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The Basis Risk of Catastrophic-Loss Index Securities

J. David Cummins, The Wharton School
David Lalonde, Applied Insurance Research
Richard D. Phillips, Georgia State University

This paper analyzes the basis risk of catastrophic-loss (CAT) index derivatives, which securitize losses from
catastrophic events such as hurricanes and earthquakes.  We analyze the hedging effectiveness of these
instruments for 255 insurers writing 93 percent of the insured residential property values in Florida, the state
most severely affected by exposure to hurricanes. County-level losses are simulated for each insurer using
a sophisticated model developed by Applied Insurance Research. We analyze basis risk by measuring the
effectiveness of hedge portfolios, consisting of a short position each insurer’s own catastrophic losses and
a long position in CAT-index call spreads, in reducing insurer loss volatility, value-at-risk, and expected
losses above specified thresholds. Two types of loss indices are used – a statewide index based on insurance
industry losses in Florida and four intra-state indices based on losses in four quadrants of the state. The
principal finding is that firms in the three largest Florida market-share quartiles can hedge almost as
effectively using the intra-state index contracts as they can using contracts that settle on their own losses.
Hedging with the statewide contracts is effective only for insurers with the largest market shares and for
smaller insurers that are highly diversified throughout the state.  The results also support the agency-theoretic
hypotheses that mutual insurers are more diversified than stocks and that unaffiliated single firms are more
diversified than insurers that are members of groups.



1Unpublished data from Applied Insurance Research, Boston.

2A loss of $100 billion would equal approximately 30 percent of the equity capital of the U.S. insurance
industry but would be less than 0.5 of 1 percent of the value of U.S. stock and bond markets.

3CAT securities also enable insurers and non-financial firms exposed to CAT risk to hedge losses
exceeding the capacity of the international insurance and reinsurance markets and to avoid the market disruptions
caused by reinsurance price and availability cycles (Cummins and Weiss 2000). 
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The Basis Risk of Catastrophic-Loss Index Securities

1. Introduction

An important recent innovation in financial markets is the securitization of losses from catastrophic

(CAT) events such as hurricanes and earthquakes. The development of these instruments has been motivated

by a surge in the frequency and severity of catastrophic losses.  Hurricane Andrew in 1992 and the

Northridge earthquake in 1994 resulted in $30 billion in insured property losses, and recent projections

indicate that the losses from a  major Florida hurricane or California earthquake could exceed $100 billion.1

Losses of this magnitude would significantly stress the capacity of the insurance industry, but are

manageable relative to the size of U.S. stock and bond markets.2  Thus, securitization offers a potentially

more efficient mechanism for financing CAT losses than conventional insurance and reinsurance (Jaffee and

Russell 1997, Froot 1998a). Both insurers and non-insurers such as industrial firms can use these instruments

to hedge their exposure to catastrophic losses, in effect permitting the non-insurers to bypass the insurance

market.3 Moreover, because catastrophic losses are “zero-beta” events, CAT-loss securities provide a

valuable new source of diversification for investors (Litzenberger, et al. 1996, Canter, et al. 1997).

CAT-risk securities offers a particularly interesting example of a new type of derivative where the

underlying is not a traded asset or commodity, so that prices are not observed. In this regard, CAT securities

are analogous to other new derivatives with “exotic underlyings,” such as weather derivatives (Geman 1999).

In the absence of a traded underlying asset, insurance-linked securities have been structured to pay-off on

three types of variables –  insurance-industry catastrophe loss indices, insurer-specific catastrophe losses,



4The current CBOT call option spreads settles on industry-wide catastrophe loss indices compiled by
Property Claims Services (PCS), an insurance industry statistical agent.  The first catastrophe insurance
derivative contracts were introduced by the CBOT in 1992 based upon an industry-wide index compiled by
Insurance Services Office (ISO).  The ISO-based contract was withdrawn when the PCS contracts were
introduced.  

5CAT bonds differ from the CBOT options in that the bonds are pre-funded by a bond issue, with the
proceeds invested in safe securities such as Treasury bonds.  If a specified catastrophic event occurs, the hedger
can use the bond proceeds to offset catastrophic losses; and there is full or partial forgiveness of the repayment
of principal and/or interest.
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and parametric indices based on the physical characteristics of catastrophic events.  The choice of a

triggering variable involves a trade-off between moral hazard and basis risk (Doherty 1997).  Securities

based on insurer-specific (or hedger-specific) losses have no basis risk but expose investors to moral hazard;

whereas securities based on industry loss indices or parametric triggers greatly reduce or eliminate moral

hazard but expose hedgers to basis risk.  In fact, the perception among insurers that CAT index securities

are subject to unacceptable levels of basis risk has been identified as the primary obstacle to the more rapid

development of the CAT-loss securities market (American Academy of Actuaries 1999). 

The most prominent example of CAT securities that settle on an industry-wide loss index are the

Chicago Board of Trade (CBOT) call option spreads, introduced in 1992.4  However, the majority of risk

capital raised to date has been generated through the issuance of CAT bonds, which typically settle on the

losses of a specific hedger.5 Nearly all CAT-loss bonds issued to date also are structured as call option

spreads.  More details on CAT options and bonds are provided below.

Although basis risk is an important concern, there is no comprehensive empirical evidence about the

basis risk of index-linked CAT loss securities.  The primary objective of this paper is to remedy this

deficiency in the existing literature by conducting a comprehensive analysis of the basis risk and hedging-

effectiveness of index-linked CAT loss securities. We conduct a simulation analysis of hedging-effectiveness

for 255 insurers accounting for 93 percent of the insured property values in Florida, the state with the highest



6The AIR model has been widely used by insurers and reinsurers since 1987 in monitoring their exposure
to catastrophic losses and developing underwriting strategies and was the first model to meet the standards of
the Florida Insurance Commission on Hurricane Loss Projection Methodology.

7For purposes of comparison with prior work, we also analyze and briefly report on linear hedging
strategies where hedge portfolios are formed that linearly combine a short position is CAT losses with a long
position in CAT loss futures.
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exposure to hurricane losses.  The study is based on data provided by the Florida Insurance Commissioner

on county-level insured residential property values for each insurer in the sample.

The study proceeds by simulating hurricane losses for each insurer in the sample using a

sophisticated model developed by Applied Insurance Research (AIR), a leading CAT modeling firm.6  The

AIR hurricane model combines actuarial data, vulnerability relationships for various construction types,

historical climatological data, and meteorological models of the underlying physical processes that drive the

severity and trajectory of hurricanes.  We use the AIR model  to obtain estimates of insurer losses over a

simulation period consisting of 10,000 years of hurricane experience.  We then utilize the simulated loss

experience to analyze the effectiveness of catastrophic loss hedging strategies for the sample insurers. 

The analysis focuses primarily on non-linear hedging strategies where the hedge portfolio consists

of a short position in catastrophe losses and a long position in call option spreads on a CAT loss index.

Analyzing non-linear hedging is important because the call-spread is the dominant functional form for

payoffs on CAT bonds and options as well as for conventional catastrophe reinsurance contracts.7  Several

hedging objectives are investigated, including reduction in loss volatility (variance), value-at-risk (VaR),

and the expected loss conditional on losses exceeding a specified loss threshold.  The benchmark model of

hedging effectiveness is the perfect hedge, defined as the risk reduction a hedger could achieve by using its

own loss experience as the hedge index.  The perfect hedge is equivalent to purchasing reinsurance or issuing

hedger-specific CAT bonds.  The effectiveness of the perfect hedge is compared with hedges based on a

statewide loss index and four intra-state regional indices  analogous to the PCS indices used as the basis for
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the CBOT CAT call spreads.  The analysis measures the degree of basis risk insurers would incur from

hedging through CAT loss indices.

A second purpose of the study is to investigate the relationship between potential hedging

effectiveness and insurer characteristics. Specifically, we formulate and test hypotheses about the

relationship between hedging efficiency and insurer organizational form (stock versus mutual), size, capital

structure, and membership in a group of insurers under common ownership versus operating as an

unaffiliated insurer.  The analysis is important in gauging the risk-taking incentives of insurers with specific

size and organizational characteristics.  For example, whether mutuals and small insurers are less successful

than other firms in diversifying risk is important in determining regulatory policy towards demutualizations

and mergers and acquisitions in the insurance industry as well as managerial strategies towards such

restructurings.

By way of preview, the principal finding of our study is that insurers in the two largest size quartiles

can hedge very effectively using intra-state regional indices. Many insurers in the third size quartile also can

hedge effectively using the intra-state indices, but hedging by insurers in the smallest size quartile is

significantly less effective. Mutual insurers can hedge more effectively than stock insurers using the intra-

state indices – a result that we argue can be explained by agency theoretic considerations.  We also find

insurers with greater leverage can more effectively hedge with index contracts consistent with the hypothesis

the increased use of leverage gives insurers more incentive to diversify their risk geographically.  Finally,

we although we find many insurers would encounter significant basis risk in hedging with a state-level index,

even with this index a high proportion of the total property value exposed to loss in Florida could be hedged

efficiently.

The findings are important as a case study in the securitization of a non-traded asset, and thus can

provide guidance for the securitization of other unconventional financial exposures.  Our methodological

approach also has the potential to serve as a model for analyzing the hedging effectiveness of similar
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securities on exotic underlyings, such as weather derivatives.  The results have important implications for

insurers, not only with respect to hedge efficiency but also for the management of underwriting exposure.

The analysis should be of interest to insurance regulators and policymakers concerned about financing losses

from catastrophic events and preventing the destabilization of insurance markets due to catastrophes. Finally,

as discussed above, the results have implications regarding the risk taking incentives of insurers with

different organizational characteristics.

There have been two previous empirical studies of the basis risk of insurance-linked securities, both

using different or less comprehensive study designs.  Harrington and Niehaus (1999) conduct a time series

analysis of the correlation between state-specific loss ratios for a sample of insurers and the PCS CAT loss

index and find that PCS derivatives would have provided effective hedges for many homeowners insurers.

In a study more similar to ours, Major (1999) conducts a simulation analysis of insurer CAT losses based

on insurer exposures in Florida and finds that hedging with a statewide CAT index is subject to substantial

basis risk. Our analysis extends Major’s by considering much larger numbers of insurers and storms, testing

intra-state indices as well as a statewide index, and evaluating a wider variety of hedging strategies.

The remainder of the paper is organized as follows: Section 2 discusses the catastrophic loss

financing problem, provides more details on insurance-linked securities, and discusses our hypotheses about

insurer size and organizational form.  Section 3 describes the AIR model, our data, and the study design.

The results are presented in section 4, and section 5 concludes.

2.  Theoretical Background, Catastrophic Losses, and Securitization 

In this section, we discuss the catastrophic loss problem and explain the role of securitization in

financing catastrophic losses. We then provide more details on insurance-linked securities and formulate

hypotheses about insurer organizational form, size, and membership in an insurance group. 



8SwissRe defines a catastrophe as an event causing at least $32 million in insured property loss.
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The Catastrophic Loss Financing Problem

Both the frequency and the severity of property losses due to natural catastrophes have increased

dramatically in recent years.  During the period 1970-1985, the number of catastrophes averaged about 35

per year.  Beginning in 1986, however, the number of catastrophes increased sharply, and from 1994-1998

more than 125 catastrophes were recorded each year (SwissRe 1999).8 Insurers have paid more than $150

billion in property losses due to catastrophes since 1986, representing 77 percent of insured CAT losses

during the period 1970-1998. Although the largest loss, Hurricane Andrew, resulted in only $18 billion in

insured property-losses, modeling firms are predicting that losses from a major California earthquake or

Florida hurricane could exceed $100 billion.

At first glance, it might seem that the international insurance and reinsurance markets could easily

fund a major property catastrophe. The amount of equity capital in the U.S. property-liability insurance

industry is about $350 billion, and the amount of capital in the international reinsurance market is about

$125 billion.  However, most of this capital is committed to backing insurer promises to pay the relatively

small, frequent losses that are covered by the vast majority of insurance and reinsurance policies.  Insurance

markets are much less efficient in financing large, infrequent events such as natural catastrophes.  As a

result, the percentage of insured property covered by catastrophe reinsurance is inversely related to the size

of the event, and only a small fraction of the property exposure base in hazard prone U.S. states is covered

by catastrophe reinsurance ( Swiss Re 1997, Froot 1998a). Thus, the capacity of the international reinsurance

market is clearly inadequate to fund major catastrophes (Cummins and Weiss 2000). In addition, reinsurance

markets are subject to price and availability cycles, often resulting in price increases and supply restrictions

following catastrophic events (Froot 1998a, Froot and O’Connell 1999). 

Raising additional equity capital in the insurance industry would not be an efficient solution to the

CAT loss financing problem because holding capital in an insurer or reinsurer is costly (Jaffee and Russell



9The indices are defined as the total accumulated losses divided by $100 million. E.g. a 20/40 Eastern
call spread would be in the money for a catastrophic loss accumulation in the Eastern region of more than $2
billion (20 points).  Each index point is worth $200 on settlement so that one 20/40 call would pay a maximum
of $4,000 (20 points times $200 per point).  
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1997). Capital held in insurers is subject to regulatory and agency costs; and tax and accounting rules also

penalize insurers for holding capital to cover infrequent (e.g., once in 50-year) events. Informational

asymmetries between insurers and capital markets regarding exposure to catastrophic events and the

adequacy of loss reserves are an additional impediment to holding additional equity.  Finally, “excess”

capital not currently committed to projects with short or intermediate time horizons is likely to attract

corporate raiders.

Securitization has been offered as a more efficient approach to solving the catastrophic loss financing

problem. Although a $100 billion catastrophe amounts to about 30 percent of the equity capital of the U.S.

property-liability insurance industry and about 80 percent of the equity of the international reinsurance

industry, a loss of this magnitude amounts to less than one-half of 1 percent of the value of stocks and bonds

traded in U.S. securities markets. Securities markets also are more efficient than insurance markets in

reducing information asymmetries and facilitating price-discovery. Finally, because natural catastrophes are

zero-beta events, CAT securities provide a valuable new source of diversification for investors, shifting the

efficient investment frontier in a favorable direction (Litzenberger, et al. 1996, Canter, et al. 1997).

CAT Options and Bonds

To date, the most important CAT securities have been the CBOT CAT call option spreads and CAT

bonds.  The CBOT’s call spreads settle on insurance-industry catastrophe loss indices compiled by Property

Claims Services (PCS), an insurance industry statistical agent.  There are nine indices – a national index,

five regional indices, and three state indices (for California, Florida, and Texas). The indices are based on

PCS estimates of catastrophic property losses in the specified geographical areas during quarterly or annual

exposure periods.9 



10The first successful CAT bond was issued in 1997 by SwissRe to cover earthquake losses (Goldman
Sachs 1999); and the first CAT bond issued by a non-financial firm, occurring in 1999, covers earthquake losses
in the Tokyo region for Oriental Land Company, Ltd., the owner of Tokyo Disneyland.

11Index-linked options are not totally free of moral hazard problems because large insurers may have the
ability to manipulate the index by over-reporting losses to the statistical agent.  However, because concentration
in insurance markets is relatively low, over-reporting by a large insurer is significantly diluted at the index level,

8

The structure of a typical CAT bond is shown in Figure 1.  Capital raised by issuing CAT bonds is

invested in safe securities such as Treasury bonds, which are held by a single-purpose reinsurer to insulate

investors from the credit risk of the bond-issuer. The bond-issuer holds a call option on the principal in the

single-purpose reinsurer with triggering or strike conditions usually expressed in terms of the issuing

insurer’s losses from a defined catastrophic event.10  If the defined event occurs, the bond-issuer can

withdraw funds from the reinsurer to pay claims, and part or all of the interest and principal payments are

forgiven. If the defined catastrophic event does not occur, the investors receive their principal plus interest

equal to the risk free rate plus a risk-premium.  

Index-linked CAT options and issuer-specific CAT bonds can be compared and contrasted in terms

of their transactions costs, liquidity, basis risk, and exposure to moral hazard.  CAT options are superior to

CAT bonds in terms of transactions costs.  CAT options can be traded inexpensively on an exchange,

whereas CAT bond issues are subject to substantially higher transactions costs for legal, investment,

auditing, and tax advice. CAT options also have the potential to generate a very liquid market due to their

standardization and the anonymity of traders. Although a liquid market in CAT bonds can also be

envisioned, the bonds issued to date have low market liquidity because they are not standardized and not

traded on an exchange.  Index-linked CAT options also are superior to issuer-specific CAT bonds in terms

of exposure to moral hazard. The existence of a CAT bond may give an insurer the incentive to relax its

underwriting and claims settlement standards, leading to higher-than-expected losses.  CAT options, on the

other hand, are relatively free of moral hazard because they settle on industry-wide losses rather than the

losses of a specific insurer.11  The primary advantage of insurer-specific CAT bonds over index-linked CAT



unlike over-reporting on an insurer-specific instrument.

12The CAT bond data, including the expected loss, were obtained from the offering circulars.  We
grateful to Michael Millette of Goldman Sachs & Co. for providing the CAT bond data. The information on the
CBOT option trades was obtained from the CBOT web site and correspondence with the CBOT.  The expected
losses on the CBOT contracts were estimated using output from the AIR model over the 10,000 year simulation
and the parameters of each trade.

13For further discussion see Kunreuther and Bantwal (1999).
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options is that insurer-specific bonds expose the hedger to less basis risk than do the options.  The empirical

analysis in this paper is designed to provide information on the degree of basis risk that would be faced by

insurers in hedging with index-linked CAT loss securities.

Table 1 summarizes all principal-at-risk CAT bonds issued since 1996 as well as a sampling of

Florida CBOT call spread transactions.  Panel B shows twenty CAT bond issues, ten of which have more

than one principal-at-risk tranche (multiple entries for an issuer in the same month indicate multiple

tranches).  The table shows that a total of $2.6 billion in risk capital has been raised through principal-at-risk

CAT bonds. The table also shows the risk premium over the risk-free rate and the expected CAT loss

conditional on the occurrence of a loss for each issued tranche.12    If natural disasters are zero-beta events

and significant market imperfections are not present, the rate of return on CAT bonds should approximately

equal the risk-free rate plus a risk premium sufficient to compensate investors for the expected loss of

principal due to a catastrophe.  A CAT bond pricing puzzle, not explored in the present paper due to

insufficient market data, is why the risk premia on CAT bonds are several times larger than the expected

losses (the median risk-premium to expected-loss ratio is 6.8). Possible explanations for this phenomenon

include moral-hazard, the illiquidity of the bonds, uncertainty about expected loss estimates, and investor

unfamiliarity with the contracts.13  The CBOT call spread section of the table shows that Florida calls tend

to trade at lower risk-premium to expected-loss ratios than CAT bonds (the median is 2.1), suggesting that

the higher premia on CAT bonds may be partly attributable to moral hazard.



14Evidence that stocks take more risk than mutuals is presented in Lamm-Tennant and Starks (1993).
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Hypotheses

Our analysis takes as its starting point the geographical exposure to property loss of the insurers in

our sample.  Insurers that are more diversified geographically will show up in our analysis as having higher

hedging efficiency using index-linked CAT securities than insurers whose exposures are more concentrated

geographically.  Because the geographical exposure to loss is largely under the control of management, it

provides an indicator of managerial attitudes toward risk-taking and diversification.  In this section, we

develop hypotheses about the relationship between managers’ revealed preferences for exposure risk and

three important firm characteristics – organizational form (stock versus mutual), firm size, capital structure,

and being a member of a group of insurers under common ownership versus operating as an unaffiliated,

single insurer.

The first hypothesis is that mutuals are likely to be more diversified geographically and hence have

higher hedging efficiency than stocks. It is in the interests of both the owners and the managers of a mutual

insurer for the firm to be well-diversified.  Mutuals are owned by their policyholders, who are averse to

insolvency risk. Policyholders purchase insurance in part to shift the burden of catastrophic losses to the

insurer, i.e., absent insurance, their personal portfolios are overexposed to catastrophe risk.  Therefore, they

are not likely to want the insurer to shift part of the CAT risk back to them through sub-optimal

diversification. Likewise, managers of mutuals have their human capital committed to the insurer and are

less likely to benefit from risk-taking than the managers of stock insurers. Rather, managers of mutuals tend

to be more concerned about job security and thus to adopt operating strategies that reduce insolvency risk.14

Stock insurers, on the other hand, are owned by shareholders, who prefer higher levels of risk-taking

as long as it maximizes firm value. Because the market mechanisms available for stock owners to control

mangers are much stronger than those available to mutual owners, stock managers are likely to pursue the

owners’ interests in maximizing firm value. To the extent that stock managers can increase firm value by
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writing insurance in profitable geographical regions and avoiding unprofitable regions, stock insurers will

tend to be less geographically diversified than mutuals.  

The second hypothesis investigated in this paper is that large insurers will be more diversified than

smaller insurers and thus have higher potential hedging efficiency.  Besides the obvious rationale that to

become large an insurer cannot restrict its operations to a limited number of geographical areas, we argue

that it is more efficient for large insurers to incur the fixed and variable costs of acquiring risk management

expertise and operating effective exposure management programs. 

Our third hypothesis is that insurers with higher leverage have a more limited ability to bear risk than

better-capitalized insurers  and will therefore be more concerned about diversifying their exposures across

the state.  Thus, insurers with greater degrees of leverage are expected to be more efficient index hedgers.

The final hypothesis is that insurers that are members of insurance groups under common ownership

will be less diversified than insurers operating as unaffiliated single insurers.  Insurers that are members of

groups are likely to have access to the equity capital of other group members or the group holding company

in the event of a major loss shock. Although the group is not obligated to rescue a failing subsidiary, in most

cases reputational costs and other factors motivate the group to recapitalize subsidiaries that have suffered

capital shocks.  The insurance group diversifies across subsidiaries, permitting individual subsidiaries to be

less diversified. Although unaffiliated insurers can in principle raise money in capital markets following a

loss shock, in reality raising capital following a shock is likely to be expensive or infeasible because of

information asymmetries involving the adequacy of reserves.  In addition, sustaining a large loss shock

constitutes an adverse signal to capital markets about the quality of the firm’s management.  Hence, to avoid

loss shocks, unaffiliated firms are expected to be more diversified than group members.

3. Data and Study Design

The study has five major phases: (1) The identification and analysis of data on the catastrophic loss

exposure of a sample of insurance companies.  (2) The simulation of catastrophic losses in the geographical



15Data on the nine omitted insurers were not available from the Florida Insurance Commissioner.
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area covered by the sample companies. (3) The measurement of basis risk and hedge effectiveness for the

insurers in the sample using a variety of hedging strategies and loss indices. (4) Hypothesis tests about

insurer characteristics associated with hedging effectiveness. And (5) the development of a parametric index

that breaks the linkage between the losses of specific insurers and the payoff trigger of index-linked CAT

loss securities.  The remainder of this section provides more details on the five phases of the study. 

The Data

The data base for the study consists of county-level data, obtained from the Florida Insurance

Commissioner, on insured residential property values for 255 of the 264 insurers writing property coverage

in Florida in 1998.15  The insurers in our sample account for 93 percent of the total insured residential

property values in the state.  Thus, our results can be interpreted as representative of the entire insurance

industry.  Further details about the sample are provided in the empirical results section below.

Catastrophic Loss Simulations

The simulated catastrophic losses for our sample of insurers are generated using the hurricane model

developed by Applied Insurance Research. This section provides a brief description of the model. Further

details on the model are provided in Appendix A and in Applied Insurance Research (1999).

The hurricane loss estimation methodology employed by AIR is based on well-established scientific

theory in meteorology and wind engineering. The simulation models were developed through careful

analyses and synthesis of all available historical information and incorporate statistical descriptions of a large

number of variables that define both the originating event (e.g., hurricane) and its effect on insured

structures. The models are validated and calibrated through extensive processes of both internal and external

peer review, post-disaster field surveys, detailed client data from actual events, and overall reasonability and

convergence testing. The AIR hurricane model has been used by the insurance industry since 1987 and is
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well known for its reliability and the credibility of the loss estimates it generates. The AIR model was the

first to meet the standards of the Florida Insurance Commission on Hurricane Loss Projection Methodology.

The structure of the simulation model is summarized in Table 2.  The process begins with a Monte

Carlo simulation of the number of storms per year for a 10,000 year simulation period, generating more than

18,000 simulated events.  The landfall and meteorological characteristics are then simulated for each storm,

where the meteorological characteristics include central barometric pressure, radius of maximum winds,

forward speed, storm direction, and storm track. Once the model generates the storm characteristics and

point of landfall, it propagates the simulated storm along a path characterized by the track direction and

forward speed. In order to estimate the property losses resulting from the simulated storms, the AIR

hurricane model generates the complete time profile of wind speeds, or windfield, at each location affected

by the storm. 

After the model estimates peak wind speeds and the time profile of wind speeds for each location,

it generates damage estimates for different types of property exposures by combining data on insured

property values and structure characteristics with wind speed information at each location affected by the

event.  To estimate building damage and the associated losses, the AIR hurricane model uses damageability

relationships, or damage functions which have been developed by AIR engineers for a large number of

building construction and occupancy classes.  In the last component of the catastrophe model, insured losses

are calculated by applying the policy conditions to the total damage estimates. Policy conditions include

deductibles, coverage limits, coinsurance provisions, and a number of other factors.  

A fundamental component of the model is AIR’s insured property data base. AIR has developed

databases of estimated numbers, types, and values of properties for residential, commercial, mobile home,

and automobile insured values in the United States by five-digit ZIP code. These databases have been

constructed from a wide range of data sources and reflect the estimated total replacement cost of U.S.

property exposures. In the present study, AIR’s zip code level data on insured property values for companies



16The grouping is “rough” in the sense that we did not subdivide counties that intersected with the
horizontal and vertical axes but rather placed such counties in the quadrant containing the highest proportion of
their property value exposure.  The counties included in each cluster are shown in Appendix B.

17A 1998 attempt to launch zip-code level index contracts failed to generate interest among insurers and
investors and is currently dormant. Chookaszian and Ward (1998) discuss the proposed indices.

18For more extensive discussions of the rationale for corporate risk management, see Merton and Perold
(1993) and Froot, Scharfstein, and Stein (1993).
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doing business in Florida were used in the simulations and aggregated to the county level using information

supplied by the Florida Insurance Department to protect the confidentiality of AIR's data bases. The

simulations were also conducted using the AIR zip-code data base exclusively for a random sample of five

companies in order to validate the county aggregation approach.  The validation tests indicated that

aggregating our results to the county level provides an accurate representation of the losses that would have

been generated using AIR’s zip code data base as the exclusive source of information.

Hedging Strategies and Hedge Effectiveness 

In this paper, we seek to determine the effectiveness of hedges based on a statewide loss index and

four intra-state regional indices.  The four intra-state indices are based on clusters of counties obtained by

roughly dividing the state into four quadrants based on horizontal and vertical lines through the center of the

state.16 Four regions were chosen as a subdivision of the state that we hypothesized would be sufficient to

enable insurers to create effective hedges without incurring the high transactions costs and lack of liquidity

that would likely result from a finer subdivision of the state.17  

Index-hedge effectiveness is measured relative to the performance of perfect hedges, which pay off

on the insurer’s own losses.  The perfect hedge parallels the results the insurer could attain by purchasing

conventional reinsurance contracts or issuing insurer-specific CAT bonds, whereas the index hedges are

designed to reflect results that could be achieved through trading in index-linked CAT options.

The analysis assumes that insurers are risk-neutral but are motivated to hedge by market

imperfections, including direct and indirect costs of financial distress and convex tax schedules.18 In
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L S
j � Lj � h S

j [Max (LS � M S
j , 0) � Max (LS � U S

j , 0) ](7)

L P
j � Lj � h P

j [Max (Lj � M P
j , 0 ) � Max (Lj � U P

j , 0) ](6)

addition, because the role of insurance is to indemnify policyholders for insured losses, insurers are

motivated to maintain a reputation for having low default risk. In this regard, risk management can be

viewed as a substitute for holding costly equity capital.

We consider “buy and hold” hedging strategies covering a single period, because this is the standard

approach used by insurers when purchasing excess of loss reinsurance contracts and issuing CAT options

and bonds.  We focus primarily on non-linear hedges, where the insurer forms a hedge portfolio consisting

a short position in unhedged catastrophe losses and a long position in call option spreads. The non-linear

analysis is emphasized because the call option spread is the dominant contractual form in both the CAT

securities and catastrophe reinsurance markets (see Froot 1998b, Cummins, Lewis, and Phillips 1999).  We

also analyze and briefly discuss linear hedges, familiar from the hedging literature (e.g., Ederington 1979),

which assume that the insurer forms a hedging portfolio consisting of a linear combination of a short position

in unhedged catastrophic losses and a long position in the loss index.

Non-Linear Hedging

As discussed above, for the non-linear hedges, the insurer is assumed to form a portfolio consisting

of its own unhedged catastrophic losses and a position in call option spreads on a loss index.  Defining

insurer j’s hedged net loss under loss index i as Lj
i, insurer j’s loss under the perfect hedge (i = P) is:

  

where Lj
P = insurer j’s hedged loss under the perfect hedge, Lj = insurer j’s unhedged loss, hj

P = the hedge

ratio for the perfect hedge, Mj
P = the lower strike price of the call spread under the perfect hedge, and Uj

P

= the upper strike price of the spread. 

The perfect hedge is compared to hedges based on loss indices that are not perfectly correlated with

the insurer’s losses.  Insurer j’s net loss based on an index consisting of  industry-wide, state-level losses is:
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L R
j � ˆ

R

r�1
Ljr � h r

j [ MAX (Lr � M r
j ,0 ) � MAX (Lr � U r

j ,0 ) ](8)

where Lj
S = insurer j’s hedged loss using an industry-wide, state-level loss index,  hj

S = the hedge ratio for

the state-level hedge, LS = PjLj = state-wide losses for the industry, and Mj
S and Uj

S are the lower and upper

strike prices for company j’s state-level call spread.  Insurer j’s hedged loss under the intra-state regional

hedge is:

where Lj
R = company j’s losses under the intra-state regional hedge, Ljr = the unhedged losses of insurer j

in region r, hj
r = hedge ratio for insurer j in region r, Lr = industry-wide losses in region r, Mj

r = lower strike

price for company j’s region r call option spread, and Uj
r = upper strike price for company j’s region r call

spread, and R = the number of regions (R = 4 in our analysis).

In the general non-linear hedging problem, the insurer is assumed to minimize a function of Lj
i

subject to a cost constraint.  Defining the objective function for criterion m as Gm(Lj
i), the optimization

problem using a state-wide hedge, for example, is given as:

(9) Minimize: Gm(Lj
S)

{hj
S,Mj

S,Uj
S}

Subject to: hj
S [W(LS, Mj

S) - W(LS,Uj
S)] @ Cj

where Cj = the maximum amount available to insurer j to spend on hedging, and W(LS,Mj
S) and W(LS,Uj

S)

= the prices of call options on industry losses LS with strike prices Mj
S and Uj

S, respectively.  Thus, the

insurer optimizes over the hedge ratio and the two strike prices, Mj
S and Uj

S, subject to spending a maximum

of Cj on hedging. The optimization problem for the perfect hedge is defined similarly.  The optimization

problem for the regional hedge is also analogous to expression (9) except that there are twelve decision

variables – four hedge ratios and four sets of lower and upper strike prices.  By varying Cj, it is possible to

generate an efficient frontier based on each optimization criterion and loss index.
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VaRij [α , L i
j (h i

j ,M i
j ,U i

j ) ] � F �1
i j (1 � α )(10)

Several hedging objectives or criterion functions have been discussed in the literature.  We focus on

three criteria which are either standard in the hedging literature or likely to be appropriate for insurers: (1)

the variance of losses, (2) the value-at-risk (VaR), and (3) the expected exceedence value (EEV).  Variance

reduction is the most straightforward of the three hedging criteria, giving rise to the objective function:

G1(Lj
i) = σ2[Lj

i(hj
i,Mj

i,Uj
i)] = the variance of the insurer j’s loss net of the payoff on the call option spread

using loss index i, where i = P for the perfect hedge, S for the statewide industry hedge, and R for the intra-

state regional hedge, where the latter is a function of twelve rather than three variables.

Value-at-risk (VaR) reduction has received considerable attention in the literature as a hedging

criterion (e.g., Ahn, et al. 1999, Dowd 1999).  VaR is used extensively by financial institutions to measure

potential losses or profits from their trading operations and other risky activities (Santomero 1997).

Moreover, VaR is similar in concept to the probability of ruin, which has been studied for decades by

actuaries.  Hence, insurers are likely to find VaR to be a familiar and informative criterion.   

The VaR is defined as the amount of loss such that the probability of exceeding this amount during

a specified period of time is equal to α, a small positive number (0 < α <1).  Stated more formally, defining

insurer j’s net loss distribution function under hedge index i as Fij[Lj
i(hj

i,Mj
i,Uj

i)] = Fij(·), VaR is defined as:

where Fij
-1(·) = the inverse of the net loss distribution function.  Using VaR, the optimization function in

expression (9) becomes G2(Lj
i) = VaR[α, Lj

i(hj
i,Mj

i,Uj
i)].

Although the VaR is an important and useful statistic, in many cases the risk manager would like

to know not only the probability that a given loss level will be exceeded but also the expected amount of loss

conditional on the loss level being exceeded. This is the quantity measured by our third optimization

criterion, the expected exceedence value (EEV).  EEV is similar in concept to the insolvency put option



19Recent research suggests that EEV-type measures have desirable properties not possessed by value at
risk measures.  See, for example, Artzner, et al. (1999).
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EEVj [LT , L i
j (h i

j ,M i
j ,U i

j ) ] � ‹
Q

LT

[L i
j � LT ] dFj (L i

j (h i
j ,M i

j ,U i
j ) )(11)

HE S
j3 � 1 �

EEVj [LT , L S
j (h S

j ,M S
j ,U S

j ) ]
EEVj [LT , Lj ]

(12)

discussed in the risk-based capital literature and is essentially the value of a call option on Lj
i with strike

price equal to a specified loss threshold.19  More formally, the EEV is defined as:

 where LT = a loss threshold specified by the decision maker, and  Lj
i(hj

i,Mj
i,Uj

i).  The EEV criterion function

is G3(Lj
i) = EEVj[LT,Lj

i(hj
i,Mj

i,Uj
i))].   Thus, the insurer minimizes the expected excess loss conditional on

the loss being equal to or greater than a specified loss threshold. This measure is more informative than the

VaR in the sense that the risk manager is likely to care  whether the threshold loss level is exceeded by $1

or $1 million. 

For each loss index i, we define hedge effectiveness as the proportionate reduction in the unhedged

value of the criterion function.  We denote the hedge effectiveness measure for insurer j based on loss index

i as HEjm
i , where m = 1, 2, and 3 for the variance, VaR, and EEV criteria, respectively.  Under the EEV

criterion function, for example, the hedge effectiveness of the state-wide index is: 

The other two hedge effectiveness measures are defined similarly.

Estimation Methodology

In solving complicated non-linear optimization problems such as the one specified in expression (9),

it is not unusual for standard optimization algorithms to fail to converge or to converge to a local optimum.

We found this to be the case in working with expression (9), particularly when optimizing over the intra-state

regional hedges.  For example, it was not unusual for hedging with the intra-state contracts to be less



20See Engle and Manganelli  (1999) for another application of genetic algorithms to optimize non-
differentiable objective functions in financial risk management.
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effective than hedging based on the statewide contract – a result that does not make sense in view of the fact

that the statewide index can be replicated by summing the intra-state indices. We concluded that this

problem arose because the solution algorithms we were using were not powerful enough to find the global

optimum.  

To solve the optimization problem while avoiding local minima, we adopted a differential

evolutionary genetic algorithm (Goldberg 1989).20  Genetic algorithms provide a robust search procedure

to solve difficult non-linear or non-smooth optimization problems. Unlike conventional deterministic

algorithms that will always yield the same solution when started from the same point, evolutionary

algorithms rely on random sampling and hence will reach different solutions in different runs of the model.

Because of the evolutionary feature, the model is less likely than conventional algorithms to get stuck at a

local optimum and will generally locate the global optimum.  

The genetic algorithm is based on the principles of genetics and the process of natural selection. The

algorithm starts with a population of initial trials for the parameter vector to be estimated and interprets the

value of the objective function at each of the trials as a measure of these points’ “fitness” as an optimum.

A new population is developed from the initial trial values by following three steps: First, the “fittest”

members of the old population are selected for reproduction, defined according to the optimization criterion.

Second, analogous to the mating process in genetics, new parameter combinations are created from the

components of the existing solution vectors, according to a set of recombination rules.  Third, the solution

vectors are given the opportunity to mutate, potentially increasing the “fitness” of the population.  The

process continues until a solution is reached that satisfies the specified convergence criteria.  We found this

method to be very effective in solving the intra-state optimization problem; and for consistency, we also used

it to solve the statewide optimization problem.
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Insurer Characteristics and Hedge Effectiveness

Following the measurement of hedging effectiveness for the insurers in the sample, we seek to

determine firm characteristics that tend to be associated with effective hedging.  The objective is to test the

three hypotheses discussed above and to identify other insurer characteristics associated with effective index

hedging. In addition to providing a better understanding of hedging effectiveness, this analysis can also

provide information that should be helpful to insurers in managing their exposure distributions.

Regression analysis is used to analyze the relationship between firm characteristics and hedging

efficiency, where efficiency is defined as the ratio of hedging effectiveness (see equation (12)) using index

hedges to hedging effectiveness using the perfect hedge.   That is, the dependent variable for insurer j is: 

 HEjm
i /HEjm

P, where i = S (for the statewide index hedge), R (for the regional index hedge), and P for the

perfect hedge, and m indicates the hedging criterion. 

To test our hypotheses, we include in the regressions a dummy variable equal to 1 for mutuals and

0 for stocks, and a dummy variable equal to 1 for unaffiliated single companies and 0 for affiliated insurers.

As size measures, we include in the models dummy variables for the three largest size quartiles, where size

is defined as the insurers’ total assets.  To test our capital structure hypothesis, we include a leverage

variable equal to the insurer’s liabilities-to-assets ratio.  As explained above, the mutual and unaffiliated firm

dummy variables and the leverage variable are all predicted to be positively related to hedging efficiency.

The larger size quartile variables are more likely to have positive signs than smaller quartile dummies.  

Also included in the model are dummy variables for the three largest Florida market share quartiles,

where the company’s market share in the state defined as Sj/S, where Sj = the dollar value of insurer j’s

exposure to loss in Florida and S = the total insured property value in the state. The size quartile variables

are expected to be positively associated with hedging efficiency because companies with higher market

shares have more impact on the value of the loss index, ceteris paribus. We also test as a diversification

variable the coefficient of variation of the insurer’s market share define as sjk = Sjk/Sj, where Sjk = insurer j’s



21We also tested the Herfindahl index of county market shares, defined as Pksjk
2.  The results using the

Herfindahl index are similar and hence not shown.

22A few CAT loss security offerings have included parametric triggers as the sole criterion for
determining the payoffs on the securities. The most prominent parametric contract was issued in 1998 by a single-
purpose reinsurer appropriately named Parametric Re.  The beneficiary of the Parametric Re bond issue is
Oriental Land Company, Ltd..  Debt forgiveness on the Parametric Re bond is triggered solely by Richter Scale
readings for an earthquake in the Tokyo metropolitan area – the monetary value of loss resulting from the
earthquake is irrelevant in determining the payoff of the bond.
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total insured property value in county k, and Sj = Pk Sjk = insurer j’s total insured property value in the

state.21 The diversification measures is hypothesized to be inversely associated with hedge efficiency because

more geographically diversified portfolios will have low coefficients of variation.  

An additional variable included in the regression models is the proportion of an insurer’s total

insured property value located in ocean front counties.  This variable is of obvious importance in an analysis

of catastrophic risk because ocean front counties tend to sustain the highest degree of damage from

hurricanes.  Insurers with high proportions of their insured property value in ocean front counties might be

expected to be able to hedge more efficiently using loss index hedges because the loss indices tend to be

driven by losses in ocean front counties rather than losses in inland counties. Finally, dummy variables also

are included in the regressions for the levels of the cost constraints. 

A Proposed Parametric Index

As our discussion of the insurer market share variable suggests, even industry-wide loss indices are

not totally free of moral hazard.  It would be possible for a large insurer to materially increase the amount

of its payoff from an index hedge by overstating its catastrophe losses to the statistical agent who compiles

the index.  Although the effects of its over-reporting would be diluted in comparison with the impact of over-

reporting on a perfect (insurer-specific) hedge, the possibility of over-reporting by large insurers could

discourage some investors from participating on the short side of the CAT call-spread market and/or lead

to higher risk premia for index-linked products than would be the case if no moral hazard were present.

Consequently, it seems relevant and important to develop a parametric index based on our simulation data.22
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Our proposed parametric index for hurricane losses in Florida is based on a regression model with

monetary hurricane damages as the dependent variable and storm characteristics as independent variables.

Specifically, we regress the natural log of the dollar value of statewide (or regional) simulated losses from

storms on three physical measures of storm severity – the natural logs of (1) 30 minus the central pressure

at the eye of the storm, (2) the forward velocity of the storm, and (3) the radius to maximum wind speed.

The variable “30-central pressure” is expected to be positively associated with storm damages since wind

speeds are typically greater as the difference between the barometric pressure at the eye of the storm and the

pressure on the periphery of the storm increases.  The forward velocity of the storm is hypothesized to be

negatively related to the amount of storm damage since fast moving storms have less time to cause damage

in any given region.  Finally, we hypothesize that the radius to maximum wind speed variable will be

positively associated with storm damages because larger storms impact a wider area, thus exposing more

structures to the damaging effects of wind.  Also included in the regressions are dummy variables for each

50-mile segment of coastline where the storm is predicted to make landfall. These variables are designed

to proxy for the value of property directly exposed to the storm as it makes landfall. 

Our estimated regression equation could be used to generate a parametric index of storm damages

to serve as the payoff trigger for index-linked CAT options.  The procedure would be to compute a fitted

value of the predicted loss from a hurricane by inserting the three storm severity indicators into the

regression equation. This would produce a storm severity index that would be independent of insurer-

reported storm damage estimates. 

4. Results of the Empirical Tests

In this section, we present the results of our empirical analysis of hedging effectiveness using index-

linked CAT securities, the regression analysis of the determinants of hedging effectiveness, and the

proposed parametric index.  We begin the section by providing a more detailed discussion of the sample,

the hurricane simulation results, and the loss indices.



23The residential data include coverage under the following types of property insurance policies:
apartment buildings, condominium associations, condominium unit owners, dwelling fire and allied line,
farmowners, homeowners, mobile homes, and tenants policies.  Data were not available on commercial property
exposures. 

24This is the type of insurance with the most significant catastrophic risk problem because business firms
are better able to search the market for insurance coverage and have access to alternative hedging mechanisms
such as captive insurance companies.
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The Sample

As mentioned above, the first step in our empirical analysis was to obtain data on the value of

property exposed to catastrophic loss in Florida.  The data we use in the study are provided by the Florida

Insurance Commissioner and reflect exposures in 1998.  The data base includes 255 of the 264 property

insurers operating in Florida in that year, accounting for 93 percent of the insured residential property values

in the state.23  Thus, the study applies to hedging effectiveness for residential property insurance.24  The total

value of insured residential property exposed to loss in Florida in 1998 was $764 billion.  

More details on the sample are provided in Table 3.  The table shows that the distribution of

exposures across the companies in the industry is highly skewed, with the top quartile of insurers accounting

for 88 percent of insured exposure in the state.  This is important from a public policy perspective because

larger insurers are expected to be able to hedge more effectively than smaller firms. Thus, even though some

individual firms may not be able to reduce risk significantly by trading in index-linked derivatives, a high

proportion of the total exposure in the state is likely to be subject to effective hedging.  

Larger firms tend to have their exposures dispersed across a wider range of counties than smaller

firms, an indicator of better diversification.  On average, firms in the top quartile have exposures in 58 of

the 67 counties in Florida, compared with 44, 29, and 12 counties for insurers in the second, third, and fourth

size quartiles.  Larger firms also tend to be more diversified in terms of the coefficient variation of the

market share across counties and in terms of the county market share Herfindahl index.  This provides

further evidence suggesting that larger firms will be able to hedge more effectively than smaller insurers.
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Simulation Results and CAT Loss Indices

The second step in the analysis is to simulate county-level losses for the insurers in the sample using

the AIR model.  We initially simulated 10,000 years of hurricane experience.  In order to reduce the time

required to perform the optimization analysis, we base most of the analysis on a random sample of 1,000

years of experience from the simulated 10,000 year data base.  Robustness checks based on conducting the

optimization using the full 10,000 years of experience for a random sample of 10 insurers revealed that

virtually no accuracy is lost by basing most of the analysis on the 1,000 year random sample of events. 

The simulations produce the variables Ljkrt = hurricane losses for company j, in county k, located in

intra-state region r, for simulation year t, where j = 1, . . . , 255, k = 1, . . . , 67, r = 1, . . . , 4, and t = 1, . . .

, 10,000 (as indicated, the maximum value of t equals 1,000 for most of the analysis).  The simulated losses

are then used to construct the following loss indices:  

The "Perfect" Index� L P
j · · t � Σ

R

r�1
Σ
Kr

k�1
Ljkr t(13)

The Regional Indices � L R
· · r t � Σ

N

j�1
Σ
Kr

k�1
Ljkr t(14)

The State Index � L S
t � L· · · t � Σ

R

r�1
Σ
Kr

k�1
Σ
N

j�1
LjkRt(15)

where N = the number of insurers (255), R = the number of regions (4), Kr = the number of counties in

region r, and a dot in place of a subscript means that a summation has been taken over that subscript. Hedge

portfolios are formed for each insurer to determine the basis risk for each index.

Non-Linear (Call Spread) Hedging

The non-linear hedging analysis assumes that insurers form hedge portfolios consisting of their own

losses and a position in call option spreads on loss indices.  The hedge ratios and option strike prices are then

chosen to minimize a criterion function subject to a cost constraint.  I.e., insurers form portfolios with payoff
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functions specified in equations (6), (7), and (8) and solve the optimization problem given in expression (9).

The objective criteria to be minimized are the variance, the value at risk (VaR), and the expected exceedence

value (EEV) of the insurer’s net loss liabilities, where net loss liabilities are defined as  unhedged loss

liabilities minus the payoff on the hedge.  The cost constraints are specified as percentages of the insurer’s

expected Florida homeowners losses, ranging from 5 percent to 50 percent.  By varying the cost constraint,

an efficient frontier is generated based on each of the criteria. To focus purely on basis risk, most of the

analysis is conducted under the assumption that hedging contracts are available at prices equal to the

expected losses under the contracts, i.e., the expected recovery from the hedge.  We also report robustness

tests based on the assumption that the options are available at expected cost plus a risk premium. 

We first consider the effect of non-linear hedging on the variance of the insurer’s net loss.  Before

presenting the results for the overall sample, we give examples of hedging effectiveness for a diversified

insurer and an undiversified insurer.  The diversified insurer has an exposure distribution across the state

very similar to the industry-wide exposure distribution.  The undiversified insurer has 92 percent of its

exposure to loss concentrated in two of the four intra-state regions. The variance reduction of the diversified

insurer is shown in Figure 2A.  This insurer can hedge with about 91 percent efficiency (defined as the

variance reduction of the index hedge divided by the variance reduction of the perfect hedge) using the

statewide index and with about 96 percent efficiency using the regional indices, showing the benefits of

holding a diversified underwriting portfolio. The variance reduction for the undiversified insurer is shown

in Figure 2B.  This insurer can hedge with only about 23 percent efficiency using the statewide index, but

it can hedge with about 97 percent efficiency using the regional indices.  Thus, even relatively undiversified

insurers can benefit from intra-state hedging.  

Figure 3 shows the variance-reduction frontiers based on non-linear hedges for the insurers in the

largest size quartile, obtained by varying the cost constraint.  Each point on the frontier is obtained as an

unweighted average of the percentage variance reduction across the firms in the top quartile for each



25The results for other expenditure levels are comparable and thus not shown. Recall that hedge
efficiency is defined for the variance reduction criterion as the ratio of the variance reduction using the statewide
and regional hedges to the variance reduction under the perfect hedge.
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specified cost constraint. The figure compares frontiers based on the perfect hedge, the state hedge, and the

regional hedge.  The results confirm that hedging with the regional loss indices is more effective than

hedging using the state loss index.  In fact, the variance reduction using the regional hedge is closer to that

given by the perfect hedge than to the variance reduction based on the statewide hedge.  For example, an

expenditure of 10 percent of expected losses reduces the net loss variance by 28 percent using the statewide

hedge, 38 percent using the regional hedge, and 40 percent using the perfect hedge.  Thus, the basis risk of

the regional hedge is not very large and might be worth incurring in order to avoid the moral hazard inherent

in the perfect hedge.

The average variance reduction frontiers for insurers in the four size quartiles based on the regional

hedge are shown in Figure 4.  Perhaps the most surprising result is that the frontiers in the two largest size

quartiles are almost indistinguishable. Thus, the insurers in the top two quartiles can hedge with about equal

effectiveness using the regional loss indices, and the quartile 3 results are almost as good. Again, this

suggests that it is not size per se but rather diversification that determines hedging effectiveness, at least for

insurers in the top three size quartiles. As expected, the degree of variance reduction is noticeably less for

insurers in the fourth size quartile.  

To provide additional information on basis risk for the sample insurers, Figure 5 shows the frequency

distribution of the variance-reduction hedge efficiency for an expenditure of 25 percent of expected losses.25

The most striking result is that the regional hedge is at least 90 percent as effective as the perfect hedge in

terms of reducing loss volatility for 152 of the 255 firms in the sample and at least 85 percent efficient for

189 of the 255 sample firms.  These results provide further evidence that the degree of basis risk from  index



26These 152 firms account for 93.7 percent of the total property exposure of the sample insurers.

27These 87 firms account for 76.9 percent of the total property exposure of the sample insurers.

28The VaR results are available from the authors on request.

29Given the loss threshold for the largest insurers, the EEV using the perfect hedge is reduced to zero at
an expenditure of approximately 25 percent of the expected loss for all insurers in the top size quartile.  This does
not imply that these insurers can suffer no loss from large events because the EEV is an expected value criterion
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hedging may be sufficiently small to make index hedging attractive for the majority of Florida insurers.26

The statewide hedge is at least 80 percent as effective as the perfect hedge for 87 of the 255 firms.27    

We next consider the other two hedging criteria – the value at risk (VaR) and expected exceedence

value (EEV).  Since the analyses of these two criteria lead to the similar conclusions and the EEV has more

desirable theoretical properties than the VaR (Artzner, et al. 1999), we focus the discussion on the EEV.28

Recall that the EEV is the expected loss, conditional on losses exceeding a specified threshold (see equation

(11)).  To calculate the EEV, we selected a threshold for each insurer equal to 97.5-th percentile of its

unhedged loss distribution. Hence, our analysis is equivalent to minimizing the EEV above the

VaRj(0.025,Lj), i.e., above the 2.5 percent VaR for the jth insurer’s unhedged loss distribution.  Although

the choice of an EEV threshold is inevitably somewhat arbitrary, the 97.5 percentile is likely to be relevant

because it corresponds to an industry loss in Florida of about $13.5 billion.  Thus, the assumption in using

this threshold is that insurers are hedging large losses, in the range of Hurricane Andrew and above.  This

seems to be an appropriate objective given the general lack of availability of reinsurance for losses of this

magnitude (SwissRe 1997).  The value of the expected CAT loss above the 97.5 percentile to the total

expected CAT loss ranges monotonically from 19 percent for firms in the first quartile to 31 percent for

firms in the fourth quartile.  Thus, hedges based on this threshold also have the potential to significantly

reduce the insurers’ overall expected losses from catastrophes.

The expected exceedence value (EEV) reduction frontiers for the firms in the largest size quartile

are shown in Figure 6.29 The results again support the conclusion that insurers in the top size quartile can



and losses obviously can occur that exceed the expected value. A similar result occurs for insurers in the second-
largest size quartile but not for insurers in the two smallest size quartiles. The reason is that the loss distributions
of smaller insurers are relatively more skewed because they are not as well diversified as larger firms.  

28

hedge effectively using the regional loss indices. For example, a 50 percent reduction in the EEV can be

obtained at a cost of about 7.5 percent of expected losses with the perfect hedge and about 8.5 percent of

expected losses for the regional index hedge.  A comparable reduction costs about 12.5 percent of expected

losses under the statewide hedge.

Further information on EEV reduction is provided in Figure 7, which shows the frequency

distribution of insurers based on EEV-reduction hedge efficiency for a cost constraint equal to 25 percent

of expected losses.  The results show that the regional index hedge is at least 95 percent efficient for 66 of

the 255 insurers in the sample and at least 90 percent efficient for 109 insurers.  The state index hedge is at

least 90 percent as effective as the perfect hedge for 31 of the insurers in the sample.  Insurers that can hedge

with at least 90 percent efficiency account for 78.9 percent of the total insured residential property value in

Florida for the regional hedge and 48.2 percent for the statewide hedge. Hence, even the statewide hedge,

which is relatively inefficient for the majority of insurers, still seems viable if the objective is to hedge the

CAT risk for a high proportion of the exposed value in the state.

Linear Hedging

In the linear hedging analysis, we follow the standard approach of forming a hedge portfolio

consisting of a linear combination of the insurer’s own prospective catastrophe losses (analogous to a cash

position) and an appropriate loss index (analogous to a futures position). The insurer is assumed to form a

hedge portfolio at time 0 which settles at time t = 1 year.  We solve for the hedge ratio that minimizes the

variance of the hedge portfolio. The hedge effectiveness for the insurers in the sample is then compared for

alternative loss indices. The analysis uses the standard variance minimizing hedge ratio (Ederington 1979),

i.e., hi = Cov(Lit,It)/Var(It) and the standard measure of variance reduction (Cov(Lit,It)2/[Var(Lit)Var(It)],

where hi = the variance minimizing hedge ratio for insurer i, It = the index, Lit =losses of insurer i, and Cov(.)



30The VaR results are similar and are available from the authors.  
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and Var(.) are the covariance and variance operators, respectively.  We solve simultaneously for four hedge

ratios when the intra-state loss indices are used.

The linear hedging analysis shows that insurers in the top three size quartiles can reduce their loss

variance by 93 percent, 92 percent, and 85 percent, respectively, using the intra-state loss indices, but by

only 65, 59, and 49 percent, respectively, using the statewide index.  Thus, insurers in the top three size

quartiles can hedge effectively using the intra-state indices but not the statewide index. Hedging is

significantly less effective for insurers in the smallest size quartile – these firms can reduce loss variance by

67 percent using the intra-state indices and by only 37 percent using the statewide index. Thus, hedging

effectiveness is positively related to firm size and may not be viable for firms in the smallest size quartile.

Insurer Characteristics and Hedge Effectiveness

The regressions to analyze the determinants of hedging effectiveness are presented in Table 4.  The

dependent variable in the regressions is hedge efficiency using non-linear hedge portfolios, i.e., the ratios

of the effectiveness of index hedges to the effectiveness of perfect hedges, HEjmk
i /HEjmk

P, where i = S for

the statewide hedge and R for the regional hedge and HEjmk
i is hedging effectiveness (see equation (12)) for

insurer j using criterion m for cost constraint k.  Thus, the variables differ across insurers and across cost

constraints. Regressions based on the variance reduction and EEV reduction criteria are shown in the table.30

To test the hypotheses specified above, the equations include a dummy variable equal to 1 for

mutuals and 0 for stocks, a dummy variable equal to 1 for unaffiliated single insurers and 0 for members of

groups, a leverage variable equal to the insurer’s liabilities-to-assets ratio, and dummy variables representing

Florida size quartiles (based on insured value exposed to loss), and overall firm size quartiles (based on

assets). Other independent variables in the equations include the proportion of loss exposure in ocean front

counties and the coefficient of variation of the insurer’s county market shares.  As control variables, we

include dummy variables for the ten cost constraints (ranging from 5 to 50 percent in increments of 5



30

percent).  Because a dummy variable is included for each cost constraint, the intercept in the equations is

suppressed.  All regressions are estimated using the maximum likelihood Tobit procedure because the

dependent variable ranges between 0 and 1.

The regression results provide support the hypothesis that mutuals can hedge more efficiently than

stocks.  Although the mutual dummy variables are insignificant in the statewide index regressions, they are

positive and significant in the regional regressions.  We consider the regional regressions to be more relevant

than the state regressions because it is clear that the statewide index provides a less effective hedge than the

regional indices.  The leverage variable is positive and significant in all regressions, providing strong support

for the hypothesis that insurers with greater degrees of leverage have a stronger incentive to diversify

geographically across the state.  The results are mixed for the unaffiliated single insurer dummy variable.

The variable is negative and significant in both the statewide variance and statewide EEV reduction

regressions.  However, this dummy variable is positive and significant in both regional regressions. Again,

because we consider the regional regressions more relevant, on balance the results tend to support the

hypothesis that unaffiliated firms are more diversified. 

Florida market share quartile dummy variables are included for the three largest size quartiles, based

on exposure to loss.  These variables are all positive and significant, implying that firms in the three largest

quartiles can hedge more efficiently than firms in the smallest size quartile using both statewide and regional

hedges. Thus, firms in the smallest quartile may not be economically viable in the long-run.

The dummy variables for the two largest asset size quartiles are positive and significant in the

statewide EEV regressions but insignificant in all others.  The third asset size quartile variable is

insignificant in all regressions.  Thus, we find only limited support for the hypothesis that larger firms

practice more effective risk management. 

The results provide consistent support for the hypotheses about other determinants of hedging

effectiveness.  The percentage of exposures in ocean front counties is statistically significant with a positive
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coefficient in all four regressions shown in Table 4, consistent with the hypothesis that insurers with

relatively high ocean front exposure can hedge more effectively.  The coefficient of variation of county

market share has a significant negative coefficient in all four equations, consistent with the hypothesis that

more diversified insurers can hedge more effectively.

Entering dummy variables for all cost constraints in effect estimates a separate intercept for each cost

constraint.  The first issue to be investigated using the intercepts is whether regional hedges are more

efficient than statewide hedges, other things equal.  The intercepts are about twice as high in the regional

regressions than in the statewide regressions, providing strong evidence that regional hedges are more

efficient than statewide hedges, other things equal. 

The second issue to be investigated using the intercepts is whether hedge efficiency is a function of

the level of expenditure on the hedge. (Recall that our efficiency measure compares index hedge

performance to the performance of the perfect hedge, conditional on the level of expenditure on hedging.)

To analyze this question, we conducted likelihood ratio tests of the null hypothesis that the intercepts within

each equation are equal across cost constraints. The test statistics are shown in the last line of Table 4.  The

hypothesis that the intercepts are equal is rejected at the 5 percent level in the statewide variance efficiency

regression and at the 1 percent level in both the statewide and regional EEV efficiency regressions.  The

hypothesis is not rejected in the regional variance efficiency regression. Thus, it appears that hedge

efficiency is significantly related to the level of expenditures for variance and EEV hedging with the

statewide index and for EEV hedging using the intra-state indices, with the largest expenditure levels

generally being the most efficient.

Hedging at Recent Market Prices

The analysis so far has been conducted under the assumption that call spread contracts are available

at actuarially fair prices equal to the expected loss under the contracts. The rationale for this approach is that

catastrophic loss contracts should be priced close to their actuarial value in informationally efficient, liquid



31Evidence that catastrophic risk contracts do not have systematic risk is presented in Litzenberger,
Beaglehole, and Reynolds (1996).
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securities markets, provided that catastrophic losses do not have systematic risk.31 However, because most

catastrophic risk derivatives issued to date have been sold at prices in excess of the expected actuarial losses,

we also conduct our non-linear hedging analysis under the assumption that CAT security prices are

actuarially unfair.  We base the analysis on the recent market prices for CAT bonds and CBOT call spreads

shown in Table 1.

The contractual forms in the non-actuarial analysis are identical to those used in the non-linear

hedging analysis above, the only difference being that the contracts analyzed in this section are priced at a

markup over the expected loss. The perfect hedge contracts are analogous to CAT bonds, whereas the index

hedge contracts are analogous to CBOT options.  Accordingly, the perfect hedge contracts are assumed to

be sold at a premium-to-expected-loss ratio of 6.8 and the index hedge contracts are assumed to be sold at

a premium-to-expected-loss ratio of 2.1, matching the median risk premia shown in Table 1.  

The results of the non-actuarial hedging analysis are shown in Table 6.  The table shows the ratios

of hedge effectiveness using market price contracts to the hedge effectiveness that could be achieved using

actuarially priced contracts, for each of the ten cost constraints used in our analysis.  The ratios in the table

are unweighted averages based on a stratified (by size quartile) sample of the firms in our data base.  A

sample of size twelve was selected, with three firms chosen randomly from each size quartile. Because the

results under different hedging strategies lead to the same conclusions, only the expected exceedence value

(EEV) results are shown in Table 6. 

The results in show that insurers can still significantly reduce their EEVs using index hedging even

when option pricing is non-actuarial.  However, as expected, hedge effectiveness is reduced in comparison

with actuarially fair pricing.  For example, if expenditures on hedging are constrained to 25 percent of

expected losses, the market priced perfect hedge reduces the EEV by only 20 percent of the perfect hedge
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EEV reduction that could be obtained with actuarial prices.  The results with the state and regional hedges

are better because the markup over the actuarial price is significantly less than for the perfect hedge

contracts.  With the 25 percent cost constraint, the market price hedge reduces the EEV by 63 percent of the

reduction that could be achieved using actuarially priced contracts, and the comparable reduction for the

regional hedge is 65 percent.

The size of the markup over expected losses is obviously critical in determining the hedging

effectiveness of insurance derivative contracts. Such contracts must compete with excess of loss reinsurance

- the traditional hedge for insurers facing CAT loss exposure.  Interestingly, the markups on the insurance

derivative contracts shown in Table 1 are consistent with markups on catastrophe reinsurance contracts.

Froot and O’Connell (1999) show that price-to-loss ratios during the late 1980s and early 1990s for excess

of loss property reinsurance contracts ranged from about 1.5 in 1987, to 3.0 in 1992, and to 7.0 in 1994, all

in the same range as the price-to-loss ratios in Table 1.  Thus, CAT derivatives may be price-competitive

with reinsurance even with the relatively high markups in today’s CAT derivatives market. 

The price-to-loss ratios on insurance derivatives can be expected to decline relative to reinsurance

as the market becomes more mature.  Reinsurance is sold by firms that have limited capital and are averse

to insolvency risk; whereas CAT loss derivatives are closer to being pure financial instruments, not

dependent upon the solvency or capitalization of any specific firm or industry.  Consequently, CAT loss

securities are more likely to approach actuarial fairness than reinsurance, particularly for mega-CATs that

would significantly stress the capacity of world insurance markets.

There are three primary conclusions from the non-actuarial pricing analysis: (1) Hedging with CAT

options and bonds is less effective under non-actuarial pricing, but the non-actuarial hedges still lead to

significant reductions in insurer risk.  This conclusion is reinforced by observing that price-to-expected loss

ratios in the CAT securities market are comparable to those in the reinsurance market.  (2) If index contracts

continue to be priced significantly lower than insurer-specific contracts, index contracts may come to



32Also included in the regression but not shown are dummy variables for the area along the coast where
the storm first makes landfall.  All but two of the landfall segment dummy variables are statistically significant
and an F-test leads to rejection of the hypothesis that the landfall segment variables are jointly equal to zero.
There are 20 landfall segments in Florida.  However, there are 31 landfall segments in our sample because storms
can make landfall in another state such as Georgia and cause damage in Florida as the storm moves inland.
Therefore, thirty landfall segment dummy variables are included in the regression.
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dominate CAT bonds as CAT securities markets become more liquid.  The net result will depend upon the

tradeoff between moral hazard and transactions costs (disadvantages of insurer-specific contracts) versus

basis risk (the principal disadvantage of index-linked contracts).  If, as our results show, intra-state regional

contracts can be used to construct hedges with low basis risk for most insurers, the argument for index-linked

contracts becomes compelling. (3) The insurance-linked securities market is likely to dominate the

reinsurance market for the hedging of mega-CATs if the price-to-loss ratios approach actuarial fairness.

A Parametric Index

As discussed above, our proposed parametric index is based on a regression model with dependent

variable equal to the log of storm damages and independent variables consisting of the logs of three physical

measures of storm characteristics.  The regression model, shown in Table 5, was estimated using data on the

867 hurricanes resulting from the 1,000 simulated years used in most of the analysis. As hypothesized, the

“30 minus central pressure” variable is positively associated with the amount of damage caused by a storm,

consistent with the hypothesis that the difference in barometric pressure between the eye and periphery of

the storm is associated with higher wind speeds.  Likewise, the forward wind speed variable is negatively

associated with storm damage, as expected if storms that move more rapidly through a geographical area

cause less damage.  Finally, the log of the radius to maximum wind speed of the storm is positively

associated with the degree of storm damage, consistent with the hypothesis that larger storms expose more

structures to wind damage.32 

The regression model provides an excellent fit to the storm damage data, explaining more than 90

percent of the variability in the hurricane damages. The goodness-of-fit of the model is illustrated in Figure



33Another potential advantage of contracts with payoffs based on parametric criteria is that they  settle
sooner following an event to the extent that the parametric measurements are available prior to the end of the loss
development periods of contracts based on monetary losses.  Although most parametric measures (such as the
Richter scale magnitude of an earthquake) are available almost immediately following an event, others, such as
the radius of maximum wind speed of a hurricane, take longer to resolve, potentially blunting  the settlement-time
advantages of some parametric contracts.

34Of course, like the other tests conducted in this paper, the parametric index tests are subject to “model
risk,” i.e., the risk that the AIR model results will not perfectly correlate with actual storm damage, thus creating
an additional source of basis risk.  We do not believe that this additional basis risk is sufficient to prevent the
effective use of our parametric model, due to the extensive reliability testing the AIR model has undergone and
its widespread acceptance by insurers. Given the number of actual catastrophic events that have occurred since
the first version of the model was introduced in 1987, it would be unlikely that insurers and other users of the
model would still have confidence in it if the model risk were significant.
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8, which plots the log of the predicted value of storm damage from the model against the storm damage

amounts.  The plotted points adhere closely to the 45b line representing equality between the actual and

predicted storm damage.  As expected given the goodness-of-fit of the model, linear and non-linear hedges

using the predicted values from the model as the loss index perform almost identically with the statewide

loss index.  Hedging with parametric models fitted to losses by region comes equally close to replicating the

results with the actual regional loss indices.

The principal advantage of a parametric model is to reduce the possibility of moral hazard.33

Because the predicted loss values from our regression model depend only upon physical characteristics of

the storm and the regions where it makes landfall, there is no incentive for insurers to over-report losses in

an attempt to increase recoveries if the parametric model were used to determine option settlements.  The

goodness-of-fit of the model indicates that insurers could hedge almost as effectively using the model as they

could using monetary loss indices.34  

5.  Conclusions

The securities market has responded to the dramatic increase in catastrophe losses over the last

decade by developing innovative new derivative securities to finance catastrophic loss.  The introduction

of insurance-linked securities also has been driven by the increasing recognition that conventional insurance
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and reinsurance markets do not provide efficient mechanisms for financing losses from low frequency, high

severity events.  CAT-risk securities are a particularly interesting example of a new type of derivative where

the underlying is not a traded asset or commodity, so that prices are not observed. Thus, CAT securities are

analogous to other new derivatives with “exotic underlyings,” such as weather derivatives.

The two most prominent types of CAT securities are the CBOT CAT option call spreads and CAT

bonds.  The call spreads settle on indices of industry-wide catastrophic property losses in various regions

of the U.S., while most CAT bonds settle on the losses of specific insurers.  CAT options are superior to

CAT bonds in having lower transactions costs and less exposure to moral hazard.  However, hedgers have

been skeptical about  CAT options because the resulting hedges are exposed to an unknown degree of basis

risk.  This paper responds to this concern by  providing new information on the basis risk of CAT index

options.  In addition, we test hypotheses about the relationship between insurer characteristics and revealed-

preferences for geographical diversification of exposure to loss.

The study proceeds in five principal stages: (1) We obtained data on the country-level exposure to

catastrophic property loss for 255 insurers accounting for 93 percent of insured residential property exposure

in Florida in 1998.  (2) We simulated 10,000 years of catastrophic property losses by county for each insurer

in the sample using a sophisticated catastrophic loss model developed by Applied Insurance Research (AIR).

(3) Hedge portfolios are specified for the insurers in the sample and hedge effectiveness is analyzed for a

statewide catastrophic loss index and four intra-state regional indices.  (4) Regression analysis is conducted

to test hypotheses about the relationship between insurer characteristics and hedging effiency.  And (5) a

parametric index is developed that breaks the link between the losses of specific insurers and the payoff

trigger of  insurance-linked security contracts. 

In our hedging analysis, we form portfolios consisting of a short position in insurer loss liabilities

and a long position in call option spreads on loss indices.  Three indices are analyzed – a “perfect” index

consisting of the insurer’s own losses, a statewide industry loss index, and four intra-state regional industry
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loss indices obtained by dividing the state into four quadrants.  Three criterion functions are minimized,

subject to cost constraints – the variance of the insurer’s net (of hedging) losses, the value at risk (VaR), and

the expected exceedence value (EEV), defined as the expected catastrophic loss conditional on the loss

exceeding a specified threshold.  We gauge hedging effectiveness by comparing hedges based on the

statewide and intra-state indices with perfect hedges based on each insurer’s own losses and define hedge

efficiency as the ratio of the risk reduction obtained using industry loss index options to the risk reduction

obtained using the perfect index.  

The principal finding is that firms in the three largest Florida market-share quartiles can hedge

almost as effectively using intra-state index contracts as they can using perfect-hedge contracts. For example,

the hedges based on intra-state index contracts are at least 90 percent as effective as the perfect hedge in

terms of reducing loss volatility for 152 of the 255 firms in the sample and at least 85 percent as effective

for 189 of the 255 sample firms.  Hedging with the statewide contracts, on the other hand, is effective only

for insurers with the largest state market shares and insurers that are highly diversified throughout the state.

Thus, the intra-state contracts hold significant promise for the development of a more liquid market for

insurance-linked securities. Hedging with intra-state contracts also offers insurers and policy makers a

solution to the catastrophic risk financing problem in Florida because the 152 firms that can hedge with at

least 90 percent efficiency account for 93.7 percent of the residential property exposure in the state. The

findings with regard to the intra-state contracts are also important because an index-contract market based

on smaller geographical areas such as counties or zip codes would likely encounter high transactions costs

and low liquidity in comparison with our more broadly defined intra-state indices.  

The analysis of the determinants of hedging efficiency supports the hypotheses that mutual insurers

can hedge more efficiently than stock firms and that unaffiliated single firms can hedge more efficiently than

insurers that are members of groups.  We argue that mutuals are more diversified than stocks because both

the owners and managers of mutuals are averse to insolvency risk. Unaffiliated firms are more diversified
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than members of groups because they do not have access to the capital of other group members if they suffer

a loss shock and do not have the benefit of diversifying risk with other affiliated firms. Finally, highly

leveraged firms tend to be more diversified than better-capitalized firms consistent with the hypothesis

highly leveraged firms have less capacity to bear risk. The evidence also supports the hypothesis that large

firms practice more effective risk management than smaller firms, consistent with the view that it is more

efficient for large insurers to incur the fixed and variable costs of acquiring risk management expertise.

Firms in the three largest Florida market share quartiles can hedge more efficiently than firms in the smallest

market share quartile, raising doubts about the long-run viability of the fourth-quartile insurers.

As expected, hedging with contracts that are sold at mark-ups over the expected loss is less efficient

than hedging using contracts sold at actuarially fair prices.  Even at the current markups in the CAT

securities market, however, insurance-linked securities are competitive with conventional reinsurance in

terms of price and hedging effectiveness.  Moreover, mark-ups in the CAT securities market can be expected

to decline as investors acquire more experience with these contracts and the market becomes more liquid.

CAT loss securities could come to dominate reinsurance for hedging low frequency, high severity events

if prices converge towards actuarial fairness.

Because there is still some concern about moral hazard in the use of loss-indexed securities, we also

estimate a parametric loss index by regressing losses from the hurricanes in our sample against three physical

measures of storm severity. The resulting model explains more than 90 percent of the variation in hurricane

losses and appears to be unbiased for losses of all magnitudes.  Either this index or similar indices could be

used to reduce insurer and investor concerns about moral hazard. 

Overall, our analysis suggests that insurance-linked securities based on exchange-traded, index-

linked contracts could be used effectively by insurers in hedging catastrophic risk.  This is important given

the inefficiency of the global reinsurance market in dealing with this type of loss.  Hedging of catastrophic

risk has the potential to avoid the destabilization of insurance markets resulting from a major event; and with
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more widespread trading, insurance-linked securities would play a price-discovery role, potentially

smoothing the reinsurance underwriting cycle.  The more widespread trading of insurance-linked securities

would allow investors to shift the efficient frontier in a favorable direction by further diversifying their

portfolios using these zero-beta assets.  

A final conclusion has to do with the management of insurers.  It is clear from our analysis that a

significant proportion of firms in the industry are well-positioned to avoid costs of financial distress by

hedging the risk of catastrophic loss.  However, it is also clear that too many firms are poorly diversified and

in the position to be hit hard by a major catastrophe.  Diversification of the underwriting portfolio is equally

important as diversification of the investment portfolio, and the managers of many insurers needs to pay

more attention to the former type of diversification.



Table 1
Premium to Expected Payout: Florida CBOT Options and CAT Bonds

Date Contract Premium
Lower
Strike

Upper 
Strike

No. of 
Contracts

Prem to 
E[Payout]

Feb-96 Sept/Dec 10,000          80 100 10 6.30
Aug-96 Sept 3,600            40 60 10 1.64
Aug-96 Sept 2,400            40 60 10 1.09
Jul-97 Sept/Dec 69,120          80 100 216 2.01
Jul-97 Sept/Dec 13,600          80 100 40 2.14
Jul-97 Sept/Dec 13,600          80 100 40 2.14
Jul-97 Sept 2,200            100 120 10 2.80
Jul-97 Sept 1,200            100 120 5 3.06
Aug-97 Sept/Dec 8,500            80 100 25 2.14
Sep-97 Sept 1,300            100 120 5 3.31
Dec-97 Dec 600              80 100 30 0.42
Dec-97 Dec 700              80 100 30 0.49

Average 2.30
Source: Chicago Board of Trade and Applied Insurance Research Median 2.14

Date
Transaction 

Sponsor
Spread 

Premium
Prob of 1st 

$ of Loss E[L | L >0]
Expected 

Loss
Prem to 
E[Loss] Risk

Mar-00 SCOR 2.7% 0.19% 57.89% 0.11% 24.55 Eathquake, Windstorm
Mar-00 SCOR 3.70% 0.29% 79.31% 0.23% 16.09 Eathquake, Windstorm
Mar-00 SCOR 14.00% 5.47% 59.23% 3.24% 4.32 Eathquake, Windstorm
Mar-00 Lehman Re 4.50% 1.13% 64.60% 0.73% 6.16 Earthquake
Nov-99 American Re 2.95% 0.17% 100.00% 0.17% 17.35 Hurricane & Earthquake
Nov-99 American Re 5.40% 0.78% 80.77% 0.63% 8.57 Hurricane & Earthquake
Nov-99 American Re 8.50% 0.17% 100.00% 0.17% 50.00 Hurricane & Earthquake
Nov-99 Gerling 4.50% 1.00% 75.00% 0.75% 6.00 Earthquake
Jun-99 Gerling 5.20% 0.60% 75.00% 0.45% 11.56 Hurricane: Multiple Event
Jun-99 USAA 3.66% 0.76% 57.89% 0.44% 8.32 Single Hurricane
Jul-99 Sorema 4.50% 0.84% 53.57% 0.45% 10.00 Earthquake, Typhoon
Jul-98 Yasuda 3.70% 1.00% 94.00% 0.94% 3.94 Typhoon

Mar-99 Kemper 3.69% 0.58% 86.21% 0.50% 7.38 Earthquake
Mar-99 Kemper 4.50% 0.62% 96.77% 0.60% 7.50 Earthquake
May-99 Oriental Land 3.10% 0.64% 66.04% 0.42% 7.35 Earthquake
Feb-99 St. Paul/ F&G Re 4.00% 1.15% 36.52% 0.42% 9.52 Aggregate Cat
Feb-99 St. Paul/ F&G Re 8.25% 5.25% 54.10% 2.84% 2.90 Aggregate Cat
Dec-98 Centre Solutions 4.17% 1.20% 64.17% 0.77% 5.42 Hurricane: Multiple Event
Dec-98 Allianz 8.22% 6.40% 56.41% 3.61% 2.28 Windstorm and Hail
Aug-98 X.L./MidOcean Re 4.12% 0.61% 63.93% 0.39% 10.56 Cat: Multiple Event
Aug-98 X.L./MidOcean Re 5.90% 1.50% 70.00% 1.05% 5.62 Cat: Multiple Event
Jul-98 St. Paul/ F&G Re 4.44% 1.21% 42.98% 0.52% 8.54 Aggregate Cat
Jul-98 St. Paul/ F&G Re 8.27% 4.40% 59.09% 2.60% 3.18 Aggregate Cat

Jun-98 USAA 4.16% 0.87% 65.52% 0.57% 7.30 Single Hurricane
Mar-98 Centre Solutions 3.67% 1.53% 54.25% 0.83% 4.42 Hurricane: Multiple Event
Dec-97 Tokio Marine & Fire 2.09% 1.02% 34.71% 0.35% 5.90 Earthquake
Dec-97 Tokio Marine & Fire 4.36% 1.02% 68.63% 0.70% 6.23 Earthquake
Jul-97 USAA 5.76% 1.00% 62.00% 0.62% 9.29 Single Hurricane

Aug-97 Swiss Re 2.55% 1.00% 45.60% 0.46% 5.59 Earthquake
Aug-97 Swiss Re 2.80% 1.00% 46.00% 0.46% 6.09 Earthquake
Aug-97 Swiss Re 4.75% 1.00% 76.00% 0.76% 6.25 Earthquake
Aug-97 Swiss Re 6.25% 2.40% 100.00% 2.40% 2.60 Earthquake

Source:  Goldman Sachs & Co. Premium/E[Loss] Average = 9.00; Median = 6.77.

A. Florida CBOT Call Spreads

B. Catastrophe (CAT) Bond Issues
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Table 2
Simulating Insured Losses Using the AIR Model



Variable Size Quartile Average Std. Deviation Minimum Maximum
Statewide Exposure Limits 1 10,488,076,940            27,023,882,691           947,613,000          197,123,513,015   

2 489,399,825                 209,101,097                212,101,944          917,368,990          
3 87,212,264                   55,098,625                  21,396,000            206,663,000          
4 6,603,762                     7,059,451                    1,000                     21,090,000            

All Insurers 2,778,651,509              14,183,583,447           1,000                     197,123,513,015   
Statewide Market Share 1 1.373% 3.538% 0.124% 25.810%

2 0.064% 0.027% 0.028% 0.120%
3 0.011% 0.007% 0.003% 0.027%
4 0.001% 0.001% 0.000% 0.003%

All Insurers 0.364% 1.857% 0.000% 25.810%
Number of Counties with Exposure 1 58.344                          11.360                         15.000                   67.000                   

2 44.234                          14.777                         9.000                     67.000                   
3 29.203                          19.145                         3.000                     67.000                   
4 12.476                          16.264                         1.000                     67.000                   

All Insurers 36.157                          23.095                         1.000                     67.000                   
% of Counties with Ocean Exposure 1 47.104% 9.248% 25.000% 100.000%

2 52.657% 8.741% 38.636% 81.818%
3 60.400% 17.039% 26.471% 100.000%
4 70.612% 26.259% 0.000% 100.000%

All Insurers 57.642% 18.931% 0.000% 100.000%
% of Exposures in Ocean Counties 1 70.150% 16.715% 23.198% 100.000%

2 71.446% 18.197% 18.563% 99.657%
3 70.092% 27.229% 8.702% 100.000%
4 73.570% 31.800% 0.000% 100.000%

All Insurers 71.306% 24.169% 0.000% 100.000%
County Market Share CoV 1 1.365                            0.607                           0.363                     3.414                     

2 2.204                            1.143                           0.720                     5.983                     
3 3.353                            1.515                           0.931                     7.765                     
4 5.380                            2.165                           1.316                     8.185                     

All Insurers 3.066                            2.096                           0.363                     8.185                     
County Market Share Herfindahl 1 0.084                            0.055                           0.024                     0.262                     

2 0.126                            0.116                           0.030                     0.649                     
3 0.240                            0.203                           0.025                     0.892                     
4 0.448                            0.315                           0.035                     1.000                     

All Insurers 0.224                            0.242                           0.024                     1.000                     
Note - Data obtained from Florida Department of Insurance regulatory filings.  264 insurer have exposure to losses due to hurricanes of which 255 insurers 
have usable data.  The data set includes 92.8 percent of exposures in Florida subject to windstorm loss.  Insurers in quartile 1 had 87.9% of exposure 
limits in the state. Quartiles 2, 3, and 4 had 4.1%, 0.73% and 0.054% of the exposure limits in the state, respectively.

Table 3
Summary Statistics 1998 Florida Insurer Exposure Database



Variable Statewide Regional Statewide Regional
% of Exposures in Ocean Front Counties 0.505 0.106 0.527 0.137

(28.347) (8.937) (28.661) (10.158)
Coeff. of Variation of County Market Share -0.048 -0.037 -0.045 -0.034

(16.549) (19.574) (15.200) (15.679)
Mutual Organization Form Indicator 0.009 0.019 0.009 0.036

(0.823) (2.601) (0.827) (4.338)
Single Unaffiliated Insurer Indicator -0.054 0.024 -0.036 0.034

(3.280) (2.244) (2.136) (2.638)
Liabilities-to-Assets Ratio 0.068 0.045 0.050 0.037

(2.996) (2.994) (2.130) (2.115)
First Quartile Florida Exposure Indicator 0.061 0.083 0.075 0.110

(3.677) (7.475) (4.351) (8.583)
Second Quartile Florida Exposure Indicator 0.047 0.115 0.049 0.133

(3.102) (11.482) (3.162) (11.592)
Third Quartile Florida Exposure Indicator 0.052 0.096 0.058 0.091

(3.907) (10.901) (4.216) (9.064)
First Quartile Total Assets Indicator 0.017 -0.011 0.039 -0.010

(1.145) (1.107) (2.577) (0.836)
Second Quartile Total Assets Indicator 0.023 -0.011 0.038 0.002

(1.609) (1.153) (2.583) (0.141)
Third Quartile Total Assets Indicator -0.019 0.007 0.003 0.017

(1.441) (0.802) (0.225) (1.622)
5% Cost Constraint 0.282 0.804 0.289 0.839

(10.452) (44.870) (10.402) (40.892)
10% Cost Constraint 0.305 0.791 0.255 0.762

(11.340) (44.176) (9.195) (37.326)
15% Cost Constraint 0.320 0.793 0.229 0.699

(11.886) (44.299) (8.254) (34.262)
20% Cost Constraint 0.329 0.792 0.240 0.696

(12.200) (44.217) (8.649) (34.130)
25% Cost Constraint 0.334 0.794 0.269 0.711

(12.405) (44.339) (9.687) (34.876)
30% Cost Constraint 0.337 0.793 0.309 0.747

(12.506) (44.316) (11.109) (36.527)
35% Cost Constraint 0.339 0.794 0.344 0.781

(12.582) (44.331) (12.374) (38.054)
40% Cost Constraint 0.340 0.794 0.375 0.805

(12.637) (44.335) (13.467) (39.122)
45% Cost Constraint 0.341 0.795 0.401 0.833

(12.675) (44.408) (14.397) (40.336)
50% Cost Constraint 0.343 0.797 0.426 0.860

(12.748) (44.532) (15.280) (41.347)

Log Likelihood Function Value 388.000 1409.312 198.411 663.604
Likelihood Ratio Test Statistic 20.650 1.590 135.140 316.500

Note: z-statistics shown in parentheses.  Estimation conducted using the Tobit procedure. 
The intercept term has been supressed since the model includes cost constraint dummy variables.  
The null hypothesis for the likelihood ratio test is that all cost constraint dummary variables are equal.  
Critical values for the chi-squared distribution with nine degrees of freedom at the one and five percent
levels are 21.67 and 16.92, respectively.  

Table 4
Determinants of Hedging Effectivess

Dependent Variable = Risk Reduction Index/Perfect Hedge

Variance Reduction EEV Reduction



Table 5
Parametric Index Regression

Dependent Variable = Log(Storm Damages)

Variable
Coefficient / 

(t-Ratio)

Intercept 2.147
(5.30)

Log(30 - Central Pressure) 4.617
(46.17)

Log(Fwd. Windspeed) -0.172
(2.18)

Log(Radius) 1.163

(14.19)
R2 90.50%
Adjusted R2 90.13%
Note - t-statistics shown in parentheses.  Landfall segment dummy 
variables are included but not shown.  All but two are landfall variables
are significant at the 1% level or higher.  The F statistic testing the null 
hypothesis that all landfall segment dummy variables are jointly
equal to zero is equal to 1785.648.  The number of simulated hurricane 
over the 1000 year simulation period = 867.



Expected Exceedence Value (EEV) Reduction:
Market Price EEV Reduction/Actuarial EEV Reduction

Cost
(% of EV) Perfect State Regional

5.0% 0.9% 49.3% 50.5%
10.0% 12.9% 50.7% 54.6%
15.0% 15.7% 56.4% 58.4%
20.0% 20.3% 63.0% 64.5%
25.0% 24.6% 69.5% 70.0%
30.0% 29.2% 74.7% 75.7%
35.0% 34.0% 77.9% 81.5%
40.0% 38.9% 80.6% 84.4%
45.0% 43.7% 82.3% 88.4%
50.0% 48.6% 83.9% 90.8%

Note:  The percentages are the ratio of the EEV reduction 
using hedge contracts with median market risk premia divided 
by the EEV reduction that is obtained using hedges priced at 
the expected loss.  The price-to-expected-loss ratio for the 
perfect hedge contracts 6.8, and the price-to-expected-loss 
ratio for the state and regional contracts are 2.1.  These ratios 
are the median ratios for the CAT bond and CBOT option 
contracts, respectively, shown in Table 1.

Table 6

Market/Actuarial



Figure 1
CAT Bond With Single Purpose Reinsurer
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Figure 2A
Variance Reduction Using Non-Linear Contracts: Highly Diversified Insurer
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Figure 2B
Variance Reduction Using Non-Linear Contracts: Undiversified Insurer
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Figure 3
Variance Reduction Frontiers: Average For Insurers in Largest Size Quartile
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Figure 4
Variance Reduction Frontiers Using Non-Linear Contracts & Regional Indices 

By Insurer Size Quartile
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Figure 5
Variance Reduction Hedging Efficiency: Non-Linear Contracts

Hedging Cost Constraint = 25 Percent of Expected Annual Losses
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Figure 6
Expected Exceedence Value Reduction: Non-Linear Contracts

Average For Insurers In Largest Size Quartile
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Figure 7
Expected Exceedence Value Reduction Efficiency: Non-Linear Contracts

Hedging Cost Constraint = 25 Percent of Expected Annual Losses
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Figure 8
Parametric Index vs. Florida Industry Loss Amounts
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Appendix A

The Applied Insurance Research (AIR) Catastrophe Simulation Models

In this Appendix, we describe AIR’s approach to the modeling of natural catastrophes, with a focus on
hurricanes. We then discuss how catastrophe modeling technology is used to estimate both index values and
individual company loss.  A more detailed technical description of the model is available from the authors.

AIR catastrophe models use sophisticated simulation techniques to estimate the probability distribution of
losses that result from potential natural catastrophes.  A simplified flow chart of the model is shown in
Figure A.1. The model first generates the frequency with which events occur, their location and magnitude.
After simulated events are generated, they are propagated over the affected area. Local intensity is calculated
for every site affected by the event. Next, using detailed information on property locations, values and
construction characteristics, the AIR models estimate the probabilities of losses of various sizes. Insured
losses are calculated by applying policy conditions to the total damage estimates. This information is then
synthesized and further analyzed to assist in risk management.

The AIR Hurricane Model

The hurricane loss estimation methodology employed by AIR is based on well-established scientific theory
in meteorology and wind engineering. The simulation models were developed through careful analyses and
synthesis of all available historical information and they incorporate statistical descriptions of a large number
of variables that define both the originating event (e.g., hurricane) and its effect on structures. The models
are validated and calibrated through extensive processes of both internal and external peer review, post-
disaster field surveys, detailed client data from actual events and overall reasonability and convergence
testing. The AIR hurricane model has been used by the insurance industry since 1987 and is well known for
its reliability and the credibility of the loss estimates it generates.

AIR employs Monte Carlo simulation, a well-known statistical technique, to generate simulated storms.
Monte Carlo simulation involves an iterative process using, in each simulation, a set of values stochastically
drawn from the probability distributions governing each of the random variables being analyzed. In the AIR
hurricane model, the random variables being analyzed are landfall location and hurricane frequency, as well
as the primary meteorological parameters of each simulated storm (see “Hurricane Event Generation”
below). Theoretical probability distributions are fit to the historical data using goodness-of-fit tests and
AIR’s meteorological expertise. By repeating the simulation process, a sample of more than eighteen
thousand storms is generated, each corresponding to a different set of random values assigned to the storm
parameters. A sample from a Monte Carlo simulation can be analyzed in ways similar to the ways in which
a sample of experimental observations can be analyzed. In particular, a sample from a Monte Carlo
simulation can be analyzed statistically to generate probability distributions of losses for individual buildings
or portfolios of buildings, given the characteristics of each simulated event.

To estimate the hurricane loss potential, 10,000 annual scenarios of potential hurricane experience were
simulated, incorporating over 18,000 simulated events. The first step of the AIR hurricane model is to
generate the number of hurricanes estimated to make landfall in the simulated year. The model allows for
the possibility of multiple events occurring within a single year. That is, each simulated year may have no,
one, or multiple events, just as might be observed in an actual year. For each simulated hurricane, the model
first assigns a landfall location and values for each of the modeled meteorological characteristics. It then
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estimates the potential property damage on the basis of a complete time profile of wind speeds, or windfield,
at each location affected by each simulated storm. (The AIR hurricane model also estimates losses from
storms that bypass the coast without making actual landfall.)

Data Sources and Analysis

The meteorological sources used to develop the AIR model are databases, information, and publications
available from various agencies of the U.S. National Oceanic and Atmospheric Administration (NOAA),
including the U.S. National Weather Service (NWS) and the National Hurricane Center. These agencies
gather original data on historical hurricanes from such sources as barograph traces from land stations and
ships, actual wind records from NWS stations, aircraft reconnaissance flight data, radar data and other
pressure and wind reports. These original data are not necessarily consistent. NWS scientists analyze these
raw data and use them, along with their professional judgment, to synthesize the primary meteorological
characteristics of each historical storm. This final synthesized data are used in developing the AIR model.

AIR then uses statistical estimation techniques to fit various probability distributions to the available
meteorological data on historical hurricanes. The distributions employed by the AIR hurricane model are
standard statistical distributions that are representative of the underlying historical distributions of the
meteorological data. It is not likely, however, that the fitted distributions will duplicate the true underlying
distribution of the meteorological data.

Hurricane Event Generation

The first component of the AIR hurricane model provides for the generation of simulated hurricanes. Many
thousands of scenario years are generated to produce the complete and stable range of potential annual
experience of hurricane activity. For each scenario year, the model generates the fundamental characteristics
of each simulated storm, including frequency of occurrence, landfall location and track, and the intensity
variables of central pressure, radius of maximum winds and forward speed.

Hurricane Frequency. The model generates the number of hurricanes making landfall for each
simulated year from an annual frequency distribution. AIR estimates the parameters of this distribution using
the actual hurricane occurrences for the 99 years from 1900 to 1998. The sample includes all landfalling and
bypassing hurricanes, where bypassing storms are defined as storms passing sufficiently close to land to
cause significant damage.

Landfall Location. Because the values of property exposures vary along the coast, loss estimates can
also vary greatly depending on where a hurricane makes landfall. The AIR hurricane model identifies 3,100
landfall points along the coast from Texas to Maine—one for each nautical mile of “smoothed”
coastline—and groups these points into sixty-two 50-nautical mile segments of coastline in order to develop
a cumulative probability distribution of landfall locations. After tabulating the actual number of historical
hurricanes for each 50-nautical mile segment, the actual number of occurrences for each segment is
smoothed using a statistical smoothing method used in climatological studies and meteorological judgment.
This results in a probability distribution governing landfall location for each segment of modeled coastline.

For illustrative purposes, Figure A.2 shows the number of hurricanes that, since 1900, have made
landfall along the Florida coast at each of the twenty 50-nautical mile segments from the Alabama to the
Georgia borders. The smoothed frequency distribution ensures that each coastal segment has a non-zero
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probability of hurricane occurrence (except a few where meteorological or geographical factors prevent
hurricanes from making landfall). Therefore, the fact that no hurricane has made landfall at a particular
segment in the past does not mean that the AIR hurricane model will simulate no hurricanes for such a
segment. Accordingly, the AIR hurricane model allows for the possibility of a hurricane making landfall
almost anywhere along the Gulf and Atlantic coasts.

Key Meteorological Characteristics. Once a landfall location is generated for the simulated storm,
values are generated for each of the storm’s key meteorological characteristics at landfall. For purposes of
estimating the probability distributions of these other variables, the coastline from Texas to Maine has been
divided into thirty-one 100 nautical mile segments, and each geographic segment has a distinct distribution
associated with each variable. Historical storm data corresponding to each of these segments (along with
adjacent segments) and each of the variables is fit to theoretical probability distributions. These distributions
are used to generate values for each of the simulated storm’s key meteorological characteristics, which are:

Central Barometric Pressure.  This variable is the lowest sea level barometric pressure at the
center of the hurricane. It is the primary determinant of hurricane wind speed. Wind speeds typically increase
as the central barometric pressure decreases or, more precisely, as the difference between central pressure
and peripheral pressure increases.

Radius of Maximum Winds.   The strongest winds in a hurricane are typically found at some
distance from the center of the storm. This distance is known as the “radius of maximum winds,” and it can
range from 5 to over 50 nautical miles. Very intense storms typically have a small radius of maximum winds.
A storm making landfall at higher latitudes will typically have a larger radius of maximum winds than one
making landfall at lower latitudes.

Forward Speed. This is the rate at which a hurricane moves from point to point. Faster moving
storms typically go further inland and are therefore likely to result in losses over a larger area. On the other
hand, a faster moving storm will subject any given building to high wind speeds for a shorter duration. In
some areas, particularly along the coast, this can lead to lower losses than might otherwise be the case. Both
effects are taken into account in the AIR hurricane model.

Storm Track. This is the path the storm takes after landfall, important in determining the properties
and structures that are in the path of a hurricane. AIR generates simulated storm tracks based on conditional
probability matrices. These allow simulated storm tracks to more closely resemble the curving and recurving
tracks that are actually observed.

Local Intensity

Once the model generates the storm characteristics and point of landfall, it propagates the simulated storm
along a path characterized by the track direction and forward speed. As the storm moves inland at the
forward speed generated as described above, wind speeds begin to diminish due to filling and surface terrain
effects. In order to estimate the property losses resulting from the simulated storms, the AIR hurricane model
first generates the complete time profile of wind speeds, or windfield, at each location affected by the storm.

Windfield generation requires the following steps:
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Maximum Wind Speed. he maximum over-water wind speed is calculated for each simulated
hurricane.

Asymmetry Factor. An asymmetry factor, which captures the combined effects of the counter-
clockwise motion of hurricane winds and the storm’s forward speed, increases wind speeds on the right of
the hurricane track, and decreases wind speeds on the left of the track.

Filling Equations. After a hurricane makes landfall, the pressure in the eye of the storm begins to
increase, or “fill,” causing wind speeds to dissipate. The AIR hurricane model filling equations are a function
of geographic region, distance from the coast, and time since landfall. The wind speed at the eye of the storm
at any point in time is thus dependent upon the number of hours since landfall.

Adjustment of Wind Speeds for Surface Friction. Each location is assigned an adjustment factor, or
friction coefficient, to account for the effects of the local terrain. The horizontal drag force of the earth’s
surface reduces wind speeds. The addition of obstacles such as buildings will further degrade winds. Friction
coefficients are based on digital land use/land cover data.

Estimation of Damages

Once the model estimates peak wind speeds and the time profile of wind speeds for each location, it
generates damage estimates for different types of property exposures by combining the exposure information
with wind speed information at each location affected by the event.

To estimate building damage and the associated losses, the AIR hurricane model uses damageability
relationships, or damage functions. These damageability relationships have been developed by AIR
engineers for a large number of different construction and occupancy classes, each designed to provide
insight into the wind resistivity of a building.

AIR engineers have developed separate damageability relationships for building contents, with contents
damageability a function of the building damage. A third set of functions is used to estimate time element
damageability, a function of damage to the building, the time needed to repair or reconstruct the building
to usable condition, and the per diem expense incurred as a result of the building being unusable or
uninhabitable.

Separate damageability relationships for each of building and contents provide estimates of the mean, or
expected, damage ratio corresponding to each wind speed as well as probability distributions around such
mean. In the case of building damageability, the damage ratio is the dollar loss to the building divided by
the corresponding replacement value of the building. For contents, it is the dollar loss to the contents divided
by the replacement value of the contents. For time element, the number of calendar days that the building
is uninhabitable or unusable is estimated based on the building damage ratio. To calculate business
interruption losses, the number of calendar days of effective downtime is multiplied by a per diem factor.
For both mean damage ratios, the probability distribution of damage ranges from no damage to complete
destruction, with probabilities assigned to each level of damage in between. The model estimates non-zero
probabilities of zero and one hundred percent loss, as is consistent with empirical observation. A high degree
of variability in damage is sometimes observed even within a very small geographic area. AIR damageability
relationships attempt to capture this variability.
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AIR engineers have developed and refined the damageability relationships over a period of several years.
They incorporate documented studies by wind engineers and other experts both within and outside AIR.
They also incorporate the results of post-hurricane field surveys performed by AIR engineers and others, and
by the analysis of actual loss data provided to AIR by client companies.

Insured Loss Module

In this last component of the catastrophe model, insured losses are calculated by applying the policy
conditions to the total damage estimates. Policy conditions may include deductibles by coverage, site-
specific or blanket deductibles, coverage limits and sublimits, loss triggers, coinsurance, attachment points
and limits for single or multiple location policies, and risk specific reinsurance terms.

Model Output

After all of the insured loss estimations have been completed, they can be analyzed in ways of interest to risk
management professionals. For example, the model produces complete probability distributions of losses,
also known as exceedence probability curves. Output includes probability distributions of gross and net
losses for both annual aggregate and annual occurrence losses. The probabilities can also be expressed as
return periods. That is, the loss associated with a return period of 10 years is likely to be exceeded only 10
percent of the time or, on average, in one year out of ten. 

Output may be customized to any desired degree of geographical resolution down to location level, as well
as by line of business, and within line of business, by construction class, coverage, etc. The model also
provides summary reports of exposures, comparisons of exposures and losses by geographical area, and
detailed information on potential large losses caused by extreme “tail” events.

Validation and Peer Review of the AIR Models

AIR scientists and engineers validate the models at every stage of development by comparing model results
with actual data from historical events. The simulated event characteristics parallel patterns observed in the
historical record and resulting loss estimates correspond closely to actual claims data provided by clients.
Internal peer review is a standard operating procedure and is conducted by the AIR professional staff of over
50 scientists and engineers, one third of whom hold Ph.D. credentials in their area of expertise. AIR models
have also undergone extensive external review, beginning with Dr. Walter Lyons’ systematic review of the
AIR hurricane model in 1986. Dr. Lyons is an expert meteorologist and consultant with over 24 years of
experience and over 130 published book chapters and articles.

Probably the most extensive catastrophe model approval process established to date is that of the Florida
Commission on Hurricane Loss Projection Methodology. This Commission was established in 1995 with
the mission to “assess the effectiveness of various methodologies that have the potential for improving the
accuracy of projecting insured Florida losses resulting from hurricanes and to adopt findings regarding the
accuracy or reliability of these methodologies for use in residential rate filings.” The Commission has
established 40 standards that need to be met before a catastrophe model is acceptable for ratemaking
purposes in the state of Florida. The AIR hurricane model was the only model approved under the 1996
standards, and it has consistently been approved under the standards of subsequent years.
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Recent years have witnessed a transfer of catastrophe risk to the capital markets through the issuance of
catastrophe, or “cat”, bonds. AIR models have been used in the majority of the transactions that have been
based on catastrophe modeling. In fact, of the nearly $2 billion of risk capital raised in the last few years,
close to 70 percent has been raised in transactions based on AIR catastrophe modeling technology, including
modeling of earthquakes, hurricanes, other windstorms. Investors have relied on the research and due
diligence performed by the securities rating agencies – Standard & Poor’s, Moody’s Investors Service, Fitch
Investors Service, and Duff & Phelps – to make their investment decisions. As part of the due diligence
process, the AIR models and their underlying assumptions undergo extensive scrutiny by outside experts
hired by these rating agencies as well as by their own experts. Detailed sensitivity analyses of the major
components of the model are performed, stress testing each for model robustness.

Estimating Industry Losses

A fundamental component of AIR analysis is the “industry loss file,” which is a set of estimates of insured
industry losses resulting from the events simulated by the AIR catastrophe models. To create the industry
loss file, the AIR models estimate the impact of each peril by applying event characteristics to industry-wide
exposure data (as opposed to data for a specific insurer). AIR’s estimated property values (see “AlR’s
Database of Insured Property Values,” below) for commercial, residential, mobile home and automobile
properties are entered into these models and insured losses are estimated. This analysis results in an industry
loss file, which consists of the estimated industry losses by county for each of the four business lines, for
each simulated event and for each year of simulated events. This industry loss file forms the basis for
estimating index values.

For industry loss based indexes, the industry loss file contains the event by event and year by year simulated
industry loss values needed to construct both occurrence and aggregate index values. Additionally, the
industry loss file contains descriptive information in the form of the simulated parameters such as central
pressure, radius of maximum winds and forward speed for each event, which are used in the construction
of the parametric indexes studied herein. By running underlying exposure through the model, any index can
be simulated. For example the exposures that underlie the GCCI can be quickly analyzed and the index
values estimated.

AIR’s Database of Insured Property Values

AIR has developed databases of estimated numbers, types, and values of properties for residential,
commercial, mobile home, and automobile insured values in the United States by five-digit ZIP code. These
databases have been constructed from a wide range of data sources and reflect the estimated total
replacement cost of U.S. property exposures. They are used to estimate total insured property losses. Insured
loss estimates are based on assumptions as to the level of deductibles, and how many of the total properties
are insured.

The numbers of properties, estimated property values, and other assumptions underlying the database are
based on annually updated information. Assumptions specifically regarding insurance policies and trends
are based on insurance industry sources including clients, industry organizations, and government studies.
The property value databases are developed, maintained and enhanced through an ongoing process of data
collection, synthesis and analysis. Much of the information required to develop the estimated values is
acquired each year from governmental statistical agencies and private firms that specialize in this type of
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information. For example, primary data sources in the United States include the U.S. Census Bureau, Dun
& Bradstreet, Claritas, the Insurance Information Institute and R.S. Means.

Most data sources supply updated information on an annual basis. While such data sources contain extensive
information, AIR has developed internal procedures that select and transform collected data into the required
exposure data estimates. These procedures include combining the data from multiple sources and performing
appropriate allocations or aggregations of data. For purposes of this analysis, the industry exposure database
information is as of July 31, 1998 and no adjustments have been made to reflect the effects of inflation or
any other factor since that time.

Estimating Company Losses

For each company in this study, AIR received information on the exposures as described earlier. Where
detailed classifications were not provided, AIR assumed industry average characteristics. This exposure
information was input into the model described above and, using the same catalogue of events that generated
the industry losses, individual company losses were determined. The results are individual company losses,
industry loss and event characteristics for each simulated event.
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Flow Chart of the AIR Model

Figure A.2
Number of Hurricanes Making Landfall in Florida: 1900-1998
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