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1 Introduction

Risk management in general and credit risk analysis in particular has been the focus of extensive

research in the past several years. Credit risk is the dominant source of risk for banks and the

subject of strict regulatory oversight and policy debate. More recently, the proposal by the Bank

for International Settlements (BIS) to reform the regulation of bank capital for credit risk (known

as the New Basel Accord, or BIS 2) has initiated debates on a number of issues in the literature.1

One of the issues under discussion centers on the effects of business cycles, especially of severe

economic downturns, on bank risk and value-at-risk capital requirements (Carpenter, Whitesell

and Zakrajšek 2001, Carey 2002, Allen and Saunders 2004). However, this discussion has been

taking place largely without the benefit of an explicit model that links the loss distribution of a

bank’s credit portfolio to the evolution of directly observable macroeconomic factors at national

and global levels. Given the increasing interdependencies in the global economy, risk managers of

commercial and central banks alike may well be interested in questions like “What would be the

impact on the credit loss distribution of a given bank (or banks) in a given region if there were

large unfavorable shocks to equity prices, GDP or interest rates in that or other regions?”

The purpose of this paper is to show how global macroeconometric models can be linked to

firm specific return processes which are an integral part of Merton-type credit risk models so that

quantitative answers to such questions can be obtained. We propose a combined model of credit

losses contingent on the macroeconomy that is able to distinguish between default (and loss) due to

systematic versus idiosyncratic (or firm specific) shocks, providing an explicit channel for modeling

default correlations. This enables us to conduct simulation experiments on the effect of changes in

observable macroeconomic dynamics on credit risk.

In providing such a linkage, the main conceptual challenge is to allow for firm-specific business

cycle effects and the heterogeneity of default probabilities across firms. Standard credit risk models

pioneered by Vasicek (1987) and elaborated in Vasicek (1991, 2002) and Gordy (2003), adapt the

option-based approach of Merton (1974) and allow for business cycle effects generally via one or

more unobserved systematic risk factors. They assume that the processes generating asset values

and the default thresholds are homogeneous across firms. The parameters of the loss distribution

are then identified by fixing the cross-firm correlation of asset returns and the mean default rate

of the credit portfolio. Operational versions of the Vasicek model, e.g. by KMV, allow for firm

heterogeneity by making use of balance sheets, income statements and other similar reports issued

by the firm. This process inevitably involves a certain degree of subjective evaluation, however,

and the outcome is generally proprietary information.2

1For details of BIS 2 see BIS (2001, 2004), and for an account of the debates see, for example, Jones and Mingo

(1998), and Altman, Bharath and Saunders (2002).
2Credit portfolio models also differ in the way they model changes to the firms’ value. Some models operate on a

mark-to-market basis by looking at the change of market value of credit assets based on credit migration and the term
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Examples of credit risk portfolio models in the professional literature include Gupton, Finger

and Bhatia’s (1997) CreditMetrics, KMV’s PortfolioManager, and the actuarial approach employed

by CSFB’s CreditRisk+ (Credit Suisse First Boston 1997) where the key risk driver is the variable

mean default rate in the economy. Wilson’s (1997a,b) model (CreditPortfolioView) is an exception.

He allows for the macroeconomic variables to influence a firm’s probability of default using a pooled

logit specification. However, because the defaults are grouped, typically by industry, and modeled at

the (single country) national level, any firm-specific heterogeneity is lost in the estimation process.

For detailed comparisons, see Koyluoglu and Hickman (1998), Crouhy, Galai and Mark (2000),

Gordy (2000) and Saunders and Allen (2002).

In this paper we depart from the literature in two important respects. First, we model individual

firm returns (taken as proxies for changes in asset values) in terms of a number of directly observable

contemporaneous risk factors, such as changes in equity indices, interest rates, inflation, real money

balances, oil prices and output, both domestic and foreign. In this way we allow for the possible

differential impacts of macroeconomic factors on the evolution of firm’s asset values, and as such

their default probabilities. Second, using historical observations on mean returns, volatility and

default frequencies of firms for a particular credit rating, we compute firm-specific default threshold-

equity ratios under the assumption that two firms with identical credit ratings are likely to have

similar default threshold-equity ratios. Thus we are able to provide an empirical implementation

of the Merton model using only two pieces of publicly available information for each firm, namely

market returns and credit ratings, in a multi-country setting.

The problem of obtaining accurate information about the health of a firm, while not new, is

particularly relevant for modeling firms’ bankruptcy or default. Our approach has the advantage

that it does not rely on firm-specific accounting data which are at best noisy and at worst biased

due to the information asymmetries between company managers (agents) and share/debt holders

(principals). Rating agencies are likely to have access to private information about the firm’s past

performance and its current management, in addition to public information from balance sheets and

company reports, in arriving at their firm-specific credit ratings. In the pursuit of better ratings,

companies have more of an incentive to reveal (some of) their private information to the credit

rating agencies than to their debt-holders, very much in the same spirit that second—hand car dealers

have the incentive to reveal information about the cars they offer for sale by the duration of the

guarantees and other after-sales services that they provide. Moreover, basing the analysis strictly

on accounting data would make it difficult to harmonize information across different accounting

standards and bankruptcy codes from different countries, a source of heterogeneity presumably

addressed by rating agencies.

structure of credit spreads (CreditMetrics). Others focus on predicting default losses (so-called default mode models

such as CSFB’s CreditRisk+). Yet there are other approaches that allow for both (e.g. KMV’s PortfolioManager,

Wilson’s CreditPortfolioView).
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In short, in our framework the portfolio loss distribution is driven by firms’ credit ratings and

how their returns are tied to business cycles, both domestic and foreign, and how business cycles are

linked across countries. This is in contrast to credit risk analyses that explicitly focus on modeling

of individual firm defaults, using panel probit or logit specifications (Altman and Saunders 1997,

Lennox 1999). Since defaults are rare, to obtain sensible estimates these applications tend to impose

strong homogeneity assumptions on the parameters, which could bias the estimates. For instance,

it is impossible to allow for any firm-specific (e.g. fixed) effects. The probit/logit approach is also

difficult to adapt for the analysis of multi-period credit loss distributions, whilst our approach can

be readily extended for such purposes.3

To link the firm-specific returns to business cycle factors we shall make use of the global vector

autoregressive (GVAR) macroeconometric model recently developed by Pesaran, Schuermann and

Weiner (2004) — hereafter PSW. This model is composed of vector error-correcting models (VECM)

estimated for individual countries (or regions), which are then combined into a global model that

takes account of both intra- and inter-country/regional interactions. The model uses domestic

macroeconomic variables such as GDP, inflation, the level of short term interest rates, exchange

rate, equity prices (when applicable) and real money balances. These are related to corresponding

foreign variables constructed exclusively to match the international trade pattern of the country

under consideration. Because of the global nature of the model, we can analyze how a shock to

one specific macroeconomic variable affects other macroeconomic variables, even (and especially)

across countries, as well as shocks to risk factors, e.g. oil prices, affecting all regions.

We examine the credit risk of a fictitious corporate loan portfolio and its exposure to a wide

range of observable risk factors in the global economy. We model a firm’s probability of default as

a function of those risk factors but assume for simplicity that loss given default is an exogenously

given random variable whose specific parameterization can vary by country. Using the firm-specific

return regressions and the GVAR model, single- and multi-period credit loss distributions of a given

portfolio are then obtained through Monte Carlo simulations.

Our baseline expected losses are quite reasonable when compared with actual industry loan

charge-offs. For example, expected loss over the course of four quarters is about 58bp (basis

points) of exposure, compared with 89bp, the average net charge-offs (loans charged off less amount

recovered over total loans) for the U.S. banking industry from 1987 to 2003. When compared with

the actual industry charge-offs matched by our forecast horizon, namely 2000Q1, the difference is

even smaller: those were 56bp (at an annual rate). Much of the fat-tailedness of our loss distribution

is, however, due to the relatively small number of firms (119 in our portfolio) which entails a

substantial degree of diversifiable idiosyncratic risk. Once this is controlled for (by including ‘copies’

of the existing firms within the portfolio), the EL to VaR multiples are in line with those obtained

by others (e.g. Carey 2002 who has about 500 exposures). For instance, the tail values at 99% and

3A recent exception is Duffie and Wang (2003) who forecast default intensities over multiple periods.
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99.5% are around three to four times expected losses. Moreover, when we impose extreme shocks

such as those seen during the Great Depression, VaR is more than triple the baseline scenario,

also consistent with Carey’s results. We find further that symmetric shocks to the observable risk

factors do not result in correspondingly symmetric loss outcomes reflecting the nonlinear nature of

the credit risk model.

In attempting to provide a formal link between credit risk and the macro-economy we have

been forced to make many difficult choices. First, we confined our analysis to publicly traded

companies with a sufficiently long credit rating history. We assume that this credit rating is a

sufficient summary statistic of unconditional default risk, meaning that we take credit ratings as the

business cycle-neutral, ‘common currency’ of default risk across different geographies, legislations

and accounting standards. But we allow for firm-specific conditional default probabilities over the

course of the business cycle. To do this we need three different tools: (i) a model of the systematic

(macroeconomic) risk factors, (ii) firm returns and how they are linked to those factors, and (iii)

firm default thresholds. The GVAR satisfies the first requirement, and the link to firms is done

through firm-level return regressions by allowing the loadings on the macro-variables to be firm

specific. The default thresholds are identified by assuming that they are the same within a rating

category.4 Clearly, other modeling strategies and identification schemes can be adopted. The

present paper demonstrates that such an approach to credit risk modeling is in fact feasible.

Our model is particularly suited for an international and multi-factor interpretation of the

standard corporate finance view of firm risk: total risk is the sum of systematic and idiosyncratic

(i.e. firm-specific) risk. The GVAR is ostensibly a global model of systematic risk and its dynamics.

Having a model of those factor dynamics can go a long way to understanding firm risk (and

return) characteristics and to address specific risk management related questions. One which we

find particularly valuable is the ability to rank-order possible shock scenarios. Given a particular

portfolio of credit exposures, is a 1σ shock (one standard error shock) to Japanese money supply

more damaging (or beneficial, depending on the sign of the shock) than a 1σ shock to South East

Asian or U.S. equity markets? What will the portfolio loss distribution look like one year from

now? What if the portfolio changes? Such counterfactual questions are central to policy analysis,

be it by commercial or central bankers who might wish to investigate the impact on a representative

bank portfolio in their country of various economic shocks in other countries. If the model is not

compact enough, it cannot be practically used in this repetitive fashion.

The remainder of the paper is as follows: Section 2 provides an overview of the alternative

4The bankruptcy models of Altman (1968), Lennox (1999) and Shumway (2001) generate firm specific default

forecasts, as does the industry model by KMV (Kealhofer and Kurbat (2002)). However, all of these studies impose

more significant parameter homogeneity than we do, and they focus on just one country at a time (the U.S. and

U.K in this list), and thus do not address the formidable challenges of point in time bankruptcy forecasting with a

multi-country portfolio.
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approaches to credit portfolio modeling and puts forward our proposed approach. Section 3 briefly

discusses the GVAR model and shows how it is linked to the credit risk model. Mathematical

expressions for the conditional one-period and multi-period loss distributions of a given credit

portfolio under various shock scenarios are also obtained. Section 4 provides an empirical analysis

of the impact of the different types of shocks (to output, money supply, equity and oil prices) on

the loss distribution. Section 5 offers some concluding remarks.

2 Credit Portfolio Modeling

Credit risk modeling is concerned with the tail properties of the loss distribution for a given portfolio

of credit assets such as loans or bonds, and attempts to provide quantitative analysis of the extent

to which the loss distribution varies with changes to firm/industry-specific, national and global

risk factors. It can be approached from the perspective of the individual loans that make up the

portfolio, or it could be addressed by considering the return on the loan portfolio directly. In this

paper we follow the former approach and simulate the portfolio loss distribution from the bottom

up by considering how individual firms default.

Broadly speaking, there are two important variables describing asset/firm level credit risk: the

probability of default (PD) and the loss given default (LGD).5 Most of the work on PD and

LGD has been done without explicit conditioning on business cycle variables; exceptions include

Carey (1998), Frye (2000) and Altman, Brady, Resti and Sironi (2002). These studies find, perhaps

not surprisingly, that losses are indeed worse in recessions. Tapping into information contained

in equity returns (as opposed to credit spreads from debt instruments), Vassalou and Xing (2004)

show that default risk varies with the business cycle.6 Carey (2002), using re-sampling techniques,

shows that mean losses during a recession such as 1990/91 in the U.S. are about the same as losses

in the 0.5% tail during an expansion. Bangia et al. (2002), using a regime switching approach, find

that capital held by banks over a one-year horizon needs to be 25-30% higher in a recession that

in an expansion.

In this paper we shall consider the loss distribution of the credit portfolio of a financial institution

such as a bank by conditioning on observable macroeconomic variables or factors. The conditional

loss distribution allows for the effect of business cycle variations and captures such effects at a global

level by explicitly taking account of the heterogeneous interconnections and interdependencies that

exist between national and international factors.
5The New Basel Accord explicitly mentions two additional variables: exposure at default and maturity. As these

affect credit risk only moderately (and are often taken to be non-stochastic), our discussion will focus on the PD and

LGD which are the two dominant determinants of the credit loss distribution.
6See also the survey by Allen and Saunders (2004).
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2.1 A Merton-Based Model of Default

Following Merton (1974), a firm is expected to default when the value of its assets falls below a

threshold value determined by its callable liabilities. The lender is effectively writing a put option

on the assets of the borrowing firm. If the value of the firm falls below a certain threshold, the

owners will put the firm to the debt-holders.7 Default, as considered by the rating agencies and

banks, typically constitutes non-payment of interest or a coupon.8

Thus there are three aspects which require modeling: (i) the evolution of firm value, (ii) the

default threshold, and in a portfolio context, (iii) return correlations across firms in the portfolio.

We discuss the first two aspects in this section, while modeling of return correlations is treated

in Section 3.2. In Merton-type portfolio models, such as KMV, asset value and asset volatility

are typically derived from balance sheet data as well as observable equity returns and (estimated)

return volatility (see Kealhofer and Kurbat 2002). The default threshold in these models is typically

taken to be short term debt plus a proportion of long term debt. Asset value, asset volatility and

the default threshold are then used to determine the distance from default. In what follows we

advance an alternative approach where instead of using balance sheet data we make use of firm

credit ratings.

Consider a firm j in country or region i having asset values Vji,t at time t, and an outstanding

stock of debt, Dji,t. Under the Merton (1974) model default occurs at the maturity date of the

debt, t + H, if the firm’s assets, Vji,t+H , are less than the face value of the debt at that time,

Dji,t+H . This is in contrast with the first-passage models where default would occur the first

time that Vji,t falls below a default boundary (or threshold) over the period t to t + H.9 The

default probabilities are computed with respect to the probability distribution of asset values at

the terminal date, t+H in the case of the Merton model, and over the period from t to t+H in

the case of the first-passage model. The Merton approach may be thought of as a European option

and the first-passage approach as an American option. Our approach can be adapted to both of

these models, but in what follows we focus on Merton’s specification.

The value of the firm at time t is the sum of debt and equity, namely

Vji,t = Dji,t +Eji,t, with Dji,t > 0, (1)

7For a discussion of the power of Merton default prediction models see Falkenstein and Boral (2001) and Gemmill

(2002) who find that the Merton model generally does well in predicting default (Falkenstein and Boral) and credit

spreads (Gemmill). Duffee (1999) points out that due to the continuous time diffusion processes underlying the Black

Scholes formula, short-term default probabilities may be underestimated.
8A similar default condition is used by regulators, e.g. in the New Basel Accord. See Section III.F, §146 in BIS

(2001).
9The first-passage approach is discussed in Black and Cox (1976). For a review see, for example, Duffie and

Singleton (2003, Section 3.2). More recent modeling approaches also allow for strategic default considerations, as in

Mella-Barral and Perraudin (1997).
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or alternatively,
Vji,t
Dji,t

= 1 +
Eji,t

Dji,t
. (2)

Conditional on time t information, default will take place at time t+H if

Vji,t+H ≤ Dji,t+H ,

or using (2) if
Eji,t+H

Dji,t+H
≤ 0. (3)

Equation (3) is restrictive in that it requires equity values to be negative before default occurs. Aside

from non-trivial practical considerations having to do with arriving at an independent estimate

of Vji,t, there are several reasons behind relaxing this condition. Because default is costly and

violations to the absolute priority rule in bankruptcy proceedings are so common, in practice

shareholders have an incentive to put the firm into receivership even before the equity value of

the firm hits zero.10 In fact, several authors have found that in 65% to 80% of bankruptcies, even

shareholders receive something without debt-holders necessarily having been fully paid off (see, for

instance, Eberhart and Weiss 1998, and references therein). Moreover, we see in practice that equity

values remain positive for insolvent firms. Similarly, the bank might also have an incentive of forcing

the firm to default once the firm’s equity falls below a non-zero threshold, as well as an incentive

to bypass the costly proceedings by agreeing to terms that yield positive value to the shareholders

themselves.11 The value of equity incorporates not only the asset values, but an option value that

a firm in default may in fact recover before creditors take control of these assets. Finally, default

in a credit relationship is typically a weaker condition than outright bankruptcy. An obligor may

meet the technical default condition, e.g. a missed coupon payment, without subsequently going

into bankruptcy. This distinction is particularly relevant in the banking-borrower relationship we

seek to characterize.12

In what follows we assume that default takes place if

0 < Eji,t+H < Cji,t+H , (4)

where Cji,t+H is a positive default threshold which could vary over time and with the firm’s par-

ticular characteristics (such as region or industry sector). Natural candidates include quantitative

factors such as leverage, profitability, firm age and perhaps size (most of which appear in models of

firm default), as well as more qualitative factors such as management quality.13 Obviously some of
10See, for instance, Leland and Toft (1996) who develop a model where default is determined endogenously without

imposing a positive net worth condition.
11For a treatment of this scenario, see Garbade (2001).
12An excellent example of the joint borrower-lender decision process is given by Lawrence and Arshadi (1995).
13For models of bankruptcy and default at the firm level, see, for instance, Altman (1968), Lennox (1999), Shumway

(2001), Chava and Jarrow (2004), Hillegeist, Keating, Cram and Lundstedt (2004), as well as a survey by Altman

and Saunders (1997).
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these factors will be easier to observe and measure than others. The observable accounting-based

factors are at best noisy and at worst could be biased, highlighting the information asymmetry

between managers (agents) and share/debt-holders (principals).14

Although our objective is not to build a default model per se, we face the same measurement

difficulties and information asymmetries. To overcome them, we make use of the credit rating of

a firm which we denote by R.15 This will help us specifically in estimating the default thresholds
needed in the determination of the default probabilities. Naturally, rating agencies have access

to, and presumably make use of, private information about the firm to arrive at their firm-specific

credit rating, in addition to incorporating public information such as balance sheet information

and, of course, equity returns. Thus we make the assumption that rating agencies benchmark their

ratings on past returns and volatilities of all firms that have been rated R in the past.

Consider then a particular R−rated firm at time t, and assume that in arriving at their rating

the credit rating agency uses the following standard geometric random walk model of equity values:

ln(ER,t+1) = ln(ERt) + µR + σRηR,t+1, ηR,t+1 ∼ IIDN(0, 1), (5)

with a non-zero drift, µR, and idiosyncratic Gaussian innovations with a zero mean and fixed

volatility, σR.16 We assume that conditional on data at time t, a firm’s rating does not change over

the horizon (t, t+H), namely

ln(ER,t+H) = ln(ERt) +HµR + σR
HX
s=1

ηR,t+s,

and by (4) default occurs if

ln(ER,t+H) = ln(ERt) +HµR + σR
HX
s=1

ηR,t+s < ln (CR,t+H) , (6)

or if the H-period change in equity value or return falls below the log-threshold-equity ratio:

ln

µ
ER,t+H
ERt

¶
< ln

µ
CR,t+H
ERt

¶
. (7)

Equation (7) tells us that the relative (rather than absolute) decline in firm value must be large

enough over the horizon H to result in default, meaning it is independent of the size of the firm.

Firm size is an input to the credit rating determination; a small firm would need a larger equity

cushion to withstand a given shocks than a large firm with the same rating.

14With this in mind, Duffie and Lando (2001) allow for the possibility of imperfect information about the firm’s

assets and default threshold in the context of a first-passage model.
15R may take on values such as ’Aaa’, ’Aa’, ’Baa’,..., ’Caa’ in Moody’s terminology, or ’AAA’, ’AA’, ’BBB’,...,

’CCC’ in S&P’s terminology.
16Clearly non-Gaussian innovations can also be considered. But for quarterly data that we shall be working with

Gausssian innovations seems a good first approximation.
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Under the assumption that the evolution of firm equity value follows (5), ln (ER,t+H/ERt) may

be approximated by the cumulative returns so that (7) can be re-written as

HµR + σR
HX
s=1

ηR,t+s < ln
µ
CR,t+H
ERt

¶
.

Therefore, the default probability for the R−rated firms at the terminal date t+H is given by

πR(t,H) = Φ
µ
ln (CR,t+H/ERt)−H µR

σR
√
H

¶
, (8)

where Φ(·) is the standard normal cumulative distribution function. Denote the H-period forward
log threshold-equity ratio to be λR(t,H) = ln (CR,t+H/ERt) so that

λR(t,H) = HµR +QR(t,H) σR
√
H,

where

QR(t,H) = Φ−1 [πR(t,H)]

is the quantile associated with the default probability πR(t,H).

An estimate of λR(t,H) can now be obtained using past observations on returns, rRt =

ln(ER,t/ER,t−1), and the empirical default frequencies, π̂R(t,H), of R−rated firms over a given
period of say t = 1, 2, ..., T .17 Denoting the estimates of µR and σR by µ̂R, and σ̂R, respectively,

we have

λ̂R(t,H) = Hµ̂R + Q̂R(t,H) σ̂R
√
H, (9)

where µ̂R and σ̂2R are the mean and standard deviation of returns of firms with rating R over the

sample period, and18

Q̂R(t,H) = Φ−1 [π̂R(t,H)] . (10)

The estimates of µ̂R and σ̂R can also be updated using a rolling window of size 7-8 years (the

average length of the business cycle).

In practice, π̂R(t,H) might not provide a reliable estimate of πR(t,H) as it is likely to be based

on very few defaults over any particular period (t, t + H). One possibility would be to use an

average estimate of λR(t,H) obtained over a reasonably long period of 10 to 20 years (on a rolling

basis). For example, based on the sample observations t = 1, 2, ..., T, we would have

λ̂R(H) = H µ̂R + Q̂R(H) σ̂R
√
H, (11)

17An important source of heterogeneity is likely the large variation in bankruptcy laws and regulation across

countries. However, by using rating agency default data, we use their homogeneous definition of default and are thus

not subject to these heterogeneities.
18 In practice where there are many R-rated firms in a given period, average returns across all R-rated firms can be

used to estimate µ̂R. The computation of σ̂
2
R is more involved and is described in a note available from the authors

on request.
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where the (average) quantile estimate Q̂R(H) is given by

Q̂R(H) = T−1
TX
t=1

©
Φ−1 [π̂R(t,H)]

ª
, (12)

assuming that rating agencies use about a one-year horizon (H = 4 quarters) when assessing a

firm.

The above framework allows us to obtain estimates of the default threshold-equity ratios by

credit ratings. Also, given sufficient data for a particular region or country i, one could in principle

use default frequencies that vary across regions/countries and estimate default threshold-equity

ratios that vary across countries and ratings. However, since a particular firm j’s default is typically

a unique terminal event, multiple (serial) defaults notwithstanding, firm-specific default threshold-

equity ratios can not be obtained independently of that firm’s default probability which we aim to

compute. This presents us with a fundamental identification problem which we propose to resolve

by making the following (identification) condition:

CjiR,t+H/EjiRt = CR,t+H/ERt, for all j, (13)

where EjiRt and CjiR,t+H are respectively the equity and the default threshold values of firm j in

region i, with the credit rating, R, at time t. Condition (13) says that at a given point in time,
any two firms with the same credit ratings are assumed to have the same default threshold-equity

ratios. Note that we do not assume that they need to have the same threshold levels but just the

same ratio; firms with the same credit rating but of different size will have potentially very different

threshold levels.

This problem of identification, although quite fundamental, need not be solved by imposing

the same default threshold. For example, instead of imposing that all firms with the same credit

rating have the same default threshold, one could equally require that all firms with the same

credit rating to have the same distance to default ratio, namely [λR(t,H)−HµR] /σR
√
H, to be

the same across all firms in a given rating category. Also, instead of using credit rating as the sole

type-identifier, one could consider firms grouped by industry or geographical regions as well as by

their credit ratings. Clearly, other groupings of firms can also be entertained, so long as one could

plausibly make the argument of within-group homogeneity of either the default threshold or the

distance to default ratio. Further discussions of these alternative identification schemes and their

implications for the credit loss distribution although clearly worthwhile, is beyond the scope of the

present paper.

2.2 Firm-Specific Defaults

We are now in a position to develop our firm-specific default probability model. Denote the return

of firm j in region i over the period t to t + 1 by rji,t+1 = ln (Eji,t+1/Eji,t) , and assume that
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conditional on the information available at time t, Ωt, it can be decomposed as

rji,t+1 = µji,t + ξji,t+1, (14)

where µji,t is the (forecastable) conditional mean, and ξji,t+1 is the (non-forecastable) innovation

component of the return process. The conditional mean will be a function of the regional and

global macroeconomic factors, allowing an avenue through which shocks to these factors affect

firm returns. The precise form of µji,t, and how it relates to national and global risk factors will

be specified using the GVAR model to be briefly summarized in Section 3.2. Return correlations

across firms are captured through µji,t and ξji,t+1 as will be made clear in Section 3.2. Following

the standard Merton model we shall assume that

ξji,t+1 | Ωt ∼ N(0, ω2ξ,ji). (15)

The assumption that the conditional variance of returns is time-invariant seems reasonable for

quarterly returns, although it would need to be relaxed for returns measured over shorter periods,

such as weeks or days.19

We can now characterize the separation between a default and a non-default state with an

indicator variable

I (ln (Eji,t+1/Eji,t) < ln (Cji,t+1/Eji,t)) , or I (rji,t+1 < λji(t, 1)) ,

such that, using (7),

I (rji,t+1 < λji(t, 1)) = 1 if rji,t+1 < λji(t, 1) =⇒ Default, (16)

I (rji,t+1 < λji(t, 1)) = 0 if rji,t+1 ≥ λji(t, 1) =⇒ No Default.

Using the same approach as above, the one quarter ahead (with H = 1) default probability for firm

j is given by

πji(t, 1) = Φ

µ
λji(t, 1)− µji,t

ωξji

¶
. (17)

µji,t and ωξji can be estimated using the firm-specific return regressions. λji(t, 1) will be estimated

using the rating information of this firm at time t, under the identification condition (13). If the

firm is rated R, then λji(t, 1) will be estimated by λ̂R(t, 1) as in (9), on the assumption that all

R−rated firms have the same threshold-equity ratio. The default condition for firm j with credit

rating R can therefore be written as

I
³
rji,t+1 < λ̂R(t, 1)

´
= 1 if rji,t+1 < λ̂R(t, 1) =⇒ Default. (18)

19Volatility in quarterly models is of third order importance. Our framework could easily be adapted to deal with

more complex volatility effects by normalizing returns with dynamic volatilities using, for example, the RiskMetrics

method or other GARCH specifications.
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Note that while the default condition is the same for all R−rated firms, the default probability
varies by firm. Once again, due to the small number of defaults over a single period (t, t + 1), in

practice it might be more appropriate to use a (rolling) average estimate such as λ̂R(H) defined by

(11).

Under (17) the default probability for firm j, and therefore its distance from default, is driven

by:

1. The firm’s credit rating: the lower the credit rating, the "closer" the default threshold.

2. The volatility of the equity return, ωξ,ji: the more volatile, the more likely the firm is to cross

the threshold.

3. The (unconditional) equity return, µji,t: the higher that expected return, the "further" the

firm is from default.

Mappings from credit ratings to default probabilities are typically obtained using corporate

bond rating histories over many years, often 20 years or more, and thus represent some average

across business cycles. The reason for such long samples is simple: default events for investment

grade firms are quite rare; for example, the annual default probability of an ‘A’ rated firm is

approximately one basis point for both Moody’s and S&P rated firms.20

In the literature, the use and interpretation of credit ratings are somewhat ambiguous. One

interpretation is that they are “cycle-neutral” (Saunders and Allen 2002, Catarineu-Rabell, Jackson

and Tsomocos 2002, Amato and Furfine 2004; Carpenter, Whitesell and Zakrajšek 2001 point to

some of the ambiguities), meaning that ratings are assigned only on the basis of firm-specific infor-

mation and not systematic or macroeconomic information.21 The rating agency’s own description

of their rating methodology broadly supports this view.

(Moody’s 1999, p.6,7): “.. [O]ne of Moody’s goals is to achieve stable expected [italics

in original] default rates across rating categories and time.” ... “Moody’s believes that

giving only a modest weight to cyclical conditions best serves the interests of the bulk

of investors.”

(S&P 2001, p.41): “Standard & Poor’s credit ratings are meant to be forward looking;

... Accordingly, the anticipated ups and downs of business cycles — whether industry-

specific or related to the general economy — should be factored into the credit rating all

along.” ... “The ideal is to rate ‘through the cycle’”.

20For an overview of the rating industry, see Cantor and Packer (1995); Jafry and Schuermann (2004) provide

detailed default probability estimates by rating.
21Amato and Furfine (2003) find little evidence of procyclicality in ratings.
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However, there is ample evidence to suggest that credit ratings and associated default probabil-

ities vary systematically with the business cycle (e.g. Nickell, Perraudin and Varotto 2000, Bangia

et al. 2002). Moody’s itself has changed its rating process in this regard (Moody’s 1999, p.6):

“Moody’s has been striving for some time to increase the responsiveness of its ratings to economic

developments.” Our mapping from default experience to thresholds allows for this time variation.

The GVARmodel provides the link between changes in macroeconomic variables (in region i and

globally) through µji,t, and it does so uniquely for each firm to allow for firm-specific heterogeneity.

The main advantage of using the GVAR as a driver for a credit portfolio model is that it provides

the (conditional) correlation structure among macroeconomic variables of the global economy.

3 Conditional Credit Risk Modeling

3.1 The Macroeconomic Engine: GVAR

The macroeconomic engine driving the credit risk model is described in detail in PSW. We only

provide a very brief, non-technical overview here. The GVAR is a global quarterly model estimated

over the period 1979Q1-1999Q1 comprising a total of 25 countries which are grouped into 11 regions

(shown in bold in Table 1). These countries comprise around 80% of world output (in 1999). The

advantage of the GVAR is that it allows for a true multi-country setting; however it can become

computationally demanding very quickly. For that reason the seven key economies of the U.S.,

Japan, China, Germany, U.K., France and Italy are modeled as regions of their own while the other

18 countries are grouped into four regions.22

Table 1

Countries/Regions in the GVAR Model

U.S.A. Germany Japan China

U.K. Italy France

Western Europe South East Asia Latin America Middle East

·Spain ·Korea ·Argentina ·Kuwait
·Belgium ·Thailand ·Brazil ·Saudi Arabia
·Netherlands ·Indonesia ·Chile ·Turkey
·Switzerland ·Malaysia ·Peru

·Philippines ·Mexico
·Singapore

In contrast to existing modeling approaches, in the GVAR the use of cointegration is not confined

to a single country or region. By estimating a cointegrating model for each country/region sepa-

rately, the model also allows for endowment and institutional heterogeneities that exist across the
22See PSW, Section 8, for details on cross-country aggregation into regions.
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different countries. Accordingly, specific vector error-correcting models (VECM) are estimated for

individual countries (or regions) by relating domestic macroeconomic variables such as GDP, infla-

tion, equity prices, money supply, exchange rates and interest rates to corresponding, and therefore

country-specific, foreign variables constructed exclusively to match the international trade pattern

of the country/region under consideration.23 By making use of specific exogeneity assumptions

regarding the ‘rest of the world’ with respect to a given domestic or regional economy, the GVAR

makes efficient use of limited amounts of data and presents a consistently estimated global model.

The GVAR allows for interactions to take place between factors and economies through three

distinct but interrelated channels:

• Contemporaneous dependence of domestic on foreign variables and their lagged values;

• Dependence of country specific variables on observed common global effects such as oil prices;

• Weak cross-sectional dependence of the idiosyncratic shocks.

The individual models are estimated allowing for unit roots and cointegration assuming that

region-specific foreign variables are weakly exogenous, with the exception of the model for the U.S.

economy which is treated as a closed economy model. The U.S. model is linked to the outside world

through exchange rates, which in turn are themselves determined by the rest of the region-specific

models. PSW show that the careful construction of the global variables as weighted averages of the

other regional variables leads to a simultaneous system of regional equations that may be solved

to form a global system. They also provide theoretical arguments as well as empirical evidence in

support of the weak exogeneity assumption that allows the region-specific models to be estimated

consistently.

For policy analysis, one would like to be able to examine how shocking a given macroeconomic

variable affects all other macroeconomic variables in the global economy. For example, it might be

of interest to determine the effects of a contemporaneous 10% drop in the Japanese equity prices

on other macroeconomic variables, and the effects that these have on the credit risk of a given

portfolio. Impulse response functions provide us with the tools to carry out this type of analysis.

Technical details on the derivation of generalized impulse response functions within the GVAR

model are provided in Section C of a Supplement that is available from the authors on request.

The conditional loss distribution of a given credit portfolio can now be derived by linking

up the return processes of individual firms, initially presented in equation (14), explicitly to the

macro and global variables in the GVAR model. In this way we are able to generate multi-period

loss distributions conditional on a baseline macroeconomic forecast as well as loss distributions

conditional on macroeconomic shocks.
23Theoretical underpinnings of such country-specific models are provided in Garratt et al. (2003a).
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3.2 Return Regressions: A Heterogeneous Formulation

Firm returns in a multi-factor context are often modeled as a function of macro variables that are

specific to the firm’s domicile country plus global variables such as changes in oil prices. But such

a specification leaves out one of the key features of the GVAR model, namely the foreign-specific

variables which could be particularly important in the case of large international corporations.

Here we extend the firm return model by incorporating all GVAR factors to take full advantage

of the GVAR dynamics. Accordingly, a firm’s change in value (or return) is assumed to be a

function of contemporaneous changes in the underlying macroeconomic factors (the systematic

component), say ki region-specific domestic and k∗i foreign macroeconomic variables, the exogenous

global variables dt (in our application oil prices) and the firm-specific idiosyncratic shocks ηji,t+1:

rji,t+1 = αji + β0ji∆xi,t+1 + β∗0ji∆x
∗
i,t+1 + γ0ji∆dt+1 + ηji,t+1, (19)

for j = 1, 2, ..., nci, i = 0, 1, ..,N, where xi,t+1, x∗i,t+1, and dt+1 are the ki × 1, k∗i × 1, and s × 1
vectors of macroeconomic and global factors, nci is the number of firms in region i, and N + 1 is

the total number of regions, with the U.S. economy being designated as region 0. The endogenous

variables for each region, xi,t+1, typically include real output, inflation, interest rate, real equity

prices, exchange rate, and real money balances. The foreign variables x∗it are tailored to be region-

specific. The GVAR assumes that each macroeconomic variable in the vector x∗it is a weighted

average of the corresponding macroeconomic variables of all other regions outside region i. Taking

output as an example:

y∗it =
NX
c=0

wicyct, with
NX
c=0

wic = 1 and wcc = 0,

where y∗it is the log of the output of the rest of the world from the perspective of country/region

i, yct is the log of the output of region c, and wic is the weight attached to region c’s output in

construction of the rest of the world output as seen by region i. Weights for the construction of the

region-specific global variables are based on the trade share of region l in the total trade volume

of region i, although for variables such as equity and interest rates they could be based on capital

flows instead.

The GVAR specifies the following augmented vector autoregressive form:

xit = ai0 + ai1t+Φixi,t−1 +Λi0x
∗
it +Λi1x

∗
i,t−1 +Ψi0dt +Ψi1dt−1 + εit, (20)

t = 1, 2, ..., T ; i = 0, 1, 2, ..., N,

where xit is the ki × 1 country-specific factors/variables, ai1 is a ki × 1 vector of linear trend
coefficients, Φi is a ki×ki matrix of associated lagged coefficients, x∗it is the k

∗
i ×1 vector of foreign

variables specific to country i with Λi0 and Λi1 being ki × k∗i matrices of fixed coefficients, dt is
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an s × 1 vector of common global variables assumed to be exogenous to the global economy with
Ψi0 and Ψi1 being ki× s matrices of fixed coefficients, and εit is a ki× 1 vector of country-specific
shocks assumed to be serially uncorrelated with a zero mean and a non-singular covariance matrix,

Σii = (σii,cs), where σii,cs = cov(εict, εist), or written more compactly

εit v i.i.d.(0,Σii).

Although the model is estimated on a regional basis, we allow for the shocks to be correlated across

regions. In particular, we assume that

E
¡
εitε

0
jt0
¢
= Σij for t = t0,

= 0 for t 6= t.

The model is specified with one lag, although multi-lag extensions are possible.24 While we present

the model in more detail in the Supplement, note that the set of regional equations can be combined

to form a global VaR in xt = (x00t,x01t, ...,x0Nt)
0 which is the global k× 1 vector, where k =PN

i=0 ki

is the total number of the endogenous variables in the global model, in our case 63:

xt = b0 + b1t + zxt−1 +Υ0dt +Υ1dt−1 + ut, (21)

where b0 and b1 are k × 1 vectors of coefficients, z is a k × k matrix of coefficients, dt is an s× 1
vector of common global variables assumed to be exogenous to the global economy (here to be the

oil price) with corresponding k×s matrices of coefficients, Υ0 and Υ1. Finally, ut is a k×1 vectors
of (reduced form) shocks that are linear functions of the region-specific shocks (εit).

As shown in PSW

zi,t+1 =

Ã
xi,t+1

x∗i,t+1

!
=Wixt+1,

where the weight matrix Wi serves as the ‘link’ between the endogenous vector of variables in

the world economy, x0t+1 and the domestic (xi,t+1) and foreign (x∗i,t+1) variables for region i. The

non-zero elements of Wi are given by trade weights of country i relative to all other countries in

the GVAR model. Hence we have

rji,t+1 = αji +B
0
jiWi∆xt+1 + γ0ji∆dt+1 + ηji,t+1, (22)

where Bji =
¡
β0ji,β

∗0
ji

¢0
. The GVAR model provides forecasts of all the global variables, xt+1,

that directly or indirectly affect the returns, rji,t+1. If the model captures all systematic risk, the

idiosyncratic risk components of any two companies in the model would be uncorrelated, namely

24Recently, Dees, di Mauro, Pesaran and Smith (2004) have extended the GVAR to more countries (33) and a

longer sample length (1979Q1-2003Q4) and proceed to estimate country-specific models with different lag lengths

which are then aggregated to a global model along the lines outlined in PSW.
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the idiosyncratic risks, ηji,t+1, ought to be cross-sectionally uncorrelated. The values of the global

exogenous variables, dt+1, could either be fixed to represent particular scenarios of interest, such

as high or low oil prices, or could be forecast using a sub-model for oil prices (possibly with

macroeconomic feedbacks).

Under this specification, due to the contemporaneous dependence of ∆xt+1 on ∆dt+1, we re-

write (22) as

rji,t+1 = αji + Γ
0
ji∆yt+1 + ηji,t+1, (23)

where Γ0ji =
³
B0jiWi,γ

0
ji

´
are the factor loadings, and ∆yt+1 =

¡
∆x0t+1, ∆d0t+1

¢0 collects all the
observable macroeconomic variables plus oil prices in the global model (totaling 64 in PSW). To

be sure, these return regressions are not prediction equations per se as they depend on contempo-

raneous variables. However, using results provided in a Supplement (available on request), we can

write

rji,t+1 = αji + Γ
0
ji (µ+ δ)−Γ0ji (I−Φ) (yt − γ t) + Γ0jiDυt+1 + ηji,t+1, (24)

which decomposes the individual asset returns into a predictable component, Γ0ji (I−Φ) (yt − γ t),

and an unpredictable component, Γ0jiDυt+1 + ηji,t+1. This term comprises effects due to common

macroeconomic shocks, Γ0jiDυt+1, where D is a (k + s) × (k + s) matrix of fixed coefficients from

the GVAR model, υt+1 = (ε0t+1, εd,t+1)0 collects the set of all macroeconomic innovations, εt+1, and

the global exogenous factor innovation, εd,t+1 (in our model the oil price innovation). The firm-

specific idiosyncractic innovations, ηji,t+1, are assumed to be distributed independently of υt+1.

The remaining terms are firm-specific fixed effects, αji, and the drift components of the macro

factors and the global exogenous variables, Γ0ji (µ+ δ) .

The predictable component is likely to be weak and will depend on the size of the factor

loadings, Γji, and the extent to which the underlying global variables are cointegrating. In the

absence of any cointegrating relations in the global model, Φ = I and none of the asset returns

are predictable. As it happens the econometric evidence presented in PSW strongly supports

the existence of 36 cointegrating relations in the global model and is, therefore, compatible with

some degree of predictability in asset returns. The extent to which asset returns are predicted could

reflect time-varying risk premia and does not necessarily imply market inefficiencies. Our modelling

approach provides an operational procedure for relating excess returns of individual firms to all the

observable macro factors in the global economy.

3.3 Expected Loss Due to Default

Given the value change process for firm j, defined by (19), and the log threshold-equity ratio,

λ̂R(t,H), obtainable from an initial credit rating (see Section 2.1), we now consider the conditions

under which the firm defaults. Specifically, we need to define the expected loss to firm j at time T

given information available to the lender (e.g. a bank) at time T, which we assume is given by ΩT .
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Following (18), default occurs when the firm’s value (return) falls below the log-threshold-equity

ratio λ̂R(T, 1). Expected loss at time T (but occurring at T +1), ET (Lji,T+1) = E (Lji,T+1 | ΩT ) ,
is given by

ET (Lji,T+1) = Pr
³
rji,T+1 < λ̂R(T, 1) | ΩT

´
×ET (Xji,T+1)×ET (Sji,T+1) (25)

+
h
1− Pr

³
rji,T+1 < λ̂R(T, 1) | ΩT

´i
× L̃,

where Xji,T+1 is the maximum loss exposure assuming no recoveries (typically the face value of

the loan) and is known at time T , Sji,T+1 is the percentage of exposure which cannot be recovered
in the event of default (sometimes called loss given default or severity),25 and L̃ is some future

value of loss in the event of non-default at T + 1 (which we set to zero for simplicity).26 Typically

Sji,T+1 is not known at time of default and will be treated as a random variable over the range

[0, 1]. In the empirical application we make the typical assumption that Sji,T+1 are draws from a

beta distribution with given mean and variance calibrated to (pooled) historical data on default

severity.27

Substituting (22) into (25) and setting L̃ to zero we now obtain:

ET (Lji,T+1) = πji,T+1|T ×ET (Xji,T+1)×ET (Sji,T+1), (26)

where

πji,T+1|T = Pr
³
αji + Γ

0
ji∆yT+1 + ηji,T+1 < λ̂R(T, 1) | ΩT

´
,

is the conditional default probability over the period T to T + 1, formed at time T . Our modeling

framework allows us to derive an explicit expression for πji,T+1|T .

Using firm returns as characterized by (24), and after some simplifications, we have

πji,T+1|T = Pr
³
ξji,T+1 < λ̂R(T, 1)− µji,T+1|T | ΩT

´
, (27)

where

ξji,T+1 = ηji,T+1 + Γ
0
jiDυT+1, (28)

and

µji,T+1|T = αji + Γ
0
ji [µ+(T + 1)δ]− Γ0ji (I−Φ)yT . (29)

These results decompose the return for firm j into its explained (29) and unexplained (28) com-

ponents, itself containing the idiosyncracratic innovation ηji,T+1 and the systematic innovations

25One would expect loss severity to be higher in recessions than expansions (see Frye (2000) and Altman et al.

(2002)). Defaults are pro-cyclical, flooding the market with distressed assets which drive down their price (or increasing

severity). However, for simplicity we follow the standard assumption that exposure and severity are independently

distributed.
26 It is common practice in the industry to set L to zero.
27The beta distribution is usually chosen since it is bounded, such as on the unit interval, with two shape parameters

which can be expressed in terms of mean and standard deviation of losses.
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collected in υT+1 = (ε0T+1, εd,T+1)
0. Note that although the firm in question operates in coun-

try/region i, its probability of default could be affected by macroeconomic shocks worldwide.

Under the assumption that all these shocks or innovations are jointly normally distributed and

the parameter estimates are given, we have the following expression for the probability of default

over T to T + 1 formed at T 28

πji,T+1|T = Φ

 λ̂R(T, 1)− µji,T+1|Tq
V ar

¡
ξji,T+1 | ΩT

¢
 , (30)

where

V ar
¡
ξji,T+1 | ΩT

¢ ≡ ω2ξ,ji = ω2η,ji + Γ
0
jiBΓji, (31)

B = DΣυD
0 is given by (A.18) in the Supplement, Συ is the variance-covariance matrix of the

composite systematic innovations υt, and ω2η,ji is the variance of firm’s idiosyncractic shock, ηji,T+1.

Both of the restrictions (given parameter values and joint normality) can be relaxed. Parameter

uncertainty can be taken into account by integrating out the true parameters using posterior or

predictive likelihoods of the unknown parameters, as in Garratt et al. (2003b). In the presence of

non-normal shocks one could simulate the loss distributions assuming fat-tailed distributions such

as Student t with a sufficiently low degree of freedom. Alternatively, one can employ non-parametric

stochastic simulation techniques by re-sampling from estimated residuals of the GVAR model to

estimate πji,T+1|T .

The expected loss due to default of a loan (credit) portfolio can now be computed by aggregating

the expected losses across the different loans. Denoting the loss of a loan portfolio over the period

T to T + 1 by LT+1 we have

ET (LT+1) =
NX
i=0

nciX
j=1

πji,T+1|T ET (Xji,T+1) ET (Sji,T+1), (32)

where nci is the number of obligors (which could be zero) in the bank’s loan portfolio resident in

country/region i.

3.4 Simulation of the Loss Distribution

The expected loss as well as the entire loss distribution can be simulated for the period T to T +1

once the GVAR model parameters, the return process parameters in (22) and the thresholds in

(11) have been estimated for a sample of observations t = 1, 2, ..., T . The key component of the

simulations are firm-specific returns defined by (24), which we write as

rji,T+1 = µji,T+1|T + Γ
0
jiDυT+1 + ηji,T+1, (33)

28Joint normality is sufficient but not necessary for ξji,t+1 to be approximately normally distributed. This is

because ξji,t+1 is a linear function of a large number of weakly correlated shocks (63 in our particular application).
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where the predictable component, µji,T+1|T , is given by (29), and the innovations, υT+1 and ηji,T+1,

are distributed independently with zero means and the variances Συ and ω2η,ji, respectively. In gen-

eral, firm-specific returns can be simulated under alternative assumptions regarding the probability

distribution of the innovations. However, simulations become particularly simple to implement

under Gaussian innovations.29 In this case, Γ0jiDυT+1 is also distributed as N
³
0,Γ0jiDΣυD

0Γji
´

and firm-specific returns can be obtained as

r
(r)
ji,T+1 = µji,T+1|T + ξ

(r)
ji,T+1, (34)

where r(r)ji,T+1denotes the r
th replication of the firm-specific returns, and ξ(r)ji,T+1 is the r

th replication

of the composite shock given by

ξ
(r)
ji,T+1 =

¡
Γ0jiDΣυD

0Γji
¢1/2

Z
(r)
0 + ωη,jiZ

(r)
ji (35)

where Z(r)0 and Z
(r)
ji are independent draws from N(0, 1).

The loss can then be simulated in period T + 1 using (known) loan face values, say FVji,T , as

exposures, and draws from a beta distribution for severities (as described above):

L
(r)
T+1 =

NX
i=0

nciX
j=1

I
³
r
(r)
ji,T+1 < λ̂R(T, 1)

´
FVji,T S(r)ji,T+1. (36)

The simulated expected loss due to default is given by (using R replications)

L̄R,T+1 =
1

R

RX
r=1

L
(r)
T+1, (37)

and as R → ∞ then L̄R,T+1
p→ ET (LT+1), The simulated loss distribution is given by ordered

values of L(r)T+1, for r = 1, 2, ..., R. For a desired percentile, for example the 99%, and a given

number of replications, say R = 10, 000, credit value at risk is given as the 100th highest loss.

3.5 Default and Expected Loss Given Economic Shocks

In credit risk analysis we may also be interested in evaluating quantitatively the relative importance

of changes in different macroeconomic variables or factors on the loss distribution. In the argot

of risk management this is sometimes called scenario analysis. To this end the loss distribution

conditional on a given shock can be compared to a baseline distribution without such a shock.

It is difficult to imagine conducting such counterfactuals using a credit risk model that relies on

accounting data.

As with all counterfactual experiments it is important that the effects of the shock on other

macroeconomic variables are clearly specified. One possibility would be to assume that the other

29The simplifying procedure is also applicable when υT+1 has a standard multivariate Student-t distribution.
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variables are displaced according to their historical covariances with the variable being shocked.

This is in line with the generalized impulse response function (GIRF) analysis discussed in Section

C of the Supplement. In this set-up, if variable c in country i is shocked by one standard error (i.e.
√
σii,cc) in the period from T to T +1, on impact the vector of the macroeconomic variables would

be displaced by

ψic(∆y, 1) =
1√
σii,cc

DΣυsic , (38)

where sic is a (k + s) × 1 selection vector with its element corresponding to the cth variable in

country i being unity and zeros elsewhere.

The above counterfactual, while of some interest, will underestimate the expected loss under

both shock scenarios since it abstracts from volatility of the macroeconomic factors. To allow for

volatility of macroeconomic factors in the analysis consider the case where the various shocks are

jointly normally distributed, and note that

rji,T+1 = µji,T+1|T + Γ
0
jiDυT+1 + ηji,T+1,

where µji,T+1|T is defined by (29). Following a similar line of argument as in PSW (see also the

Supplement, Section C), if the shock is assumed to be anticipated we have

rji,T+1
¯̄
ΩT , εiT+1,c =

√
σii,cc v N

³
µji,T+1|T + Γ

0
jiψic(∆y, 1), ω

2
ξ,ji,ic

´
,

where εi,T+1,c = s0icυT+1, ψic(∆y, 1) is defined by (38) and
30

ω2ξ,ji,ic = ω2η,ji + Γ
0
jiBicΓji, (39)

where Γji are the factor loadings and Bic is given by equation (A.29) in the Supplement. But if the

shock is unanticipated (which we consider to be more relevant for credit risk analysis) we have

rji,T+1
¯̄
ΩT , εiT+1,c =

√
σii,cc v N

³
µji,T+1|T + Γ

0
jiψic(∆y, 1), ω

2
ξ,ji

´
,

where ω2ξ,ji is given by (31).

Therefore, to allow for volatility of the innovations (macroeconomic as well as idiosyncratic),

the simulation of the loss distribution needs to be carried out using the draws

r
il,(r)
ji,T+1 = µji,T+1|T + Γ

0
jiψic(∆y, 1) + ξ

(r)
ji,T+1 (40)

where ξ(r)ji,T+1 is defined by (35).

In the case of our empirical application where the log of oil prices is the only global variable in

the model, the effect of a unit unanticipated shock to oil prices, P o
t , can be simulated by generating

the returns as

r
o,(r)
ji,T+1 = µji,T+1|T + Γ

0
jiψo(∆y, 1) + ξ

(r)
ji,T+1,

30Note that s0icΣsic = σii,cc.
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where

ψo(∆y, 1) =
1

σo
DΣυso = σo

Ã
Υ0

1

!
,

σ2o is the variance of oil price shock, εot, so is a (k+1)×1 selection vector of zeros except for its last
element which is set equal to unity, such that s0

o
υt = εot, and Υ0 collects the coefficients for the

contemporaneous effect of oil prices on the macroeconomic variables xt.31 It is also worth noting

that

Γ0jiψo(∆y, 1) = σo
¡
B0jiWiΥ0 + γ0ji

¢
= σoθji,o

simplifying the oil shock-conditional first period return to

r
o,(r)
ji,T+1 = µji,T+1|T + σoθji,o + ξ

(r)
ji,T+1. (41)

This expression clearly shows that, relative to the baseline, the mean is increased by σoθji,o.

Default occurs if the rth simulated return falls below the threshold-equity ratio λ̂R(T, 1) defined

by (9), so that for all three cases,

Baseline (34) r
(r)
ji,T+1 < λ̂R(T, 1) =⇒ Default, (42)

Macro-shock-Conditional (40) r
il,(r)
ji,T+1 < λ̂R(T, 1) =⇒ Default,

Oil—shock-Conditional (41) r
o,(r)
ji,T+1 < λ̂R(T, 1) =⇒ Default.

Using these results in (36), the loss distribution can be simulated for any desired level of accuracy

by selecting R, the number of replications, to be sufficiently large.

Finally, it might also be of interest to compare the base line default probability, πji,T+1|T , given

by (30) with the default probability that results under the (unanticipated) shock to xi,T+1,c, which

we denote by πicji,T+1|T . We have

πji,T+1|T = Φ

Ã
λ̂R(T, 1)− µji,T+1|T

ωξ,ji

!
,

and

πicji,T+1|T = Φ

Ã
λ̂R(T, 1)− µji,T+1|T − Γ0jiψic(∆y, 1)

ωξ,ji

!
. (43)

3.6 Simulation of Multi-Step Ahead Loss Distributions

The forecast horizon for computing losses is constrained by the horizon used by the rating agencies

(typically one year) when assessing a firm.32 We take this to be about one year, but certainly

not less, commensurate with a one year ahead default probability. We begin by considering the
31More details can be found in Section A of the Supplement.
32Going beyond this horizon would involve updating forward credit ratings, a topic of current research by the

authors.
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default conditions two periods (quarters) forward. The Merton model considers default only at the

terminal date. Viewed at period T , firm j will default if

rji,T+1 + rji,T+2 < 2µ̂R + σ̂R
√
2Q̂R(2),

where the quantile estimate Q̂R(2) is given in (12). Extending this to H periods is straight forward,

namely

Rji,T+H =
HX
τ=1

rji,T+τ < Hµ̂R + σ̂R
√
HQ̂R(H), (44)

where Rji,T+H denotes the cumulative H-period return. The firm’s default probability can now be

computed by simulating from the joint probability distribution function of future returns rji,T+1, ...,

rji,T+H , conditional on ΩT . For details see Section B in the Supplement.

3.6.1 Baseline Multi-period Loss Distribution

Of course in our set-up firm returns are serially correlated through their systematic risk factor

dependence (the GVAR), and so the loss distribution due to default by firm j in region i over the

period T to T +H can now be written as33

Lji(T + 1, T +H) = Lji,T+1 + ϕI
³
Rji,T+1 ≥ λ̂R(T, 1)

´
Lji,T+2 +

...+ ϕH−1
"
H−1Y
κ=1

I
³
Rji,T+κ ≥ λ̂R(T, κ)

´#
Lji,T+H , (45)

where ϕ is a discount factor (0 ≤ ϕ < 1, which could be set as ϕ = 1/ (1 + ρ) with ρ being an

average real rate of interest), Rji,T+κ is defined by (44), and

Lji,T+κ = I
³
Rji,T+κ < λ̂R(T, κ)

´
Xji,T+κ Sji,T+κ, for κ = 1, 2, ...,H.

The multi-period loss expression (45) can be thought of as a survival function which progressively

computes loss in period T +τ +1 only if the firm has survived the previous period T +τ . Using this

architecture the multi-period baseline loss distribution can be simulated using the draws r(r)ji,T+τ ,

for τ = 1, 2, ..,H and r = 1, 2, ..., R (see below and (A.22) in the Supplement), and the empirical

distribution of Lji(T + 1, T +H) can be constructed from L
(r)
ji (T + 1, T +H) where

L
(r)
ji (T + 1, T +H) = L

(r)
ji,T+1 +

HX
t=2

ϕt−1
"
t−1Y
κ=1

I
³
Rji,T+κ ≥ λ̂R(T, κ)

´#
L
(r)
ji,T+t,

and

L
(r)
ji,T+κ = I

Ã
κX

τ=1

Rji,T+τ < λ̂R(T, κ)

!
X (r)ji,T+κ S(r)ji,T+κ, for κ = 1, 2, ...,H.

33Once again, we assume for simplicity that losses L past the horizon, H, are zero.
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Aggregating across firms, we finally obtain the time T conditional H-step ahead simulated loss

distribution of the credit portfolio:

L(r)(T + 1, T +H) =
NX
i=0

nciX
j=1

L
(r)
ji (T + 1, T +H), r = 1, 2, ..., R.

3.6.2 Multi-period Loss Distribution Given Economic Shocks

Consider now the effect of a one standard error shock to factor c in country i on the multi-period

loss distribution. Using the results in the Supplement, Section C on impulse responses we have

r
ic,(r)
ji,T+κ = µji,T+κ|T + Γ

0
jiψic(∆y, κ) + ξ

(r)
ji,T+κ, for κ = 1, 2, ...,H, (46)

where ψic(∆y, κ) is given by

ψic(∆y, κ) =
1√
σii,cc

DΣυsic for κ = 1,

=
1√
σii,cc

¡
Φn−1 −Φn−2¢DΣυsic , for κ = 2, 3, ...,H,

and

ξ
(r)
ji,T+κ =

¡
Γ0jiBΓji

¢1/2
Z
(r)
0 +

κ−1X
τ=1

¡
Γ0jiHτBH0τΓji

¢1/2
Z(r)τ + ωη,ji Z

(r)
jiκ , (47)

where B = DΣυD
0, and Z

(r)
τ and Z

(r)
jiκ are independent draws from N(0, 1) for all τ , j, i and κ.

Clearly, for κ = 1 the above expression reduces to (35). The return simulations for the base-line

case are given

r
(r)
ji,T+κ = µji,T+κ|T + ξ

(r)
ji,T+κ,

for κ = 1, 2, ...,H.

4 Credit Loss Results

4.1 Risk, Return and Default by Credit Rating

In order to obtain estimates of the rating-specific default threshold ratios, we make use of the

rating histories from Standard and Poors spanning 1981-1999, roughly the same sample period as

is covered by the GVAR model. We use S&P ratings since they are designed to capture default

probability, whereas Moody’s also incorporates an expectation of recovery into their ratings (Cantor

and Packer 1995, BIS 2000, particularly its Annex I.B). The estimates of the one- through four-

quarter ahead threshold-equity ratio, CR,t+H/ERt, are computed using exp(λ̂R(H)) with H =

1, .., 4, where λ̂R(H) is defined by (11). Empirical default probabilities, π̂R(t,H), are obtained

using default intensity-based estimates detailed in Lando and Skødeberg (2002). The transition

intensity approach uses techniques from survival analysis which make efficient use of ratings histories
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to obtain transition probabilities. This becomes especially important for the estimation of the

transition from rating R to default. No default event may have occurred within a particular

quarter; that does not, however, necessarily mean that π̂R(t,H) = 0. It suffices that an obligor

migrated from, say, AAA to AA to A, and that a default occurred from A to contribute probability
mass to πAAA; see also Jafry and Schuermann (2004). Still, there may be instances when there is

no movement at all during a particular quarter. In that case the estimated default intensity (and

hence probability) would indeed be identically equal to zero.

For each quarter and each rating-specifc default probability, π̂R(t,H), we compute the inverse

CDF to obtain a time series of rating specific thresholds.34 Since S&P rates only a subset of firms

(in 1981 S&P rated 1,378 firms of which about 98% were U.S. domiciled; by early 1999 this had

risen to 4,910, about 68% U.S.), it is reasonable to assign a non-zero (albeit very small) probability

of default, even if the empirical estimate is zero.35 This is particularly relevant if we wish to infer

default behavior for a much broader set of firms than is covered by the rating agencies. With this

in mind, we impose a lower bound on the quarterly π̂R set at 0.025 basis points per quarter.

Rating specific average returns, µ̂R, and their volatility, σ̂R, are computed using the cum

dividend total return measure from CRSP for all U.S. firms with a credit rating in a given quarter

over the sample range 1981Q1 to 1999Q1. The results for H = 1 are presented in Table 2 below

for the range of ratings that are represented in our portfolio of firms, namely AAA to B; similar
results are obtained for H = 2, 3 and 4.

Table 2

Rating-Specific Return and Equity-Threshold Estimation

Credit Rating µ̂R σ̂R µ̂R/σ̂R π̂R(t, 1) (in bp) \CR,1/ER # of obs.36

AAA 4.54% 13.87% 0.33 0.026 0.56 1,177

AA 4.06% 15.16% 0.27 0.369 0.52 6,272

A 4.13% 15.31% 0.27 0.714 0.52 12,841

BBB 3.80% 17.38% 0.22 10.63 0.50 9,499

BB 3.21% 24.72% 0.13 49.21 0.42 7,002

B 2.04% 34.82% 0.06 351.66 0.40 6,493

\CR,1/ERdenotes the sample estimate of the one-quarter ahead default equity ratio,

µ̂R and σ̂Rare the sample estimates of the quarterly mean and standard deviations of R-rated firms

π̂R(t, 1) is the quarterly default probability (in basis points) for R-rated firms
34While (9) and (10) are written in terms of a standard normal distribution, other distributions such as the Student

t can also be used.
35Ratings and rating histories are from Standard and Poor’s CreditPro Database V. 6.2. We use the sample period

1981Q1-1999Q1.
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We note that average quarterly volatility, σ̂R, increases monotonically as we descend the rating

spectrum to the point where the volatility of a B-rated firm is more than twice than that of an AA-
rated firm. Average returns do not keep pace with the increasing volatility, resulting in similarly

declining Sharpe ratios (µ̂R/σ̂R). Quarterly default probabilities display the familiar pattern of

increasing dramatically as we descend the credit spectrum, especially once the investment grade

boundary is crossed (i.e. BB and below).
The counter-intuitive pattern of declining expected returns is in line with Dichev (1998) who

finds that bankruptcy risk measured by credit ratings is not rewarded by higher returns. On

the contrary, his analysis suggests that since 1980 firms with higher bankruptcy risk earn lower

than average returns. Vassalou and Xing (2004) argue that rating data might reflect deteriorating

financial conditions of a company with too much delay. Using the Merton default model to compute

a default likelihood indicator, they find that high default stocks earn significantly higher returns

than low default stocks, but only if they are small or have a high book-to-market value. To be

sure, µ̂R plays at best a secondary role in determining the default threshold λ̂R which is driven

primarily by σ̂R and π̂R.

Of particular interest is the behavior of the one-quarter forward threshold-equity ratio \CR,1/ER
which exhibits relatively little variation across ratings. It ranges from 0.56 for AAA to 0.40 for

B. When we extended the sample to the maximum sample length available, 1981Q1 - 2002Q4, the

means, standard deviations and forward threshold-equity ratios remained quite stable. Only the

default probabilities exhibited noticeable variation when extending the sample. These probability

values are very small (they are reported in basis points!) simply because there are so few defaults

for the very high credit grades. Moreover, the years 2001 and 2002 saw record default levels in the

corporate bond markets (S&P 2003).

To understand the role of the threshold-equity ratio, take for example a firm rated BBB and
its threshold-equity ratio of 0.50. If this firm has an equity level of 100 today, it would be able

to sustain a drop to 0.50 × 100 = 50 over one quarter before defaulting on its debt obligations.

The likelihood of this event is driven largely by σ̂BBB which is 17.38%. By contrast, a firm rated

B would be able to sustain a drop to 0.40 × 100 = 40, but the likelihood of this event, driven by
σ̂B = 34.82%, is of course much higher than for the BBB-rated firm.

4.2 The Sample Portfolio

We analyze the effects of economic shocks on a fictitious large-corporate loan portfolio which is

summarized in Table 3. It contains a total of 119 companies, resident over 10 of the 11 regions. In

order for a firm to enter our sample, several criteria had to be met. We restricted ourselves to major,

publicly traded firms which had a credit rating from either Moody’s or S&P. Thus, for example,

Chinese companies are not included for lack of a credit rating. The firms should be represented
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within the major equity index for that country. We favored firms for which equity return data was

available for the entire sample period, i.e. going back to 1979. Typically this would exclude large

firms such as telephone operators which in many instances have only been privatized recently, even

though they might now represent a significant share in their country’s dominant equity index. The

data source is Datastream, and we took their Total Return Index variable which is a cum dividend

return measure.

The third column in Table 3 indicates the sample range of the equity series available for return

regression analysis. We wanted to mimic (broadly) the portfolio of a large, internationally active

bank. Arbitrarily picking Germany as the bank’s domicile country, the portfolio is relatively more

exposed to German firms than would be the case if exposure were allocated purely on a GDP share

(in our “world” of 25 countries). For the remaining regions, exposure is more in line with GDP

share. Within a region, loan exposure is randomly assigned. The expected severity for loans to

U.S. companies is the lowest at 20%, based upon studies by Citibank, Fitch Investor Service and

Moody’s Investor Service.37 All other severities are based on assumptions, reflecting the idea that

severities are higher in less developed countries. Table 3 gives the portfolio composition, regional

weights, individual exposures, expected (µβ) and unexpected (σβ) severities, as well as average

pair-wise quarterly return correlations.38 We see substantial variation in those correlations across

the different countries and regions, ranging from 53% in Germany to 19% in the U.K. and Western

Europe. The overall average pair-wise correlation across the whole portfolio is a relatively low 15%

owing to the high degree of geographic diversification.

37As cited in Saunders and Allen (2002).
38Mean severity is assumed to be slightly lower in Germany (as compared to France or U.K., for example), since

Germany is assumed to be the bank’s domicile country and hence the bank may have some local advantages in the

recovery of distress assets. Unexpected severity refers to standard deviation of severity distribution assumed here to

be Beta distributed.
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Table 3

The Composition of the Sample Portfolio for Regions

Equity Series1 Credit Rating2 Exposure Severity3 Avg. Return

Region # Firms Quarterly Range Per cent Mean S.D. Correlation4

(µβ) (σβ)

U.S. 14 79Q1 - 99Q1 AAA to BBB− 20 20% 10% 0.26

U.K. 9 79Q1 - 99Q1 AA to BBB+ 6 35% 15% 0.19

Germany 18 79Q1 - 99Q1 AAA to BBB− 21 30% 15% 0.53

France 8 79Q1 - 99Q1 AA to BBB 8 35% 15% 0.24

Italy 6 79Q1 - 99Q1 A to BBB− 8 35% 15% 0.31

W. Europe 12 79Q1 - 99Q1 AAA to BBB+ 8 35% 15% 0.19

Middle East 4 90Q3 - 99Q1 B− 2 60% 20% 0.38

S.E. Asia 23 89Q3 - 99Q1 A to B 10 50% 20% 0.27

Japan 13 79Q1 - 99Q1 AAA to B+ 10 35% 15% 0.32

L. America 12 89Q3 - 99Q1 A to B− 5 65% 20% 0.23

Total 119 - - 100 - - 0.15

1. Equity prices of companies in emerging markets are not available over the full sample period used for the estimation

horizon of the GVAR. We have a complete series for all firms only for the U.S., U.K., Germany and Japan. For

France, Italy and W. Europe, although some of the series go back through 1979Q1, data was available for all firms

from 1987Q4 (France), 1987Q4 (Italy), 1989Q3 (W. Europe). We used that sample range for the multi-factor regressions

for those regions. For L. America we have a complete sample range for all firms from 1990Q2.

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating nomenclature is used for convenience.

3. Severity is drawn from a beta distribution with mean µβ and standard deviation σβ .

4. Arithmetic average of quarterly pair-wise correlations of firm returns.

The average credit quality, as measured by exposure weighted credit rating, is somewhat higher

(better) than the average commercial and industrial (C&I) lending portfolio for large, U.S. banks.

Treacy and Carey (2000) report that on average about half of those portfolios are of investment

grade quality, meaning having a rating of BBB− or better, whereas the proportion meeting this
threshold is about 80% in our portfolio. We would therefore expect losses in our portfolio to be

lower, on average, than losses in a typical C&I portfolio for a U.S. bank.
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4.3 Return Regressions

4.3.1 Variable Selection Process

The general form of the multi-factor return equations used in this study is given by (19), which

links individual firm returns to observed domestic and global macroeconomic risk factors, and can

be estimated by least squares under the assumption that the firm-specific shocks, ηijt, and the set of

macro shocks, υt, are uncorrelated. However, since there is likely to be a high degree of correlation

between some of the domestic and foreign variables (e.g. real equity prices and interest rates),

a more parsimonious version might be desirable for empirical analysis. To this end two possible

approaches can be followed. A standard procedure would be to apply regressor selection methods

to each of the firm-specific regressions separately. Since we have 119 firms in our portfolio with as

many as 13 estimated coefficients each,39 the application of such a procedure, besides being very

time-consuming, can be subject to a considerable degree of specification searches with undesirable

consequences. Alternatively, we could view the 119 return regressions as forming a panel with

heterogeneous slope coefficients and base the regressor selection procedure on the means of the

estimated coefficients, referred to as the mean group estimators (MGE).40 This approach is clearly

more manageable and will be adopted in this study.

Initially, we estimated multi-factor regressions including all the domestic and foreign variables

relevant to the firm’s domicile region. The variables are output (∆y,∆y∗), inflation (∆2p,∆2p∗),

equity price (∆q,∆q∗), real exchange rates (∆(e− p),∆(e− p)∗), interest rates (∆r,∆r∗), and real

money balances (∆m,∆m∗). An asterisk denotes foreign variables. The return equations estimated

for the U.S. firms are somewhat different in that the only foreign regressor included is the foreign

real exchange rate (∆(e − p)∗), but the domestic exchange rate variable is excluded as the U.S.

dollar is the numeraire currency. For the non-U.S. regressions, we apply the MGE procedure to

remove insignificant variables. Because of the limited number of U.S. firms, we rely on t-statistics

and the signs of individual coefficients to choose the best subset of regressors. Finally, recognizing

the likely collinearity of ∆q and ∆q∗ (the domestic and foreign equity series), we run two versions

of each model, one with domestic equity and one with foreign. We choose the model with the higher

adjusted R-squared, R̄2.41 ,42

39One constant, six domestic, five foreign macroeconomic variables plus oil prices.
40For further details of the MGE procedure see Pesaran and Smith (1995) and Pesaran, Smith and Im (1996).
41Since the two non-nested multi-factor regressions have the same number of coefficients, the same result would

follow if other model selection criteria are used.
42Of course, there are other approaches to choosing an multi-factor specification for each firm. We considered (and,

in fact, carried out) alternative approaches, including one which began with only domestic variables (plus oil) in the

multi-factor regressions, slimming down via MGE, and then potential substitution of foreign for domestic variables if

the significance or sign of the domestic variable was called into question. In the end, we felt that taking an approach

that was more consistent with the framework of the GVAR model (i.e. beginning with all of the GVAR models and

then paring the model down) was more appropriate.
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4.3.2 Return Regression Results

A summary result of the initial multi-factor regressions are provided in Table 4, where the pro-

portion of firms with significant multi-factor regressions (using an F-test at the 5% level) and

significant t-ratios for individual factors are given across different countries/regions. Around 90%

of the return regressions were significant (using the F-test) at the 5% level. The F-test values in the

first row of Table 4 suggest that changes in the macroeconomic factors have a significant influence

on equity returns. The t-statistics for the coefficients of individual macroeconomic factors clearly

single out two important ones: the domestic and foreign real equity returns.43 For regions where no

full equity series could be incorporated in the GVAR, i.e. the Middle East, we cannot identify one

dominant macroeconomic factor. In South East Asia, both domestic and foreign output matter, as

does the exchange rate. Oil price changes are significant in about a quarter of the regressions.

Table 4

Results from Firm Multi-Factor Regressions: % of firms significant at 5% level44

W. Mid S. E. Latin

U.S.A. U.K. Germany France Italy Europe East Asia Japan America

F-test 93% 100% 94% 88% 67% 100% 75% 65% 92% 25%

const.45 21% 44% 6% 25% 33% 8% 25% 30% 15% 17%

∆y 14% 11% 0% 13% 0% 0% 0% 35% 8% 8%

∆2p 21% 11% 0% 13% 0% 0% 25% 13% 0% 8%

∆q 93% 44% 11% 38% 83% 92% — 74% 85% 25%

∆(e− p) — 11% 0% 0% 0% 17% 25% 35% 38% 25%

∆r 0% 0% 0% 0% 17% 8% 50% 4% 0% 0%

∆m 14% 0% 0% 0% 0% 17% 25% 13% 0% 17%

∆y∗ — 0% 0% 0% 17% 0% 0% 35% 8% 8%

∆2p∗ — 11% 0% 13% 17% 0% 0% 0% 0% 17%

∆q∗ — 56% 100% 63% 33% 50% 25% 17% 15% 8%

∆(e− p)∗ 7% — — — — — — — — —

∆r∗ — 22% 0% 13% 33% 0% 25% 0% 0% 17%

∆m∗ — 0% 0% 0% 0% 17% 0% 17% 0% 0%

∆po 21% 22% 33% 38% 17% 8% 50% 17% 0% 25%

avg. R2 0.30 0.34 0.38 0.43 0.49 0.51 0.48 0.47 0.40 0.39

avg. R̄2 0.23 0.22 0.27 0.31 0.37 0.41 0.26 0.30 0.29 0.11

43Thus, it seems plausible to reduce the multi—factor approach to a single factor CAPM-type approach for regions

where an equity series is available.
44We use the maximum sample length available to all firms in one region.
45The remaining are t-tests.
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Across the ten regions, variation in the macroeconomic factors explains between 11% and 41%

of the total variations in firm returns, as measured by R̄2. If we have captured overall systematic

risk reasonably well, the diversification benefits in an all-U.K. portfolio (average R̄2 = 0.22) should

thus be greater than for an all- South East Asian portfolio (average R̄2 = 0.30), which seems to be

more driven by systematic risk. Consequently, similarly sized macroeconomic shocks should affect

loans to South East Asian obligors to a higher extent than loans to U.K. obligors.

We now employ the MGE procedure in order to determine the overall significance of the factors.

The results are summarized in Table 5.

Table 5

Mean Group Estimates of Factor Loadings

in Return Regressions

Number of

Factors MGE S.E. of MGE t-ratios Coefficients

β̂c (β̂
∗
c)

qdV ar(β̂c) tc (t
∗
c)

PN
i=0 nci

constant 0.05 0.01 4.97 119

∆y 0.25 0.47 0.54 119

∆2p -0.67 0.33 -2.02 119

∆q 0.59 0.06 9.73 115

∆(e− p) -0.07 0.09 -0.73 105

∆r -1.96 0.71 -2.76 119

∆m -0.14 0.24 -0.59 119

∆y∗ -2.38 0.94 -2.54 105

∆2p∗ -1.50 1.07 -1.41 105

∆q∗ 0.49 0.10 4.95 105

∆(e− p)∗ 0.10 0.15 0.62 14

∆r∗ 0.63 3.23 0.20 105

∆m∗ -0.88 0.45 -1.97 105

∆po 0.29 0.06 4.67 119

Based on the MG test results the statistically most significant factors are, perhaps not sur-

prisingly, changes in domestic and foreign real equity prices (∆q and ∆q∗). The MGE of equity

prices have the expected signs and their magnitudes seem plausible. For example, the estimated

coefficients of changes in domestic and foreign equity prices add up to 1.08, suggesting that the

composition of the loan portfolio closely matches that of a global market portfolio. Domestic in-

flation (and to a lesser extent foreign inflation) and oil prices were also statistically significant.

Both domestic and foreign inflation have negative effects on returns, as to be expected. The overall

effect of the oil price changes is, however, positive. This seems a reasonable outcome for energy

32



and petrochemical companies and for some of the banks, although one would not expect this result

to be universal. In fact we do observe considerable variations in the individual estimates of the

coefficients of oil prices changes across different firms in our portfolio. In the final regressions, of

the 119 firm regressions, the coefficient on oil price changes was positive for 89 firms (about 75%

of the total), and negative for the remaining firms. The MGE for each subset was also significant.

Among the remaining factors, interest rates and foreign output are also significant. The latter

is difficult to explain, particularly considering that domestic output is not statistically significant

and foreign output has a wrong sign. In view of this we decided to exclude both of the output

variables from our subsequent analysis. Of the two interest rate variables we included the domestic

rate which had the correct sign.

Our concerns regarding multicollinearity were confirmed by the regression results. Initially, we

included both foreign and domestic equity variables but found implausible (negative) estimates for

some of the multi-factor regressions, which we believe partly reflects the high correlation of ∆q

and ∆q∗ in some regions. Working with multi-factor regressions with perversely signed estimated

coefficients is particularly problematic for the analysis of shock scenarios where the coefficient of

equity prices plays a critical role in the transmission of shocks to the loss distribution. We ran two

sets of multi-factor regressions (including inflation, interest rate and the oil price variables); one

with ∆q and another with ∆q∗, and selected the regression with higher R̄2. The summary of the

final set of multi-factor regressions and the associated MG estimates are given in Table 6. In this

specification inflation, equity price changes and oil price changes remain the key driving factors in

the multi-factor regressions.

.

Table 6

Mean Group Estimates of Factor Loadings

The Preferred Model

Number of

Factors MGE S.E. of MGE t-ratios Coefficients

β̂c (β̂
∗
c)

qdV ar(β̂c) tc (t
∗
c)

PN
i=0 nci

constant 0.02 0.004 6.33 119

∆2p -0.71 0.28 -2.52 119

∆q/∆q∗ 1.01 0.04 25.07 119

∆(e− p)∗ 0.07 0.15 0.46 14

∆r -1.82 0.65 -2.79 119

∆po 0.39 0.07 5.51 119

It is important to note that the simulation of the loss distributions are not based on the MG

estimates, but are computed using the 119 individual firm return regressions that allow for fully

heterogeneous factor loadings across firms. The individual estimates display a considerable degree
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of heterogeneity across firms, both in sign and in magnitude. The MG estimates and their standard

errors provide a useful summary of the extent to which parameter heterogeneity matters. They also

allow us to streamline the search process across alternative specifications of the return regressions.

Otherwise, we would have faced the daunting task of searching across all the 119 return regressions

separately. In addition to being highly time-consuming, such a procedure is also likely to be subject

to a much higher degree of pre-testing as compared to the selection procedure adopted above.

4.4 Simulated Conditional Loss Distributions

With the estimated GVAR model serving as the economic scenario generator and the fitted multi-

factor regressions as the linkage between firms and the economy, we simulated loss distributions

one through four quarters ahead.46 A one year horizon is typical for credit risk management and

thus of particular interest. In addition to the loss distribution implied by the baseline forecast, for

each horizon we examined the impact of several shock scenarios:47

• a −2.33σ shock to real U.S. equity, corresponding to a quarterly drop of 14.28%,

• a +2.33σ shock to real German output, corresponding to a quarterly rise of 2.17%,

• a −2.33σ shock to real S.E. Asian equity, corresponding to a quarterly drop of 24.77%,

• a +2.33σ shock to Japanese real money supply, corresponding to a quarterly rise of 2.87%.

• a +2.33σ shock to the price of crude oil, corresponding to a quarterly rise of 16.01%.48

We also experimented with symmetric positive shocks to U.S. and S.E. Asian equity prices, and

a symmetric negative shock to the price of crude oil. These are of particular interest here since

their impacts on losses will not be (negatively) symmetric due to the nonlinearity of the credit risk

model. In addition we consider a stress scenario for the U.S. equity market as reported in PSW,

namely an adverse shock of 8.02σ. Such a large shock corresponds to a quarterly drop of 49% which

is the largest quarterly drop in the S&P 500 index since 1928 (which occurred in the three months

to May, 1932). It also corresponds to the recent decline from their peak in 2000 to a recent low (in

early October, 2002). Finally we include an intermediate negative equity shock of −5σ.
We carried out 200,000 replications for each shock scenario using Gaussian (compound) innova-

tions. For the forecasts and shock scenarios, we computed expected loss results using the analytic
46The important issue of credit risk model evaluation, especially for a regulator under BIS 2, is beyond the scope of

this paper; we plan to address it in subsequent work. See also Lopez and Saidenberg (2000). Lucas (2001) illustrates

the difficulty of this validation process in the easier context of market risk.
472.33σ corresponds, in the Gaussian case, to the 99% Value-at-Risk (VaR), a typical benchmark in risk manage-

ment.
48The price at the end of 1999Q1 was $12.31 a barrel (Brent Crude). A +2.33σ shock would raise the price to

$14.45.
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formula (using (32)) as well as by stochastic simulations, (37). The two sets of estimates turn

out to be within 0.5% (analytic baseline EL is 14.55bp for the first quarter) so we only report the

simulated ones. The simulated expected and unexpected loss results are summarized in Tables 7a

and 7b, respectively, where each column represents a particular scenario. The scenarios are ordered

roughly in descending order (left to right) of loss impact.

[Insert Tables 7a and 7b about here]

We begin our discussion by looking at baseline losses. The expected baseline loss, seen in the

middle of Table 7a, over the course of four quarters is about 57.8bp (basis points) of exposure. Losses

occur more or less evenly throughout the four quarters, though the last generates the highest losses

(16.0bp) and the second quarter the lowest (12.8bp). As a basis of comparison, the average net

charge-offs (loans charged off less amount recovered over total loans) for the U.S. banking industry

from 1987 to 2003 was about 89bp.49 Another point of comparison is with industry charge-offs in

2000Q1 since the expected losses of our portfolio are essentially a one-year forecast to 2000Q1 (our

sample ends in 1999Q1). Those were 56bp (at an annual rate). These results are quite realistic

and are consistent with our expectations raised in Section 4.2 that our average losses would be a

bit lower than the U.S. average since the average credit quality of our portfolio is higher: about

80% investment grade instead of the typical 50%. Of course, our portfolio has broad international

exposure, so we would not really expect to match the U.S. loss experience exactly.

From a risk perspective, it is not so much expected as unexpected loss which matters. This

is captured by the volatility or the standard deviation of losses summarized in Table 7b. For the

baseline, unexpected losses are almost double expected losses, about 106.0bp. The quarterly loss

volatilities are increasing over the four quarters; note that they are not additive over time as is the

case with average (expected) losses.

We now turn to the effect of shock scenarios. A 2.33σ drop of real U.S. equity prices results in

an expected loss of 80bp over four quarters, about 38% above the baseline (Table 7a). The increase

in loss volatility is similar as can be seen in Table 7b: a 35% increase to 143bp. An inflationary

shock to Japanese real money supply of the same probabilistic size, namely 2.33σ, results in only

a less than 3% increase in both EL (to 59.3bp) and UL (to 107.5bp). The adverse shock to S.E.

Asian real equity prices is closer, in EL and UL terms, to the impact of the equiprobable adverse

U.S. equity shock. A benign shock to German real output reduced four quarter expected losses by

about 5% to 54.7bp, and unexpected losses by about 6% to 99.6bp.

[Insert Figure 1 about here]

49These figures were calculate by the authors using U.S. bank regulatory reports Y-9C, the so-called “Call Reports.”

Details are available upon request.
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Of principal interest to risk managers is the tail of the loss distribution. Several of the shock

scenarios for the tails are summarized in Figure 1. The basic pattern established in the discussion

of expected and unexpected losses is confirmed in the 99% and beyond tail of the loss distribution.

An inflationary shock to Japanese money supply increases credit losses somewhat relative to the

baseline loss distribution. A positive shock to German output reduces tail losses only modestly,

while adverse shocks to S.E. Asian and U.S. real equity prices increase tail losses, proportionately

similar to their impact on unexpected losses. For example, 99.5% baseline value-at-risk (VaR) is

about 6.86%, while it is 30% higher for the S.E. Asian equity shock scenario (at 8.91%) and 44%

higher for the U.S. equity shocks scenario (at 9.87%).

[Insert Table 8 about here.]

The tail values are around eight (99%) to twelve (99.5%) times expected losses for each scenario,

and around four to six times unexpected losses. The EL multiples are much higher than the re-

sampling based results in Carey (2002) who reported multiples closer to four for the case of the

U.S.; see especially his Table 3. Our portfolio is rather small, only 119 firms (Carey had about

500), and therefore has considerable potential for diversifying firm-specific risks. To evaluate the

consequences of reducing the idiosyncratic risk for the EL multiple, we focused on one quarter ahead

and carried out the simulations with each of the firms in the portfolio ‘copied’ 10 and 100 times to

arrive at an effective portfolio of 1190 and 11,900 firms, respectively. The results are summarized

in Table 8 and show sizeable reductions in unexpected losses, from 30.83bp to 12.59bp for 10 copies

and just 8.85bp for 100 copies. Similar reductions can be seen in the tails. For instance, first

quarter 99.5% VaR declines from 153.06bp to 63.14bp (53.67bp) when C = 10 (100). EL, of course,

remains virtually unchanged and very close to the analytic value of 14.55bp, as it should. Thus

much of the fat-tailedness of our loss distribution is due to the presence of significant amount of

(diversifiable) idiosyncratic risk, and once this is controlled for, the EL to VaR multiples are in line

with Carey’s results.

[Insert Figure 2 about here]

Symmetric shocks do not result in symmetric outcomes, namely positive and negative shocks

of the same absolute size do not have the same absolute effects on loss distributions. Consider

first expected and unexpected losses. While a negative shock to, say, S.E. Asian real equity prices

increased expected losses (Table 7a) by 28%, a positive shock reduces them only by 18%, namely

from 57.8bp to 47.4bp. Similarly, unexpected losses (Table 7b) increase by 23% under an adverse

scenario (from 106bp to 130bp) while they decrease just 16% (to 89.3bp) under a benign scenario.

This is confirmed in the tails of the loss distribution for the pair of S.E. Asian real equity shock

scenarios displayed in Figure 2.
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The asymmetric reaction of losses to symmetric risk factor shocks is vividly illustrated with the

oil price shocks. Recall that the mean group estimate of oil price changes in the return regression

equation was found to be positive at 0.39 (see Table 6). Thus in Table 7a we see that a 2.33σ

drop in oil prices increases expected losses by 27% (from 57.8bp to 73.3bp) while a commensurate

increase reduces expected losses by only 12% (to 50.9bp). The relative impact is less dramatic on

loss volatility as seen in Table 7b. The −2.33σ oil price shock increases loss volatility by only 10%
(106.0bp to 116.7bp), the positive shock decreases loss volatility by just 6% (to 99.5bp).

[Insert Figure 3 about here]

Figure 3 shows the loss distribution of the two oil price shocks together with the baseline

distribution for the 95th percentile and beyond. For the majority of firms in our sample, an upward

shock to the oil price has benign effects. Yet, there are also firms which move close to default in

the presence of an upward shock to the oil price (as one would expect for many industries). As we

have already seen, symmetric shocks do not result in symmetric changes to the loss distribution.

The increase in credit loss from an adverse shock is disproportionately larger than loss mitigation

from a benign shock of the same magnitude. While oil price shocks may have opposite effects

on individual firm default risk, the adverse effect tends to outweigh the benign one. Thus, it is

plausible within the portfolio context of our model that positive and negative shocks to the same

variable may both result in adverse effects on credit loss.

One can clearly see just how steep, in this display manner, the loss curve becomes in the far

tail. Past a certain point, about the 99th percentile, losses increase dramatically. It is no accident

that credit risk managers focus on this region.

[Insert Figure 4 about here]

What happens as the shocks become more and more extreme? This question is addressed in

Figure 4 for different U.S. real equity shock scenarios: −5.00σ and −8.02σ, the latter matching
the largest quarterly drop in the S&P 500 index since 1928. We also display the baseline loss

distribution for comparison. To be sure, a shock as extreme as −8.02σ is, of course, outside the
bounds of the estimated model. It would be unreasonable to believe that such a large shock would

not result in changes of the underlying parameters. In particular, we note that the volatilities

remain constant, and while stressing volatilities would certainly be of interest (especially in light of

the nonlinearities already in the model), they require care so as to maintain coherence across the

error covariance matrix; such stress testing is beyond the scope of the present work. Nonetheless,

it is still instructive to examine the impact of an extreme shock given the constant volatility as one

way of stressing a credit risk model.

While a −2.33σ shock results in 99th percentile loss that is about 50% more than the baseline,

4.78% to 7.47%, a −5.00σ shock more than doubles 99% VaR, to 11.15%, and the extreme −8.02σ
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shock more than triples losses at this level, to 15.25% of exposure. Carey (2002), in his "Great

Depression" scenario finds that losses at the 99th percentile would be about triple his base case.

5 Concluding Remarks

Financial institutions are ultimately exposed to macroeconomic fluctuations in the global economy.

Their portfolios are typically sufficiently large that idiosyncratic risk is diversified away, leaving

exposure to systematic risk. If business cycles are not perfectly correlated across countries and

regions, diversification benefits can be obtained by internationalizing one’s exposure. In this paper

we develop a Merton-type credit risk model which is linked to a global macroeconometric model that

explicitly allows for the interdependencies that exist between national and international factors. A

key challenge, which we address, is to allow for firm-specific business cycle effects and heterogeneous

default thresholds.

The first step in developing such a model is to build an economic engine reflective of the

environment faced by an internationally active global bank which is done in Pesaran, Schuermann

and Weiner (2004). For the credit portfolio component of our model we use a simple Merton-type

framework, modeling credit risk as a function of correlated equity returns of the obligor companies.

Equity returns are linked to the correlated macroeconomic variables contemporaneously through

return regressions. We then use the estimated global model as the economic engine for generating a

multi-period conditional loss distribution of a credit portfolio using stochastic simulation. Sampling

takes place along three lines: correlated random draws of macroeconomic factors; draws of firm-

specific risk components; and draws of stochastic loan loss severities. Finally we analyze the impact

of a shock to a set of specific macroeconomic variables on the loss distribution, allowing us to analyze

the effect of a particular macroeconomic shock in one region on credit portfolios concentrated in

other regions, as well as shocks to risk factors, e.g. oil prices, affecting all regions.

Our credit risk modeling approach has two other features of particular relevance for risk man-

agers: exploration of scale and symmetry of shocks on credit risk, and the ranking of shock impacts

on credit risk. First, we show that shocks not only have an asymmetric but also non-proportional

impact on credit risk due to the nonlinearity of the credit risk model. Because the Merton model is

an option-theoretic model, these traits echo characteristics of the options markets: large movements

in the underlying prices have disproportional effects on the value of the option portfolio.

Second, the model allows us to rank the effects of different shocks on a global portfolio. Not

surprisingly, shocks to real equity prices seem to have the most significant effect on implied credit

losses, followed here by shocks to the price of crude oil. This ability for the model to produce relative

ranking of the impact of a variety of shocks on the credit portfolio may be of particular interest

to risk managers, who typically perform scenario analyses on a quarterly (or perhaps even more

frequent) basis. Moreover, the results of the risk impact analysis offers natural hedging strategies
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and allow the manager to consider alternative strategies such as reallocation or derivative solutions

to managing the largest risks associated with a portfolio.
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Table 7a 

 
Mean (Expected Loss) of Simulated Losses for 1 through 4 Quarters Ahead  

(in Basis Points of $ Exposure)1 

 -8.02σ 
U.S. 

Equity 

-5.00σ 
U.S. 

Equity 

-2.33σ 
U.S. 

Equity 

-2.33σ 
SEA 

Equity 

-2.33σ 
Oil 

+2.33σ 
Japanese 

Money 

Base-
line 

+2.33σ 
German 
Output 

+2.33σ 
Oil 

+2.33σ 
SEA 

Equity 

+2.33σ 
U.S. 

Equity 

4Q 235.2 123.3 80.0 74.2 73.3 59.3 57.8 54.7 50.9 47.4 43.3

Q1 105.9 37.6 21.2 19.3 23.8 14.7 14.5 14.2 11.8 11.8 10.2

Q2 51.3 28.0 17.8 16.4 16.3 13.3 12.8 12.2 11.1 10.5 9.7

Q3 40.8 28.7 19.7 18.4 16.5 14.9 14.5 13.4 12.8 11.9 11.0

Q4 37.1 28.9 21.3 20.0 16.7 16.4 16.0 14.9 15.2 13.2 12.3

 

                                                      
1 All simulations were made with 200,000 replications 
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Table 7b 

 
Standard Deviation (Unexpected Loss) of Simulated Losses for 1 through 4 Quarters Ahead  

(in Basis Points of $ Exposure)2 

 -8.02σ 
U.S. 

Equity 

-5.00σ 
U.S. 

Equity 

-2.33σ 
U.S. 

Equity 

-2.33σ 
SEA 

Equity 

-2.33σ 
Oil 

+2.33σ 
Japanese 

Money 

Base-
line 

+2.33σ 
German 
Output 

+2.33σ 
Oil 

+2.33σ 
SEA 

Equity 

+2.33σ 
U.S. 

Equity 

4Q 304.6 205.0 143.0 130.0 116.7 107.5 106.0 99.6 99.5 89.3 80.9

Q1 103.2 51.9 37.4 35.0 37.7 30.9 30.8 30.6 28.8 28.0 25.9

Q2 98.2 62.7 41.1 37.2 35.5 31.8 31.2 30.1 29.0 27.8 25.9

Q3 84.6 71.5 53.7 49.4 42.1 41.3 40.9 38.2 38.7 34.7 31.9

Q4 78.4 72.2 60.2 56.8 46.2 49.1 48.6 45.5 49.7 41.7 38.8

 

                                                      
2 All simulations were made with 200,000 replications.  
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Table 8 
 

Granularity and Firm-specific Risk 
One Quarter Ahead Losses, Each Firm Copied C Times for a Total of 119×C Exposures 

(in Basis Points of $ Exposure)3 

 C = 1 C = 10 C = 100 

EL 14.56 14.54 14.56 

UL 30.83 12.59 8.85 

99.0% VaR 134.79 55.56 46.45 

99.5% VaR 153.06 63.14 53.67 

99.9% VaR 197.10 82.81 71.31 

 

                                                      
3 All simulations were made with 200,000 replications.  Analytic EL = 14.55bp. 



Figure 1

48



Figure 2

49



Figure 3

50



Figure 4

51



A Supplement: An Overview of the GVAR Framework

This supplement presents a synopsis of the global vector autoregressive model (GVAR) as a gen-

erator of global macroeconomic dynamics and scenarios. It gives an overview of the framework

underlying the GVAR without going into the details of estimation techniques.1

A.1 Country/Region Specific Models

The GVAR assumes that there are N + 1 country/regions in the global economy, indexed by

i = 0, 1, . . . , N , where 0 is the reference country or region (taken to be the U.S.).2 Macroeconomic

variables of each region are modeled as a function of both their own past and the global economy’s

current and past state. It is assumed that the regional variables are related to deterministic variables

(such as a time trend), foreign variables (which are region-specific weighted averages of the rest

of the world) and variables that are taken to be exogenous to this global economy, such as the oil

price. We specify the following vector autoregressive form for ki variables:3

xit = ai0 + ai1t+Φixi,t−1 +Λi0x
∗
it +Λi1x

∗
i,t−1 +Ψi0dt +Ψi1dt−1 + εit,

t = 1, 2, ..., T ; i = 0, 1, 2, ..., N, (A.1)

where xit is the ki × 1 country-specific factors/variables, ai1 is a ki × 1 vector of linear trend
coefficients, Φi is a ki×ki matrix of associated lagged coefficients, x∗it is the k

∗
i ×1 vector of foreign

variables specific to country i (to be defined below) with Λi0 and Λi1 being ki×k∗i matrices of fixed

coefficients, dt is an s×1 vector of common global variables assumed to be exogenous to the global
economy with Ψi0 and Ψi1 being ki × s matrices of fixed coefficients, and εit is a ki × 1 vector of
country-specific shocks assumed to be serially uncorrelated with a zero mean and a non-singular

covariance matrix, Σii = (σii,cs), where σii,cs = cov(εict, εist), or written more compactly

εit v i.i.d.(0,Σii). (A.2)

Although the model is estimated on a regional basis, we allow for the shocks to be correlated across

regions. In particular, we assume that

E
¡
εitε

0
jt0
¢
= Σij for t = t0,

= 0 for t 6= t.

Interactions take place through three distinct, but interrelated channels:

1. Direct dependence of xit on x∗it and its lagged values.
1These can be found in Pesaran, Schuermann and Weiner (2004), hereafter referred to as PSW.
2For simplicity we will refer to regions only. For more on country to region aggregation, see PSW.
3Although easily extended to incorporate lags greater than one, the GVAR(1) specification given above is seen as

sufficient for the illustrative purposes of this paper. Typical values for ki are 5 or 6.
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2. Dependence of the region-specific variables on common global exogenous variables such as oil

prices.

3. Non-zero contemporaneous dependence of shocks in region i on the shocks in region j, mea-

sured via the cross country covariances, Σij .

The individual models are estimated allowing for unit roots and cointegration assuming that

region-specific foreign variables are weakly exogenous, with the exception of the model for the U.S.

economy which is treated as a closed economy model.4 The U.S. model is linked to the outside

world through exchange rates themselves being determined in rest of the region-specific models.

While models of the form in equation (A.1) are relatively standard, PSW show that the careful

construction of the global variables as weighted averages of the other regional variables leads to

a simultaneous system of regional equations that may be solved to form a global system. They

also provide theoretical arguments as well as empirical evidence in support of the weak exogeniety

assumption that allows the region-specific models to be estimated consistently.

A.2 The Global Model and Multi-step Ahead Forecasts

In view of the contemporaneous dependence of the domestic variables, xit, on the foreign variables,

x∗it, the region-specific VAR models (A.1) still need to be solved simultaneously for all the domestic

variables, xit, i = 0, 1, ..., N . The global solution to the model yields a k × 1 vector xt, which
contains the macroeconomic variables of all regions, such that xt is a function of time, the lagged

values of all macroeconomic variables xt−1 and the exogenous variables common to all regions (and

their lags):

xt = b0 + b1t + zxt−1 +Υ0dt +Υ1dt−1 + ut, (A.3)

xt = (x00t,x01t, ...,x0Nt)
0 is the global k × 1 vector, where k = PN

i=0 ki is the total number of the

endogenous variables in the global model, b0 and b1 are k × 1 vectors of coefficients, z is a k × k

matrix of coefficients, dt is an s × 1 vector of common global variables assumed to be exogenous
to the global economy (here to be the oil price) with corresponding k × s matrices of coefficients,

Υ0 and Υ1.5 Finally, ut is a k× 1 vectors of (reduced form) shocks that are linear functions of the
region-specific shocks (εit). In particular, we have ut = G−1εt, where εt = (ε00t, ε01t, ..., ε0Nt)

0, and

the k × k matrix of coefficients G is defined in Section 3 of PSW. We also have

V ar (ut) = G
−1ΣεG

0−1, (A.4)

where Σε=V ar (εt).

4Problems of estimation and testing of cointegrating models with weakly exogenous variables is discussed in

Pesaran, Shin and Smith (2000).
5The exact relationships between the parameters of the GVAR model in (A.3), and those of the underlying

region-specific models (A.1) are given in PSW.
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In what follows we assume that the GVAR model is estimated over the period t = 1, 2, ..., T, and

the objective of the exercise is to generate forecasts, both unconditionally as well as conditional on

a particular shock scenario, over the period t = T +1, ..., T + n, with n being the forecast horizon.

Accordingly, all forecasts and loss distributions at different forecast horizons, n = 1, 2, ..., will be

conditioned on the state of the economy as characterized by the GVAR model and all the available

information at the end of the sample period (i.e. time T ), namely ΩT = (xT ,dT ,xT−1,dT−1, ...).

For multi-step ahead forecasting and impulse response (or shock scenario) analysis the above

solution to the GVAR model needs to be augmented with a model for the common global variables

dt. To this end we adopt the following autoregressive specification

dt = µd +Φddt−1 + εdt, for t = T + 1, T + 2, ..., T + n, (A.5)

where εdt v i.i.d. (0,Σd), which are assumed to be distributed independently of the macroeconomic

shocks, εt, t = T + 1, T + 2, ..., T + n. We shall assume that all the eigen values of Φd lie on or

inside the unit circle and ∆dt is stationary with a constant mean.

For multi-step analysis it is convenient to stack up the macroeconomic (A.3) and global (A.5)

equations, and solve out the contemporaneous effect of dt on xt to yield

yt = µ+ δ t+Φyt−1 +D υt, (A.6)

where

yt =

Ã
xt

dt

!
, µ =

Ã
b0 +Υ0µd

µd

!
, δ =

Ã
b1

0

!
, υt =

Ã
εt

εdt

!
, (A.7)

Φ =

Ã
z Υ1 +Υ0Φd

0 Φd

!
, and D =

Ã
G−1 Υ0
0 Is

!
. (A.8)

The (k + s) × 1 vector, υt, augments the region-specific shocks of interest, εt, with the common
global shocks, εdt. In the presence of unit root and cointegration it is desirable to ensure that the

trend coefficients, δ, are restricted so that the trend characteristics of yt are not affected by the

number of unit roots in Φ. This is achieved by setting

δ = (I−Φ)γ, (A.9)

where γ is a vector of unrestricted coefficients.6 Also, in view of the independence of these shocks

we have

V ar (υt) = Συ =

Ã
Σε 0

0 Σd

!
.

6For further details and discussions see Section 4 in PSW.
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Solving the above difference equation forward from yT , we now obtain

yT+n = ΦnyT+
n−1X
τ=0

Φτ [µ+(T + n− τ)δ]

+
n−1X
τ=0

ΦτDυT+n−τ . (A.10)

This solution has three distinct components: The first component, ΦnyT , measures the effect of

initial values, yT , on the future state of the system. The second component captures the determin-

istic trends embodied in the underlying VAR model. Finally, the last term in (A.10) represents the

stochastic (unpredictable) component of yT+n.

As we shall see below, for the purpose of simulating the loss distribution of a given portfolio,

the conditional probability distribution of ∆yT+n is needed.7 Using (A.10) and after some algebra

we obtain

∆yT+n =
¡
Φn −Φn−1¢yT + g (T, n) + UT+n, (A.11)

where

g (T, n) = Φn−1 [µ+(T + 1) δ] +
n−1X
τ=1

Φτ−1δ, (A.12)

and

UT+n = DυT+n +
n−1X
τ=1

¡
Φτ −Φτ−1¢DυT+n−τ . (A.13)

Hence

E (∆yT+n | ΩT ) =
¡
Φn −Φn−1¢yT + g (T, n) , (A.14)

V ar (∆yT+n | ΩT ) = DΣυD
0 +

n−1X
τ=1

¡
Φτ −Φτ−1¢ ¡DΣυD

0¢ ¡Φτ −Φτ−1¢0 . (A.15)

If it is further assumed that the region-specific shocks, εt, and the common global shocks, εdt, are

normally distributed, we then have8

∆yT+n | ΩT v N
©¡
Φn −Φn−1¢yT + g (T, n) , Ψn

ª
, (A.16)

where

Ψn = B+
n−1X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 , (A.17)

and

B = DΣυD
0 =

Ã
G−1ΣG0−1 +Υ0ΣdΥ

0
0 Υ0Σd

ΣdΥ
0
0 Σd

!
. (A.18)

7That is because returns are modeled as being driven by changes in systematic factors in Section 3.
8 It is also possible to work with non-Gaussian shocks.
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Finally, in the present application where the underlying GVAR model admits unit roots and cointe-

gration, the limit distribution of ∆yT+n | ΩT exists and is finite if δ =(I−Φ)γ, otherwise g (T, n)
increases without bound as n→∞. Under δ =(I−Φ)γ, using (A.12) we have

g (T, n) = Φn−1µ+(T + 1)
¡
Φn−1−Φn

¢
γ+

¡
I−Φn−1¢γ, (A.19)

and it is easily seen that

lim
n→∞ [g (T, n)] = Φ

∗µ+(I−Φ∗)γ,
where Φ∗ = limn→∞ (Φn) is finite under our assumptions. More specifically, if δ =(I−Φ)γ we
have

lim
n→∞∆yT+n | ΩT v N {Φ∗µ+(I−Φ∗)γ, Ψ∗} ,

where9

Ψ∗ = B+
∞X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 .

Therefore, as argued in Section 4 of PSW, it is important that the GVAR model is estimated

subject to the restrictions, b1 = (I−z)γ1, which in conjunction with the model for the common
global variables, (A.5), ensure that δ =(I−Φ)γ.

In summary, the GVAR’s sequential regional estimation and global aggregation methodology

allows for the practitioner to solve for the conditional distribution of the macroeconomic factors

globally, whereas single-stage estimation of the global system in equation (A.3) would be prohibitive

due to the very large number of coefficients and generally thin data sets. As a result, the model

allows us to examine the effects of a shock in one region on the macroeconomic factors that describe

the system globally, as our discussion of impulse response functions below shows.

B Simulation of Multi-period Returns

Using (23), we have

Rji,T+κ =
κX

τ=1

rji,T+τ =
κX

τ=1

µji,T+τ |T + ξji,T+τ , for κ = 1, 2, ...,H, (A.20)

where

µji,T+κ|T = αji + Γ
0
ji

£¡
Φκ −Φκ−1¢yT + g (T, κ)¤ , (A.21)

ξji,T+κ = Γ0jiUT+κ + ηji,T+κ,

UT+κ = DυT+κ +
κ−1X
τ=1

¡
Φτ −Φτ−1¢DυT+κ−τ .

9Notice that all the elements of Φτ −Φτ−1 decay exponentially with τ even under unit roots and hence Ψ∗

exists and is finite.
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and g (T, n) is given by (A.19). It is clear that at time T , the conditional mean returns, µji,T+κ|T ,

κ = 1, 2, ...,H, are known insofar as they are forecast by the GVAR. It is also easily seen that the

unpredictable components of the returns over the different horizons have the following recursive

structure: Given forecasts from the GVAR model,

ξji,T+1 = Γ0jiH0DυT+1 + ηji,T+1,

ξji,T+2 = Γ0jiH1DυT+1 + Γ0jiH0DυT+2 + ηji,T+2,

...

ξji,T+H = Γ0jiHH−1DυT+1 + Γ0jiHH−2DυT+2 + ....+ Γ0jiH0DυT+H + ηji,T+H ,

where

Hκ = Φ
κ −Φκ−1, κ = 1, 2, ...,H and H0 = Ik+s.

Recall that the matrix Φ collects all the GVAR coefficients other than constants and trends and

thus characterizes the effect of initial values yT on the future state of the macroeconomic system as

given by (A.6). Therefore, the conditional distribution of the returns across the different forecast

horizons are correlated, and in the simulation of the loss distribution one needs to draw from the

joint distribution of rji(H) = (rji,T+1, rji,T+2, ..., rji,T+H)
0. For this purpose we note that ξji,T+κ,

κ = 1, 2, ..,H, have zero means and a variance covariance matrix V ar(rji(H)) whose (w, n) element

is given by

Γ0ji

Ã
mX
τ=1

Hw−τBH0w−τ
!
Γji + ω2η,ji, if w = n,

Γ0ji

Min(m,n)X
τ=1

Hm−τBH0n−τ

Γji, if w 6= n,

where B = DΣυD
0.

Alternatively, when the shocks are Gaussian the returns can be simulated using the relations

r
(r)
ji,T+κ = µji,T+κ|T + ξ

(r)
ji,T+κ, for κ = 1, 2, ...,H, (A.22)

where

ξ
(r)
ji,T+κ =

κ−1X
τ=0

¡
Γ0jiHτBH0τΓji

¢1/2
Z(r)τ + ωη,ji Z

(r)
ijκ, (A.23)

where Z(r)0 , Z(r)1 , ..., Z
(r)
H−1; Z

(r)
ij1, Z

(r)
ij2, ..., Z

(r)
ijH are independent draws from IID N(0, 1) for all i and

j.

C Shock Scenario Analysis through GIRFs

For policy analysis, one would like to be able to examine how an isolated contemporaneous shock

to one macroeconomic variable affects all other macroeconomic variables in the global economy.
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For example, it might be of interest to determine the effects of a contemporaneous 10% drop in the

Japanese equity prices on other macroeconomic variables, and the effects that these have on the

credit risk of a given portfolio. Impulse response functions provide us with the tools to carry out

this type of analysis. In so doing, it is of course important that the correlations that exists across

the different shocks, both within and across regions, are properly taken into accounted. However,

in a model which consists only of regional VAR’s (as in equation (A.1)) which are not integrated as

in the GVAR, it is impossible to uncover these effects because the interdependencies within regions

are lost. On the other hand, single-stage estimation of the global model (A.3) is extremely difficult,

and even if it were possible (and consistent), it would be impossible to construct a regional shock

(a shock to εit) within the context of such a global model. Only with the GVAR can both of these

challenges be adequately addressed.

In the traditional VAR literature this is accomplished by means of the orthogonalized impulse

responses (OIR) à la Sims (1980), where impulse responses are computed with respect to a set of

orthogonalized shocks, say ξt, instead of the original shocks, εt. The link between the two sets of

shocks are given by

ξt = P
−1εt,

where P is a k×k lower triangular Cholesky factor of the variance covariance matrix, V ar(εt) = Σε,

namely

PP0 = Σε.

Therefore, by construction E(ξtξ
0
t) = Ik. However, the drawback of using OIR is that the outcome

is dependent on the order of the variables.10 Koop, Pesaran and Potter (1996) and Pesaran and

Shin (1998) have developed an approach which is invariant to the order of the variables, known

as the generalized impulse response function (GIRF). The GIRF can be applied to region-specific

shocks as well as to the common global shocks. For example, if factor c in country i is (purposefully)

shocked by one standard error (i.e. √σii,cc) in the period from T to T + 1, the GIRF of yT+n is

given by

ψic(y, n) = E
¡
yT+n | ΩT , εi,T+1,c = √σii,cc

¢−E (yT+n | ΩT ) .

The first term captures the expected effect of the shock, while the second term represents the

baseline scenario in the absence of the shock. In the case of the GVAR model, using (A.10) we

have

ψic(y, n) = Φ
n−1DE

¡
υT+1 | ΩT , εi,T+1,c = √σii,cc

¢
,

which yields

ψic(y, n) =
1√
σii,cc

Φn−1DΣυsic , n = 1, 2, ..., (A.24)

10This is due to the non-uniqueness of the Cholesky decomposition. While OIR are suitable for low-dimensional

models where variables can be arranged in causal order, they are not suitable for large dimensional GVAR models.
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where sic is a (k + s) × 1 selection vector with its element corresponding to the cth variable in

country i being unity and zeros elsewhere. A similar expression can also be derived for the effect of

shocking one of the common global variables by an appropriate choice of the selection vector, s, and

by replacing √σii,cc with the one standard error of the common global variable being shocked.11
The GIRF of the changes in the n-period ahead forecast, ∆yT+n, can also be derived directly

using (A.11) and is given by

ψic(∆y, n) =
1√
σii,cc

DΣυsic for n = 1, (A.25)

=
1√
σii,cc

¡
Φn−1 −Φn−2¢DΣυsic , for n = 2, 3, ..

Clearly, on impact (for n = 1), ψic(y, n) = ψic(∆y, n), but the two impulse response functions

deviate at higher order horizons.

Finally, to analyze the impact of shock scenarios on the loss distribution, we also need to consider

the effect of region-specific and common global shocks on the whole probability distribution function

of ∆yT+n conditional on ΩT . For this purpose we assume that the magnitude and the nature of

the shock is not such as to alter the probability distribution function of υT+1, and distinguish

between the cases where the change in εi,T+1,c is pre-announced or anticipated, as compared to

the case where the change is unanticipated. The former could be relevant in the case of policy

announcements such as specific tax changes or general changes to the monetary policy. But for

risk analysis unanticipated forms of shocks seem more relevant. Assuming that the errors, υT+1,

are distributed as multivariate normal (even after the system is hit by the shock), the probability

distribution in the presence of an unanticipated unit shock to cth factor in country i is given by

∆yT+n | ΩT , εi,T+1,c = √σii,cc v N
¡¡
Φn −Φn−1¢yT + g (T, n) +ψic(∆y, n), Ψn

¢
, (A.26)

where ψic(∆y, n), and Ψn are defined by (A.24) and (A.17). Here we are assuming that the shock,

if unanticipated, does not change the conditional covariance matrix of υT+1.12

When the shock is anticipated its variance as well as its covariances with the other components

of υT+1 will be zero on impact and we have

∆yT+n | ΩT , εi,T+1,c = √σii,cc v N
¡¡
Φn −Φn−1¢yT + g (T, n) +ψic(∆y, n), Ψn,ic

¢
, (A.27)

where

Ψn,ic = Bic, for n = 1, (A.28)

Ψn,ic = Bic +
n−1X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 , for n = 2, 3, ...

11The GIRF are identical to the orthogonalized impulse response function only when Συ is diagonal and/or when

the focus of the analysis is on the impulse response function of shocking the first element of υt. See Pesaran and

Shin (1998).
12 In principle it is possible to allow for simultaneous mean and variance change, for example, by adopting GARCH-

in-mean type models where conditional variance is assumed to be depend on the conditional mean of the errors.

8



Bic = D
h
Συ −Συsic

¡
s0
ic
Συsic

¢−1
s0
ic
Συ

i
D0. (A.29)
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