; �i�1; �i+1; :::; �n) denote
respectively a pro�le of mechanisms for the n principals and a collection of mechanisms for all Pj

with j 6= i:13 As is standard, we assume that principals can fully commit to their mechanisms and
that each principal cannot contract directly over the mechanisms, or the contracts, of the other

principals.

Timing. The sequence of events is the following:

� At date 0; A privately learns �.

� At date i; with i = 1; :::; n, Pi secretly o¤ers the agent a mechanism �i 2 �i. A then chooses
a message mi from Mi, the lottery �i(mi) 2 �(Yi) determines the contract yi, and �nally
given yi; A chooses e¤ort ei and Pi�s action is determined by the lottery yi(ei) 2 �(Ai): None
of the principals Pj with j 6= i observes (�i;mi; yi; ei; ai):

� At date n+ 1, the game ends.

Although not explicitly modeled, the analysis can easily accommodate the agent�s decision

(not) to participate in a mechanism. It su¢ ces to add to each mechanism a �null� contract that

speci�es the default actions that are implemented in case of non-participation, such as no trade at

a null price.

13Given any collection of sets fZigni=1, the following notation will be used throughout the paper: z�i �
(z1; :::; zi�1; zi+1; :::; zn) 2 Z�i �

Q
j 6=i Zj ; z

�
i � (zk)

i�1
k=1 2 Z

�
i �

Qi�1
k=1 Zk; z

+
i � (zk)

n
k=i+1 2 Z

+
i �

Qn
k=i+1 Zk;

Z�1 � Z+n � ?.
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Strategies and Equilibrium. Let � summarize the common agency game described above. A

strategy for Pi in � is simply a probability measure �i 2 �(�i) over the set of feasible mechanisms
�i. The agent�s (behavioral) strategy at date i given the history hi �

�
h�i ; �i

�
2 Hi, where

h�i �
�
�; e�i ; a

�
i ; �

�
i ;m

�
i ; y

�
i

�
denotes the upstream history, will be denoted by �A(hi); the strategy

�A(hi) consists of a probability measure �(hi) 2 �(Mi) over the messages Mi along with a

probability measure �(hi;mi; yi) 2 �(Ei) over e¤ort conditional on hi, mi and the realized contract

yi. Finally, we denote by �A the agent�s complete strategy in �� with generic behavioral strategy

�A(hi) at date i� and by � � (f�i; gni=1; �A) an entire strategy pro�le for the agent and the
n principals. Letting E(�) denote the set of perfect Bayesian equilibria (PBE) for the sequential
common agency game �; for any �� 2 E(�); we then denote by ��� : �! �(A�E) the social choice
function (SCF) induced by ��: Hereafter, unless otherwise speci�ed, when we refer to equilibrium,

we mean PBE. However, it is immediate that all the results for the benchmark model of private

contracting remain valid even if one considers sequential equilibrium as the solution concept.14

3 Di¢ culties with standard direct mechanisms: an example

Consider the following simple environment with no asymmetric information and no e¤ort. Each

principal i = 1; 2 must select a decision ai 2 Ai; with A1 = ft; bg and A2 = fl; rg:15 Payo¤s,
respectively for P1, P2, and A, are given by the triples in the following table:

a1na2 l r

t 4 0 1 0 0 1

b 1 0 5 �1 0 0

Game 1

Now suppose that principals were restricted to o¤er standard direct revelation mechanisms.

Because in this example the agent does not possess any exogenous private information, a direct

revelation mechanism simply coincides with a decision ai 2 Ai: The set of equilibrium outcomes

would then coincide with the set of Nash equilibria in the simultaneous game between the principals

only: (t; l) and (t; r):

Next consider a game in which the principals�strategy space is the set of all indirect mechanisms

with message space Mi = f0; 1g. In this game, (b; l) can also be sustained as an equilibrium
14Note that a PBE requires to specify also beliefs for each player. However, because with private contracting these

beliefs are always pinned down by Bayes�rule, hereafter we denote a PBE simply by its strategy pro�le ��:
15 In this example, a contract simply coincides with the choice of a payo¤-relevant decision ai 2 Ai:

9



outcome. The equilibrium features P1 o¤ering the mechanism that responds to both messages with

the decision b and P2 o¤ering the mechanism that responds to m2 = 0 with l and to m2 = 1 with

r: In equilibrium, the agent chooses m2 = 0 with P2 thus implementing the outcome (b; l): The role

of the decision r in P2�s mechanism is to block a possible deviation to t by P1 : if the latter were

to deviate to t; the agent would choose m2 = 1 with P2 giving a payo¤ of 0 to P1.

Clearly, the same outcome (b; l) can be sustained in the game in which the principals o¤er

menus, but not in the game in which they o¤er standard direct revelation mechanisms. The problem

with these mechanisms is that they may not be responsive enough to possible deviations in upstream

relationships. This problem can be addressed by considering more general direct mechanisms in

which the agent reports, in addition to his type, the endogenous payo¤-relevant decisions contracted

upstream. In this example with no exogenous private information, an extended direct mechanism

for P1 simply coincides with an element of A1, whereas for P2 with a mapping �D2 : A1 ! A2:
It is then immediate that the following mechanisms sustain (b; l) : P1 chooses b, whereas P2 o¤ers

the mechanism �D�2 (t) = r and �D�2 (b) = l: Note that �D�2 is incentive-compatible both on and

o¤ equilibrium: whatever decision a1 is taken upstream, the agent has the incentives to report it

truthfully to P2:

More generally, when information is complete, as in the example above, any deterministic SCF

that can be sustained with any arbitrary strategy space for the principals can also be sustained by

restricting the principals to o¤er extended direct mechanisms. The same is true with incomplete

information and/or stochastic SCFs, provided one restricts the agent�s strategy to be Markov.

To see why, with non-Markov strategies, the direct mechanisms described above may fail to

sustain certain outcomes, suppose that the principals�strategy space is now the set of all stochastic

mechanisms that map Mi = f0; 1; 2g into lotteries over Ai. Continue to assume that the agent
observes a1 before contracting with P2: The following is then an equilibrium. P1 o¤ers the mech-

anism ��1 that maps each message m1 into the lottery that gives t and b with equal probabilities.

On her part, P2 o¤ers a mechanism that responds to m2 = 0 with a lottery � that gives l with

probability equal to 1=4; to m2 = 1 with a lottery � that gives l with probability 1=2; and to

m2 = 1 with a (degenerate) lottery � that gives r with certainty. In equilibrium, A chooses m2 = 0

conditional on t and m2 = 1 conditional on b: These mechanisms are sustained by a non-Markov

strategy according to which, whenever P1 deviates from the equilibrium distribution over A1, the
agent chooses m2 = 2 instead of m2 = 0 after t is realized (note that the agent is indi¤erent about

a2 when a1 = t).

Clearly, this outcome can also be sustained in the game in which the principals o¤er menus

(of lotteries). However, it cannot be sustained in the game in which they o¤er extended direct

10



mechanisms. In fact, to prevent a deviation from P1 it is essential that the agent be given the

possibility of choosing the (out-of-equilibrium) lottery � with P2 in response to a deviation by P1

that altered the distribution upstream but nonetheless led to an equilibrium decision. This cannot

be done with our extended direct mechanisms.16

When downstream principals observe part of the upstream history (such as the mechanisms

o¤ered upstream and/or the decisions taken in these mechanisms), there are additional reasons why

restricting the principals�strategy space may preclude the possibility of sustaining certain outcomes.

In these environments, even the restriction to menus is not always without loss of generality, as

discussed in Section 6.

4 Menus

In this section we �rst show that the menu theorems of simultaneous common agency extend to se-

quential common agency when contracting is private. We then show that, contrary to simultaneous

games, all equilibrium outcomes can be characterized by restricting attention to strategy pro�les

in which the principals do not mix over their menus and in which the agent does not mix over

the contracts he selects with each principal. Finally, we show that, when information is complete,

all deterministic social choice functions can be sustained through equilibria in which the agent�s

strategy is Markov. Proving these results is not only useful for applications, but also a key step for

the results in the next section.

De�nition 1 A menu is a mechanism �Mi :MM
i ! Di such that (a)MM

i � Di, and (b) for any
�i 2MM

i ; �
M
i (�i) = �i.

A menu is thus a mechanism whose message space is equal to its image and whose mapping is

the identity function. In what follows, we denote by �Mi the set of all possible menus for principal

i and by �M the �menu game�in which the set of feasible mechanisms for each Pi is �Mi :

Now consider any enlargement of the menu game, that is, a game in which principals have

�more�mechanisms than in �M .

De�nition 2 The game � is an enlargement of �M (� < �M ) if for all i 2 N ,
(i) there exists an embedding �i : �Mi ! �i;17

16Similar issues arise with incomplete information, as discussed in Section 4.
17Formally, the embedding �i : �Mi ! �i is an injective mapping such that, for any pair of mechanisms �Mi ; �i

with �i = �i(�
M
i ); the following are true: (a) Im(�i) = Im(�

M
i ); (b) there exists an injective function ~�i :MM

i !Mi

from the message space of �Mi to the message space of �i such that �i(~�i(�i)) = �i for any �i 2MM
i :

11



(ii) for any �i 2 �i; Im(�i) is compact.

A simple example of an enlargement of �M is a game in which �i � �Mi for all i:More generally,

an enlargement is a game in which every �i is larger than �Mi in the sense that each menu �Mi is

also present in �i, although possibly with a di¤erent representation.18

Theorem 1 Let � < �M : A SCF � can be sustained as an equilibrium of � if and only if it can be

sustained as an equilibrium of �M :

First consider the �only if�part of the result. The idea behind the proof is simple and can be

sketched as follows. Suppose the SCF � can be sustained as an equilibrium of � and let � be the

supporting strategy pro�le. Now suppose in �M each principal�s strategy is such that, for any set

of menus Ri � �Mi ;

�Mi (Ri) = �i

 S
�Mi 2Ri

�i(�
M
i )

!
(1)

where �i(�Mi ) � f�i 2 �i : Im(�i) = Im(�Mi )g: This strategy consists in o¤ering each menu �Mi
with a probability equal to the total probability assigned by the original strategy �i in � to the set

of all mechanisms in � whose image coincides with that of �Mi : When in the menu game �
M all

downstream principals are expected to follow the strategy given in (1), in the continuation game

that starts after Pi o¤ers the menu �Mi ; it is clearly optimal for A to induce the same outcomes he

would have induced in � had Pi o¤ered one of the mechanisms in �i(�Mi ): This also implies that

after Pi o¤ers the menu �Mi ; it is optimal for the agent to use the conditional distribution

�i(�i j �i(�Mi ))

to determine his behavior at any subsequent information set.19 Furthermore, when each Pi and A

follow the strategies described above, the distribution over E�A is the same as in �: Starting from
� one can thus construct an equilibrium �M for �M that sustains the same outcomes:

Next, consider the �if�part of the result. Suppose the SCF � can be sustained as an equilibrium

of �M and let �M denote the sustaining strategy pro�le. Then there always exists an equilibrium

� in � that sustains the same outcomes. The agent�s strategy �A is constructed by �extending�

the original strategy �MA over �, as follows. For any history ht = ((�i;mi; yi; ei; ai)
t�1
i=1; �t), �A

induces the same joint distribution over Ei �Ai as the strategy �MA in �M after the history hMt =

18The requirement that each mechanism �i has a compact image guarantees that the agent�s best response is well

de�ned.
19The existence of such conditional measures as well as the speci�cation of how the agent �translates�his behavior

in � in his behavior in �M is described in the Appendix.
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((�Mi ; �i; yi; ei; ai)
t�1
i=1; �

M
t ) where the history h

M
t is constructed from the history ht replacing each

mechanism �i with the menu �
M
i whose image is the same as that of �i (i.e. Im(�

M
i ) = Im(�i)) and

each message mi with the lottery �i = �i(mi): As for the principals, each strategy �i is simply the

�translation�of the original strategy �Mi in �M using the embedding �i, i.e. �i = �i(�Mi ):
20 Given

the principals� strategies (�i)ni=1; the agent�s strategy �A is sequentially rational for the agent.

Furthermore, given (�A; ��i), no principal has an incentive to deviate from the strategy �i.

Any equilibrium �M of the menu game is thus weakly robust in the sense of [28]: for any

enlargement � of �M , there is an extension of the agent�s strategy �MA over � such that it remains

optimal for the principals to o¤er the same equilibrium menus as in the original game and for the

agent to induce the same outcomes.21

When � is not an enlargement of �M , because the environment imposes certain restrictions on

the sets �i, there may exist outcomes in � that cannot be sustained as equilibrium outcomes in �M

and vice-versa. In this case, one can still characterize all equilibrium outcomes of � using menus, but

it becomes necessary to restrict the principals to o¤er only those menus that could have been o¤ered

in � : that is, the set of feasible menus for Pi must be restricted to ~�Mi � f�Mi : Im(�Mi ) = Im(�i)

for some �i 2 �ig: For simplicity, in the sequel we will restrict attention to environments in which
the set of feasible menus for each principal is the entire set of all possible menus.

The aforementioned results show that the menu theorems of simultaneous common agency

extend to sequential common agency when contracting is private. The reason why the results do

not follow directly from those theorems is twofold. First, the decisions the agent takes with his

upstream principals are irreversible at the time he contracts with the downstream principals. This

means that the agent�s behavior at period t can be conditioned not only on the mechanisms o¤ered

upstream but also on the endogenous payo¤-relevant decisions taken in these mechanisms. Second,

at the time the agent commits a decision with principal t, he has not seen yet the mechanisms

o¤ered by the downstream principals. These di¤erences do not pose serious problems. However,

they require an adaptation of the arguments used in simultaneous games.

20Formally, for any measurable set R � �i; �i(R) = �Mi (~�Mi ); where ~�Mi = f�Mi : �i(�
M
i ) 2 Rg:

21Equilibria in �M are weakly robust, but not necessarily strongly robust : one may also be able to construct an

enlargement � and an extension �A of �MA over � such that � = (�A; f�i(�Mi )gni=1) is not an equilibrium of �.

However, what seems important to us is that any equilibrium outcome in �M remains an equilibrium outcome also

in �: That it can be sustained by any strategy pro�le (�A; f�i(�Mi )gni=1) in which �A is an extension of �MA is not

essential.
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4.1 Pure strategies

The next result, which is speci�c to sequential contracting, goes a step further by showing that, in

settings in which Di = �(Yi); i.e. in environments in which principals can o¤er any lottery over

Yi; the characterization of the equilibrium outcomes is further simpli�ed by the fact that one can

restrict attention to pure-strategy pro�les.

De�nition 3 A strategy pro�le � 2 E(�) is a pure-strategy equilibrium if and only if it is an

equilibrium in which (a) no principal i mixes over �i; (b) after any history hi, the agent does not

mix overMi, 8i 2 N :

While in a pure-strategy equilibrium, the agent does not mix over the messages he sends to

the principals, he may however mix over e¤ort.

Theorem 2 Suppose Di = �(Yi) for all i: A SCF � can be sustained as an equilibrium of �M only

if it can be sustained as a pure-strategy equilibrium.

Suppose the SCF � is sustained by a mixed-strategy equilibrium �M in which Pi randomizes

over �Mi according to �Mi and in which, given some �Mi ; the agent randomizes over the di¤erent

lotteries in �Mi according to �(h�i ; �
M
i ).

22 The same SCF can be sustained by an equilibrium ��M

in which Pi o¤ers with probability one the menu��
M

i that contains the compound lotteries (indexed

by h�i ) R
�Mi 2�Mi

R
�i2MM

i

�id�(h
�
i ; �

M
i )d�

M
i (2)

that can be obtained by mixing with distribution �Mi over the compound lotteries
R
�id�(h

�
i ; �

M
i )

that the agent would have induced, for each h�i , by following his original strategy �(h
�
i ; �

M
i ).

Holding constant �+i , when the upstream history is h
�
i and Pi o¤ers the menu��

M

i ; it is then clearly

optimal for A to choose with probability one the lottery �i(h�i ; �
M
i ) given in (2); at any downstream

information set, the agent then adjusts his behavior to induce the same outcomes as in the original

equilibrium �M .23

When instead Pi o¤ers any menu �Mi 6= ��
M

i , let the agent choose with probability one the

lottery �i(h�i ; �
M
i ) in Supp[�

M
A (h

�
i ; �

M
i )] that minimizes Pi�s expected payo¤ taking into account

that at any subsequent information set the agent�s behavior will continue to be determined by the

original strategy �MA . When all other principals are expected to follow the same strategy as in �
M ,

22Recall that �(hi; �Mi ) 2 �(MM
i ) denotes the agent�s communication strategy with Pi:

23The details of how the agent adjusts his behavior downstream to induce the same distribution over E �A as in

the original equilibrium �M are in the appendix.
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the strategy ��MA constructed this way is clearly sequentially optimal for the agent. Furthermore,

given this strategy, no principal has an incentive to deviate. Iterating across all i; it is then possible

to construct a pure-strategy equilibrium that implements the same outcomes as �M :

The point here is that any randomization induced by a principal mixing over her mechanisms or

by the agent mixing over his messages can be replicated by having the principal o¤er a single menu

of lotteries over contracts and having the agent selecting deterministically a lottery as a function

of his upstream contractual history. For the transformation described above to work, it is however

essential that any principal can o¤er any lottery in �(Yi); which explains the quali�cation in the

theorem. This is an assumption that we will maintain in most of the subsequent analysis. We will

however be careful to clarify how our results extend to environments in which Di $ �(Yi) for some

i; a restriction that is common, for example, in applications that assume that only (degenerate

lotteries over) deterministic contracts are feasible.

The possibility of restricting attention to pure-strategy pro�les is appealing for two reasons.

First, it is reminiscent of a similar result for games with a single mechanism designer. Second,

it is common practice in applications to restrict attention to pure-strategy equilibria� Theorem 2

provides a possible justi�cation for such a practice.

It is also important to note that such a result does not have a counterpart in simultaneous

common agency. In fact it is essential that the agent takes decisions with each principal after

having committed irreversible decisions upstream and before having seen the mechanisms o¤ered

downstream. To see this, consider a simple environment with only two principals, with no adverse

selection and with no e¤ort, so that j�j = jEij = 1, i = 1; 2: Suppose in addition that the sets of
primitive decisions are A1 = ft; bg and A2 = fl; rg: The payo¤s, respectively, for P1, P2 and A; are
as in the following table:

a1na2 l r

t 2 2 1 0 0 0

b 1 0 1 2 1 2

Game 2

The social choice function that selects (t; l) and (b; r) respectively with probability q 2 (0; 1) and
1 � q can be sustained as an equilibrium both in our sequential game (with private contracting)

and in the canonical simultaneous version of the game considered in the literature. In both games,

with probability q 2 (0; 1); P1 o¤ers the degenerate menu that contains the lottery that selects t
with certainty, whereas with probability 1 � q she o¤ers the degenerate menu that contains the
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lottery that selects b with certainty. On her part, P2 o¤ers the menu that contains both the lottery

that gives l with certainty and the lottery that gives r with certainty. The agent selects l with P2

if a1 = t and r if a1 = b. It is immediate to see that, in the sequential game, the same outcome

can be sustained by a pure-strategy equilibrium in which P1 o¤ers a degenerate menu containing

the lottery that gives t and b respectively with probability q and 1 � q: This is not true in the
simultaneous version of the game. Indeed, to sustain the same outcomes with a pure-strategy

pro�le, it is necessary that P1 o¤ers a menu that contains both the degenerate lottery that gives t

with certainty and the degenerate lottery that gives b with certainty. But then A strictly prefers

to induce (b; r) rather than randomizing over (b; r) and (t; l).

4.2 Markov-perfect equilibria

In applications, it is also customary to restrict attention to equilibria in which a player�s strategy

depends on the upstream history only through its payo¤ relevant component.24 With private

contracting, this is necessarily the case for principals. In what follows, we examine the implications

of assuming such a property holds also for the agent�s strategy.

Formally, for any upstream history h�i =
�
�; ��i ;m

�
i ; y

�
i ; e

�
i ; a

�
i

�
, let

�Ei �
�
�; e�i ; a

�
i

�
2 �Ei � �� E�i �A

�
i

denote the payo¤-relevant component of h�i : For a reason that will become clear in the next section,

hereafter we refer to �Ei as the agent�s extended type:

De�nition 4 The agent�s strategy �A is Markov at t = i if and only if, for any �i and any pair

of upstream histories h�i ; ĥ
�
i with h

�
i = (�

E
i ; �

�
i ;m

�
i ; y

�
i ) and ĥ

�
i = (�

E
i ; �̂

�
i ; m̂

�
i ; ŷ

�
i );

�A(h
�
i ; �i) = �A(ĥ

�
i ; �i):

A Markov-perfect equilibrium (hereafter, MPE) is an equilibrium in which �A is Markov at

any t:

Assuming the agent�s strategy is Markov seems appealing. However, it is important to un-

derstand what social choice functions cannot be sustained with these strategies. The next result

provides an answer and can be seen as a possible justi�cation for restricting attention to Markov

perfect equilibria in certain environments.

Theorem 3 Suppose information is complete (i.e. j�j = 1). Then any deterministic SCF � that
can be sustained as an equilibrium of �M can also be sustained as a pure-strategy MPE.
24See, among others, [13] and [5].
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The idea behind the proof is the following. When preferences are common knowledge and the

SCF � is deterministic, there is a unique sequence of equilibrium decisions and hence a unique

sequence of equilibrium extended types. Now, assume the agent�s strategy in the equilibrium �M�

that supports � is not Markov. Then consider the alternative strategy pro�le ~�M in which all

principals o¤er the same menus as in �M� and in which the agent behaves as follows. At any period

t; if the extended type �Et is the equilibrium one, the agent implements the equilibrium decisions for

that extended type, independently of which particular upstream history h�t led to �
E
t . If instead,

�Et is not the equilibrium extended type, then let j � t � 1 be the �rst date at which a departure
from the sequence of equilibrium decisions occurred. Starting from period t; at any downstream

information set, the agent then chooses among the decisions that are sequentially optimal for him,

those that minimize the payo¤ of principal j: Given this Markov strategy for the agent, no principal

has a pro�table deviation. The strategy pro�le ~�M is thus an equilibrium for �M and sustains the

same outcomes as �M�.

In the argument sketched above, it is essential that the agent be able to identify (and punish)

an upstream principal who deviated from equilibrium play simply by looking at the extended type.

This is always possible when information is complete and the SCF � is deterministic. When instead

j�j > 1 and/or the SCF � is stochastic, it may be necessary to have the agent condition his behavior
not only on �Et ; but also on payo¤-irrelevant information such as the mechanisms o¤ered upstream.

This permits the agent to punish deviations that altered the distribution of upstream payo¤-relevant

decisions but nevertheless led to equilibrium extended types.

It is also worth noticing that even if one is interested in characterizing only deterministic SCFs,

it may be necessary to allow for menus that contain (non-degenerate) lotteries. To see this, assume

that A1 = ft; bg and A2 = fl;m; rg: The payo¤s, respectively for P1; P2 and A are given by the

triples (u1; u2; v) in the following table:

a1na2 l m r

t 1 2 1 0 1 0 0 0 0

b 2 3 1 �2 4 0 3 0 2

Game 3

The outcome (t; l) cannot be sustained by restricting attention to menus that contain only degener-

ate lotteries. Indeed, to punish a possible deviation by P1 to b; the equilibrium menu o¤ered by P2

should also contain m: However, conditional on b; A necessarily prefers l over m; which implies that

it is impossible to punish P1�s deviation while satisfying the agent�s rationality. On the other hand,

the outcome (t; l) can be sustained by having P2 o¤er any menu that together with the equilibrium
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contract l contains a lottery that gives l with probability p, m with probability q; and r with prob-

ability 1 � p � q; where (p; q) is any pair of positive real numbers that satis�es q � (1 � p)=2 and
q � (2� p)=5. The �rst bound on q guarantees that, choosing this lottery is incentive-compatible
for the agent given b, while the second ensures that P1 does not �nd it pro�table to deviate.

5 Extended Direct Mechanisms

Building on the results in the previous section, we now show that, in most cases of interest for ap-

plications, the characterization of the equilibrium outcomes can be further simpli�ed by restricting

the principals to o¤er menus that can be conveniently described as extended direct mechanisms.

De�nition 5 An extended direct mechanism is a mapping �Di : �Ei ! Di. A revelation

game �D is a game in which the principals�strategy space is �(�Di ); where �
D
i denotes the set of

all possible extended direct mechanisms for Pi, i = 1; :::; n.

Extended direct mechanisms can thus be thought of as menus whose allocations are indexed

by the payo¤-relevant component of the agent�s upstream history. Extended direct mechanisms

are thus the analogue of standard direct revelation mechanisms with the only di¤erence being that

they may specify contracts also for extended types that have zero measure on the equilibrium path.

Next, let ~V (h�i ; �i; �
+
i ) denote the maximal payo¤ that A can obtain in the continuation game

that starts at t = i when the upstream history is h�i =
�
�Ei ; �

�
i ;m

�
i ; y

�
i

�
, he chooses a lottery �i with

Pi, and the downstream principals�strategy pro�le is �+i . Clearly, ~V (h
�
i ; �i; �

+
i ) depends on h

�
i

only through �Ei ; in the following, we thus denote the agent�s continuation payo¤ by V (�
E
i ; �i; �

+
i ).

De�nition 6 (i) Fix a strategy pro�le �+i for the downstream principals. A mechanism �Di is

incentive-compatible if and only if, for any �Ei 2 �Ei and any �0i 2 Im(�Di ),

V (�Ei ; �
D
i (�

E
i ); �

+
i ) � V (�

E
i ; �

0
i; �

+
i ):

(ii) The agent�s strategy is truthful in �Di if and only if, for any upstream history h�i ; the

agent truthfully reports �Ei :
25 Given a strategy pro�le �D � (f�Di gni=1; �DA ) for �D; �DA is said to be

truthful if and only if it is truthful in every �Di 2 Supp[�Di ]; 8i 2 N :

(iii) A truthful equilibrium for �D is an equilibrium in which each mechanism �Di 2
Supp[�Di ] is incentive compatible and �

D
A is truthful.

25Formally, for any h�i = (�
E
i ; �

�
i ;m

�
i ; y

�
i ); �̂

E

i 2 Supp[�(h�i ; �Di )] =) �̂
E

i = �
E
i :
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Whether the mechanism �Di is incentive-compatible depends on the downstream principals�

strategy pro�le �+i . Contrary to games with a single mechanism designer, incentive-compatibility

must thus be established by backward induction. Also note, given a mechanism �Di ; the agent�s

strategy is truthful in �Di if and only if the agent truthfully reports any extended type. This

implies that when a deviation from equilibrium occurred at some date t < i, the agent still reports

his extended type truthfully to Pi:

The following result relates the set of equilibrium outcomes that can be sustained with extended

direct mechanisms to the set of outcomes that can be sustained with menus. In virtue of the results

in the previous section, it should be clear that this is the relevant comparison.

Theorem 4 Any SCF � that can be sustained as a MPE of �M can also be sustained as a pure-

strategy truthful MPE of �D. Furthermore, any SCF that can be sustained as an equilibrium of �D

can also be sustained as an equilibrium of �M :

Consider the �rst part. Suppose there exists a MPE �M� in the menu game that sustains the

SCF �: By Theorem 2, without loss of generality one can assume that �M� is a pure-strategy pro�le.

That the agent�s strategy in �M� is Markov in turn implies that, for any �Et and for any menu �
M
t ;

there exists a unique lottery �t(�Et ; �
M
t ) such that the agent selects the lottery �t(�

E
t ; �

M
t ) from the

menu �Mt when his extended type is �Et ; irrespective of the upstream history h
�
t that has conducted

to �Et . The equilibrium that sustains � in �D is then constructed by having each principal o¤er

the direct mechanism �D�t that responds to each �Et with the lottery �t(�
E
t ; �

M�
t ), where �M�

t is the

equilibrium menu in �M : When o¤ered the equilibrium mechanism �D�t , the agent then responds

by reporting �Et truthfully and then selecting e¤ort according to �
M
A as if the game were �M , the

menu o¤ered by Pt were �M�
t and the message sent to Pt were �t(�Et ; �

M�
t ):When instead the agent

is o¤ered a mechanism �Dt 6= �D�t , the agent behaves according to �MA as if the game were �M and

the menu o¤ered by Pt were �Mt , where Im(�
M
t ) = Im(�Dt ): Given the aforementioned strategies

for the principals, the agent�s (Markov) strategy described above is clearly sequentially optimal.

Furthermore, given (�D�A ; �D��i ), no principal has an incentive to deviate and o¤er a mechanism

�Dt 6= �D�t . We conclude that �D� is a (pure-strategy) MPE of �D and sustains the same outcomes

as �M� in �M :

Note that this result presumes Di = �(Yi) for all i: As discussed in the previous section, this

is necessary to guarantee that any SCF � that can be sustained as a MPE of �M can also be

sustained as a pure-strategy MPE. However, what matters for the possibility of sustaining � as a

MPE of �D is only the purity of the agent�s strategy in �M ; that the principals�strategies are also

pure is not important. To understand this, note that when certain lotteries are not feasible, i.e.
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when Di $ �(Yi) for some i; then it may be impossible to replicate the outcomes induced in �M

by the agent mixing over the di¤erent contracts in a menu with a direct mechanism that simply

asks the agent to report his extended type.26 In environments in which there are restrictions on

the sets of feasible lotteries, the result in the �rst part of the theorem must thus be replaced with

the following: Any SCF � that can be sustained as a MPE of �M in which the agent�s strategy is

pure can also be sustained as a truthful MPE of �D:

Next, consider the second part of the theorem. Take any �D 2 E(�D). Irrespective of whether
the agent�s strategy in �D is Markov and of whether �D is a pure- or mixed-strategy equilibrium,

there always exists a �M 2 E(�M ) that sustains the same outcomes. Note that this result does
not follow from Theorem 1: in fact, in general, �D is not an enlargement of �M (nor is �M

an enlargement of �D). The equilibrium �M that sustains � in �M is constructed by having each

principal o¤er each menu �Mt with the same probability she would have o¤ered all direct mechanisms

with the same image as �Mt : That is, �
M
t is constructed from �Dt using the same transformation

as in (1). As for the agent, if Pt o¤ered a menu �Mt whose image coincides with the image of one

of the direct mechanisms in �Dt , then A induces the same outcomes he would have induced in �
D

had Pt o¤ered27

�Dt (�
M
t ) � f�Dt 2 �Dt : Im(�Dt ) = Im(�Mt )g:

If instead, Pt o¤ered a menu �Mt that is not in the image of any of the mechanisms in �Dt ; then A

behaves according to �DA as if the game were �
D and the mechanism o¤ered by Pt were �Dt ; where

�Dt is such that

�Dt (�
E
t ) 2 arg max

�t2Im(�Mt )
V (�Et ; �t; �

+
t ) 8�Et 2 �Et :

These strategies for the principals and the agent clearly constitute an equilibrium for �M that

induces the same outcomes of �D:

That any equilibrium outcome of the revelation game is also an equilibrium outcome of the

menu game is important because it guarantees that the outcomes that one obtains by restricting

the principals to o¤er extended direct mechanisms are not arti�cially sustained by the impossibility

for the principals to o¤er certain menus that are not available in the revelation game.

Describing menus as direct revelation mechanisms has proved very convenient in games with

a single mechanism designer. The same approach can be used to characterize MPE outcomes in

26The impossibility of sustaining all outcomes with direct mechanisms when D � �(Y ) is clearly not speci�c to

common agency; it also applies to settings with a single principal.
27That is, A uses �Dt (�

D
t j �Dt (�Mt )) to determine his behavior at any subsequent information set.

20



sequential common agency. We illustrate such a possibility in a canonical buyer-sellers example

with incomplete information in the Supplementary Material.

6 Alternative extensive forms

The model considered so far assumes that contracting is private: the mechanism o¤ered by principal

i, the contract selected by the agent and the decisions taken in response to this contract, are all

information that is private to A and Pi, in the sense that it cannot be observed by any of the

other principals. It was also assumed that a pair of payo¤-relevant decisions (one for the agent, the

other for the principal) is committed at each date instead of some decisions being taken only after

all principals have o¤ered their mechanisms. Finally, the sequence of bilateral relationships was

exogenous in the sense that the agent could not choose which principal to contract with at each

date.

Although these assumptions seem reasonable for many applications, it is important to un-

derstand how the preceding results must be adapted to accommodate alternative extensive forms

examined in the literature. This is what we do in this section. Hereafter, we summarize the key

insights. The formal statements of the results and their corresponding proofs can be found in the

Supplementary Material.

Observability of upstream payo¤-relevant decisions. Consider an environment in which

principals observe upstream payo¤-relevant decisions before choosing their mechanisms.28

As long as one restricts attention to Markov-perfect equilibria, this extension poses no prob-

lems to our characterization results: all Markov-perfect equilibrium outcomes can be character-

ized by restricting the principals to o¤er either menus or extended direct revelation mechanisms.

Furthermore, because the choice of a mechanism is now contingent on the observable upstream

payo¤-relevant decisions (e�i ; a
�
i ), when using direct mechanisms, there is no need to ask the agent

to report such information. One can thus drop (e�i ; a
�
i ) from the agent�s message and restrict at-

tention to standard direct revelation mechanisms in which the agent simply reports his exogenous

type �.

If, instead, one is also interested in equilibrium outcomes sustained by non-Markov strategies,

then restricting the principals to o¤er menus (or direct mechanisms) may preclude a complete

characterization. The reason is that restricting the principals� strategy space means restricting

28Upstream decisions are observable in [17], [5], [21], [31], and [1]. In these papers, the observability of upstream

decisions is exogenous. In contrast, [8] and [23] examine models in which the observability of upstream decisions is

controlled by upstream principals.
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the extent to which principals�out-of-equilibrium beliefs can di¤er one from the other.29 The fact

that, in an indirect game, the same menu can be o¤ered with di¤erent mechanisms may permit

downstream principals to have di¤erent beliefs about the particular mechanism used upstream

to select an out-of-equilibrium decision. When the agent�s strategy is non-Markov, this means

allowing the principals to have di¤erent expectations about the agent�s behavior in downstream

relationships, a property that may be essential to sustain certain outcomes (see [9] for an example

that illustrates such a possibility). For the same reason, the set of equilibrium outcomes of the

menu game is no longer a superset of the set of equilibrium outcomes of the revelation game� the

same menu can in fact be o¤ered through multiple direct mechanisms; what remains true is that

the set of Markov-perfect equilibrium outcomes is the same in the two games, as shown in Theorem

5 in the Supplementary Material.

Observability of upstream mechanisms. Next, consider an environment in which every

Pi, i = 2; :::; n; observes the mechanisms ��i o¤ered upstream before choosing her own mechanism.

As in the benchmark model, Pi does not observe (m�
i ; y

�
i ; e

�
i ; a

�
i ).

In this setting, restricting the principals� strategy space may mean restricting the extent to

which payo¤-irrelevant distinctions among mechanisms can be used as correlation devices for the

principals�decisions. This may preclude a complete characterization of the equilibrium outcomes

(see [9] for an illustration). However, one can safely restrict the principals to o¤er menus if one is

interested only in equilibria in which the principals do not mix� to the best of our knowledge, the

case considered in all papers that assume observability of upstream mechanisms.

One way of restoring the possibility of using menus to sustain also mixed-strategy equilibria is

to allow for public randomizing devices, as in the case of correlated equilibria.30 Alternatively, one

may allow the principals to send to each other cheap talk messages whose role is to replicate the

role of payo¤-irrelevant distinctions among mechanisms that are used as correlation devices.

Furthermore, all equilibrium outcomes that can be sustained in the menu game by restricting

the principals� strategies to be pure can also be sustained in the revelation game. Contrary to

the case of private contracting, this is true irrespective of whether the agent�s strategy is Markov.

This is because, in this setting, downstream principals can observe directly a deviation by an

upstream principal. They can thereby respond to such a deviation by changing the contract o¤ered

to each extended type. There is thus no need to o¤er the same extended type of the agent a

menu of contracts to choose from as a function of what happened upstream� see Theorem 6 in the

Supplementary Material.
29Note that there are no out-of-equilibrium beliefs in the benchmark model of private contracting.
30A similar idea has been explored in [14] in the context of a simultaneous multi-agent-multi-principal setting.
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However, note that, in this environment, equilibria in direct mechanisms may fail to be robust,

in the sense of [28]: there may exist SCFs that can be sustained as equilibria of the revelation game

that cannot be sustained as equilibria of the menu game. The reason is that direct mechanisms

restrict a principal�s ability to o¤er the agent out-of-equilibrium allocations. These allocations

may be essential to induce a certain behavior by the agent and the downstream principals in the

continuation game that starts after a mechanism has been announced. By implication, a principal

may have a pro�table deviation in the menu game even if she did not have it in the revelation

game (see the Supplementary Material for an example). Such out-of-equilibrium allocations play

no role under private contracting, for they do not a¤ect the behavior of the downstream principals.

As discussed after Theorem 4, in this case, any deviation to a menu that could not be o¤ered in

the revelation game can be punished by having the agent behave as if the principal o¤ered a direct

mechanism that gives to each extended type a contract that is optimal for that extended type among

those that are in the menu, holding �xed the mechanisms o¤ered downstream. The possibility of

holding �xed the mechanisms o¤ered downstream however disappears in environments in which

upstream mechanisms are observable. By implication, certain deviations to menus that could not

be o¤ered as direct mechanisms may be impossible to punish, thus making equilibrium outcomes

in the revelation game not robust. However, this problem with direct mechanisms disappears

when direct mechanisms �span� all possible menus31� a case that often arises in settings with a

continuum of types. Because in this case �D < �M , then all equilibrium outcomes of �D are also

equilibrium outcomes of �M .

Endogenous sequence of bilateral relationships. Consider the following variant of our

benchmark contracting game. There are T > 2 periods. In each period, all principals simultane-

ously o¤er the agent a mechanism and the agent chooses at most one mechanism to participate

in. The agent may participate in a mechanism o¤ered by the same principal multiple times. As in

the benchmark model, contracting is private so that the principals do not observe other principals�

mechanisms, nor the messages, the contracts, or the decisions taken in these mechanisms.

This setting may correspond, for example, to an environment in which at each period, a con-

sumer decides which seller to use for the provision of a certain good or service.32

The di¢ culties with this extensive form come from the fact that the agent�s continuation pay-

o¤ at date t may now depend not only on the upstream payo¤-relevant decisions but also on the

mechanisms, the messages and the contracts selected upstream. In fact, such payo¤-irrelevant in-

formation may determine which mechanisms will be o¤ered downstream. Furthermore, because the
31That is, when for any �Mi 2 �Mi , there exists a �Di 2 �Di such that Im(�Di ) = Im(�

M
i ):

32This is the environment examined, for example, in [2], [30], and [20].
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principals observe some of the decisions taken upstream (e.g. the agent�s participation decisions),

the problems with out-of-equilibrium beliefs discussed above for the case of observable actions carry

over to this environment.

These problems, however, disappear if one restricts attention to equilibria in which not only

the agent�s strategy but also the principals�strategies are Markov. All MPE outcomes can in fact

be characterized with menus. They can also be characterized as truthful equilibria, but only if the

agent is restricted to contract with each principal at most once. If instead the agent can contract

with the same principal multiple times, then having the agent report truthfully is in general not

without loss of generality. The reasons are the same as in the literature that assumes a single

principal who lacks commitment. As shown in [6], one can safely restrict the principal to o¤er

direct mechanisms but should not restrict the agent to report truthfully in each period. The same

is true with multiple principals. One can characterize all MPE outcomes by having the principals

compete in extended direct mechanisms, but should not assume the agent reports truthfully to each

principal. Restricting attention to truthful equilibria is however �ne if the agent does not possess

any private information vis a vis the principal; this is the case when preferences are common

knowledge (i.e. j�j = 1) and when all players�strategies are pure as, for example, in [5].

Sequential o¤ering as opposed to sequential contracting. Sequential o¤ering refers to

an environment in which principals o¤er their mechanisms sequentially, but the agent takes payo¤-

relevant decisions only after observing the mechanisms o¤ered by all principals. This is in contrast

to sequential contracting where some payo¤-relevant decisions are committed at each date.33

First, consider an environment similar to the one examined in the benchmark model but where

the agent�s e¤ort is chosen only at the very end, say at t = n + 1: At t = i; for i = 1; :::; n,

Pi o¤ers a mechanism �i : Mi ! Di, where Di is the set of feasible lotteries over the contracts

yi : E ! �(Ai), with e 2 E now denoting some common e¤ort.34 After sending the message mi;

the agent may or may not observe the realization yi of the lottery �i = �i(mi): As in the benchmark

model, principals do not observe other principals�mechanisms, nor the messages the agent sends

to other principals, nor the contracts selected in response to these messages.

It is immediate that this extensive form poses no problems to our characterization results. It

33Sequential o¤ering has been examined, among others, in [2], [7], [30],[17], [20], [29], [32].
34One may think of e as a vector of decisions e = (e1; :::; en): Depending on the application of interest, the set

of feasible contracts Yi may be more or less restricted. For example, when ej stands for a decision speci�c to the

relationship between A and Pj ; it may be reasonable to assume that yi must not depend on ej : This could be the case,

for example, if ej represents the quantity/quality of the product of seller j and if the latter could not be observed by

Pi.
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su¢ ces to adjust the de�nition of extended type to take into account that, because the decisions

(e; a) are now chosen only at t = n + 1; at t = i; the component of the upstream history that

is relevant for the agent�s continuation payo¤ becomes the pro�le of contracts selected upstream

along with the agent�s exogenous type. That is, all the results in the benchmark model extend to

this environment by letting �Ei � (�; y�i ), or �Ei � (�; �
�
i ); depending on whether at every t < i, the

agent observes the contract yt or only the lottery �t = �t(mt):

Next, consider an environment in which principals o¤er their mechanisms sequentially, but

where the agent sends the messages (m1; :::;mn) simultaneously at t = n+ 1: Given the contracts

(yi)
n
i=1 selected by the lotteries (�i)

n
i=1 = (�i(mi))

n
i=1; the agent then chooses an action e 2 E and

�nally the principals�decisions (ai)ni=1 are determined by the contracts (yi)
n
i=1: If the principals do

not observe other principals�mechanisms, this setting is strategically equivalent to simultaneous

common agency; the menu theorems of [28] and [19] then guarantee that the entire set of equilibrium

outcomes can be characterized by restricting the principals to o¤er menus. In many applications, it

is however appealing to restrict attention to equilibria in which the decisions the agent induces with

each principal Pi depend on the menu o¤ered by Pi, the agent�s type � and the decisions ��i the

agent is inducing with the other principals (but not the menus, or more generally the mechanisms,

o¤ered by the latter). Imposing this property is analog to restricting the agent�s strategy to be

Markov in a sequential contracting game. In [26], we show that any SCF that can be sustained by

an equilibrium in which the agent�s strategy satis�es the aforementioned Markov property can also

be sustained as a truthful equilibrium of a game in which the principals o¤er incentive-compatible

extended direct mechanisms. The de�nition of these mechanisms in simultaneous games is adjusted

to take into account that decisions are determined simultaneously: instead of reporting the payo¤-

relevant decisions (e�i ; a
�
i ) contracted upstream, the agent is asked to report (in addition to �)

the lotteries ��i he is inducing with the other principals. The agent�s strategy is then truthful if

the decisions ��i he reports to Pi coincide with the true decisions (�j(mj))j 6=i induced with all

principals other than i by sending the messages m�i = (mj)j 6=i:
35

In the Supplementary Material, we show that the same mechanisms also permit one to sustain

all pure-strategy MPE outcomes in sequential games in which downstream principals observe the

mechanisms o¤ered upstream before choosing their own mechanism.36 The reasons why extended

35When the agent�s strategy is not Markov, we show that (i) pure-strategy equilibrium outcomes can be character-

ized by having the agent report the identity of a deviating principal (if any) in addition to his type and the decisions

he is inducing with the other principals, and (ii) that all mixed-strategy equilibrium outcomes can be characterized

through incentive-compatible set-valued direct mechanisms in which the agent is o¤ered multiple (payo¤-equivalent)

decisions to choose from as a function of his type and the decisions he is inducing with the other principals.
36Clearly, the same outcomes can also be characterized assuming the principals compete in menus.
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direct mechanisms, or menus, fail to sustain certain mixed-strategy equilibrium outcomes are the

same discussed for environments in which upstream mechanisms are publicly observable.

7 Concluding remarks

We discussed the intricacies that emerge in environments in which multiple principals contract

sequentially and non-cooperatively with the same agent and provided characterization results use-

ful for applications. Our benchmark model was one of private contracting in which downstream

principals do not observe the mechanisms o¤ered upstream, nor the decisions taken in these mech-

anisms. We also assumed that the sequence of bilateral relationships was exogenous and that a

pair of payo¤-relevant decisions, one for the principal, the other for the agent, was committed at

each period.

For this environment, we �rst showed that all equilibrium outcomes can be characterized by

assuming the principals compete in menus, thus proving that the menu theorems of simultaneous

common agency extend to this environment. We then proceed by showing that, when lotteries are

feasible, then all equilibrium outcomes can be sustained through pure-strategy pro�les, as in games

with a single mechanism designer (but not in simultaneous common agency). We also showed

that when information is complete, any deterministic social choice function (that is, any outcome

sustained by the agent not mixing over e¤ort and the principals not mixing over their contracts) can

always be sustained as a Markov-perfect equilibrium (that is, by restricting each player�s strategy

to depend only on payo¤-relevant information).

Starting from these results, we then introduced a class of direct mechanisms in which the

agent is asked to report his exogenous type along with the payo¤-relevant decisions contracted

upstream. We showed that all MPE outcomes of the menu game are also MPE outcomes in the

game in which principals o¤er these direct mechanisms. The advantage of these mechanisms is that

they permit one to use techniques from standard mechanism design (i.e. incentive-compatibility)

to identify necessary and su¢ cient conditions for equilibrium outcomes. There are however two

di¤erences with respect to standard mechanism design. First, incentive compatibility must be

established by backward induction: whether a mechanism is incentive compatible or not depends

on the mechanisms o¤ered downstream. Second, a mechanism must specify incentive-compatible

allocations also for extended types that have zero measure on the equilibrium path: this is because

out-of-equilibrium allocations may be necessary to punish upstream deviations.

Finally, we discussed the problems with menus and extended direct mechanisms that emerge in

environments in which downstream principals observe the mechanisms and/or the payo¤-relevant
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decisions selected upstream, or when the sequence of bilateral relationships is endogenously deter-

mined by the agent�s participation decisions. Building on the results for the benchmark model, we

proposed solutions that, although do not always permit a complete equilibrium characterization,

allow one to characterize the outcomes that are typically of interest for applications. While the

various extensive forms considered here do not exhaust all the cases examined in the literature, we

expect our results to be useful for many applications of sequential common agency.
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Appendix

Proof of Theorem 1. The proof is in two parts. Part 1 proves that for any equilibrium �

of �; there exists an equilibrium �M of �M that implements the same outcomes. Part 2 proves the

converse.

Part 1. Let Qi be a generic partition of �i and denote by Qi 2 Qi an element of Qi: Consider
now a partition game �Qi in which at t = i; Pi chooses an element Qi of Qi, then A selects a

mechanism �i from Qi, sends a message mi 2 Mi to Pi and �nally, given the realization yi of the

lottery �i = �i(mi), chooses e¤ort ei. At any other date j 6= i; both Pj and A have exactly the

same choice sets as in �: Now, let �Mi be a game with the same structure as �; except that at t = i;

the strategy space for Pi is �(�Mi ).

The proof of Part 1 is in three steps. Step 1 identi�es a partition of �i that makes the agent

indi¤erent between any two mechanisms in the same cellQi 2 Qi and then constructs an equilibrium
�̂ of �Qi that implements the same outcomes as �. Step 2 uses the construction in Step 1 to derive

an equilibrium �� in �Mi which also implements the same outcomes as �: Finally, Step 3 shows

how the previous two steps can be applied recursively to construct an equilibrium �M for �M that

implements the same outcomes as �.

Step 1. Start by considering a generic partition Qi of �i that consists of measurable sets37 and
consider the following strategy pro�le for �Qi . For Pi; let �̂i 2 �(Qi) be the probability measure
37 In the sequel, we assume that �i is a Polish space and whenever we talk about measurability, we mean with

respect to the Borel �-algebra � on �i:
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over Qi generated by the original strategy �i in �. That is, for any subset R of Qi whose union is
measurable, b�i(R) = �i(SR):
For any Pj , with j 6= i, simply let �̂j = �j : Next consider the agent. For any t < i and for

any ht, let A�s strategy be the same as in �, that is, �̂A(ht) = �A(ht): At t = i; given any

history hi =
�
��i ;m

�
i ; y

�
i ; e

�
i ; a

�
i ; Qi

�
; A selects each mechanism from Qi using the regular con-

ditional probability distribution �i(�jQi):38 At any subsequent information set, A then simply be-
haves according to the original strategy �A; as if at the beginning of t = i, the history had been

hi =
�
��i ;m

�
i ; y

�
i ; e

�
i ; a

�
i ; �i

�
:

Now, �x the agent�s strategy �̂A. Whatever the partitionQi, the principals�strategies described
above constitute an equilibrium for the game �Qi(�̂A) among the principals.

In the following, we identify a partition Qi that makes the strategy �̂A described above se-
quentially optimal for the agent. To this purpose, let Qi be the partition de�ned by the following
equivalence relation. For any two mechanisms �i; �

0
i 2 �i;

�i �i �0i () Im(�i) = Im(�i): (3)

Clearly, the partition generated by (3) consists of measurable sets. It is also immediate that, in the

partition game �Qi ; �̂A is a sequentially rational best response to the principals�strategy pro�le

(�̂1; :::; �̂n). We conclude that, for any equilibrium � of �, the partition game �Qi � where Qi is
the partition generated by the equivalence relation �i as given in (3) � admits an equilibrium �̂

that implements the same outcomes as �.

Step 2. We now prove that starting from �̂; one can construct an equilibrium �� for the game

�Mi that implements the same outcomes: Start with Pi. Now let Im(Qi) denote the image of any

of the mechanisms in Qi, and for any �Mi 2 �Mi , let Qi(�Mi ) 2 Qi denote the cell de�ned by

Qi(�
M
i ) � f�i 2 �i : Im(�i) = Im(�Mi )g:

Then, for any measurable set K � �Mi , let

��i(K) = b�i( ~Qi);
where ~Qi � fQi 2 Qi : Im(Qi) = Im(�Mi ) for some �

M
i 2 Kg: For all principals Pj with j 6= i,

simply let ��j = b�j . Next, consider the agent. At any t < i, ��A(ht) = b�A(ht) for any ht: Starting
38Assuming that �i is a Polish space endowed with the Borel �-algebra �, the existence and (almost) uniqueness

of such a conditional probability distribution follows from standard results (e.g. in [10] Theorem 10.2.2, p. 345).
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from t = i; for any �Mi 2 �Mi ; at any subsequent information set, A then induces the same outcomes
he would have induced in �Qi had Pi o¤ered the cell Qi(�Mi ): Formally, let

�(h�i ; Qi) �
R
�i

R
Mi

�i(mi)d�(h
�
i ; �i)d�i(�ijQi)

denote the distribution over Yi that A would have induced in �Qi by following the strategy �̂A;

given (h�i ; Qi): Next, let M
�i
i be the union of all the messages that A can send to Pi in � and

for any yi 2 Supp[�(h�i ; Qi)]; let �(yi;h
�
i ; Qi) 2 �(�i �M

�i
i ) denote the conditional distribution

over �i �M�i
i that is obtained from Bayes�rule using the strategy �̂A, conditioning on the event

that the contract selected at t = i is yi and the upstream history at the beginning of period i is

(h�i ; Qi): Then in �
M
i ; for any (h

�
i ; �

M
i ), the agent�s mixed strategy ��(h

�
i ; �

M
i ) 2 MM

i over the

messages in �Mi induces the same distribution �(h�i ; Qi(�
M
i )) over the set of contracts Yi as the

strategy �̂A(h
�
i ; Qi(�

M
i )) in �

Qi . In the continuation game that starts after the realization of the

contract yi; A then uses the conditional distribution �(yi;h�i ; Qi(�
M
i )) to determine his downstream

behavior. That is, at any downstream information set, A behaves according to the strategy �̂A as

if in �Qi , A selected the mechanism �i from Qi(�
M
i ) and the message mi fromM�i

i :

The strategy pro�le �� constructed this way is clearly an equilibrium for �Mi and induces the

same outcomes as � in �.

Step 3. Since in the construction of the equilibrium �� for �Mi , �
�
i is kept �xed, Steps 1 and 2

can be applied recursively starting from t = 1 and proceeding forward to construct an equilibrium

�M for �M that implements the same outcomes as �.

Part 2. We now prove that, given any equilibrium �M of �M , there exists an equilibrium �

of � that implements the same outcomes and such that �A is an extension of �MA over �:

First consider the principals. For any Pi; simply let �i = �i(�Mi ), where �i(�
M
i ) is the distrib-

ution over �i obtained from �Mi using the embedding �i.

Next consider the agent. After any history ht = ((�j ;mj ; yj ; ej ; aj)
t�1
j=1; �t); the agent behaves

according to �MA as if the game were �M and the history were hMt = ((�Mi ; �i; yi; ei; ai)
t�1
i=1; �

M
t )

where the history hMt is obtained from ht replacing each pair (�j ;mj) with (�Mj ; �j) where �
M
j is

the menu whose image is Im(�Mj ) = Im(�j) and �j = �j(mj). That is, for any measurable set of

messages Mt �Mt in �t, the strategy �A(ht) is such that

�(Mt j ht) = �(�(Mt) j hMt )

where �(� j ht) and �(� j hMt ) denote the distributions overMt andMM
t , respectively in � and in

�M ; and

�(Mt) � f�t : �t = �t(mt); mt 2Mtg:
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Given the realization yt of the lottery �t(mt); A then induces the same distribution over Et that

he would have induced in �M given (hMt ; �t(mt); yt).

The strategy �A constructed this way is an extension of �MA over �. Furthermore, when A

follows the strategy �A; no principal has incentive to deviate from �i = �i(�
M
i ): We conclude that

� is an equilibrium of � and implements the same outcomes as �M :

Proof of Theorem 2. We want to show that, when Di = �(Yi) for all i; then for any

�M 2 E(�M ) there exists a pure-strategy equilibrium ��M 2 E(�M ) that implements the same
outcomes as �M :

Suppose �M 2 E(�M ) is such that Pi mixes over di¤erent menus and/or, given some menu �Mi ;
the agent randomizes over the lotteries in �Mi : We prove that there exists another b�M 2 E(�M ) in
which all Pj with j 6= i follow the strategy b�Mj = �Mj ; Pi o¤ers only one menu, �̂

M

i , and, after any

(h�i ; �
M
i ); there is a single lottery �i(h

�
i ; �

M
i ) that the agent selects from �Mi :

The equilibrium menu �̂
M

i is such that

Im
�
�̂
M

i

�
= clf�i : �i =

R
�Mi 2�Mi

R
�i2MM

i

�id�(h
�
i ; �

M
i )d�

M
i for some h�i 2 H

�
i g; (4)

where cl(X) denotes the closure of the set X: The menu �̂
M

i is thus the (closure of the) set of

lotteries that can be constructed by mixing with distribution �Mi over the di¤erent lotteries that

A would have induced in each menu �Mi ; for some upstream history h�i 2 H
�
i :

Next, consider the following strategy for the agent. For any t < i and any ht; b�MA (ht) = �MA (ht).
At t = i, given h�i , if �

M
i = �̂

M

i , then A selects with probability one the lottery

�i(h
�
i ; �̂

M

i ) �
R

�Mi 2�Mi

R
�i2MM

i

�id�(h
�
i ; �

M
i )d�

M
i :

Note that, for any h�i ; the distribution over Yi induced by �i(h
�
i ; �̂

M

i ) is the same as that induced

by �Mi and �MA in the original equilibrium �M . Now for any yi 2 Supp[�i(h�i ; �̂
M

i )]; let �(yi;h
�
i ) 2

�(�Mi � �(Yi)) denote the joint distribution over �Mi � �(Yi) that is obtained from Bayes�rule

conditioning on the event that the contract selected by Pi is yi and using the original strategies

�Mi and �MA . Then, in the continuation game that starts after the realization of the contract yi; A

uses the distribution �(yi;h�i ) to determine his downstream behavior. That is, A behaves in any

downstream information set according to the original strategy �MA , as if Pi o¤ered the menu �
M
i

and A selected the message �i 2 �(Yi): Conditional on Pi o¤ering �̂
M

i , the distribution over the

payo¤-relevant decisions (ej ; aj)nj=1 is then the same as in the original equilibrium �M :

If instead �Mi 6= �̂
M

i ; then the particular lottery �i(h
�
i ; �

M
i ) that A selects from �Mi is any

lottery �i 2 Supp[�MA (h
�
i ; �

M
i )] that minimizes Pi�s expected payo¤ taking into account that at
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any subsequent information set the agent�s behavior will be determined by the original strategy

�MA . Given (�̂
M
i )

n
i=1, the strategy b�MA is clearly sequentially optimal for the agent. Furthermore,

given (b�MA ; �̂M�i), no principal has an incentive to deviate from �̂Mi . We conclude that b�M is an

equilibrium for �M and induces the same outcomes as �M :

Iterating for all i = 1; :::; n, starting from i = 1 and proceeding forward then gives the result.

Proof of Theorem 3. Assume j�j = 1 and let (e�; a�) � (e�i ; a
�
i )
n
i=1 2 E � A denote the

equilibrium decisions. We prove that if there exists a �M� 2 E(�M ) that implements (e�; a�); there
also exists a pure-strategy equilibrium ~�M 2 E(�M ) which implements the same outcomes and such
that the agent�s strategy is Markov at any t 2 N .

First, note that, because (e�; a�) is deterministic, for any mixed-strategy equilibrium that

sustains (e�; a�) there exists a pure-strategy equilibrium that sustains the same outcomes. This

is true even if Di $ �(Yi) for some i: Hence, without loss of generality, assume �M� is in pure

strategies. Given �M�; let �E�i � (e��i ; a
��
i ) denote the equilibrium extended type for t = i and

denote by H�i (�E�i ;�M�) the set of all possible equilibrium upstream histories that lead to �E�i :

Note that even if the SCF is deterministic and �M� is a pure-strategy pro�le, H�i (�E�i ;�M�) need

not be a singleton.

Next, consider the strategy pro�le ~�M in which all principals o¤er the same equilibrium menus

as in �M� and in which the agent�s (Markov) strategy ~�MA is constructed from �M�
A as follows.

Start from t = n: First suppose Pn o¤ers the equilibrium menu �M�
n . If h�n is such that

�En = �
E�
n ; that is, if the decisions taken upstream are the equilibrium decisions; then irrespective of

which particular upstream history led to (e��n ; a
��
n ), A always selects the same lottery �n(�

E�
n ; �

M�
n );

where �n(�E�n ; �
M�
n ) is any lottery that A would have selected in �M�

n after some history h�n 2
H�n (�E�n ;�M�). After any of the contracts yn 2 Supp[�n(�

E�
n ; �

M�
n )] is realized, A then chooses

the equilibrium e¤ort e�n leading to the equilibrium decision a�n. Clearly (e
�
n; a

�
n) is the same no

matter which particular equilibrium history h�n 2 H�n (�E�n ;�M�) one considers and which particular

contract yn is realized.

If, instead, �En =2 �E�n ; that is, if the decisions taken upstream are di¤erent from the equilibrium

decisions; then let j � n�1 be the �rst date at which a departure from equilibrium occurred� that
is, the unique date j � n� 1 such that �Ej = �E�j and �Ej+1 6= �E�j+1. In this case, A selects a lottery
�n(�

E
n ; �

M�
n ), followed by the e¤ort strategy �(j) : Yn ! �(En), that minimizes Pj�s payo¤ among

those that are sequentially optimal for A given �En : Neither �n(�
E
n ; �

M�
n ) nor �(j) depend on the

particular upstream history that led to �En :

33



Next, suppose Pn o¤ers a menu �Mn 6= �M�
n : Then let ~�MA (�

E
n ; �

M
n ) be any Markov strategy that

is sequentially optimal for A and that minimizes the payo¤ of Pn:

Next move to t = n � 1 and construct the agent�s Markov strategy ~�MA (�En�1; �Mn�1) following
the same steps as for t = n assuming that at t = n; Pn o¤ers �M�

n and that A follows ~�MA (�
E
n ; �

M
n ).

Iterating backwards up to t = 1 gives a strategy ~�M in which the agent�s strategy is Markov at

any date. It is immediate that, given (~�Mi )
n
i=1, the strategy ~�

M
A is sequentially optimal for the agent.

Furthermore, given (~�MA ; ~�
M
�i; ) no principal has an incentive to deviate from ~�Mi :We conclude that

~�M is an equilibrium for �M and induces the same outcomes as �M�:

Proof of Theorem 4. Part I. We want to show that any SCF � that can be sustained as

a MPE of �M can also be sustained as a pure-strategy truthful MPE of �D.

Let �M denote the equilibrium strategy pro�le that sustains � in �M ; in virtue of Theorem

2, without loss of generality, we can assume that �M is a pure-strategy pro�le and denote by �M�
t

the equilibrium menu for Pt.39 That �MA is Markov implies that, for any (�Et ; �
M
t ), there is a single

lottery �t(�Et ; �
M
t ) such that, whatever the particular upstream history h�t that has conducted to

�Et ; A always chooses �t(�
E
t ; �

M
t ) from �

M
t when his extended type is �Et . We henceforth denote the

agent�s behavioral strategy in period t by �MA (�
E
t ; �

M
t ): To prove that there exists a pure-strategy

truthful MPE of �D that sustains the same outcomes as �M , we then proceed in two steps.

Step 1. Consider the game �t in which �i = �Mi for all i 6= t; whereas for i = t; �i = �Di : The
following is then an equilibrium for �t: For any i 6= t; �i = �Mi ; whereas for i = t; �i is the (pure)
strategy that consists in o¤ering the mechanism �D�t given by

�D�t (�Et ) = �t(�
E
t ; �

M�
t ) 8�Et :

At any date i 6= t; the agent�s (Markov) strategy is the same as in �M ; i.e. �A(�
E
i ; �

M
i ) =

�MA (�
E
i ; �

M
i ): In period t; if �

D
t = �D�t ; then A reports �Et truthfully and then selects e¤ort ac-

cording to �MA as if the game were �M , the menu o¤ered by Pt were �M�
t and the message sent to

Pt were �t(�Et ; �
M�
t ): If instead �Dt 6= �D�t ; then the agent behaves according to �MA as if the game

were �M and the menu o¤ered by Pt were �Mt , where Im(�
M
t ) = Im(�

D
t ): It is immediate that �

is a (pure-strategy) MPE for �t, it sustains the same outcomes as �M and is such that (a) �D�t is

incentive-compatible and (b) the agent�s strategy is truthful at period t:

Step 2. Following the same arguments as in Step 1, one can easily see that, starting from

any game �J in which �i = �Di for any i 2 J � N while �i = �Mi for i 2 NnJ; and from any

39Note that the Markov property of the agent�s strategy is preserved by the replication arguments in the proof of

Theorem 2. That is, for any �M 2 E(�M ) in which the agent�s strategy is Markov, there exists a pure-strategy pro�le
�̂M 2 E(�M ) that sustains the same outcomes as �M and such that �̂MA is Markov.
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(pure-strategy) MPE � 2 E(�J) that sustains the same outcomes as �M and satis�es (a) and (b)

for any i 2 J; there exists a game �J 0 in which �i = �Di for any i 2 J 0 and �i = �Mi for all

i 2 NnJ 0 with J 0 = J [ftg for some t 2 NnJ and a (pure-strategy) MPE �0 2 E(�J 0) that sustains
the same outcomes as �M and satis�es (a) and (b) for all i 2 J 0. Combining Step 1 and Step 2
gives the result.

Part II. We now show that for any �D 2 E(�D) there exists a �M 2 E(�M ) that sustains the
same outcomes.

Let �J denote the game in which �j = �Mj for all j 2 J while �j = �Dj for all j 2 NnJ;
for some J � N [ f?g: We want to show that given any equilibrium � 2 E(�J); there exists an
equilibrium ~� 2 E(�J 0), with J 0 = J [ftg for some t 2 NnJ; that sustains the same outcomes. The
strategy pro�le ~� is constructed from � as follows. For any i 6= t; ~�i = �i. For i = t; ~�t is such

that, for any measurable set R � �Mt ,

~�t(R) = �t

 S
�Mt 2R

�Dt (�
M
t )

!
:

where �Dt (�
M
t ) � f�Dt : Im(�Dt ) = Im(�Mt )g: Next, consider the agent. Let

��Mt � f�Mt : Im(�Mt ) = Im(�
D
t ) for some �

D
t 2 �Dt g

At any i < t, ~�A(hi) = �A(hi) for any hi: Starting from i = t; for any �Mt 2 ��Mt , at any subsequent
information set, A induces the same outcomes he would have induced in �J had Pt o¤ered one of

the mechanisms in �Dt (�
M
t ): Formally, let

�(h�t ;�
D
t (�

M
t )) �

R
�Dt

R
�Et

�Dt (�
E
t )d�(h

�
t ; �

D
t )d�t(�

D
t j�Dt (�Mt ))

denote the distribution over Yt generated in �J by �A and �t; conditional on (h
�
t ;�

D
t (�

M
t )): Next,

for any yt 2 Supp[�(h�t ;�Dt (�Mt ))]; let �(yt;h�t ;�Dt (�Mt )) 2 �(�Dt � �Et ) denote the conditional
distribution over �Dt � �Et that is obtained from Bayes�rule using the strategies �t and �A, con-

ditioning on the event that the contract selected in period t is yt, that the upstream history at

the beginning of period t is h�t ; and that the mechanism selected by Pt belongs to �Dt (�
M
t ): Then

in �J 0 ; for any (h
�
t ; �

M
t ) with �

M
t 2 ��Mt ; the agent�s mixed strategy ~�(h

�
t ; �

M
t ) 2 MM

t over the

messages in �Mt induces the same distribution �(h�t ;�
D
t (�

M
t )) over the set of contracts Yt as the

strategy �A in �J given (h
�
t ;�

D
t (�

M
t )). In the continuation game that starts after the realization

of the contract yt; A then uses the conditional distribution �(yt;h�t ;�
D
t (�

M
t )) to determine his

downstream behavior. That is, at any downstream information set, A behaves according to the

35



strategy �A as if the game were �J , Pt selected the mechanism �Dt from �Dt (�
M
t ) and A sent the

message �Et to Pt:

If instead �Mt =2 ��Mt , then starting from i = t; at any downstream information set A behaves

according to �A (in the same sense as de�ned above) as if the game were �J and the mechanism

o¤ered by Pt were �Dt ; where �
D
t is obtained from �Mt as follows:

�Dt (�
E
t ) 2 arg max

�t2Im(�Mt )
V (�Et ; �t; �

+
t ) 8�Et 2 �Et :

Given (~�i)ni=1, the strategy ~�A is sequentially optimal for the agent. Furthermore, given

(~�MA ; ~�
M
�i; ) no principal has an incentive to deviate from ~�i: It follows that ~� 2 E(�J 0). Because ~�

sustains the same outcomes as �; the result then follows by iterating across periods, starting from

t = 1 and proceeding forward by letting J 0 = J [ ft+ 1g:
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Abstract

This note contains additional material omitted in the paper. Section A1 contains an example

that illustrates how extended direct mechanisms can be put to work to identify necessary and

su¢ cient conditions for the sustainability of an outcome as a sequential common agency equilibrium.

Section A2 contains the formal statements (with corresponding proofs) of the results discussed in

Section 6 in the paper (Alternative extensive forms).

A1. Extended direct mechanisms: A buyer-sellers example

Consider a private contracting environment in which two sellers, P1 and P2, contract sequen-

tially with a common buyer, A. The buyer is interested in purchasing two complementary products,

one from each seller. An action ai = (si; ti) 2 Ai = f0; 1g � R for Pi thus consists of a decision to
trade si along with a transfer ti, with si = 0 in the case of no trade and si = 1 in the case of trade.1

The buyer�s preferences are described by the quasilinear function v(a; �) = �(s1+s2)+s1s2� t1� t2
where � = f�; �g with � > 1 and �� � (� � �) 2 (0; 1). The probability the buyer is a high type
is Pr(�) = p: The sellers�payo¤s are given by ui(a) = ti � si: It is common knowledge that the

buyer contracts �rst with P1 and then with P2 (think of P1 as a hardware supplier and of P2 as

a software provider). We assume that the buyer�s participation in either relationship is voluntary

and that the buyer can contract with P2 after rejecting P1�s o¤er. In case the buyer rejects Pi�s

o¤er, the default contract (0; 0) with no trade and zero transfer is implemented.

In this setting, it seems reasonable to assume that the agent�s behavior with P2 depends only

on the payo¤-relevant decisions contracted upstream and not on things such as the mechanism used

upstream or the message sent in this mechanism. We thus assume the agent�s strategy is Markov.

Now suppose one is interested in understanding which SCFs � : � ! �(f0; 1g2 � R2) can be
sustained as MPE when principals can o¤er any lottery over f0; 1g �R: It then su¢ ces to proceed
as follows.2

First, consider downstream contracting. Because preferences are quasilinear, the transfer t1
has no e¤ect on the agent�s preferences over A2. Without loss, we can thus simplify and let

�E2 = � � f0; 1g; with �E;12 � �; �E;22 � �; �E;32 � � + 1 and �E;42 � � + 1: Furthermore, because

P2 never �nds it optimal to introduce randomizations over the decision to trade, we can restrict

attention to deterministic extended direct mechanisms �D2 : �
E
2 ! f0; 1g � R, with s2(�E;i2 ) = si2

1 In this representation, there is no e¤ort, i.e. jE1j = jE2j = 1. Alternatively, one could assume that Ei = f0; 1g
and that Ai = R for each i: In this case, a contract yi : f0; 1g �! R speci�es a price for each decision si 2 f0; 1g:
The two representations are clearly equivalent.

2 In this example, we are restricing attention to MPE, but we not imposing any restriction on the set of feasible

lotteries Di. The approach illustrated here clearly applies also to environments where principals are restricted to

o¤er deterministic contracts.
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and t2(�
E;i
2 ) = ti2 denoting respectively the decision to trade and the price asked to the extended

type �E;i2 , i = 1; :::; 4:

Now let �i denote the (posterior) probability that P2 assigns to �
E;i
2 , with � �

�
�1; �2; �3; �4

�
.

Each �i is derived from �D1 using Bayes�rule. With a slight abuse of notation, let �1(�) = Pr(s1 = 1

j �). We then have that �1 = (1�p)[1��1(�)]; �2 = p[1��1(�)]; �3 = (1�p)�1(�) and �4 = p�1(�):

From standard results in contract theory (e.g. Maskin and Riley, 1986) we know that, in any

optimal mechanism for P2 the decision to trade is monotonic in �E2 so that s
i
2 � si+12 i = 1; 2; 3,

that all downward adjacent incentive compatibility constraints bind so that

�E;i2 si2 � ti2 = �E;i2 si�12 � ti�12 ; i = 2; 3; 4; (1)

and that the participation constraint for the lowest type binds so that �s12 � t12 = 0:
3 Substituting

the transfers

t12 = �s12; t22 = �s22 ���s12; t32 = (� + 1)s
3
2 � (1���)s22 ���s12

t42 = (� + 1)s
4
2 ���s32 � (1���)s22 ���s12

(2)

into P2�s payo¤, we have that

U2 =
4X
i=1

W i(�1)s
i
2 (3)

where W i(�1) denotes the virtual surplus of selling to type i, given the upstream decisions �1 �
(�1(�); �1(�)):

W1 � �1(� � 1)� (1� �1)��
W2 � �2

�
� � 1

�
�
�
�3 + �4

�
(1���)

W3 � �3� � �4��
W4 � �4�;

with �i = �i(�1): A mechanism �D
�

2 is thus an incentive-compatible best response to �D�1 if and

only if (a) the allocation rule si2(�) maximizes (3) subject to the monotonicity constraint si2 � si+12 ;

i = 1; 2; 3 and (b) the transfers ti2 are given by (2).
4

Next, consider upstream contracting. When the allocation rule in �D�2 is monotonic and the

transfers satisfy (2), the buyer�s payo¤ at t = 1 satis�es the single-crossing property with respect

to � and �1. This in turn implies that the optimal mechanism �D�1 : �! �(f0; 1g)� R solves the
following program

max p[t1(�)� �1(�)] + (1� p)[t1(�)� �1(�)]
3Note that, because �s1(�)� t1(�) is sunk, from the perspective of P2, it is as if the buyer�s reservation payo¤ is

zero, for all �E2 :
4That �D�2 must necessarily solve the aforementioned program follows from the fact that P2 can always make the

agent strictly prefer to truthfully reveal his private information by breaking the agent�s indi¤erence by an " > 0; for

" arbitrarily small.
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subject to

[� + (� + 1)s42 � t42]�1(�) + [�s22 � t22][1� �1(�)]� t1(�) = (4)

[� + (� + 1)s42 � t42]�1(�) + [�s22 � t22][1� �1(�)]� t1(�)

[� + (� + 1)s32 � t32]�1(�) + [�s12 � t12][1� �1(�)]� t1(�) = �s12 � t12 (5)

and

�1(��) � �1(�): (6)

Condition (4) guarantees that � is indi¤erent between (�1(�); t1(�)) and (�1(�); t1(�)), while condi-

tion (5) guarantees that � is indi¤erent between (�1(�); t1(�)) and the null contract (0; 0): The high

type�s participation is then guaranteed by (4) and (5) while incentive-compatibility for the low type

is guaranteed by the monotonicity condition (6).

Equivalently, �D�1 maximizes

U1 = p
�
�1(�)�V(�1)

�
+ (1� p) [�1(�)V(�1)] (7)

subject to �1(��) � �1(�); where

�V(�1) � � +
�
(� + 1)s42 � t42

�
�
�
(�s22 � t22)

�
� 1

V(�1) � � +
�
(� + 1)s32 � t32

�
�
�
�s12 � t12

�
� 1

� p
1�pf�� +

�
(� + 1)s42 � t42 � (�s22 � t22)

�
� [(� + 1)s32 � t32 � (�s12 � t12)]g

Two observations are in order. First note that �D�2 must specify allocations also for extended types

that may have zero measure on the equilibrium path (this is the case, for example, when �1(�) = 0

so that �3 = 0). Second note that whether �D�1 is incentive-compatible or not depends on the

mechanism �D�2 o¤ered downstream. We thus have the following result.

Example A1. The outcome �� = (��1(�); t�1(�); s�2(�); t�2(�)) can be sustained as a MPE of �D

(equivalently, of �M ) if and only if:

(I) given ��1(�); s�2(�) maximizes (3) subject to the monotonicity condition si2 � si+12 ; i = 1; 2; 3;

while t�2(�) solves (2);
(II) given s�2(�) and t�2(�), ��1(�) maximizes (7) subject to the monotonicity condition �1(��) �

�1(�) while t�1(�) solves (4) and (5).
Extended direct mechanisms thus o¤er the possibility of using familiar techniques from games

with a single mechanism designer to characterize necessary and su¢ cient conditions for equilibrium

outcomes in sequential common agency. The preceding example illustrated such a possibility in

a very simple way. In certain applications, the characterization of these conditions may require

the use of the techniques from the multi-dimensional screening literature. This need not always

be simple. However, when this is the case, assuming the principals o¤er menus instead of direct

mechanisms does not simplify the analysis. In fact, the di¢ culties with multi-dimensional screening
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simply stem from the di¢ culty of controlling for the optimality of the agent�s behavior. This is

something one has to deal with, irrespective of how the menus are described.

A2. Alternative extensive forms: Formal results

A2-1. Observability of upstream payo¤-relevant decisions

Consider an environment in which principals observe upstream payo¤-relevant decisions before

choosing their mechanisms. Let ��D denote the game in which the principals o¤er standard direct

revelation mechanisms �Di : �! Di as opposed to extended direct mechanisms. We then have

the following result.

Theorem 5 (Observable decisions). (Part I: Menus) Let � < �M : Any SCF that can be

sustained as a MPE of � can also be sustained as a MPE of �M . Furthermore, any SCF that can

be sustained as an equilibrium of �M (not necessarily in Markov strategies) can also be sustained

as an equilibrium of �:

(Part II: Direct Mechanisms) Any SCF that can be sustained as a MPE of �M can be sustained

as a pure-strategy truthful MPE of ��D: Furthermore, any SCF that can be sustained as a MPE of
��D can also be sustained as a MPE of �M :

As with Theorem 4 in the main text, the result in Part (II) presumes that Di = �(Yi) for all

i; which guarantees that outcomes in �M sustained by mixed strategies can be sustained in ��D

through mechanisms that respond to � with lotteries over contracts. In environments in which not

all possible lotteries are feasible, i.e. Di $ �(Yi) for some i; the result in Part (II) must be replaced
by the following: Any SCF that can be sustained as a MPE of �M in which the agent�s strategy is

pure can also be sustained as a truthful MPE of ��D:

Proof of Theorem 5. Part I: Menus. First, consider the claim that any SCF � that can be

sustained as a MPE of � can also be sustained as a MPE of �M . The proof follows from the same

steps used to establish Part 1 of Theorem 1 in the paper, with the following two (minor) adjustments.

(i) The transformation of the principals�strategies indicated in that proof must now be done for any

(e
_
t ; a

�
t ): (ii) The principals�strategies are now sustained by beliefs �

M over upstream histories that

satisfy Bayes�rule on the equilibrium path, whereas for any out-of-equilibrium (e_t ; a
�
t ); t = 2; :::; n;

satisfy

�̂(e�t ; a
�
t ) = �̂M (e�t ; a

�
t ) (8)

where �̂(e�t ; a
�
t ) and �̂

M (e�t ; a
�
t ) denote the marginal distribution of � and �

M over �; respectively

in the original game � and in the menu game �M : Because the agent�s strategy is Markov and

(e
_
t ; a

�
t ) is public information, any pro�le of beliefs with these properties makes the principals�

strategies sequentially optimal.
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Next, consider the claim that any SCF that can be sustained as an equilibrium of �M (not

necessarily in Markov strategies) can also be sustained as an equilibrium of �:. The proof parallels

that of Part 2 in Theorem 1. In the following, we simply construct a pro�le of beliefs that sustains

the principals�strategies.

For any i = 1; :::; n; let H�i and H
M�
i denote the sets of all possible upstream histories, respec-

tively in � and in �M , and �(H�i ) and �(H
M�
i ) the corresponding Borel sigma algebras. For any

(e
_
i ; a

�
i ), let {i(e

_
i ; a

�
i ) 2 �(H

�
i ) and {Mi (e

_
i ; a

�
i ) 2 �(H

M�
i ) denote Pi�s beliefs about upstream

histories, respectively in � and in �M . If (e_i ; a
�
i ) is on the equilibrium path, then {i(e

_
i ; a

�
i ) is

obtained from Bayes�rule using the equilibrium strategy pro�le �. If instead (e_i ; a
�
i ) is an out-

of-equilibrium observation, then {i(e
_
i ; a

�
i ) is constructed as follows. For any measurable set of

histories HM�
i 2 �(HM�

i ) in �M ; let �i(HM�
i ) 2 �(H�i ) denote the measurable set of histories in

� that are obtained by substituting each history

hM�
i =

�
�; e�i ; a

�
i ; �

M�
i ; ��i ; y

�
i

�
in HM�

i with the history

fi(h
M�
i ) �

�
�; e�i ; a

�
i ; (�l(�

M
l ))

i�1
l=1; (~�l(�l))

i�1
l=1; y

�
i

�
:

The history fi(hM�
i ) is simply the �translation�of the history hM�

i using the embedding �i: For

any out-of-equilibrium (e
_
i ; a

�
i ); then let {i(e

_
i ; a

�
i ) be the unique beliefs that satisfy

{i(�i(HM�
i )je_i ; a

�
i ) = {

M
i (H

M�
i je_i ; a

�
i ) 8H

M�
i 2 �(HM�

i ):

Together with these beliefs, the strategy pro�le � constructed from �M following the steps indicated

in the proof of Theorem 1 constitutes an equilibrium for � which sustains the same outcomes as

�M :

Part II: Direct Mechanisms. The proof parallels that of Theorem 4. The equilibrium

strategy pro�les �D and �M are sustained by any beliefs that are consistent with Bayes�rule on

the equilibrium path, whereas for any out-of-equilibrium (e
_
t ; a

�
t ); satisfy

�̂D(e�t ; a
�
t ) = �̂M (e�t ; a

�
t )

where �̂D(e�t ; a
�
t ) and �̂

M (e�t ; a
�
t ) denote the marginal distributions of �

D and �M over �; respec-

tively in the revelation game ��D and in the menu game �M :

A2-2. Observability of upstream mechanisms

Consider an environment in which every Pi, i = 2; :::; n; observes the mechanisms ��i o¤ered

upstream before choosing her own mechanism. As in the benchmark model, Pi does not observe

(m�
i ; y

�
i ; e

�
i ; a

�
i ).
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Theorem 6 (Observable mechanisms). (Part I: Menus) Let � < �M : For any � 2 E(�)
in which all principals� strategies are pure, there exists a �M 2 E(�M ) that sustains the same
outcomes. Furthermore, any SCF that can be sustained as an equilibrium of �M can be sustained

as an equilibrium of �:

(Part II: Direct Mechanisms) For any �M 2 E(�M ) in which all principals�strategies are pure,
there exists a pure-strategy truthful MPE �D 2 E(�D) that sustains the same outcomes.

Once again, the result in Part (II) presumes Di = �(Yi) for all i: When this is not the case,

Part (II) must be replaced by the following: For any �M 2 E(�M ) in which both the principals�
and the agent�s strategies are pure, there exists a pure-strategy truthful MPE �D 2 E(�D) that
sustains the same outcomes.

Proof of Theorem 6. Part I: Menus. The proof is in two steps.

Step 1. We want to prove that, for any � 2 E(�) in which all principals�strategies are pure,
there exists a �M 2 E(�M ) that sustains the same outcomes.

Let �i(��i ) denote the unique mechanism o¤ered by Pi when the pro�le of upstream mechanisms

is ��i : Next, consider the game �i in which Pi is restricted to o¤er menus, whereas all other principals

have the same strategy space as in �: Now consider the following strategy pro�le �� for �i. For all

principals Pj with j < i, simply let ��j = �j . For Pi; let ��i be the strategy that maps each ��i into

the menu �Mi whose image is Im(�Mi ) = Im(�i(�
�
i )): Finally, for any Pj with j > i, ��j is as follows.

If ��j is such that at t = i; �Mi =��i(�
�
i ); then

��j(�
�
i ; �

M
i ; �i+1; :::; �j�1) = �j(�

�
i ; �i(�

�
i ); �i+1; :::; �j�1):

If instead, �Mi 6=��i(��i ); then

��j(�
�
i ; �

M
i ; �i+1; :::; �j�1) = �j(�

�
i ; �i(�

M
i ); �i+1; :::; �j�1);

where �i(�Mi ) is the embedding of �
M
i into �i:

Next, consider the agent. At any t < i, ��A(ht) = �A(ht) for any ht: If at t = i; Pi o¤ers the

menu �Mi = ��i(�
�
i ); then at any downstream information set A induces the same outcomes that

he would have induced in � had Pi o¤ered the mechanism �i(�
�
i ); in the sense de�ned in the proof

of Theorem 1. If, instead, Pi o¤ers a mechanism �Mi 6= ��i(��i ); then starting from t = i; at any

subsequent information set, A behaves according to �A as if the game were � and the mechanism

o¤ered by Pi were �i(�Mi ):

This completes the description of��A at the information sets which are relevant for equilibrium.

For all other information sets (i.e. those associated to upstream deviations by the agent), simply

let ��A specify any behavior that is sequentially optimal for A given the payo¤-relevant variables

�Et and the downstream principals�strategy pro�le ��+t : Given (��
+
i )
n
i=1, the strategy ��A is clearly

sequentially optimal for the agent at any information set. Thus consider the optimality of the
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principals�strategies. After any ��j , j = 1; :::; n, beliefs about upstream histories are necessarily

pinned down by Bayes�rule using the agent�s strategy ��A: This follows from the �no signal what

you do not know�property of PBE: the observation of ��j conveys no information about the agent�s

behavior in these mechanisms which hence must be assumed to have been consistent with what

prescribed by the equilibrium strategy. Given these beliefs, the principals�strategies are sequentially

rational. We conclude that the strategy pro�le �� with the associated beliefs described above is an

equilibrium for �i and induces the same outcomes as � in �.

Starting from t = 1 and proceeding forward, one can then apply the arguments described

above to any i = 1; :::; n to construct a pure-strategy equilibrium of �M that implements the same

outcomes as �:

Step 2. We now prove that for any �M 2 E(�M ) there exists a � 2 E(�) that sustains the same
outcomes:

First consider the agent. The strategy �A is constructed by extending the strategy �MA

over � exactly as in the proof of Theorem 1. Next, consider the principals. For any t, let

�t(�
�
t ) = �t(�

M
t (�

M�
t )), where �t(�Mt (�)) denotes the mixed strategy over �t obtained from the

mixed strategy �Mt using the embedding �t, while �M�
t denotes the pro�le of upstream menus

that is obtained from ��t by letting each �Mj be the menu whose image is Im(�Mj ) = Im(�j);

j = 1; :::; t� 1: The strategy pro�le � constructed this way, along with the beliefs for the principals
that are obtained from Bayes�rule using �A, is an equilibrium of � and sustains the same outcomes

as �M :

Part II: Direct Mechanisms. We show that, for any �M 2 E(�M ) in which all principals�
strategies are pure, there exists a pure-strategy truthful MPE �D 2 E(�D) that sustains the same
outcomes. Note that the agent�s strategy in �M need not be Markov� which explains why the

proof does not follow directly from the same arguments used to establish Theorem 4.

Consider a game �J in which �j = �Dj for all j 2 J while �j = �Mj for all j 2 NnJ; for
some J � N [ f?g: We prove the result by showing that given any equilibrium � 2 E(�J) in
which all principals�strategies are pure, there exists an equilibrium �� 2 E(�J 0) that also has the
property that all principals�strategies are pure and that sustains the same outcomes as �; for any

J 0 = J [ ftg with t 2 NnJ:
For any ��t ; let �

E
t (�

�
t ) � �Et denote the set of extended types that are consistent with �A (i.e.

that can be generated by using �A recursively in �J starting from i = 1 and proceeding forward).

For any �Et 2 �Et (��t ); then let �(�Et ; ��t ) 2 �(H�t ) denote the conditional distribution over H�t
that is obtained from Bayes�rule using the agent�s strategy �A in �J and conditioning on the event

that the extended type in period t is �Et and the mechanisms o¤ered upstream are ��:t :

Now consider the following (pure) strategy for Pt in �J 0 : For any pro�le of upstream mechanisms

��t , let �
M
t = �t(�

�
t ) denote the equilibrium menu o¤ered by Pt in �J in response to �

�
t : Then the
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extended direct mechanism �Dt =��t(�
�
t ) that Pt o¤ers in �J 0 in response to �

�
t is such that

�Dt (�
E
t ) =

8><>:
R

h�t 2H
�
t

R
�t2MM

t

�td�(h
�
t ; �t(�

�
t ))d�(�

E
t ; �

�
t ) if �Et 2 �Et (��t )

�t 2 argmax�0t2Im(�t(��t ))
�V (�Et ; �

�
t ; �t(�

�
t ); �

0
t; �

+
t ) if �Et =2 �Et (��t )

(9)

where �V (�Et ; �
�
t ; �t(�

�
t ); �

0
t; �

+
t ) denotes the agent�s continuation payo¤in � given (�

E
t ; �

�
t ; �t(�

�
t ); �

0
t; �

+
t ):

Note that the agent�s continuation payo¤ now depends also on upstream mechanisms; this is be-

cause the latter now determine which mechanisms will be o¤ered downstream. The mechanism �Dt

described in (9) thus responds to each �Et 2 �Et (��t ) with the same distribution over Yt that A
would have induced in the menu �t(��t ) when his extended type is �

E
t and the mechanisms o¤ered

upstream are ��t : For any other �
E
t =2 �Et (��t ); the mechanism simply responds by giving the agent

one of the lotteries in the menu �Mt = �t(�
�
t ) that would have been optimal for �

E
t given the

mechanisms (��t ; �t(�
�
t )) and the pro�le of strategies �

+
t for the downstream principals in �J :

Now consider the following strategy pro�le �� for �J 0 . For all principals Pj with j < t, simply

let ��j = �j . For Pt; let ��t be the strategy described above. Finally, for any Pj with j > t, ��j is as

follows. If ��j is such that in period t; Pt o¤ered the mechanism �Dt =��t(�
�
t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �t(�

�
t ); �t+1; :::; �j�1):

If instead, �Dt 6=��t(��t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �

M
t ; �t+1; :::; �j�1):

where �Mt is the menu whose image is Im(�Mt ) = Im(�
D
t ).

Next, consider the agent. At any j < t, ��A(hj) = �A(hj) for any hj : If in period t; Pt o¤ers

the mechanism �Dt = ��t(�
�
t ); A truthfully reports his extended type and then at any subsequent

information set, he induces the same outcomes that he would have induced in �J had Pt o¤ered

the menu �t(��t ): Formally, for any yt 2 Supp[�Dt (�Et )]; let �(yt; �Et ; ��t ; �t(��t )) 2 �(H�t ��(Yt))
denote the conditional distribution over the pro�les (h�t ; �t) 2 H�t ��(Yt) in �J that is obtained
from Bayes� rule using the strategy �A; conditioning on the event that the contract selected in

period t is yt, that the agent�s extended type is �Et and that the mechanisms o¤ered at t = 1; :::; t

are (��t ; �t(�
�
t )): In the continuation game that starts after the realization of the contract yt; A

then uses the conditional distribution �(yt; �Et ; �
�
t ; �t(�

�
t )) to determine his downstream behavior.

That is, at any downstream information set, A behaves according to the strategy �A as if the game

were �J , and before choosing et; the history had been (h
�
t ; �t(�

�
t ); �t):

Finally, consider the continuation game that starts after Pt o¤ers a mechanism �Dt 6= ��t(��t ):
Starting from period t; at any subsequent information set, A behaves according to �A as if the game

were �J and the menu o¤ered by Pt were �Mt , where �
M
t is the menu whose image is Im(�Mt ) =

Im(�Dt ).
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This completes the description of��A at the information sets which are relevant for equilibrium.

For all other information sets (i.e. those associated to upstream deviations by the agent), simply

let��A specify any behavior that is sequentially optimal for A given the payo¤-relevant variables �Et
and the downstream principals�strategy pro�le ��+t : Given the principals�strategies, the strategy

��A is sequentially optimal for the agent at any information set.

Next, consider the optimality of the principals�strategies. Given (��A;���i); the optimality of

��i follows from the same arguments as in the proof of Part I�Step 1. We conclude that the strategy

pro�le �� with the associated beliefs �� obtained from �� using Bayes�rule, is an equilibrium for �J 0

and induces the same outcomes as � in �J .

Iterating across all periods, starting from t = 1 and proceeding forward by letting J 0 = J [
ft+ 1g, then gives a pure-strategy truthful equilibrium of �D that implements the same outcomes

as �M :

Note that, contrary to the benchmark model of private contracting and to the case of observable

decisions considered above, the result in Part (II) in Theorem 6 does not have a converse. There

may exist SCFs that can be sustained as equilibria of �D and that cannot be sustained as equilibria

of �M : To see this, consider the following example where n = 2; j�j = jEij = 1, i = 1; 2; A1 = ft; bg
and A2 = fl; rg: The payo¤s, respectively for P1; P2 and A are given by the triples (u1; u2; v) in

the following table:

a1na2 l r

t 1 3 0 3 3 4

b 2 0 5 2 2 3

Game A1

For simplicity, assume that only deterministic mechanisms are feasible so that Di = Ai; i = 1; 2:
Now consider the revelation game �D: Here a direct mechanism for P1 coincides with the choice

of an element of A1 whereas a direct mechanism for P2 is a mapping �D2 : A1 ! A2. The following
is then a pure-strategy equilibrium for �D: P2 reacts to the direct mechanism of P1 that selects t

with the mechanism that responds to both t and b with l and to the mechanism that selects b with

the mechanism that responds to both t and b with r: Given this reaction, P1 in equilibrium chooses

the mechanism that selects b. The equilibrium outcome is thus (b; r):

Next consider the menu game �M : Suppose P1 o¤ers the menu ft; bg. Because l is weakly
dominated for P2, there are only two possible outcomes in the continuation game between A and

P2 that starts after P1 o¤ers ft; bg. In the �rst one, A selects t and P2 selects r: In the second, A
selects t and P2 randomizes over l and r; respectively with probability 1=6 and 5=6: In both cases,

P1 obtains a payo¤ of 16=6 > 2: It follows that the SCF that selects (b; r) with certainty cannot be

sustained as an equilibrium in the menu game because P1 has a pro�table deviation.
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A2-3. Endogenous sequence of bilateral relationships

Consider the following game with endogenous sequence of contractual relationships. There are

T < 1 periods. In each period, all principals simultaneously o¤er the agent a mechanism �i;t

from a set �i;t: The agent chooses at most one mechanism, say �i;t, to participate in, then chooses

a message mi;t from Mi;t and a contract yi;t is selected by the lottery �i;t(mi;t) 2 �(Yi;t): Given
yi;t; the agent then chooses an action ei;t from Ei;t and �nally the contract yi;t : Ei;t ! �(Ai;t)
determines Pi�s decision: The agent may, or may not, participate in a mechanism o¤ered by the

same principal multiple times. For those principals who are not selected in period t, simply let

ej;t = e?j;t and aj;t = a?j;t; where (e
?
j;t; a

?
j;t) are the exogenous default decisions that are implemented

in the absence of contracting, such as no trade at a null price.

Payo¤s, respectively for Pi, i = 1; :::; n; and for A continue to be denoted by ui(�; e; a) and

v(�; e; a); with e� � (e1;� ; :::; en;� ) and a� � (a1;� ; :::; an;� ) now denoting an entire pro�le of payo¤-
relevant decisions for period � , one for each possible bilateral relationship, and e � (e1; :::; eT ) and
a � (a1; :::; aT ).

For any t = 1; :::; T , any i = 1; :::; n and any upstream history h�t ; let zi;t = fi;t(h
�
t ) denote

the elements of h�t that are observed by Pi in period t:
5 The function fi;t : H�t ! Zi;t maps each

possible upstream history h�t 2 H�t into an observation zi;t 2 Zi;t, where Zi;t � fzi;t : zi;t = fi;t(h
�
t );

h�t 2 H�t g: As in the benchmark model, contracting is private in the sense that principals do not
observe other principals�mechanisms, nor the messages, the contracts, or the decisions taken in

these mechanisms. These restrictions are embedded in the mappings fi;t:

For any zi;t 2 Zi;t, let  (zi;t) denote the payo¤-relevant component of zi;t; that is, the part

of the agent�s extended type �Et = (�; e�t ; a
�
t ) that is observed by Pi at date t: Note that the

agent�s extended type now contains pro�les of payo¤-relevant decisions e� � (e1;� ; :::; en;� ) and

a� � (a1;� ; :::; an;� ), one for each bilateral relationship, with e�t � (e� )t�1�=1 and a
�
t � (a� )t�1�=1.

Principal i�s behavioral strategy in period t is now described by the distribution �i;t(zi;t) 2
�(�i;t) over the mechanisms in �i;t: The agent�s behavioral strategy �A(h

�
t ; �t) given the upstream

history h�t 2 H�t and the pro�le of mechanisms �t � (�1;t; :::; �n;t) o¤ered in period t, is decomposed
as follows: wt(h�t ; �t) 2 �(N[?) denotes the agent�s participation strategy; �t(h�t ; �t; It) 2 �( ~Mt)

denotes the agent�s message strategy after he chooses to participate in principal It�s mechanism,

where It 2 N [? denotes the identity of the principal selected in period t and ~Mt �
Q
i (Mi;t [?);

�nally, �(h�t ; �t; It;mt; yt) 2 �( ~Et) denotes the agent�s e¤ort strategy, with ~Et �
Q
i (Ei;t [?) :6

De�nition A1. Principal i�s strategy in period t is Markov if and only if, for any zi;t; z0i;t 2 Zi;t
such that  (zi;t) =  (z0i;t); �i;t(zi;t) = �i;t(z

0
i;t):

5A history h�t now also includes the agent�s upstream participation decisions.
6The vector mt � (m1;t; :::;mn;t) denotes the pro�le of messages sent by the agent in period t; with mj;t = ? for

any j 6= It. Similarly, yt � (y1;t; :::; yn;t) and et � (e1;t; :::; en;t) denote, respectively, the vector of contracts and the
vector of e¤ort choices, for period t; with yj;t; ej;t = ? for any j 6= It:
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The agent�s strategy in period t is Markov if and only if the following are true:

(a) for any (h�t ; �t) and (~h�t ; �t) such that �
E
t is the same in h�t and ~h�t ; w

t(h�t ; �t) =

wt(~h�t ; �t);

(b) for any (h�t ; �t; It) and (~h
�
t ;
~�t; It) such that �Et is the same in h

�
t and ~h

�
t and �It;t is the

same in �t and ~�t, �t(h�t ; �t; It) = �t(~h
�
t ;
~�t; It);7

(c) for any (h�t ; �t; It;mt; yt) and (~h�t ; ~�t; It; ~mt; yt) such that �Et is the same in h�t and ~h
�
t ,

�(h�t ; �t; It;mt; yt) = �(~h�t ;
~�t; It; ~mt; yt).

An equilibrium � 2 E(�) is a MPE if and only if all players� strategies are Markov at any

t = 1; :::; T .

Theorem 7 (Endogenous sequence). (Part I: Menus) Let � < �M :8 Any SCF that can be
sustained as a MPE of � can also be sustained as a MPE of �M . Furthermore, any SCF that can

be sustained as an equilibrium of �M (not necessarily in Markov strategies) can also be sustained

as an equilibrium of �:

(Part II: Direct Mechanisms) Suppose the agent can contract with each principal at most once.

Then any SCF that can be sustained as a MPE of �M can also be sustained as a truthful MPE of

�D: Furthermore, any SCF that can be sustained as a MPE of �D can also be sustained as a MPE

of �M :

Proof of Theorem 7. Part (I). The proof is in two steps and combines arguments from

the proofs of Theorems 1 and 5.

Step 1. We want to show that given any MPE � 2 E(�), there exists a MPE �M 2 E(�M ) that
sustains the same outcomes as �. The arguments here are similar to those in the proof of Theorem

1. The only di¤erences come from the fact that (a) one has to adjust the replication arguments

to take into account that the principals�strategies are now contingent on what they have observed

upstream and (b) that one must specify supporting beliefs for the principals�strategies.

Consider the partition game �Qi;t in which, in period t; Pi chooses a cell Qi;t from the partition

Qi;t of �i;t simultaneously with the other principals choosing their mechanisms �j;t from �j;t,

j 6= i: Given (Qi;t; (�j;t)j 6=i); A �rst selects a mechanism �i;t from Qi;t and then, given the pro�le

(�i;t; (�j;t)j 6=i), he chooses which mechanism to participate in. The choice of �i;t is observed by Pi,

but not by the other principals. For any other principal and any other date, the choice set in �Qi;t

is the same as in �; that is, for any (j; �) 6= (i; t); the strategy space for Pj at date � remains �j;� :
7 If It = ?; then �I;t = ?:
8The game � is an enlargement of �M if, for any i = 1; :::; n, and any t = 1; :::; T; the following are true:

(a) Im(�i;t) is compact, for any �i;t 2 �i;t;
(b) there exists a injective mapping �i;t : �Mi;t ! �i;t such that, for any pair of mechanisms �Mi;t; �i;t with �i;t =

�i;t(�
M
i;t);(i) Im(�

M
i;t) = Im(�i;t); and (ii) there exists an injective function ~�i;t :MM

i;t !Mi;t such that �Mi;t(�i;t) =

�i;t = �i(~�i(�i;t)) for any �i;t 2MM
i;t;

(c) there exists an injective mapping ��i;t : ZMi;;t ! Zi;t from the set of possible signals ZMi;t in �
M to the set of

possible signals Zi;t in �:
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Now let Qi;tbe the partition of �i;t given by the equivalence relation

�i;t �i;t �0i;t () Im(�i;t) = Im(�
0
i;t): (10)

Following the same construction as in Step 1 in the proof of Theorem 1, it is easy to see that there

exists an equilibrium �̂ for �Qi;t which sustains the same outcomes as � in �: In this equilibrium,

all Pj with j 6= i; follow the same strategy as in �; i.e. b�j = �j : As for Pi; at any � 6= t and for any

zi;� 2 Zi;� ; b�i(zi;� ) = �i(zi;� ):
9 In period t; for any zi;t 2 Zi;t; Pi randomizes over any subset R of

Qi;t whose union is measurable with probability

b�i(R ; zi;t) = �i(
S
R ; zi;t):

The agent�s strategy is such that at any � < t; b�A(h� ) = �A(h� ) for any h� 2 H� : In period t;
given any (Qi;t; (�j;t)j 6=i); A uses the conditional probability distribution �i;t(�jQi;t; zi;t) to select a
mechanism �i;t from Qi;t. At any subsequent informational set, A then behaves as if the game were

� and the mechanism o¤ered by Pi were �i;t: As far as beliefs are concerned, at any information

set, all principals have the same marginal beliefs over upstream payo¤-relevant information as in

� (note that, on the equilibrium path, this is consistent with principals�beliefs be obtained from

Bayes rule). Because all players� strategies in �̂ are Markov, given these beliefs, all principals�

strategies are sequentially rational.

Next, consider the game �Mi;t in which, in period t; Pi�s choice set is �Mi;t , whereas for any

(j; �) 6= (i; t), Pj�s choice set in period � is the same as in �: Now, for any � = 1; :::; T; let ZMj;�
denote the set of possible signals that Pj can receive in �Mi;t in period �; with Z

M
j;� = Zj;� for any

(j; �) such that either j 6= i; or � � t:

Because all players�strategies are Markov in �̂, starting from �̂ and following essentially the

same construction as in Step 2 in the proof of Theorem 1, one can show that there exists a MPE

�� 2 E(�Mi;t) that sustains the same outcomes as �. We refer the reader to that proof for the

details of how to construct the strategies in �� from the strategies in �̂. The only important

observation is that, given the menu �Mi;t o¤ered by Pi in period t; the agent uses the conditional

distribution �i;t(�jQi;t(�Mi;t); zi;t) to determine not only the messages to send to Pi in case he decides
to participate in �Mi;t but also his participation decision. That is, given any pro�le of mechanisms

(�Mi;t ; (�j;t)j 6=i); A uses the conditional probability distribution �i;t(�jQi;t(�Mi;t); zi;t) to select in his
mind a mechanism �i;t from Qi;t(�

M
i;t) � f�i;t : Im(�i;t) = Im(�Mi;t)g and then uses the original

strategy wt(h�t ; (�i;t; (�j;t)j 6=i)) for � to determine his participation decision. At all subsequent

information sets, the construction of �� parallels that of �̂ in �Qi;t :

The principals�strategies in �� can be sustained by beliefs ��j;� (zMj;� ) 2 �(H�� ) over upstream
histories that satisfy the following properties.

9Formally, for any � > t; zi;� now includes the cell Qi;t. However, because to any �i;t corresponds a unique cell

Qi;t; we can drop Qi;t from zi;� :
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Case (i). If zMj;� is such that, given the mechanisms (�j;l)
��1
l=1 o¤ered by Pj upstream, the

decisions in zMj;� are consistent with ��A and (��k)k 6=j , then ��j;� (z
M
j;� ) are obtained from Bayes�rule

using ��A and (��k)k 6=j . For all Pj with j 6= i, these beliefs necessarily have the same marginal

distribution over �E� as in �
Qi;t given zj;� = zMj;� : Clearly, the same is true for Pi if � � t, but not

necessarily if � > t: In fact, if � > t; then Pi�s posterior beliefs about �E� in �Mi;t after Pi o¤ered

the menu �Mi;t in period t are a convex combination of the beliefs she would have had in �Qi;t

had she o¤ered Qi;t(�mi;t) in period t: More precisely, let zi;� = (
�
zMi;�n�mi;t

�
^ �i;t) 2 Zi;� denote

the observation that is obtained from zMi;� by substituting the mechanism �mi;t with �i;t. Similarly,

let zi;� = (
�
zMi;�n�mi;t; �i;t

�
^ �i;t;mi;t) 2 Zi;� denote the observation that is obtained from zMi;� by

substituting the mechanism �mi;t and the message �i;t with �i;t and mi;t: Now let ��i;� and �i;�
denote Pi�s marginal beliefs over �E� , respectively in �

M
i;t in �

Qi;t . First, suppose the agent did not

participate in Pi�s mechanism in period t; so that It 6= i. Then Pi�s posterior beliefs over �E� in

period � > t satisfy

��i;� (z
M
i;� ) =

Z
�i;t(�mi;t)

�i;t(
�
zMi;�n�mi;t

�
^ �i;t)d�i;t(�i;tjzMi;� )

where �i;t(�i;tjzMi;� ) denote Pi�s beliefs that the agent in period t behaved as if the game were �Qi;t

and selected �i;t from �i;t(�
m
i;t); given z

M
i;� : Next, suppose It = i and let Mi;t(�i;t) denote the set

of messages in �i;t(�mi;t) that lead to the lottery �i;t. Then Pi�s posterior beliefs over �
E
� in period

� > t satisfy

��i;� (z
M
i;� ) =

Z
�i;t(�mi;t)

Z
Mi;t(�i;t)

�i;t(
�
zMi;�n�mi;t; �i;t

�
^ �i;t;mi;t)di;t(�i;t;mi;tjzMi;� )

where i;t(�i;t;mi;tj�Mi;t ; �i;t) denote Pi�s beliefs that the agent in period t behaved as if the game
were �Qi;t , he selected �i;t from �i;t(�

m
i;t); and then sent the message mi;t: This di¤erence in beliefs

with respect to �Qi;t is due to the fact that the choice of the mechanism �i;t from �i;t(�
m
i;t) and of

the message mi;t fromMi;t(�i;t) is now only in the agent�s mind and is thus not directly observed

by Pi.

Given the aforementioned beliefs, the (behavioral) strategies ��j;� (zMj;� ) = �̂j;� (z
M
j;� ) for all (j; �)

such that either j 6= i or � < t are clearly sequentially optimal.10 Thus consider j = i and

� > t: Because the strategy �̂i;� was Markov in �Qi;t , then �̂i;� (zi;� ) = �̂i;� (z
0
i;� ) for any zi;�

and z0i;� that contain the same payo¤-relevant information, i.e. such that  (zi;� ) =  (z0i;� ): Now,

suppose zMi;� is such that It 6= i and let Zi;� (zMi;� ) denote the set of observations zi;� 2 Zi;� such

that zi;� = (
�
zMi;�n�mi;t

�
^ �i;t) 2 Zi;� ; with �i;t 2 �i;t(�mi;t): Clearly  (zi;� ) =  (z0i;� ) for any pair

zi;� ; z
0
i;� 2 Zi;� (zMi;� ): That in �Qi;t the strategy �̂i;� was Markov implies that �̂i;� (zi;� ) was optimal

for any zi;� 2 Zi;� (zMi;� ) and hence for any beliefs �i;t(
�
zMi;�n�mi;t

�
^�i;t); with �i;t 2 �i;t(�mi;t): Because

��i;� (z
M
i;� ) is a convex combination of �i;t(

�
zMi;�n�mi;t

�
^ �i;t); with �i;t 2 �i;t(�mi;t); this necessarily

implies that ��i;� (zMi;� ) = �̂i;� (zi;� ), with zi;� 2 Zi;� (zMi;� ); is sequentially optimal.
10Recall that for these (j; �); ZMj;� = Zj;� :
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Next, suppose that zMi;� is such that It = i and let Zi;� (zMi;� ) denote the set of observations

zi;� 2 Zi;� such that zi;� = (
�
zMi;�n�mi;t; �i;t

�
^ �i;t;mi;t); with �i;t 2 �i;t(�mi;t) and �i;t(mi;t) = �i;t:

The same arguments as for It 6= i imply that the strategy��i;� (zMi;� ) = �̂i;� (zi;� ), with zi;� 2 Zi;� (zMi;� );
is sequentially optimal.

Case (ii). Next, suppose the observation zMj;� indicates that a departure from equilibrium play

occurred by either A or some Pj , j 6= i. Then let��j;� (zMj;� ) be any beliefs that are consistent with
11

zMj;� and satisfy ��j;� (z
M
j;� ) = �j;� (zj;� ), where ��j;� and �j;� denote Pj�s marginal beliefs over �E� ,

respectively in �Mi;t conditional on z
M
j;� and in �

Qi;t conditional on zj;� ; where zj;� is any signal that

contains the same payo¤-relevant information as zMj;� .

Because �Mi;t < �M and because�� is a MPE of �Mi;t ; one can keep iterating the same construction

described above across all i and all t; starting from t = 1 and proceeding forward. This gives a

MPE �M 2 E(�M ) that sustains the same outcomes as �.

Step 2. Next, we prove that, given any �M 2 E(�M ) (not necessarily in Markov strategies)
there exists a � 2 E(�) that sustains the same outcomes as �M . The construction parallels that in
the proof of Theorems 1 and 5.

First, consider the agent. The strategy �A is constructed from �MA as in the proof of Theorem

1. After any history ht = (�; (�� ; I� ;m� ; y� ; e� ; a� )
t�1
�=1; �t); the agent behaves according to �

M
A

(in the same sense as in the proof of Theorem 1 in the main text) as if the game were �M and

the history were hMt = (�; (�M� ; I� ; �� ; y� ; e� ; a� )
t�1
�=1; �

M
t ) where the history h

M
t is obtained from ht

replacing ((�� )t�1�=1; �t) with ((�
M
� )

t�1
�=1; �t) and (m� )

t�1
�=1 with (�� )

t�1
�=1, where each �

M
j;� in h

M
t is the

menu whose image is Im(�Mj;� ) = Im(�j;� ) and where �j;� = �j;� (mj;� ).12

Next, consider the principals. For any t; any i and any zi;t 2 Zi;t, let �i(zi;t) = �i(�
M
i (�(zi;t))),

where �i(�Mi ) is the distribution over �i obtained from �Mi using the embedding �i and where

zMi;t = �(zi;t) is the observation obtained from zi;t, using the same transformation of �i;� and mi;�

indicated above for the agent.

The principals�strategies are supported by the following beliefs. For any t; let H�t and HM�
t

denote the sets of all possible upstream histories, respectively in � and in �M , and �(H�t ) and
�(HM�

t ) denote the corresponding Borel sigma algebras. For any zi;t and zMi;t ; let {i;t(zi;t) 2 �(H�t )
and {Mi;t (zMi;t ) 2 �(HM�

t ) denote Pi�s period-t beliefs about upstream histories, respectively in � and

in �M . If zi;t is such that, given the mechanisms (�i;� )t�1�=1 o¤ered by Pi upstream, the decisions

in zi;t are consistent with �A and (�k)k 6=i, then {i;t(zi;t) is obtained from Bayes� rule using �A
and (�k)k 6=i. Otherwise, {i;t(zi;t) are constructed as follows. For any measurable set of upstream
histories HM�

t 2 �(HM�
t ) in �M ; let �t(HM�

t ) 2 �(H�t ) denote the measurable set of histories in

11The beliefs ��j;� (zMj;� ) 2 �(H�
� ) are consistent with z

M
i;t if they assign positive measure only to upstream histories

h�t such that fi;t(h
�
t ) = zi;t:

12For any principal i not selected in period �; �i;� ; yi;� = ?.
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� that are obtained by substituting each history

hMt = (�; (�M� ; I� ; �� ; y� ; e� ; a� )
t�1
�=1)

in HM�
t with the family of histories ft(hM�

t ) 2 �(H�t ) such that, each history

h�t = (�; (�� ; I� ;m� ; y� ; e� ; a� )
t�1
�=1)

in ft(hM�
t ) has the following properties: (a) (�; (I� ; y� ; e� ; a� )t�1�=1) is the same as in h

M
t ; (b) each

�i;� is such that Im(�i;� ) = Im(�Mi;� ); eachmi;� is such thatmi;� = ? if �i;� = ? and �i;� (mi;� ) = �i;�

if �i;� 6= ?: For any out-of-equilibrium zi;t; then let {i(zi;t) be the unique beliefs that are consistent
with zi;t and satisfy

{i;t(�t(HM�
t ) j zi;t) = {Mi;t (HM�

t j �(zi;t)) 8HM�
t 2 �(HM�

t )

where zMi;t = �(zi;t) is obtained from zi;t, using the transformation of �i;� and mi;� indicated above

for the agent. With these beliefs, the strategy �i given by �i(zi;t) = �i(�
M
i (�(zi;t))) for any zi;t is

sequentially rational for Pi; given �A and (�k)k 6=i .

Furthermore, given the principals�strategies (�i)ni=1 constructed above, the agent�s strategy �A
is clearly sequentially rational. We conclude that � 2 E(�): That � implements the same SCF as
�M is then immediate.

Proof of Part (II). The proof is in two steps.

Step 1. Consider an environment in which the agent contracts with each principal at most

once. We want to show that given any MPE �M 2 E(�M ), there exists a MPE �D 2 E(�D) that
sustains the same SCF as �M . To ease the exposition, hereafter we allow the principals to o¤er

mechanisms also in periods subsequent to the one they contracted with the agent. This is clearly

inconsequential for the arguments below.

Let �J denote a game in which �j;� = �Dj;� for all (j; �) 2 J , while �j;� = �Mj;� for all (j; �) 2
RnJ; for some J � R [ f?g; where T � f1; :::; Tg and R � (N � T ): We prove the result by
showing that, given any MPE � 2 E(�J), there exists an MPE ~� 2 E(�J 0), with J 0 = J [ fi; tg for
some fi; tg 2 RnJ , that sustains the same outcomes.

That the agent�s strategy in � is Markov implies that, for any �Mi;t 2 �Mi;t ; there is a single
probability distribution �i;t(�Et ; �

M
i;t) 2 �(Yi;t) over Yi;t such that, conditional on having decided to

participate in �Mi;t , whatever the particular upstream history h�t that conducted to �
E
t ; A always

induces the distribution �i;t(�Et ; �
M
i;t) when his extended type is �

E
t :

The MPE ~� that sustains � in �J 0 is obtained from � as follows. For any � 6= t; all players�

(Markov) strategies are the same as in �: For � = t; if j 6= i; then ~�j;t = �j;t. If instead j = i; then

~�i;t is obtained from �i;t as follows. For any menu �Mi;t , let �
D
i;t = gi;t(�

M
i;t) be the direct mechanism

given by

�Di;t(�
E
t ) = �i;t(�

E
t ; �

M
i;t) 8�Et 2 �Et :13
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Now, let �Di;t(gi;t) � f�Di;t : �Di;t = gi;t(�
M
i;t); �

M
i;t 2 �Mi;tg. After any zi;t 2 ZJ

0
i;t ; Pi uses his original

behavioral strategy �i(zi;t) to randomize over �Di;t; formally, for any measurable subset K � �Di;t

~�i(K; zi;t) = �i(BK ; zi;t)

where BK � f�Mi;t 2 �Mi : gi;t(�
M
i;t) 2 Kg: Clearly, any menu in BK is payo¤-equivalent for the agent.

Given any pro�le of mechanisms (�Di;t; (�j;t)j 6=i) with �
D
i;t 2 �Di;t(gi;t); A then uses the conditional

distribution �i(� j B�Di;t) to determine his participation decision. That is, with probability �i(�
M
i;t

j B�Di;t); A behaves according to the participation strategy w
t(�Et ; �

M
i;t ; (�j;t)j 6=i)) 2 �(N [?) as if

the game were �J and the mechanisms o¤ered by the principals were �t = (�Mi;t ; (�j;t)j 6=i): If the

lottery wt(�Et ; �
M
i;t ; (�j;t)j 6=i)) selects Pi, A reports his extended type truthfully to Pi. If instead,

wt(�Et ; �
M
i;t ; (�j;t)j 6=i)) selects a Pj with j 6= i; then A uses the same Markov strategy as in �J to

select which messages to send to Pj . In either case, the agent�s choice of e¤ort is governed by the

same Markov strategy as in �J :

Next, consider a (�Di;t; (�j;t)j 6=i) such that �
D
i;t =2 �Di;t(gi;t):Then, at any downstream information

set A behaves as if the game were �J and the menu o¤ered by Pi were �Mi;t where �
M
i;t is the menu

whose image is Im(�Mi;t) = Im(�
D
i;t):

The principals�strategies in ~� can be sustained by beliefs over upstream histories that satisfy

the (analog of the) properties described in the proof of Part 1� Step 1.14 Along with these beliefs,

the strategy pro�le ~� is a MPE for �J 0 and sustains the same outcomes as � in �J :

Iterating across all i; t gives the result.

Step 2. We now prove that for any MPE �D 2 E(�D), there exists a MPE �M 2 E(�M ) that
sustains the same outcomes. The proof parallels that of Theorems 4 and 5.

Let �J denote a game in which �j;� = �Mj;� for all (j; �) 2 J , while �j;� = �Dj;� for all (j; �) 2
RnJ; for some J � R [ f?g with R � N � T . We prove the result by showing that, given any
MPE � 2 E(�J); there exists an MPE ~� 2 E(�J 0), with J 0 = J [ fi; tg for some fi; tg 2 RnJ; that
sustains the same outcomes.

The (Markov) strategy pro�le ~� is constructed from � as follows. For any (j; �) 6= (i; t);

~�j;� = �j;� . For (j; �) = (i; t); the strategy ~�i;t is such that, for any measurable set R � �Mi;t and
any zi;t 2 Zi;t

~�i;t(R j zi;t) = �i;t

0@ S
�Mi;t2R

f�Di;t : Im(�Di;t) = Im(�Mi;t)g j zi;t

1A :

Next, consider the agent. Let

��Mi;t � f�Mi;t : Im(�Mi;t) = Im(�Di;t) for some �Di;t 2 �Di;tg
14Take a zi;� such that, given (�i;l)��1l=1 , zi;� is consistent with �A and ��i: If � > t and It = i; then it is no longer

true that Pi�s marginal beliefs over �E� are a convex combination of her beliefs in �
J . However, because in this case

A will never contract again with Pi; this is irrelevant for the result.
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and for any �Mi;t 2 ��Mi;t ; let �
D
i;i(�

M
i;t) � f�Di;t : Im(�Di;t) = Im(�Mi;t)g: At any � 6= t, ~�A induces

the same behavior as �A in �J (recall that �A is Markov). At � = t; for any (�Mi;t ; (�j;t)j 6=i) such

that �Mi;t 2 ��Mi;t ; A uses the conditional distribution �i(� j �Di;i(�Mi;t)) to determine his participation
decision. That is, with probability �i(�Di;t j �Di;i(�Mi;t)); A behaves according to the participation

strategy wt(�Et ; �
D
i;t; (�j;t)j 6=i)) 2 �(N [?) as if the game were �J and the mechanisms o¤ered by

the principals were (�Di;t; (�j;t)j 6=i). In case the lottery w
t(�Et ; �

M
i;t ; (�j;t)j 6=i)) selects Pi, A then also

induces the same distribution over Yi;t as in �J given (�Et ; �
D
i;t); where �

D
i;t is the same mechanism

selected by the distribution �i(� j �Di;i(�Mi;t)): If instead, wt(�Et ; �Mi;t ; (�j;t)j 6=i)) selects a Pj with j 6= i;

then A uses the same Markov strategy as in �J to select which messages to send to Pj . In either

case, the agent�s choice of e¤ort is governed by the same Markov strategy as in �J :

Next, consider a (�Mi;t ; (�j;t)j 6=i) such that �
M
i;t =2 ��Mi;t : At any downstream information set A

behaves as if the game were �J and the direct mechanism o¤ered by Pi were �Di;t where �
D
i;t is

obtained from �Mi;t as follows:

�Di;t(�
E
t ) 2 arg max

�i;t2Im(�Mi;t)
V (�Et ; �i;t; �

+
t ) 8�Et 2 �Et

where V (�Et ; �i;t; �
D+
t ) denotes the agent�s continuation payo¤ in �J 0 when his extended type is �Et ,

he chooses to participate in Pi�s mechanism and the principals�downstream strategies are �+t :
15

Because all players�strategies are Markov, the principals�strategies in ~� can be sustained by

beliefs over upstream histories that satisfy the analog of the properties in Part 1� Step 1. Together

with these beliefs, the strategy pro�le ~� is a MPE for �J 0 and sustains the same outcomes as � in

�J :

A2-4. Sequential o¤ering as opposed to sequential contracting

Finally, consider an environment in which principals o¤er their mechanisms sequentially, but

where the agent sends the messages (m1; :::;mn) simultaneously at t = n+1. Assume that any Pt,

t = 2; :::; n; observes the mechanisms ��t selected upstream before choosing her own mechanism. A

(pure) strategy for Pi thus consists of a function �i : ��i ! �i such that �i(��i ) is the mechanism

o¤ered by Pi when the pro�le of upstream mechanisms is ��i :

Since the agent�s decisions are now taken only at the end of the game, the de�nition of extended

type must be modi�ed as follows. For any i = 1; :::; n; let �Ei � (�; ��i) with ��i � (�j)j 6=i. From
the perspective of Pi, the agent�s extended type thus consists of his exogenous type � along with the

lotteries ��i he is inducing at t = n+ 1 with the other principals. An extended direct mechanism

�Di : �
E
i ! Di is then de�ned as in the benchmark model. The de�nition of incentive-compatibility

and truthful equilibrium must however be adjusted as follows. Let V (�; �) denote the maximal

payo¤ that type � can obtain by choosing the lotteries �:

15Because all principals�strategies are Markov, V depends on any upstream history only through �Et :
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De�nition A2. (i) A mechanism �Di is incentive-compatible if and only if, for any �
E
i 2 �Ei ,

�Di (�
E
i ) 2 arg max

�i2Im(�Di )
V (�Ei ; �i)

(ii) Given a pro�le of mechanisms �D 2 �D, the agent�s strategy is truthful in �Di if and only
if, for any � 2 � and any (mD

i ;m
D
�i) 2 Supp[�(�; �D)];

mD
i = (�; (�

D
j (m

D
j ))j 6=i)

(iii) A strategy pro�le �D 2 E(�D) is a pure-strategy truthful equilibrium of �D if and only

if it is a pure-strategy equilibrium in which, given any pro�le of mechanisms �D such that jfj 2
N : �Dj 6= �Dj (�

D�
j )gj � 1; the agent�s strategy is truthful in every mechanism �Di for which

�Di = �Dj (�
D�
j ).

A mechanism �Di is thus incentive-compatible if and only if, conditional on being a type � and

choosing the lotteries ��i with all principals other than i; the lottery �i = �Di (�
E
i ) that the agent

obtains by reporting �Ei � (�; ��i) truthfully to Pi leads to an expected payo¤ for the agent that is
at least as high as the one that he obtains by reporting any other �̂Ei 2 �Ei : Given a pro�le �D of
extended direct mechanisms, the agent�s strategy is then truthful in �Di if the message each type

� sends to Pi coincides with his true type along with the true decisions ��i = �Dj (m
D
j ))j 6=i that he

induces (by sending the messages mD
�i) to the other principals. A strategy pro�le �

D 2 E(�D) is
a pure-strategy truthful equilibrium of �D if and only if, whenever at most one principal deviated

from her equilibrium strategy (i.e. o¤ered a mechanism �Dj 6= �Dj (�
D�
j )), the agent�s strategy at

t = n+ 1 is truthful in the mechanisms of any of the principals who conformed to the equilibrium

strategy.

The following is then a natural adaptation of the notion of Markov strategies to this setting.

De�nition A3. Let � be a game with arbitrary choice sets for the principals. Given any

pure-strategy pro�le � 2 E(�), we say that the agent�s strategy �A is Markov with Pi if and only
if, for any � 2 �, ��i 2 D�i and �i 2 �i; there exists a unique lottery �i(�; ��i;�i) 2 Im(�i) such
that A always selects �i(�; ��i;�i) with Pi when the latter o¤ers the mechanism �i; the agent�s type

is � and the decisions A induces with the other principals are ��i: We then say that the agent�s

strategy is Markov if and only if it is Markov with all Pi; i 2 N :

We then have the following result.

Theorem 8 (Sequential o¤ering). (Part I: Menus) Let � < �M : For any � 2 E(�) in which
all principals� strategies are pure, there exists a �M 2 E(�M ) that sustains the same outcomes.
Furthermore, any SCF � that can be sustained as an equilibrium of �M can be sustained as an

equilibrium of �:
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(Part II: Direct Mechanisms) For any pure-strategy equilibrium �M 2 E(�M ) in which the
agent�s strategy is Markov, there exists a pure-strategy truthful equilibrium �D 2 E(�D) that sustains
the same outcomes.

Proof of Theorem 8. Part I: Menus. The proof parallels that of Part I in Theorem 6

and is thus omitted (one can easily verify that the proof is actually simpler when the agent takes

decisions only at t = n+ 1).

Part II: Direct Mechanisms. We show that, for any pure-strategy �M 2 E(�M ) in which
the agent�s strategy is Markov, there exists a pure-strategy truthful equilibrium �D 2 E(�D) that
sustains the same outcomes.

Consider a game �J in which �j = �Dj for all j 2 J while �j = �Mj for all j 2 NnJ; for some
J � N [ f?g: We prove the result by showing that given any pure-strategy equilibrium � 2 E(�J)
in which the agent�s strategy is Markov there exists a pure-strategy equilibrium�� 2 E(�J 0) in which
the agent�s strategy is also Markov that sustains the same outcomes as �; for any J 0 = J [ftg with
t 2 NnJ: The construction of �� will also reveal that the strategy pro�le �D obtained from �M by

iterating across all t;starting from t = 1 and moving forward, is such that �DA is truthful.

Consider the following (pure) strategy for Pt in �J 0 : For any pro�le of upstream mechanisms

��t , let �
M
t = �t(�

�
t ) denote the equilibrium menu that Pt would have o¤ered in �J in response to

��t : The extended direct mechanism �Dt = ��t(�
�
t ) that Pt o¤ers in �J 0 in response to �

�
t is such

that, for any �Et 2 �Et ;
�Dt (�

E
t ) = �t(�; ��t;�t(�

�
t ))

Clearly, �Dt =��t(�
�
t ) is incentive-compatible. Now consider the following strategy pro�le�� for �J 0 .

For all principals Pj with j < t, simply let ��j = �j . For Pt; let ��t be the strategy described above.

Finally, for any Pj with j > t, ��j is constructed from �j as follows. If ��j is such that in period t;

Pt o¤ered the mechanism �Dt =��t(�
�
t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �t(�

�
t ); �t+1; :::; �j�1):

If instead, �Dt 6=��t(��t ); then

��j(�
�
t ; �

D
t ; �t+1; :::; �j�1) = �j(�

�
t ; �

M
t ; �t+1; :::; �j�1):

where �Mt is the menu whose image is Im(�Mt ) = Im(�
D
t ).

Next, consider the agent. Given any pro�le of mechanisms (��t ; �
D
t ; �t+1; :::; �n) such that

�Dt = ��t(�
�
t ), at t = n + 1 each type � of the agent induces the same outcomes he would have

induced in �J had the mechanisms o¤ered been (�
�
t ; �t(�

�
t ); �t+1; :::; �n). Note that this can be

achieved by reporting (�; (�j(mj))j 6=t) truthfully to Pt: If, instead, �Dt 6=��t(��t ); then A induces the
same outcomes he would have induced in �J had the mechanisms o¤ered been (�

�
t ; �

M
t ; �t+1; :::; �n);

where �Mt is the menu whose image is Im(�Mt ) = Im(�Dt ): Clearly, this strategy is sequentially

optimal for the agent. Furthermore, given (��A;���i); no principal has a pro�table deviation. We
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conclude that the strategy pro�le �� constructed this way is an equilibrium for �J 0 and induces the

same outcomes as � in �J .

Iterating across all periods, starting from t = 1 and letting J = f?g and proceeding forward
by letting J 0 = J [ft+1g, gives a pure-strategy truthful equilibrium of �D that sustains the same

outcomes as �M :
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