Wharton

Financial Overcoming the Inherent Dependency
Institutions of DEA Efficiency Scores: A
Center Booitstrap Approach

by

Mei Xue

Patrick T. Harker

99-17

The Wharton School

University of Pennsylvania




THE WHARTON FINANCIAL INSTITUTIONS CENTER

The Wharton Financial Institutions Center provides a multi-disciplinary research approach to
the problems and opportunities facing the financial services industry in its search for
competitive excellence. The Center's research focuses on the issues related to managing risk
at the firm level as well as ways to improve productivity and performance.

The Center fosters the development of a community of faculty, visiting scholars and Ph.D.
candidates whose research interests complement and support the mission of the Center. The
Center works closely with industry executives and practitioners to ensure that its research is
informed by the operating realities and competitive demands facing industry participants as
they pursue competitive excellence.

Copies of the working papers summarized here are available from the Center. If you would
like to learn more about the Center or become a member of our research community, please
let us know of your interest.

Anthony M. Santomero
Director

The Working Paper Series is made possible by a generous
grant from the Alfred P. Sloan Foundation



Overcoming the Inherent Dependency of DEA Efficiency Scores:
A Bootstrap Approach

Mei Xue
Department of Operations and Information Management
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104-6315
xuem(@seas.upenn.edu

Patrick T. Harker
Department of Operations and Information Management
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104-6366
harker@wharton.upenn.edu

April 1999

Abstract

The efficiency scores generated by DEA (Data Envelopment Analysis) models are clearly
dependent on each other in the statistical sense. However, this dependency has been ignored in all
published uses of these scores when used to make statistical inferences. For example, regression
analysis has been widely applied to the analysis of the variation of the DEA efficiency scores.
However, the conventional procedure, which has been generally followed in the literature, is
invalid. Because of the presence of the inherent dependence among the DEA efficiency scores,
one basic model assumption required by regression analysis, independence within the sample, is
violated. This paper provides a Bootstrap method to overcome this dependency problem. The
core idea is to substitute the incorrect conventional estimators for the standard errors of the
regression coefficient estimates with the Bootstrap estimators for the standard errors of these
estimates. The method is illustrated using an empirical example from the U.S. health care system.



1. Introduction

Using regression analysis to explain the variations in the distribution of the Data Envelopment
Analysis (DEA) efficiency scores has been widely used in the literature. For example, regression
analysis has been used to analyze the DEA efficiency scores or some kind of transformations of
the DEA efficiency scores in analyzing educational systems (Lovell et al. 1994; Ray 1991),
health care (Kooreman 1994; Juras and Brooks 1993), the insurance industry (Cummins et al.

1999; Carr 1997), and in many other published and unpublished studies.

The use of regression to combine the non-parametric DEA method and parametric statistical
methods is recognized in Charnes et al. (1994) and Grosskopf (1996). Obviously, regression
analysis is among the most useful and most widely used statistical methods. It is a reliable and
easy to use tool to determine whether or not certain factors influence the decision-making units'
(DMUs) efficiency scores. In practice, it helps to seek the answer to the question we are
essentially interested in: inside the black box of an organization, what are those factors that

significantly influence the DMUs’ efficiency?

A typical way of using regression analysis in the DEA literature is to fit one regression model, in
which the variations of the DEA efficiency scores (or some kind of transformation of the
efficiency scores) are explained by a group of explanatory variables of interest. The relationship
between the efficiency scores and the explanatory variables is then evaluated based on the results
of this regression model. We call this kind of method as direct regression in this paper. The basic

procedure for direct regression can be summarized as followings:

(1) Run one DEA model (or some kind of extension of the conventional DEA model) for each

DMU of all the n DMUs in the observation set to calculate the DEA efficiency scores
0,,0,,....0, .

(2) Fit a single regression model, in which the DEA efficiency score 6, or some kind of
transformation of 0, (e.g., the logarithmic transformation), is the response variable.
(3) Do hypothesis testing: test the individual null hypothesis “ H : ;= 0 based on the results

from fitting the regression model. That is, determine whether or not a certain explanatory

variable influences the DMUs’ efficiency scores at some pre-specified significant level.



Several problems related to the above procedure are examined in Grosskopf (1996) under the title
of “the two-step procedure”. For example, if the sample distribution of the DEA efficiency
scores is non-normal, a normal distribution may be approximated using the logarithmic
transformation of the efficiency score as shown in Lovell ez al. (1994)". Also, some estimation
problems arising from correlation between the input-output vector in the DEA model and the
explanatory variable in the regression model are discussed in Deprins and Simar (1989) and

Simar, Lovell and Eeckaut (1994).

However, a serious problem with the above procedure has been so ignored in the literature to
date. That is, the above procedure violates a basic assumption required by regression analysis: the

assumption of independence within the sample. Assume there are n observations in the

observation set. If X,,X,,..., X were n row vectors of predictors randomly sampled form a

population, and responses Y,,Y,,....Y satisfied Y, = X, +¢,, where the errors ¢&,’s are

normally distributed with mean zero and constant variance, independent to each other and

independent to the X,’s, then least square regression gives appropriate inferences about the
column vector parameter [ . However, when V,Y,,...,Y are the DEA efficiency scores

0,,0,,...,0,, the errors &,’s can not be independent to each other, because the methodology of

DEA insures that 6,,0,,...,0, are not independent to each other. The calculation of the DEA
efficiency score for one DMU involves all the other DMUs in the observation set. For example, in
the following primal input-oriented CCR model, the DEA efficiency score of DMU t in the

observed set, where f € {1,2,...,11}, is calculated by solving the following linear programming

problem:
min 0, (1
s.t.
B, <> AB, )
i=1
0,4, 2> 2,4, 3)
i=1

' Notice the sample distribution of the DEA efficiency scores is not necessarily non-normal. In the example
in Section 4, the Shapiro-Wilk normality test shows that the sample distribution of the DEA efficiency
scores as well as the residuals from fitting the regression model in our example are indeed approximately
normally distributed.



2,20, i=1..,n. (4)
In this problem, A, denotes the input vector of DMU i, B, denotes the output vector of DMU i,

and A, is the weight of DMU i. Obviously, the calculation of the DEA efficiency score for DMU

t involves all the other DMUs in the observed set. In other words, the reason for the dependency
problem is simply the well-known fact that the DEA efficiency score is a relative efficiency index
instead of an absolute efficiency index. This is generally true for all kinds of DEA models and the
Modified DEA models. Therefore, the above procedure, direct regression, is not valid because of
the violation of one of the basic model assumptions required by regression analysis due to the

presence of the inherent dependence among the DMUs’ DEA efficiency scores.

In this paper, we present a procedure in which the Bootstrap is used with regression analysis to
address the above dependency problem. Notice that in the literature of Bootstrap, this method has
been used to address different problems in regression analysis; for example, the non-normality of
the distribution of the errors in regression analysis. In this paper, Bootstrap is used in to address a
different and more specific problem in regression analysis: the dependence among the errors due
to the dependence among the responses within the sample, specifically, the DEA efficiency
scores. As we will show later in this paper, in hypothesis testing, the method presented in this
paper may lead to a conclusion which is contrary to the one drawn from the above direct

regression procedure.

The inherent dependency problem of the DEA efficiency scores has been ignored in the literature.
However, one should be concerned with not only in the regression analysis of the variations of
the DEA efficiency scores, but also other statistical inferences based on DEA efficiency scores.
For example, in the also widely used non-parametric analysis of DEA efficiency scores, the
independence within sample is also required. But this assumption can also not be satisfied due to
the inherent dependency of the DEA efficiency scores. However, to the best of our knowledge,
this problem has never been acknowledged, nor addressed in the literature. In our opinion, the
Bootstrap is a possible tool to fix this problem in the non-parametric analysis of the DEA

efficiency scores as well.

The rest of the paper is organized as followings: In Section 2, the Bootstrap method is introduced.

In Section 3, a procedure of regression analysis with the Bootstrap in post-DEA analysis is



presented. An empirical example is described in Section 4 to illustrate the methodology presented

herein. The main results of this paper are summarized in Section 5.



2. The Bootstrap Method

Bradley Efron invented the Bootstrap method in 1979 (See Efron 1979). Since then, it has quickly
become a popular and powerful statistical tool used to address some “hard” problems in statistical
analysis. This method is a computationally intense method. However the modern computer is

more than sufficient for the computation required by this method.

The problem solved by Bootstrap is mainly an estimation problem. Considering a random sample
X =(X,,X,,...,X,) from a population with an unknown distribution F, the goal is to estimate
the sampling distribution of some pre-specified random variable R (X, F), based on the real data

set x. Here x =(x,,x,,...,X, ) denotes the observed realization of X =(X,,X,,....X ).

As described in Efron (1979), the principle of the Bootstrap method is very simple and
straightforward:
(1) Construct the sample probability distribution F , assigning probability 1/n at each point in

the observed sample: x,,X,,...,X, .

(2) Draw a random sample of size n with replacement from F while F is fixed at its observed

value. That is,

X =x,X ~, F,i=1,2,..,n (5)

1

The sample X~ =(X,,X,,..., X :) is defined as the Bootstrap sample.

(3) The distribution of the random variable R (X, F) is approximated by the bootstrap distribution
of

R =R(X",F). (6)

Behind this principle, the core idea is that given X =x, F'is the central point of F among all the

likely F’s, and then R should be close enough to R. In theory, when F=F , it must be the case

that R* = R . Theoretically, R~ can be calculated after x is observed. For more details about the
methodology of the Bootstrap method, please refer to Efron (1979) and Efron and Tibshirani
(1993). Based on well-established facts, the Bootstrap has been shown to work satisfactorily in
many estimation problems, such as the estimation of the variance of the sample median and

confidence intervals. As we mentioned before, it was also used to estimate the distribution of the



regression coefficients when the error terms’ distributions independently follow some unknown

distribution.

Bootstrap was first introduced into the non-parametric frontier analysis field through a pioneering
work in Simar (1992). Since then, it has been used to construct the confidence interval for the
means of the DEA efficiency scores (Atkinson and Wilson 1995), to derive the confidence
intervals and a measure of bias for the DEA efficiency scores (Ferrier and Hirschberg 1997), and
to analyze the sensitivity of the DEA efficiency scores related to the variations of the estimated
frontier (Simar and Wilson 1998). It has been recognized that the Bootstrap method is a powerful
tool to address the statistical aspects of DEA (Grosskopf 1996). All this literature has been
focused on the estimation of the distribution of the DEA efficiency scores. To date, no one has

addressed the regression question raised in the Introduction.



3. Applying Bootstrap to the Regression Analysis of DEA Efficiency Scores
In this section, we present a procedure for the regression analysis of the DEA efficiency scores by
using Bootstrap to solve the dependency problem. Before going into the details of the method, let

us first take a closer look into the “dependency problem”. What is the real problem if the

responses, 1,Y,....,Y, , are dependent to each other, or, in other words, correlated to each other?

Basically, when Y,,Y,,...,Y are correlated, if we fit the regression model as if they were not

correlated, the estimate of the standard error of the regression coefficient estimate, Se(3 i)’

which is obtained by fitting the regression model, is no longer correct. As stated in Goldberger

(1991):

“... the familiar estimator of the variance matrix of the vector of b [that is, the vector of
regression coefficient estimates] is biased, and so the conventional estimator of the
standard errors are not correct measures of the imprecision, and consequently the
confidence region and the hypothesis test procedures ... will not be valid.”(Goldberger

1991)

A

This means that we are no longer sure about how accurate [ ; (the estimate of regression
coefficient 3, by fitting the regression model) is, and the usual formula for se(f;), the

estimator for the standard error of ﬁﬂj, will typically give the wrong answer. This immediately

causes a more serious problem that we need to worry about: the t-ratios and P-values for the

hypothesis test of “H : ; =07 are no longer correct since we calculated the test statistic t

_B,
- A(Bj) 7

Therefore, the conclusions we reach through this kind of direct regression analysis may be

according to

misleading.

To address the dependency issue, consider the following problem:



Assume a random sample of n DMUs is taken from a completely unknown distribution F. This
random sample is denoted by X = (X |, X ,,... , X , ), where X, =(U,,V,),i=1,..,n,
is a (t + m) dimension vector consisting of one t-dimensional vector U, and one m-dimensional
vector V. The components of vector U, are the inputs and outputs of DMU i used in the DEA
model. The components of vector V,are the corresponding values of the explanatory variables
associated with DMU i used in the regression model. Consider the DEA model for DMU i as a
projection procedure ¢, . Then, the efficiency score 0, is the projection of U = (U,, U,,..., U,)
through ¢, . That is,
0, =,U). (8)

Suppose that o J= 0,1,...,m are the regression coefficients in the following regression model:

0,=Y,=G(B,V)+e, i=L.,n, B=(Bs,B1sB,sB,)- 9)
Here ¢, is the error term, 1 =1, 2, ..., n. Obviously, by estimation of the regression model, we can

calculate the estimate for f3 ;- That s,

A~

B, =0¢,0,V,F),j=0,1,..m. (10)

Here 0 =(0,,0,,....0,)and V =(V},V,,...,V,) . Since 0, = ¢,(U) and X = (U, V), the estimate

A~

B ; is essentially just a random variable dependent on (X, F) through a projection procedure R ;e
That is:

A~

B, =¢,(($U),9,(U).....0,(U)), V,F) = R(X,F),j=0,L....m. (11)
Hence, we can calculate the coefficient estimate B ; from the observed random sample x.
However, since 0, ’s are correlated to each other, we are no longer sure about the accuracy of the
ﬁ ;’s. As we discussed before, §e(ﬁ ;), the estimator for se([; ;) (the standard error of ﬁ )

obtained by the direct regression method is no longer correct. In order to get the correct t-ratios

and P-values for the hypothesis testing, we then use bootstrap to estimate se( ﬁ j) .

Based on Algorithm 6.1: “The Bootstrap Algorithm for Estimating Standard Errors” in Efron and

Tibshirani (1993), we present the following procedure to estimate se( ﬁ ; ) using Bootstrap:



Step 1: Construct the sample probability distribution F by assigning probability of 1/n at each

DMU in the observed sample: (x;, X, ,..., X, ).

Step 2: Draw ¢ (c is a constant) random samples of size n with replacement from the original

2
sample (X;,X,,...,X,):

S, =(x,,X,,,..,x%,), k=1,...,c, (12)

where x,; = (u,,,v,), i =1,...,n. S, is the so-called Bootstrap sample.

Step 3: For each Bootstrap sample S,, k =1,...,c, run the DEA model and recalculate the

efficiency scores for all n DMUs:
0,=0¢,u,)i=1..n, (13)

where ¢, represents the DEA model for DMU i.

Step 4: For each Bootstrap sample S,,k=1,...,c, evaluate the Bootstrap replication
ﬁAkj ,k=1,.,c, j=0,1,...,m by fitting the regression model:

0, =GBy vi) &y, i=Len By =(BrosBrisess Bijores Bion) (14)
Step 5: Estimate the standard error se( ﬁ/) by the sample standard deviation of the ¢ Bootstrap

replications of f3:

1
c. _ 2
n Z(ﬁkj _ﬁj )2
sec(,Bj): k=1 (=1 ° j=0,1,..,m, (15)
where
2Py
:Bj = K= ,j = O,l,...,m . (16)
c

2 For more details about our way of bootstrapping the whole original sample please refer to Section 9.5 in
Efron and Tibshirani (1993).
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We call se, ( ﬁ]) the Bootstrap estimator for the standard error of ,[§ I

Now, we are ready to use a t-test to test the following hypothesis:
H,:B,=0,vs. H,:B, #0.

Calculate the test statistic according to:

A

B,

t=—=—,
Se.(B))

(17)

and compare t to the critical value Ly, from the student t distribution with degrees of freedom

equal to (n-m-1) . If |t|>t0_025 , reject the null hypothesis H,:B, =0 in favor of
H,:B; #0, at & =0.05 significant level. Otherwise, the null hypothesis H,: [, =0 is

tenable at o = 0.05 significant level.

The above procedure, unlike the direct regression method, correctly implements Efron’s
Bootstrap method to give appropriate standard errors when the n original DMU’s, X,,1=1.2,..,

n, are independently sampled from F, even though the efficiency scores computed from the X’s

are dependent.

11



4. Empirical Illustration

In this section, we will use a data set from the health care system in the United States to illustrate

the procedure presented in Section 3.

4.1 The Data Set

We take our data sample from the “Hospital Cost Report Data” for the fiscal year 1994-1995
released by the Health Care Financing Administration’s (HCFA) (See the Appendix: Table Al).
There are 100 hospitals in our sample. The inputs and outputs for the DEA model are:

Inputs:
1. the number of full time employees,

2. costs($ million);

Outputs:
1. the number of patient days produced by the hospital,

2. the number of discharges from the hospital.

The following data will be used as the explanatory variables in the regression model:

1. BEDS: the number of beds in the hospital, which is a measurement of the size of the
hospital;

2. FORPROF: a dummy variable where FORPROF = 1 if the hospital is a for-profit hospital,
FORPROF = 0 otherwise;

3. TEACH: a dummy variable where TEACH = 1 if the hospital is a teaching hospital , TEACH
= 0 otherwise.

4. RES: the number of residents in the hospital.

One of the interesting questions arising from this dataset is: “Are the for-profit hospitals more
efficient than the not-for-profit hospitals?”” Economic theory might suggest this, and the
individual test for the coefficient of FORPROF in the regression model will provide the evidence

about the hypothesis.

4.2 Model Description

12



First, following the literature (Pina and Torres 1992 and Thanassoulis 1993), we choose to use a
constant returns-to-scale, input-oriented DEA model (CCR-I) for this illustrative example.
However, the method presented in Section 3 is independent of the chosen model orientation and
returns-to-scale assumption and thus, is applicable to any other DEA model employed by an

analyst.

Second, we choose linear ordinary least square (OLS) regression model in this empirical
illustration to simplify the exposition. However, the method presented here is applicable to many
other types of regression models. As we will show later, the main reason for choosing the linear
OLS regression model is that the Shapiro-Wilk normality tests show that both the DEA efficiency
scores and the residuals from fitting the linear OLS regression model in our example are indeed

approximately normally distributed.

4.3 Hypotheses

In this example, we are interested in the following four hypotheses:

(1) Is the size of the hospital a factor influencing the efficiency of the hospital?

(2) Does the fact that one is a for-profit hospital or not influence the efficiency of the hospital?
(3) Does the fact that one is a teaching hospital or not influence the efficiency of the hospital?

(4) Is the number of the residents a factor influencing the efficiency of the hospital?

In order to answer these questions, we fit the following OLS regression model:
0. = B, + B,BEDS, + B,FORPROF, + B, TEACH, + B,RES, +¢,, (18)

and test the following hypothesis concerning the regression coefficients:

(1) Hy:B,=0,vs. H : B, 0.
() H;:B,=0,vs. H:: B, #0.
(B)H,:B,=0,vs. H : B, #0.

4 H:B,=0,vs. H': B, #0.

13



4.4 Application of the Bootstrap Method’

The application of the bootstrap method to our analysis consists of the following phases:

Phase 1: Estimate the point estimate: B )= 0,1,...,m.
Run the CCR-I model with the observed sample (x,, x,....,X, ) and obtain the efficiency scores

0,.0,,...,0,, . Get the least-squares estimate ,éj for B,,7=0,1,...,m, by fitting the linear OLS

regression model (18) within the observed sample.

Phase 2: Estimate the standard error of the LS estimate [§j : se(ﬁﬂj ), j=0,1,2,....,m.

Step 1: Construct the sample probability distribution F , assigning probability of 1/100 at each

DMU in the observed sample: X,,X, ,..., X4 -

Step 2: Take 1000 random samples of size 100 with replacement from the observed sample of

100 hospitals. These samples are the Bootstrap samples.
Step 3: Run the CCR input-oriented DEA model for each Bootstrap sample.

Step 4: Within each Bootstrap sample, fit the following linear OLS regression model:

0, = B,, + B,,BEDS,, + B,,FORPROF, + B,,TEACH , + ,,RES,., (19)
for i =1,2,..,100; k =1, 2,...,1000.

Here 0,; is the DEA efficiency score for Hospital i in Bootstrap Sample k, and ﬁ w1 =0, 1,2

A

3, 4, are the Bootstrap replications for ﬁj in Bootstrap Sample k.

Step 5: Estimate the standard error se( B j) by the sample standard deviation of the ¢ Bootstrap

replications:

* The DEA models are solved by GAMS and all the regression analysis is completed by S-plus, a statistical
language.

14



N | =

n i(ﬁlg_ﬁ_j)z
Se (f,)=1+ (eonf » J =00, (20)

where

B, =*—,j=1..4,c= 100,200, ..., 1000. 1)
C

Phase 3: Use t-test to test the individual hypothesis “/, : 3, =0 ” at « = 0.05 significant

level with a two-sided alternative “H, : , # 0 ”.

Calculate the test statistic t according to (13), and then compare the calculated t to the critical

value f,,,; from the student t distribution with degree of freedom equal to (100-4-1) = 95. If

|t|> foms » reject the null hypothesis H,: B, =0 in favor of H,:B; #0 , and conclude

that the jth factor influences the hospitals’ efficiency at o = 0.05 significant level. Otherwise,

the null hypothesis H, : 8 ;= 0 is tenable and we cannot reject the null hypothesis that the jth

factor does not influence the hospitals’ efficiency at & = 0.05 significant level.

4.5 Results

First, we fit the linear OLS regression model with the DEA efficiency scores and the explanatory
variables corresponding to the observed sample (Appendix: Table A1-A2). In order to compare
the results from the direct regression and the Bootstrap method presented in Section 3, we then

tested the hypotheses based on the results of this direct regression.
In order to choose the appropriate regression model, we did normal quantile and normal curve

plot (Figure 1) and the Shapiro-Wilk normality test for the DEA efficiency scores for the

observed sample.

15



Normal Quantile

Figure 1. Normal Curve and Normal Quantile Plot for the DEA Efficiency Scores

In the normal quantile plot in Figure 1, the points tend to follow a straight line, which suggests
that the efficiency scores are normally distributed. As a more rigorous proof, the result from the
Shapiro-Wilk normality test confirmed the normality assumption about the efficiency scores’
distribution. The value of the W statistic is equal to 0.970961 and the P-value of the test is
0.1622, which is much higher than 0.05. Therefore, the null hypothesis about the normality
distribution of the DEA efficiency scores is clearly not rejected at o = 0.05 significant level.

Hence, we choose to fit the linear ordinary least square regression model.
In order to double check whether this choice is appropriate or not, we then did normal quantile

and normal curve plot (Figure 2) and the Shapiro-Wilk normality test for the residuals of DEA

efficiency scores after we fit the linear OLS regression model.

16
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Figure 2. Normal Curve and Normal Quantile Plot for the Residuals of the DEA Efficiency Scores

Once again, we see that in the normal quantile plot, the points tend to follow a straight line and
the mean of the residuals is zero, which suggests that the residuals of the efficiency scores follow
a normal distribution with mean zero. The value of the W test statistic for the Shapiro-Wilk
normality test is equal to 0.989371 and the P-value of the test is 0.9410, which is far more than
0.05. Hence, the model assumption of the linear OLS regression model concerning the normal
distribution of the residuals is satisfied. This verifies the appropriateness of the choice of the

linear OLS model in our example.

The results of the direct regression are summarized in Table 1 (we test the hypotheses at

a =0.05 significance level with two-sided alternatives):

17



Table 1.

Results of Direct Regression

Estimate| Std. tvalue | pp( >|t| ) | Hypothesis
Error Testing
INTERCEPT | 0.6084 | 0.0352 17.278 0
BEDS 0.0001 | 0.0001 0.8126 | 04185 | K tenable
FORPROF 0.0995 | 0.0418 | 2.3834 | 0.0191 | reject H;
TEACH -0.056 | 0.0393 | -1.4227 | 0.1581 | K2 tenable
RES -0.001 | 0.0003 | -3.1483 | 0.0022 | reject H

Then we applied the Bootstrap method presented in Section 3 with ¢ = 100, 200, ..., 1000; the

results are shown in Tables 2 through 11.

Table 2. Results of Bootstrap Regression with C=100 Samples

Bj ﬂ—j S (Bj) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6365 0.0365 16.6462 0
BEDS 0.0001 0.0001 0.0001 0.9625 0.3382 Hé tenable
FORPROF  0.0995 0.1008 0.0571 1.7441 0.0844 H02 tenable
TEACH -0.056 -0.0564 0.036 -1.5533 0.1237 Hg tenable
RES -0.001 -0.0011 0.0002 -4.2911 0 reject HS
Table 3. Results of Bootstrap Regression with C=200 Samples
Bj ﬂ—j Sy, (Bj) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6369 0.0377 16.1294 0
BEDS 0.0001 0.0001 0.0001 1.0171 0.3117 H(') tenable
FORPROF  0.0995 0.0991 0.06719 1.6088 0.111 HO2 tenable
TEACH -0.056 -0.0561 0.0353 -1.584 0.1165 Hg tenable
RES -0.001 -0.0011 0.0002 -4.2548 0 reject HS

18



Table 4. Results of Bootstrap Regression with C=300 Samples

A

R a 2 t value Pr(>|t]) Hypothesis Testin
ﬂ; :Bj S€300 (,B,) val (>It)) Hyp ! "nd
Intercept 0.6084 0.6385 0.0409 14.8658 0
BEDS 0.0001 0.0001 0.0001 0.9622 0.3384 H(l) tenable
FORPROF  0.0995 0.0967 0.0603 1.6494 0.1024 HOZ tenable
TEACH -0.056 -0.0539 0.0356 -1.5731 0.119 Hg tenable
RES -0.001 -0.0011 0.0002 -4.3708 0 reject HS
Table 5. Results of Bootstrap Regression with C=400 Samples
2 R a o) t value Pr(>|t]) Hypothesis Testin
ﬂ; ﬂj S€400 (ﬁ,) vaiu (It Hyp ! ng
Intercept 0.6084 0.6386 0.0408 14.9002 0
BEDS 0.0001 0.0001 0.0001 0.9342 0.3526 H(l) tenable
FORPROF  0.0995 0.0978 0.0611 1.6281 0.1068 HOZ tenable
TEACH -0.056 -0.0527 0.036 -1.5548 0.1233 Hg tenable
RES -0.001 -0.0011 0.0002 -4.4173 0 reject HS
Table 6. Results of Bootstrap Regression with C=500 Samples
Q R a ) t value Pr(>|t]) Hypothesis Testin
ﬁj ,B_; §eqy, (ﬂ,) valu (>Ith Hyp I ing
Intercept 0.6084 0.6384 0.0407 14.9512 0
BEDS 0.0001 0.0001 0.0001 0.9364 0.3514 H(l) tenable
FORPROF  0.0995 0.0967 0.0629 1.5833 0.1167 HOZ tenable
TEACH -0.056 -0.0532 0.0372 -1.5026 0.1363 Hg tenable
RES -0.001 -0.0011 0.0002 -4.2643 0 reject HS
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Table 7. Results of Bootstrap Regression with C=600 Samples

A

ﬁj Ej Seq, (,é_/) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6384 0.0418 14.5502 0
BEDS 0.0001 0.0001 0.0001 0.9355 0.3519 H(l) tenable
FORPROF  0.0995 0.098 0.0629 1.5821 0.1169 HOZ tenable
TEACH -0.056 -0.0539 0.0371 -1.5077 0.1349 Hg tenable
RES -0.001 -0.0011 0.0002 -4.2892 0 reject HS
Table 8. Results of Bootstrap Regression with C=700 Samples
ﬁAA, Ej §e700 (,é_/) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6393 0.0424 14.3431 0
BEDS 0.0001 0.0001 0.0001 0.9361 0.3516 H(l) tenable
FORPROF  0.0995 0.0975 0.0623 1.5977 0.1134 HOZ tenable
TEACH -0.056 -0.0543 0.0371 -1.5077 0.135 Hg tenable
RES -0.001 -0.0011 0.0002 -4.2761 0 reject HS‘
Table 9. Results of Bootstrap Regression with C=800 Samples
Bj E_/ §esoo (Bj) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6395 0.0417 14.5727 0
BEDS 0.0001 0.0001 0.0001 0.9436 0.3478 H(l) tenable
FORPROF  0.0995 0.0972 0.0617 1.6131 0.11 HOZ tenable
TEACH -0.056 -0.0544 0.037 -1.5129 0.1336 Hg tenable
RES -0.001 -0.0011 0.0002 -4.3147 0 reject HS
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Table 10. Results of Bootstrap Regression with C=900 Samples

ﬁﬂj 'gj $e0, ( 'éj) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6391 0.0419 14.5136 0

BEDS 0.0001 0.0001 0.0001 0.948 0.3455 H(l)tenable
FORPROF  0.0995 0.0977 0.0607 1.6397 0.1044 HOZ tenable
TEACH -0.056 -0.0549 0.0366 -1.5301 0.1293 H 3 tenable
RES -0.001 -0.0011 0.0002 -4.2651 0 reject HS

Table 11. Results of Bootstrap Regression with C=1000 Samples

ﬁAA, Bj §€1ooo(ﬁj) t value Pr(>|t]) Hypothesis Testing
Intercept 0.6084 0.6399 0.0423 14.3784 0

BEDS 0.0001 0.0001 0.0001 0.95 0.3445 H(l)tenable
FORPROF  0.0995 0.0986 0.0609 1.6345 0.1055 HOZ tenable
TEACH -0.056 -0.0552 0.0365 -1.5318 0.1289 Hg tenable
RES -0.001 -0.0011 0.0002 -4.2893 0 reject HS

Comparing the results in Tables 2-11 and the results in Table 1, one significant change occurs in

the hypothesis testing concerning FORPROF:

H!:B,=0.
Whether or not one is a for-profit hospital does NOT significantly influence the efficiency of the
hospital.

versus

H::B,#0.
Whether or not one is a for-profit hospital DOES significantly influence the efficiency of the
hospital.
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The conclusion drawn from the Bootstrap method is in sharp contrast to the one drawn from the
direct regression method. The P-value for the t-test from direct regression shown in Table 1 is
0.0191, which leads to the rejection of the null hypothesis H (f while in favor of H j at
theor = 0.05 significant level. Thus, the conclusion is that for-profit hospitals are more efficient.
However, as shown in Tables 2-11, the P-values for the t-test are very stable and are around 0.11.
In the 1000 samples case, the P-value is 0.1055, which is about 5.524 times the P-value of 0.0191
in Table 1 and much higher than 0.05. Hence, the null hypothesis should be tenable at the
a = 0.05 significant level. We must therefore conclude that to be a for-profit hospital or not may
not influence the efficiency of the hospital, which is in sharp contrast to the incorrect conclusion

drawn by the commonly used direct regression method.

In this example, the theoretically correct bootstrap method yields conclusions that are
qualitatively different from the commonly used, but nonetheless incorrect, direct regression

method.

4.6 Analysis of Results

Comparing Table 1 and Tables 2-11, we find that the Bootstrap estimations for the standard error

for the coefficient estimate of FORPROF, se, ( Bz) , when ¢ =100, 200, ..., 1000, are all much

larger than the value of the conventional estimator given by the direct regression, Se(f3,).

Actually, it is this larger standard error estimate that caused the lower t-ratio and the higher P-

value, thus leading to the change in our hypothesis testing.

The Bootstrap method suggests that the point estimate of ,B , 1s not so stable as indicted by the

results of the direct regression method. Is this true and how could it happen?

In the originally observed sample, there are 15 for-profit hospitals and 85 not-for-profit hospitals
(see Table Al in the Appendix). When we evaluate the efficiency for the hospitals within the
observed sample with the CCR-I model, there are only three efficient hospitals, which are

Hospital 51, Hospital 55 and Hospital 74 (Table A2 in the Appendix). As economic theory might
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suggest, two out of the three efficient hospitals are for-profit hospitals: Hospital 51 and Hospital
74. Hence, these two hospitals have a strong effect on the efficiency scores of many other

hospitals. The dependence between the efficiency scores is created in part, by these hospitals.

To make this insight more tangible, let us take a look at the first five bootstrap samples and what
happens to the efficiency scores for just ten of the 100 hospitals. The ten hospitals and their
efficiency scores in each sample as well as in the observed sample created in Phase 1 of the

analysis are shown in Table 12.

Table 12. Variations in Efficiency Scores

Hospital Observed |[Bootstrap| Bootstrap | Bootstrap | Bootstrap | Bootstrap
Sample Sample 1| Sample 2 Sample 3 | Sample 4 | Sample 5
12 0.73 0.73 0.78 0.73 0.73 0.73
16 0.48 0.48 0.51 0.57 0.48 0.51
30 0.77 0.77 0.81 0.77 0.77 0.77
38 0.46 0.46 0.49 0.46 0.46 0.46
48 0.53 0.53 0.56 0.55 0.53 0.54
55 1 1 1 1 1 1
73 0.73 0.73 0.77 0.73 0.73 0.73
85 0.52 0.52 0.55 0.52 0.52 0.52
94 0.64 0.64 0.68 0.64 0.64 0.64
60 0.95 / 1 / / 1
Is Hospital 55 Yes Yes Yes Yes Yes Yes
included?
Is Hospital 51 Yes Yes No Yes Yes Yes
included?
Is Hospital 74 Yes Yes No No Yes No
included?
Is Hospital 60 Yes No Yes No No Yes
included?

Note: “/” in the table means that the hospital is not included in that sample.
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From Table 12, we find:

(1

2

A3)

“4)

)

(6)

Hospital 55 is evaluated as efficient in each of the five Bootstrap samples. This is reasonable
since Hospital 55 is on the efficiency surface even in the observed sample.

When all the three efficient hospitals are in the Bootstrap sample (e.g., Bootstrap Sample 1
and Bootstrap Sample 4), all the hospitals included in the Bootstrap sample have the same
individual efficiency scores as in the observed sample.

However, when neither of the two efficient for-profit hospitals is included in the Bootstrap
sample (e.g., Bootstrap Sample 2), large changes occur to all the inefficient hospitals’
efficiency scores. When these two hospitals are removed, the other hospitals seem to be more
efficient. The changes range from 0.03 to 0.05, with an average of 0.0378.

When one of the two efficient for-profit hospitals (in this case, Hospital 74), is not included
in the Bootstrap sample (e.g., Bootstrap Sample 3 and Bootstrap Sample 5), noticeable
changes happen to the efficiency scores of Hospital 16 and Hospital 48. Compared to their
efficiency scores in the observed sample, the change ranges from 0.01 to 0.09, respectively.
The efficiency score for Hospital 60, which is also a for-profit hospital, in the original sample
is evaluated as 0.95, which suggests that Hospital 60 is not on the efficiency surface but very
close to it. In Bootstrap Sample 2 and 5, Hospital 60 is included. Because Hospital 51 and
Hospital 74 are removed from Bootstrap Sample 2 while Hospital 74 is removed from
Bootstrap Sample 5 alone, Hospital 60 is now on the new efficiency surface and evaluated as
efficient in Bootstrap Sample 2 and Bootstrap Sample 5.

Notice that not only the originally efficient hospitals can influence the originally inefficient
hospitals, but it is also possible for the originally inefficient ones to influence the other
inefficient DMUs when the efficiency surface moves. Comparing Bootstrap Sample 3 and
Sample 5, we notice that Hospital 16 has efficient score of 0.57 in Sample 3 while having a
lower efficiency score of 0.51 in Sample 5, even though in these two samples, both Hospital
51 and Hospital 55 are included while Hospital 74 is excluded. Upon closer examination, we
find that Hospital 60 is included in Bootstrap Sample 3 but not in Bootstrap Sample 5. In
Bootstrap Sample 2 and Bootstrap Sample 5, in which Hospital 60 is evaluated as efficient
partly due to the removal of some of the three originally efficient ones, Hospital 16 has the
same efficiency score of 0.51. But in Bootstrap Sample 3, while Hospital 60 is removed,
Hospital 16’s efficiency score goes up to 0.57. This suggests that the efficiency score of
Hospital 16 is influenced by the originally inefficient Hospital 60 in addition to being
influenced by the three originally efficient ones. This shows that in terms of the DEA
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efficiency scores, the dependency exists not only between the efficient hospitals and the

inefficient ones, but also among the inefficient ones.

All these changes happening here are directly or indirectly related to whether these two efficient
for-profit hospitals are included in the Bootstrap sample or not. When one or both of the two
efficient for-profit hospitals are not included in the Bootstrap sample, the efficiency surface
moves, which causes dramatic changes of the inefficient hospitals’ efficiency scores. As we can
see, the inherent dependency among the hospitals’ efficiency scores, especially the fact that the
inefficient hospitals’ efficiency scores heavily depend on the few efficient ones, resulted in big
variations of the DEA efficiency scores in the set. Given that we have only examined a small

subset of the hospitals and the Bootstrap samples, the variations we see are quite remarkable.

When we fit the regression model, we try to explain the variation of DEA efficiency scores by the
differences in the explanatory variables. As discussed above, a large portion of the variation of

the DEA efficiency scores is related to the two efficient, for-profit hospitals. Consequently, the

coefficient estimate of FORPROF, ,[§2 will also be strongly influenced by the two efficient for-
profit hospitals. This implies that Bz cannot be as stable as what is indicated by Se( Bz) , the
estimation of the standard errors of B , given by the direct regression. This kind of instability of
[§2 , which is essentially caused by the inherent dependency of the DEA efficiency scores, is

correctly explained by Se, ([?2), the Bootstrap estimator for se( Bz) Because the inherent

dependency exists among the DMUSs in terms of their efficiency scores, when Bootstrap
periodically discards the efficient hospitals from the sample, large changes in the efficiency
scores occurred and are correctly captured in the standard error estimations provided by the
Bootstrap estimator. Therefore, in this sense, the Bootstrap method presented in Section 3 is
shown to work satisfactorily in terms of overcoming the inherent dependency problem in the

regression analysis of the variations of the DEA efficiency scores.
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5. Summary

In this paper, we use the Bootstrap method to obtain a theoretically appropriate solution to the
problem posed in the regression analysis of the DEA efficiency scores due to the inherent
dependency among the DMUSs’ efficiency scores. With the help of Bootstrap, we showed that the
broken bridge connecting a relatively new and promising non-parametric analysis method, DEA,
and one of the oldest and most powerful parametric analysis methods, regression analysis, could
be fixed. As shown in Section 2 and Section 3, the procedure and theory of the Bootstrap method
require only the randomness of the observed sample. In our case, this requires the independence
among the DMUs in terms of their inputs, outputs, and the explanatory variables but not the
independence of their DEA efficiency scores. By showing that each regression coefficient
estimate is essentially a projection of the random sample from a population with unknown
distribution, we are no longer bounded by the dependency problem and thus, are able to use the

Bootstrap method to estimate the standard errors of the regression coefficient estimates.
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Appendix

Table Al. Data for Illustrative Health Care Example

Hospital FTE |Costs($million)|PTDAYS| DISCH BEDS (FORPROF| TEACH RES
1 1571.86 174 71986 12665 365 0 0 0
2 816.54 69.9 53081 5861 224 0 0 0
3 533.74 61.7 25030 4951 286 1 0 0
4 805.2 75.4 34163 11877 256 0 0 0
5 3908.1 396 187462 | 42735 829 0 1 136.8
6 727.72 63.9 31330 8402 194 0 0 0
7 2571.75 220 130077 | 26877 620 0 1 42.81
8 521 89.1 43390 8598 290 1 0 0
9 718 50 27896 6113 150 0 1 23.21
10 1504.85 121 75941 16427 393 0 0 0
11 1234.49 84.6 57080 14180 317 0 0 0
12 873 68.8 48932 12060 281 0 0 0
13 1067.17 85.8 50436 11317 278 0 0 0
14 668 47.5 67909 6235 244 0 0 0
15 452.35 36.4 25200 6860 155 1 1 13.31
16 1523 97.4 59809 13180 394 0 0 0
17 3152 198 108631 22071 578 0 1 195.67
18 871.96 30.7 17925 4605 160 0 0 0
19 2901.86 290 130004 | 24133 549 0 1 126.89
20 902.4 78.2 35743 8664 236 0 1 12.08
21 194.69 10.9 15555 1530 132 0 0 0
22 713.51 62.6 32558 8966 138 0 0 0
23 557.36 23.8 12728 2291 276 1 0 0
24 2259.2 120 74061 12942 348 0 1 14.52
25 462.22 32.4 28886 6101 134 0 0 0
26 12121 97.3 74194 12681 342 0 0 0
27 2391.94 192 89843 18396 336 0 1 229.19
28 1637 162 80468 21345 415 0 0 0
29 501 37.9 26813 4594 166 1 0 0
30 4121 40.2 23217 6044 160 1 0 0
31 738.56 27 11514 3052 144 1 0 0
32 4141 35.7 55611 4354 200 0 0 0
33 1097 105 59443 13101 242 0 1 26.32
34 742 62.8 42542 8739 172 0 0 0
35 1010 97.1 47246 12073 269 0 1 1.1
36 440.6 34.2 30773 4305 201 0 0 0
37 1203.3 85.4 50710 11470 247 0 1 13.82
38 2558.01 195 128450 | 20441 571 0 1 5.42
39 215.45 8.409936 65743 578 238 0 0 0
40 599.3 30.4 23299 5338 173 0 0 0
41 480.55 29.5 34279 6560 169 1 0 0
42 634.51 299 27157 5198 141 0 0 0
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Table Al. Data for Illustrative Health Care Example (continued)

Hospital FTE |Costs($million)|PTDAYS| DISCH BEDS (FORPROF| TEACH RES
43 1211.9 914 90008 17666 320 0 1 6.25
44 285.5 23.9 16473 2873 135 0 0 0
45 1030.36 67.1 43486 9467 235 0 1 6.44
46 1374.81 956.5 74279 11862 284 0 0 0
47 953.56 49.8 47934 10553 207 0 0 0
48 561.11 41.7 24800 5498 132 0 0 0
49 644 57.1 39663 8604 260 0 0 0
50 376.55 19.6 22003 4759 143 0 0 0
51 404.79 32.8 27566 7871 190 1 0 0
52 397.9 204 26072 4248 170 0 0 0
53 374.2 3.944649 4179 819 156 0 0 0
54 1702 100 114603 17235 438 0 1 11.81
55 148.09 5.013379 51660 771 172 0 0 0
56 253.48 16.9 17599 4044 178 0 0 0
57 1445.68 99.3 81041 12912 475 0 1 17.53
58 4141 26.5 20432 4068 129 0 0 0
59 642.58 48.5 42733 5983 181 1 0 0
60 203.75 13 16923 3467 146 1 0 0
61 421.8 18.3 16179 2840 160 0 0 0
62 320.62 17.3 18882 3370 160 0 0 0
63 679.79 25.6 27561 4447 308 0 1 11.33
64 2382 226 166559 | 26019 787 0 1 7.08
65 559.29 58.1 40534 8806 342 1 0 0
66 568.15 35 37120 7242 158 0 0 0
67 2408.04 155 70392 9538 266 0 1 111.33
68 632.34 54.6 37228 6359 175 0 0 0
69 917.22 55.2 42135 7294 215 0 0 0
70 554.34 56.9 32352 3320 205 0 1 1
71 780 75.9 39213 7154 172 0 0 0
72 663.82 56.9 34180 5284 200 0 0 0
73 1424 146 107457 18198 432 0 1 2.75
74 313 20.7 20110 5967 165 1 0 0
75 778 78.4 51496 12302 390 0 0 0
76 863.37 62 50957 10557 228 0 0 0
7 3509.12 290 109673 19213 469 0 1 290.53
78 1593.82 152 82400 17707 474 0 1 11.64
79 466 40.1 30647 7265 164 1 0 0
80 666.38 48.2 28048 5182 153 0 0 0
81 998.8 121 45513 6855 238 0 1 88.86
82 1018 98.2 61176 11386 350 0 0 0
83 3238.28 326 122118 19068 514 0 1 146.33
84 1431.1 107 48900 10623 208 0 0 0
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Table Al. Data for Illustrative Health Care Example (continued)

Hospital FTE |Costs($million)|PTDAYS| DISCH BEDS (FORPROF| TEACH RES
85 1735.99 273 84118 16458 278 0 1 158.4
86 1769 190 105741 19256 478 0 1 0.93
87 484.56 36.2 24070 6464 125 0 0 0
88 204.7 13.9 28137 1615 135 1 0 0
89 1706.58 287 75153 13465 367 0 1 91.56
90 1029.11 71.9 49993 6690 252 0 1 4
91 1167.2 111 75004 21334 350 0 0 0
92 1657.58 116 77753 17528 413 0 0 0
93 1017.16 88.5 64147 11135 316 0 0 0
94 1532.7 153 99998 17391 395 0 1 4.8
95 1462 113 119107 16053 484 0 1 0.5
96 1133.8 109 55540 15566 355 0 1 8.51
97 609 48.2 71817 5639 376 0 1 1
98 301.31 20.2 43214 2153 141 0 0 0
99 1930.08 201 87197 19315 418 0 0 0
100 1573.3 177 88124 19661 458 0 1 69.71

Notation used in Table Al:

FTE:

Costs:
PTDAYS:
DISCH:
BEDS:
FORPROF:
TEACH:
RES:

The number of full time employees in the hospital in FY 1994-95
The expenses of the hospital ($million) in FY 1994-95

The number of the patient days produced by the hospital in FY 1994-95

The number of patient discharges produced by the hospital in FY 1994-95

The number of patient beds in the hospital in FY 1994-95
Dummy variable, which is equal to one if it is for-profit hospital, zero otherwise

Dummy variable, which is equal to one if it is teaching hospital, zero otherwise
The number of the residents in the hospital in FY 1994-95
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Table A2. CCR-I DEA Efficiency Scores for the Observed Sample

Hospital Score Hospital | Score | Hospital | Score | Hospital | Score
1 0.45 26 0.59 51 1 76 0.67
2 0.46 27 0.42 52 0.61 77 0.31
3 0.51 28 0.68 53 0.74 78 0.6
4 0.76 29 0.52 54 0.62 79 0.83
5 0.58 30 0.77 55 1 80 0.44
6 0.6 31 0.39 56 0.87 81 0.4
7 0.57 32 0.76 57 0.52 82 0.62
8 0.91 33 0.64 58 0.55 83 0.34
9 0.46 34 0.64 59 0.55 84 0.4
10 0.59 35 0.63 60 0.95 85 0.52
11 0.62 36 0.58 61 0.56 86 0.61
12 0.73 37 0.52 62 0.7 87 0.7
13 0.57 38 0.46 63 0.63 88 0.65
14 0.63 39 0.87 64 0.63 89 0.44
15 0.79 40 0.62 65 0.85 90 0.39
16 0.48 41 0.79 66 0.74 91 0.94
17 0.39 42 0.62 67 0.24 92 0.57
18 0.52 43 0.8 68 0.57 93 0.62
19 0.46 44 0.57 69 0.47 94 0.64
20 0.51 45 0.51 70 0.39 95 0.66
21 0.53 46 0.5 71 0.51 96 0.71
22 0.65 47 0.75 72 0.46 97 0.67
23 0.34 48 0.53 73 0.73 98 0.63
24 0.39 49 0.72 74 1 99 0.54
25 0.72 50 0.86 75 0.84 100 0.67
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