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1. Introduction

Credit migration or transition matrices, which characterize the past changes in credit quality of

obligors (typically firms), are cardinal inputs to many risk management applications, including portfolio

risk assessment, modeling the term structure of credit risk premia, and pricing of credit derivatives.  For

example, in the New Basel Accord (BIS (2001)), capital requirements are driven in part by ratings

migration.  Their accurate estimation is therefore critical.  We explore three approaches, frequentist

(cohort) and two variants of duration (hazard) – time homogeneous and non-homogeneous -- using firm

credit rating migration data from Standard and Poors (S&P).  We compare the resulting differences, both

statistically through matrix norms, eigenvalue and -vector analysis and economically through credit

portfolio and credit derivative models.  We develop a testing procedure based on singular value

decomposition to assess statistically the differences (or distances) between Markov matrices using

bootstrap techniques.  The method can have substantial economic import: difference in economic credit

risk capital implied by different estimation techniques can be as large as differences between economic

regimes of recession vs. expansion.  Viewed through the lens of credit risk capital, ignoring the efficiency

gain inherent in the duration methods is more damaging that making a (possibly false) assumption of time

homogeneity, a significant result given that the cohort method is the method of choice for most

practitioners.

Perhaps the simplest use of a transition or migration matrix is for the valuation of a bond or loan

portfolio which might be used by a portfolio or risk manager.  Given a credit grade today, say BBB,3 the

value of that credit asset one year hence will depend, among other things, on the probability that it will

remain BBB, migrate to a better or worse credit grade, or even default at year end.  This can range from

an increase in value of 1-2% in case of upgrade to a decline in value of 30-50% in case of default, as

                                                     

3 For no reason other than convenience and expediency, we will make use of the S&P nomenclature for the

remainder of the paper.
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illustrated in Table 1.4  More sophisticated examples of risky bond pricing methods, such as outlined by

Jarrow and Turnbull, (1995) and Jarrow, Lando and Turnbull, (1997), require these matrices as a cardinal

input, as do credit derivatives such as the model by Kijima and Komoribayashi (1998).  As a final

example, credit portfolio models such as CreditMetrics™ (JP Morgan (1997)) used in risk management

make use of this matrix to simulate the value distribution of a portfolio of credit assets. 

To our knowledge there has been little work in establishing formal comparisons between credit

migration matrices.  Shorrocks (1978), looking at income mobility, proposed indices of mobility for

Markov matrices using eigenvalues and determinants, a line of inquiry extended in Geweke, Marshall and

Zarkin (1986).  They present a set of criteria by which the performance of a proposed metric (for arbitrary

transition matrices) should be judged.  Jafry and Schuermann (2003) propose an additional criterion

(distribution discriminatory) which is particularly relevant for credit migration matrices: the metric should

be sensitive to the distribution of off-diagonal probability mass.  This is important since far migrations

have different economic and financial meaning than near migrations.  The most obvious example is

migration to the Default state (typically the last column of the migration matrix) which clearly has a

different impact than migration of just one grade down (i.e. one off the diagonal).

Credit migration matrices are said to be diagonally dominant, meaning that most of the

probability mass resides along the diagonal; most of the time there is no migration.  Bangia et al. (2002)

estimate coefficients of variation of the elements or parameters of the migration matrix as a

characterization of estimation noise or uncertainty.  Unsurprisingly they found that the diagonal elements

are estimated with high precision.  The further one moves away from the diagonal, the lower the degree of

estimation precision.  They also conduct t-tests to analyze cell-by-cell differences between different

migration matrices; again, because of the low number of observations for far-off diagonal elements these

                                                     

4 Default very rarely results in total loss.
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t-tests were rarely significant.5  Christensen and Lando (2002) develop bootstrap methods to estimate

confidence sets for transition probabilities, focusing on the default probabilities in particular, which are

superior to traditional multinomial estimates; specifically, they are tighter.  Nickell, Perraudin and Varotto

(2000) use an ordered probit model to test for (and find) significance of different exogenous factors such

as industry and the business cycle on transition probabilities.  Lando and Skodeberg (2002), using

duration models, find persistence and momentum in transition intensities.  Arvanitis, Gregory and Laurent

(1999) (hereafter referred to as AGL) propose to assess the similarity of all eigenvectors between two

matrices by computing a (scalar) ratio of matrix norms.  Specifically, their approach was motivated by the

need to compare migration matrices with different horizons and test the first-order Markov assumption.

They propose a cut-off value of 0.08 for their metric below which the eigenvectors vary by only small

amounts and can thus assumed to be similar.  However, they do not tell us why 0.08 is sufficiently small,

nor what would be sufficiently large to reject similarity.  Moreover, they ignore estimation noise and

concomitant parameter uncertainty.

In a different line of research, Israel, Rosenthal and Wei (2001) show conditions under which

generator matrices exist for an empirically observed Markov transition matrix and propose adjustments to

guarantee existence.  They use the L1 norm to examine differences in pre- and post-adjustment migration

matrices.  However, they do so without recognizing that the matrices are estimated with error making it

difficult to judge whether a computed distance is in fact large enough to overcome estimation noise.  We

are the first to propose a formal scalar metric suitable for credit migration matrices and to devise a

procedure for evaluating their statistical significance in the presence of estimation noise.

The rest of the paper proceeds as follows.  Section 2 sets up the context for the data generating

mechanism by briefly describing credit ratings and the agencies which provide them.  Section 3 describes

the ratings data and different methods for estimating credit migration matrices; Section 4 covers different

                                                     

5 For this and other reasons, Bangia et al. (2002) found it very difficult to reject the first-order Markov property of

credit migration matrices.
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approaches to measuring matrix differences.  Section 5 examines whether the empirical estimates are

statistically distinguishable and whether they make material economic difference; and Section 6 provides

some concluding remarks.

2. Credit Ratings and Rating Agencies

The market for credit ratings in the U.S. is dominated by two players: Standard & Poors

(hereafter S&P) and Moody’s Investor Services (hereafter Moody’s); of the smaller rating agencies, only

Fitch IBCA plays a significant role in the U.S. (though has a more substantial presence elsewhere)

(Cantor and Packer (1995), White (2001)).  Because of their broader coverage, S&P and Moody’s data

have been widely used in published studies.  We will follow suit and use, purely out of convenience, the

S&P ratings histories.

A credit rating by a credit rating agency represents an overall assessment of an obligor’s

creditworthiness.  There is some difference between the rating agencies about what exactly is assessed.6

Whereas S&P evaluates an obligor’s overall capacity to meet its financial obligation, and is hence best

thought of as an estimate of probability of default, Moody’s assessment is said to incorporate some

judgment of recovery in the event of loss.  In the argot of credit risk management, S&P measures PD

(probability of default) while Moody’s measure is somewhat closer to EL (expected loss).7

Both rating agencies have seven broad rating categories as well as rating modifiers bringing the

total to 19 rating classes, plus ‘D’ (default, an absorbing state8) and ‘NR’ (not rated – S&P) or ‘WR’

                                                     

6 Morgan (2002) provides a measurement of rating difference as a proxy for firm opaqueness.
7 Specifically, EL = PD×LGD, where LGD is loss given default.  However, given the paucity of LGD data, very little

variation in EL at the obligor (as opposed to instrument) level can be attributed to variation in LGD making the

distinction between the agencies modest at best.
8 One consequence of default being an absorbing state arises when a firm re-emerges from bankruptcy.  They are

classified as a new firm.
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(withdrawn rating – Moody’s).9  Typically ratings below ‘CCC’, e.g. ‘CC’ and ‘C’, are collapsed into

‘CCC’, reducing the total ratings to 17.  Although the rating modifiers provide a finer differentiation

between issuers within one letter rating category, they pose two problems: the sample size of issuers per

rating class including rating modifiers is not sufficient for low rating categories, causing small sample

size concerns that affect statistical inference.  Moreover, transition matrices are generally published and

applied without rating modifiers, as this format has emerged as an industry standard.  Therefore, we

exclude the rating modifiers in the course of this paper.  So, for example, we consider ‘BBB+’ and

‘BBB-‘ ratings as ‘BBB’ ratings.  This methodology reduces the data from 17 to 7 rating categories,

which ensures sufficient sample sizes for all rating categories.10  

Ratings are costly: $25,000 for issues up to $500 million, ½ bp for issues greater than $500

million (Kliger and Sarig (2000)).11  Treacy and Carey (2000) report that the usual fee charged by S&P is

0.0325% of the face amount.  But the ratings are informative.  Kliger and Sarig (2000) show that bond

ratings contain price-relevant information by taking advantage of a natural experiment.  On April 26,

1982, Moody’s introduced overnight modifiers to their rating system, much like the notching used by

S&P and Fitch, effectively introducing finer credit rating information about their issuer base without any

change in the firm fundamentals.  They find that bond prices indeed adjust to the new information, as do

stock prices, and that any gains enjoyed by bondholders are offset by losses suffered by stockholders.

                                                     

9 The CCC (S&P) and Caa (Moody’s) ratings contain all ratings below as well – except default, of course.  
10 For a discussion of ratings dynamics for 17 states, see Bahar and Nagpal (2000).

11 Until the mid-70s, it was investors, not issuers, who paid fees to the rating agencies. (Partnoy (2002)).  
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3. Data and Estimation Methods

3.1. Rating Agency Data

Our analysis of S&P data12 covers the period from January 1, 1981 to December 31, 2001 (Figure

1, left axis).  The universe of obligors is mainly large corporate institutions around the world.  Ratings for

sovereigns and municipals are not included, leaving the total number of unique obligors to be 9,178.

Summary statistics are provided in Table 2.  The share of the most dominant region in the data set, North

America, has steadily decreased from 98% to 60%, as a result of increased coverage of companies

domiciled outside U.S. (see Figure 1, right axis).  The obligors include both U.S. and non-U.S. industrials,

utilities, insurance companies, banks and other financial institutions and real estate companies.  The

databases has a total of 55,010 obligor years of data excluding withdrawn ratings of which 840 ended in

default yielding an average default rate of 1.53% for the entire sample.  On average, investment grade

rated obligors, i.e. having a rating no worse than BBB-, were 71% of the dataset.  Figure 2 shows the

average distribution by rating over the sample period.  For most of the analysis in subsequent sections we

will restrict ourselves to U.S. obligors; there are 6398 unique U.S. domiciled obligors in the sample.  The

principal reason is to allow for the estimation of matrices for U.S. business cycle regimes

(recession/expansion).

To capture credit quality dynamics, the creditworthiness of obligors must be assessed, as credit

events typically concern a firm as a whole.  Unfortunately, published ratings focus on individual bond

issues.  Therefore, the rating agencies implement a number of transformations:

•  Bond ratings are converted to issuer ratings.  By convention, all bond ratings are made comparable by

considering the implied long-term senior unsecured rating, i.e. the rating a bond would hold if it were

senior unsecured.  This rating is then considered the issuer rating.13

                                                     

12 We use the data in S&P’s CreditPro product.
13 See, for instance, the documentation for S&P’s CreditPro 3.0 (Standard & Poors (2001)).
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•  Issuers are clustered into economic entities.  This promotes correct representation of credit quality

dynamics by accounting for parent-subsidiary links, mergers, acquisitions, and contractual

agreements about recourse.

Finally the ratings data is censored.  A total of 3,605 companies were classified as ‘NR’ (“not

rated”) from January 1981 to December 2001.  Transitions to ‘NR’ may be due to any of several reasons,

including expiration of the debt, calling of the debt, merger or acquisition, etc.  Unfortunately, however,

the details of individual transitions to ‘NR’ are not known.  In particular, it is not known whether any

given transition to ‘NR’ is “benign” or “bad.”  Bad transitions to ‘NR’ occur, for example, when a

deterioration of credit quality known only to the bond issuer (debtor) leads the issuer to decide to bypass

an agency rating.  Carty (1997), using Moody’s data from 1920-96, claims that only 1% of all rating

withdrawals may have been due to deteriorating credit quality.

3.2. Estimating Migration Matrices

Conditional upon a given grade at time T, the transition, or migration, matrix P is a description of

the probabilities of being in any of the various grades at T+1.  It thus fully describes the probability

distribution of grades at T+1 given the grade at T.  We seek to estimate the (7x7)+7 = 56 unique elements

of P, a conceptual rendition of which appears in Figure 3.  

Jarrow, Lando and Turnbull (1997) make the distinction between implicit and explicit (or

historical) estimation of transition matrices, where implicit estimation refers to extracting transition and

default information from market prices of risky zero-coupon bonds.  We will consider only the different

explicit methods in this paper.14

                                                     

14 See also Kavvathas (2001) for a survey of approaches for estimating credit migration matrices.
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3.2.1. Frequentist Approach (Cohort Method)

The method which has become the industry standard is the straight forward frequentist (or cohort)

approach.  Let ( )t
ijP ∆  be the probability of migrating from grade i to j over horizon (or sampling interval)

∆t.  E.g. for ∆t = 1 year, there are Ni firms in rating category i at the beginning of the year, and Nij

migrated to grade j by year-end.  An estimate of the transition probability ( 1 )t yr
ijP ∆ =  is (1) ij

ij
i

N
P

N
= .

Typically firms whose ratings were withdrawn or migrated to Not Rated (NR) status are removed from

the sample.15  The probability estimate is the simple proportion of firms at the end of the period, say at the

end of the year for an annual matrix, with rating j having started out with rating i.  

Any rating change activity which occurs within the period is ignored, unfortunately.  As we show

in Section 3.2.2 below, there are many more reasons to be skeptical of the cohort method providing an

accurate and efficient estimate of the migration matrix.  Since it is an industry standard, a statistical

assessment seems crucial.

3.2.2. Duration or Hazard Rate Approach (Transition Intensities)

One may draw parallels between ratings histories of firms and other time-to-event data such

(un)employment histories and clinical trials involving treatment and response.  In all cases one follows

“patients” (be they people or firms) over time as they move from one state (e.g. “sick”) to another (e.g.

“healthy”).  Two other key aspects are found in credit rating histories: (right) censoring where we do not

know what happens to the firm after the sample window closes (e.g. does it default right away or does it

live on until the present) and (left) truncation where firms only enter sample if they have either survived

long enough or have received a rating.  Both of these issues are ignored in the cohort method.

                                                     

15 The method which has emerged as an industry standard treats transitions to NR as non-informative.  The

probability of transitions to NR is distributed among all states in proportion to their values.  This is achieved by

gradually eliminating companies whose ratings are withdrawn.  We use this method, which appears sensible and

allows for easy comparisons to other studies.
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A rich literature and set of tools exists to address these issues, commonly grouped under the

heading of survival analysis.  The classic text is Kalbfleisch and Prentice (1980) with more recent

treatments covered in Klein and Moeschberger (1997) emphasizing applications in biology and medicine,

and Lancaster (1990) who looks at applications in economics, especially unemployment spells.

The formal construct is a k-state homogeneous Markov chain where state 1 refers to the highest

rating, ‘AAA’, and k is the worst, denoting default.  For a time homogeneous Markov chain, the transition

probability matrix is a function of the distance between dates (time) but not the dates themselves (i.e.

where you are in time).16  Accepting or relaxing the time homogeneity assumption will dictate the

estimation method.  

Israel, Rosenthal and Wei (2001) develop conditions under which generator matrices exist for an

empirically observed Markov transition matrix.  They show that most annual transition matrices would

actually not be compatible with a continuous Markov process largely (but not exclusively) as a result of

their sparseness; most of the probability mass is on the diagonal, leaving many zero elements on far off-

diagonals.  They propose a series of simple adjustments and then proceed to compare the adjusted to the

unadjusted matrices using the L1 norm to see which is smaller.  However, neither in the checking of

conditions for compatibility with a Markov process nor in the matrix comparison do they allow for

sampling or estimation noise.  No formal hypothesis test is presented making it difficult to decide how

small is small (in the matrix comparison) or how close (or far) the estimated matrix was from Markov

compatibility.17  We will return to the sampling and estimation noise issue in Section 4, with particular

emphasis on different ways of comparing matrices.

                                                     

16 Lando and Skodeberg (2002) point out that it is only for the case of time homogeneity that one gets a simple

formulaic mapping from intensities to transition probabilities.
17 Arvanitis, Gregory and Laurent (1999) propose a metric based on matrix norms to test the 1st order Markov

assumption.  They provide a cut-off value of 0.08 (for an annual migration matrix) without accounting for estimation

noise.
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3.2.2.1. Time Homogeneous Case18

With the assumption of time homogeneity in place, transition probabilities can be described via a

kxk generator or intensity matrix Λ.  Following Lando and Skodeberg (2002), define P(t) is a kxk matrix

of probabilities where the ijth element is the probability of migrating from state i to j in time period t:  

( ) exp( ) 0t t t= ≥P Λ (1)

where the exponential is a matrix exponential, and the entries of Λ satisfy

0 forij

ii ij
j i

i jλ

λ λ
≠

≥ ≠

= −∑ (2)

The second expression merely states that the diagonal elements are such to ensure that the rows sum to

zero.

We are left with the task of obtaining estimates of the elements of the generator matrix Λ.  The

maximum likelihood estimate of λij is given by

0

( )ˆ
( )

ij
ij T

i

N T

Y s ds
λ =

∫ (3)

where Yi(s) is the number of firms with rating i at time s, and Nij(T) is the total number of transitions over

the period from i to j where i≠j.  The denominator effectively is the number of “firm years” spent in state

i.  Thus for a horizon of one year, even if a firm spent only some of that time in transit, say from ‘AA’ to

‘A’ before ending the year in ‘BBB’, that portion of time spent in ‘A’ will contribute to the estimation of

the transition probability PAA→A.  In the cohort approach this information would have been ignored.

Moreover, firms which ended the period in an ‘NR’ status are still counted in the denominator, at least the

portion of the time which they spent in state i.

                                                     

18 This and the next section draws from Lando and Skodeberg (2002); we adopt their notation.  See also their

excellent examples.
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3.2.2.2. Non-homogeneous Case

The duration approach certainly uses the transition information by obligors more efficiently than

does the cohort method.  We have reason, however, to be skeptical of the time-homogeneity assumption;

it may matter where you are in time.  

A common assumption for credit modeling (either at the instrument or portfolio level) is for the

system to be first-order Markov.  This has very convenient implication.  For a given period ∆t, e.g. one

quarter, the k-period transition matrix Pk∆t is simply k
t∆P .  For example, the 1-year transition matrix can be

computed by taking the quarterly matrix and raising it to the 4th power.  However, Carty and Fons (1993),

Altman and Kao (1992), Altman (1998), Nickell, Perraudin and Varotto (2000), Bangia et al. (2002),

Lando and Skodeberg (2002) and others have shown the presence of non-Markovian behavior such as

ratings drift, and time non-homogeneity such as sensitivity to the business cycle.  Realistically the

economy (and hence the migration matrix) will change on time-scales far shorter than required to reach

the idealized Default steady-state proscribed by an assumed constant migration matrix.

Again following Lando and Skodeberg (2002), let P(s,t) be the transition probability matrix from

time s to time t.  The ijth element of this matrix denotes the probability that the Markov process starting in

state i at date s will be in state j at date t.  Given a sample of m transitions over the period from s to t, one

can consistently estimate P(s,t) using the nonparametric product-limit, or Aalen-Johansen, estimator

(Aalen and Johansen (1978)).

( )
1

ˆˆ ( , ) ( )
m

i
i

s t T
=

= + ∆∏P I A (4)

Ti is a jump in the time interval from s to t, m is the total number of number of transition days over the

relevant horizon (i.e. for an annual matrix, the number of days in the year where at least one rating

transition occurs), and 
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 
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 
 
  
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(5)

The nonparametric Aalen-Johansen estimator is essentially the frequentist (cohort) method

applied to very short intervals.  The element , ( )k j iN T∆  denotes the number of transitions observed from

state k to state j at date Ti.  The diagonal elements ( )k iN T∆ i  count the total number of transitions away

from state k at date Ti, and Yk(Ti) is the number of exposed (or at risk) firms, i.e. the number of firms in

state k right before date Ti.  The diagonal elements of row k in ˆ ( )iT∆A  count, at any given date Ti, the

fraction of exposed firms Yk(Ti) which leave the state at date Ti.  Hence the off-diagonal terms count the

specific types of transitions away from the state, normalized by the number of exposed firms.  Similar to

the homogeneous case, the bottom row of ˆ ( )iT∆A  is zero since default is an absorbing state.  Note that

the rows of the matrix ˆ ( )iT+ ∆I A  automatically sum to one. 

Thus the nonparametric Aalen-Johansen estimator imposes the fewest assumptions on the data

generating process by allowing for time non-homogeneity while fully accounting for all movements

within the sample period (or estimation horizon).  It is unclear, however, whether relaxing the assumption

of time homogeneity results in estimated migration matrices which are different in any meaningful way,

either statistical or economic.  We deal with this issue in Sections 5.1 and 5.2.

We can get an early taste of the consequences of working with transition intensities by looking at

estimates of the probability of default for a particular rating j (PDj).19  For the sample range we examine,

1981 – 2001, no defaults within one year were observed for rating class ‘AAA.’  The duration approach
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may still yield a positive probability of default for highly rated obligors even though no default was

observed during the sampling period.  It suffices that an obligor migrated from, say, ‘AAA’ to ‘AA’ to

‘A-‘, and then defaulted to contribute probability mass to PDAAA.  This can be seen by comparing the

empirical PDs in Table 3 which presents PD estimates in basis points (bp) using all firms for the entire

sample range.  For example, the estimated annual probability of default for an ‘AA’ company, PDAA, is

exactly zero for the cohort approach, 0.406bp for the time-homogeneous and 0.105bp for the non-

homogeneous duration approach.20  For an ‘A+’ rated firm, PDA+ is 6.4 bp for the cohort approach but a

much smaller 0.5bp and 0.6bp for time-homogeneous and non-homogeneous duration approach

respectively, meaning that the less efficient cohort method overestimates default risk by more than twelve

fold.  We would obtain these lower probability estimates if firms spend time in the ‘A+’ state during the

year on their way up (down) to a higher (lower) grade from a lower (higher) grade.  This would reduce

the default intensity, thereby reducing the default probability.  At the riskiest end of the spectrum, CCC-

rated companies, the differences are striking: 27.26% for the cohort method but 38.16% and 39.10% for

homogeneous and non-homogeneous duration respectively.  Thus using the more popular but less

efficient cohort method would underestimate default risk by over ten percentage points.  One way we

might see such differences is if firms spend rather little time in the ‘CCC’ state which would yield a small

denominator in the rating intensity expression (for either homogeneous (3) or non-homogeneous (5)

duration) and hence a higher default probability.

4. Comparing Matrices

We have presented three different methods for estimating the entries in the credit migration

matrix; now how would we compare the results?  There are several ways of comparing matrices including

                                                                                                                                                                          

19 See also the discussion in Christensen and Lando (2002) on confidence sets for estimated PDs.
20 Brand and Bahar (2001) report non-zero PDs for high grades by smoothing and extrapolating S&P default

experiences.
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L1 and L2 (Euclidean) distance metrics, and eigenvalue and eigenvector analysis such as singular value

decomposition.  An extensive discussion of the different metrics for comparing credit migration matrices

is presented in Jafry and Schuermann (2003).  They argue for a metric based on singular values which we

will use here.

4.1. Subtraction of the Identity Matrix

Since the migration matrix, by definition, determines quantitatively how a given state-vector (or

probability distribution) will migrate from one epoch to the next, we can reasonably posit that the central

characteristic of the matrix is the amount of migration (or “mobility”) imposed on the state-vector from

one epoch to the next.  This characteristic can be highlighted by simply subtracting the identity matrix

before proceeding with further manipulations.  The identity matrix (of the same order as the state vector)

corresponds to a static migration matrix, i.e. the state vector is unchanged by the action of the matrix from

one epoch to the next.  By subtracting the identity matrix from the migration matrix, we are therefore left

with only the dynamic part of the original matrix.  By devising a metric for this dynamic part, we will

obtain an intuitively-appealing result which reflects the “magnitude” of the matrix in terms of the implied

mobility.  We will henceforth refer to the mobility matrix (denoted P� ) defined as the original (or raw)

matrix minus the identity matrix (of the same dimension), i.e.:

= −P P I� (6)

4.2. A Metric Based on Singular Values

Following Jafry and Schuermann (2003), we utilize the average of the singular values of the

mobility matrix P�  (i.e. the average of the square-roots of the eigenvalues of ′ P P� � ).

( , ) ( ) ( )a b a b
svdm S S= −P P P P� � � � (7)
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where the overbar denotes “average value” (of the vector of) ( )S P� , which, in turn, denotes the singular

values of P� , defined as ( ) ( ' )S eig=P P P� � � .  The eigenvalues of P�  can be negative making them difficult

to interpret as a distance measure, whereas the singular values will always be positive.

This yields a viable metric as it approximates (and in certain cases is identical to) the average

probability of migration across all states.21

4.3. Bootstrapping

The estimates of the transition matrices are just that: estimates with error (or noise).

Consequently the distance metrics such as SVD-based ( , )a b
svdm P P� �  is also a noisy estimate.  In order to

help us answer the question “how large is large” for distance metrics such as ( , )a b
svdm P P� � , we need the

distributional properties of ˆ ( , )a b
svdm P P� � .  In the absence of any theory on the asymptotic properties of

estimates of ( , )a b
svdm P P� � , a straightforward and efficient way is through the resampling technique of

bootstrapping.

Consider, for example, c
tP�  and h

tP�  as the cohort and homogeneous duration estimates at time t

respectively, obtained using Nt observations.22  Suppose we create k bootstrap samples23 of size Nt each so

that we can compute a set of k differences based on singular values, { }( )

1
( , )

kj a b
svd j

m
=

P P� �  where j = 1,…,K

denotes the number of bootstrap replications.  This will give us a bootstrap distribution of singular value

based distances.  For a chosen critical value α (say α = 5%), we see if 0 falls within the 1-α range of

{ }( )

1
( , )

kj a b
svd j

m
=

P P� � .  

                                                     

21 See Jafry and Schuermann (2003) for a detailed discussion of the motivation behind the singular value

formulation.
22 To be sure, with the presence of transitions to NR, the number of observations is not identical for the two

methods: the cohort method drops them, the duration methods do not.
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Suppose, in other words, that we run the bootstrap for our sample of N1999 firms to obtain

{ }( )
,1999 1

( , )
kj a b

svd j
m

=
P P� �  for some relatively large k (≈ 1000).24  Suppose further that the 1-α = 95% (say)

range turns out to be (-0.055, -0.005).  Then we would be able to reject the null hypothesis and state, with

95% confidence, that the two matrices are different with respect to this singular value based metric.  If, on

the other hand, the range turns out to be something like (-0.055, 0.005), then we would not be able to

reject the null, and we would have to accept, with 95% confidence, that the two matrices are the same. 

Ideal conditions for the bootstrap require that the underlying data is a random sample from a

given population.  Specifically the data should be iid.  It is difficult to impose temporal independence

across multiple years, but easier at shorter horizons such as one year.  Moreover, since we restrict our

analysis to U.S. firms (i.e. no government entities (municipal, state or sovereign), no non-U.S. entities),

we can be comfortable with the assumption of identically distributed (no mixing).

5. Empirical Results

5.1. Statistical Differentiation

In this section we compare the three methods (cohort, time homogeneous duration and non-

homogeneous duration) using the SVD metric mSVD on migration matrices estimated for a one-year

horizon which is typical for many risk management applications.  We show that the method matters in

often dramatic ways.  The difference between the duration methods are much smaller than between cohort

and duration methods, implying that using the efficient duration method, even with the (possibly false)

                                                                                                                                                                          

23 A bootstrap sample is created by sampling with replacement from the original sample.  For an excellent exposition

of bootstrap methods, see Efron and Tibshirani (1993).
24 Efron and Tibshirani (1993) suggest that for obtaining standard errors for bootstrapped statistics, bootstrap

replications of 200 are sufficient.  For confidence intervals, they suggest bootstrap replications of 1000 which we

employ.
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assumption of time-homogeneity over the cohort method has a far greater impact than relaxing the time-

homogeneity assumption. 

By way of illustration using ratings histories of U.S. obligors from 1981-2001, in Figure 4 we

compare mSVD of cohort minus homogeneous duration (solid line with square) against non-homogeneous

minus homogeneous duration (solid line) and cohort minus non-homogeneous duration (dashed line).

Comparing cohort to either of the duration approaches yields very similar SVD distance measures, while

the distance between duration approaches (solid line) is very small indeed.25  Minima and maxima using

the SVD metric are summarized in Table 4. 

The largest difference between cohort and homogeneous duration methods occurs in 1999 while

the smallest difference is found in 1984.  In absolute value, its minimum occurs in 1984 (0.0007) and its

maximum in 1999 (-0.0525).  Is either different from zero, meaning do the two methods generate

statistically indistinguishable transition matrices?  Table 5 (left column) provides some summary statistics

of the bootstrap, including several quantiles, and Figure 5 displays the densities of the bootstraps.  Indeed

we are unable to reject that the 1984 matrices are different (0 is near the median) but can do so for the

1999 matrices: the 98% confidence interval from the 1st to the 99th percentile is (-0.0904, -0.01280).  The

density for 1999 is much wider and flatter (and almost entirely to the left of zero) than the density for

1984 which is highly concentrated around zero.

Moving on to the comparison of the two duration methods, we see that the largest difference, in

absolute value, occurs in 1982 (0.01004), with 1999 running a close second (0.0079), and the smallest in

1990 (0.00008).  1984, a year where the difference between cohort and homogeneous duration was the

smallest, is also rather small when comparing the duration methods: 0.0010.  Table 5 (right column)

shows the bootstrap results for 1982 (max difference) and 1990 (min difference).  Even for the year of

maximum difference between duration methods, namely 1982, we are unable to reject the hypothesis that

                                                     

25 In Jafry and Schuermann (2003) we find that the cohort matrices are generally “smaller” than the homogeneous

matrices, i.e. with generally less mobility.  That’s because the cohort method ignores within-period movements.
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the difference is zero.  The 98% confidence interval from the 1st to the 99th percentile is (-0.0014, 0.0515).

For 1990 the zero is contained already in the 90% confidence interval (-0.0032, 0.0033).  Figure 6 shows

density plots of the bootstrap runs for these two years.  For 1982, the density is more skewed than it is the

case for the SVD differences between cohort and homogeneous duration methods; moreover, less than

1% of the density is to the left of zero (meaning zero is inside the 99% range).  The density for 1990 is

centered very near zero and is more symmetric than 1982.

Comparing cohort to non-homogeneous duration with the SVD metric, the results are very similar

to the previous comparison (cohort to homogeneous duration).  The maximum (in absolute value) occurs

in the same year, 1999 (-0.06044)) and the minimum in 1982 (0.00035).  

What becomes clear is that the differences (in SVD terms) between the duration methods are

much smaller than between cohort and duration methods,26 implying that using the efficient duration

method, even with the (possibly false) assumption of time-homogeneity, over the cohort method has a far

greater impact than relaxing the time-homogeneity assumption.  In Table 6 we make a formal comparison

of means between the different methods.  The mean difference of the cohort and the homogeneous

duration, .( , )Cohort Homog
svdm P P� � , is –0.012, the difference between cohort and non-homogeneous duration,

.( , )Cohort Non homog
svdm −P P� � , is –0.014, while the mean difference of . .( , )Non Homog Homog

svdm −P P� �  is a much

smaller 0.002.  Indeed we cannot reject that the average difference between the cohort and either duration

method is different (from zero) with a p-value of 0.456, but we can do so for the difference between

cohort and either duration method and the average difference between the two duration methods.  We

show one of them in Table 6 (the other test yields the same result), where the p-value is 0.00001, allowing

us to strongly reject that the two average differences are the same.

The degree of divergence between the cohort and either duration method is obviously a function

of the time horizon over which the migration matrices are estimated.  The longer that horizon, the more

migration potential there is.  Hence we would expect these differences to be smaller for shorter horizons
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such as semi-annually or quarterly.  Our focus is on the one-year horizon as that is typical for many credit

applications.

5.2. Economic Relevance

While we may be able to distinguish statistically between two empirically estimated transition

matrices, this may not translate to economic significance.  We can think of many ways to measure

economic relevance; two come to mind immediately.  The first is to look at credit risk capital levels

implied by credit portfolio models which are used to generate value distributions of a portfolio of credit

assets such as loans or bonds.  The second is the pricing of credit derivatives, a class of new financial

instruments that can help banks, financial companies and investors in managing credit risk in their

portfolios.

5.2.1. Credit Portfolio Models

The purpose of capital is to provide a cushion against losses for a financial institution.  The

amount of economic capital is commensurate with the risk appetite of the financial institution.  This boils

down to choosing a confidence level in the loss (or value change) distribution of the institution with

which senior management is comfortable.  For instance, if the bank wishes to have an annual survival

probability of 99%, this will require less capital than a survival probability of 99.9%, the latter being

typical for a regional bank (commensurate with a rating of about A-/BBB+).  The loss (or value change)

distribution is arrived at through internal credit portfolio models.   

There are a variety of models which can be used to compute economic risk capital for a given

portfolio of credit assets.27  Consider now an example using one of the popular credit portfolio models,

                                                                                                                                                                          

26 These results confirm a conjecture in Lando and Skodeberg (2002). 
27 For a review and comparison of many of these models, see Koyluoglu and Hickman (1998), Gordy (2000) and

Saunders and Allen (2002).
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CreditMetrics™, where a cardinal input is the grade migration matrix as it describes the evolution of the

portfolio’s credit quality.

In an exercise similar to Bangia et al. (2002), we constructed a fictitious bond portfolio with 392

exposures with a current value of $427.6 MM.  We did so by taking a random sample of rated U.S.

corporates that mimics the ratings distribution of the S&P U.S. universe as of January 2002 in such a way

that we have at least one obligor for each major industry group.  Maturity ranges from one to 29 years,

and interest is paid semi-annually or annually.  We use preset mean recovery rates and their standard

deviations from Altman and Kishore (1996) and take the yield curves and credit spreads as of October 16,

2002.  We then ask the question: what is the portfolio value distribution one year hence using different

transition matrices but leaving all other parameters28 unchanged?  

We summarize some of our findings in Table 7 and Table 8.  Four sets of numbers are displayed

for each experiment: mean and standard deviation of horizon value (i.e. portfolio value one year hence)

and VaR (value-at-risk) at 99% and 99.9%, the former being an oft-seen standard and the latter roughly

corresponding to the default probability commensurate with an A-/BBB+ rating.  It is also the confidence

level stipulated by the New Basel Accord (BIS (2001)).  Table 7 compares the impact of business cycles,

namely recession to expansion which was shown in Bangia et al. (2002) to generate significant

differences in risk capital.29  Since business cycles are dated at higher frequencies than yearly, we take

quarterly estimates using the homogeneous duration method and raise that matrix to the fourth power.

While this presumes that the migration process is first-order Markov, this assumption becomes more

stringent for longer horizons (multi-year) than shorter ones (quarter to annual).  Moreover, this way we

are able to maximally concentrate recession and expansion time periods.  Moving to an annual frequency

would mix in, for recession (expansion) years, expansion (recession) quarters.  

                                                     

28 Parameters such as those governing the recovery process.  We generated 5000 trials for each run with importance

sampling.
29 We use the NBER dates for delineating expansions and recessions.
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Here we confirm results in Bangia et al. (2002) where capital held during a recession should be

about 40% higher than during an expansion (39.7% at the 99% level, 28.8% at the 99.9% level).30

Moreover, the portfolio volatility is over 40% higher during a recession than an expansion.

Table 8 presents results for the average across the entire sample range as well as for five

individual years: 1982 (max SVD for non-homogeneous minus homogeneous duration), 1984 (min SVD

for cohort minus homogeneous duration), 1990 (min SVD for non-homogeneous minus homogeneous

duration), 1999 (max SVD for cohort minus homogeneous duration) and 2001 (most recent).  We focus

on differences in VaR capital for each experiment.  Without exception, the differences between the cohort

and more efficient duration methods are larger than between the different duration methods, with

differences of 30% to nearly 50% for the former, and never more then 2% for the latter.  Viewed through

the lens of credit risk capital, ignoring the efficiency gain inherent in the duration methods is more

damaging that making a (possibly false) assumption of time homogeneity.

Looking at 1982, the year where the two duration methods were most divergent, the difference in

VaR capital is larger between the cohort and the homogeneous duration method (8% to 11%) than

between the two duration methods (< 2%).  This pattern persists when we move to 1984, where the

divergence between cohort and homogeneous duration is the smallest.  Even here the VaR differences are

larger for cohort and homogeneous duration (7% to 9%) than between duration methods (< 1%).  The

year 1990 is no exception.

The difference is startling when we look at the 1999, the year where we experienced the largest

divergence between cohort and homogeneous duration methods.  VaR differences are on the same order

as when comparing recession to expansion: 36% to nearly 50%.  

Finally note that the differences in portfolio mean horizon value (i.e. the expected value of the

portfolio one year hence) changes little across methods.  So for example, in 1999 the difference in

                                                     

30 Bangia et al. (2002) report capital differences of 25-30%.  We have the benefit of three additional years of data,

one of which (2001) was mostly a recession year.
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expected value of the portfolio between the cohort and homogeneous duration methods is essentially nil,

but the difference in risk is substantial.  

5.2.2. Credit Derivatives

Credit derivatives have been developed in the past few years as new financial instruments that

can help banks, financial companies and investors to manage credit risk in their portfolios.  For banks in

particular these instruments have emerged as a powerful tool for managing the credit exposure of lending

portfolios without affecting the balance sheet.  The basic idea is to make credit risk transferable while

maintaining the ownership of the credit risky asset.  This is typically accomplished by periodic or up-front

payments of the protection buyer to the protection seller.  In case pre-specified credit events take place

(e.g. missed interest payments), the protection buyer receives predefined cash flows from the protection

seller.  A variety of products emerged, including credit default swaps, total return swaps, etc. (see, for

instance, Acharya, Das and Sundaram (2002) and references therein).  Among the more complicated

instruments are yield spread options, as their pay-off not only depends on possible default events but also

on credit rating changes.

A yield spread option enables the buyer and seller to speculate on the evolution of the yield

spread.  The yield spread is defined as the difference between the continuously compounded yield of a

risky and a risk-less zero-coupon bond with the same maturity.  In the case of a call option, the buyer

expects a decreasing, in the case of a put option an increasing credit spread as bond yields typically have

an inverse relationship with bond prices.  Yield spread options are priced using Markov chain models.

An early example is Jarrow and Turnbull (1995) and its extension in Jarrow, Lando and Turnbull (1997).

We will consider a more recent refinement as proposed by Kijima and Komoribayashi (1998).  

To price a yield spread option we need a variety of inputs.  Below we list those inputs along with

their value for our example (where relevant):

•  Yield curve for default free zero coupon bonds at date T (April 1, 2002)

•  Term structure of credit spreads at time T (April 1, 2002)
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•  Option maturity: 2 years

•  Yield spread maturity: 4 years

•  Strike price (i.e. a yield spread): 9% (with a current forward yield spread of 7.69%, meaning

that we are betting on a widening of credit spreads)

•  Current rating of obligor or instrument: CCC

•  Recovery rate (% of outstanding recovered in case of default): 50%

•  Migration matrix (will vary)

For easy comparison to the previous example of credit portfolio models, we use S&P ratings

histories to compare U.S. recession and expansion matrices (derived either by the cohort or homogeneous

duration), 1999 U.S. matrix cohort vs. homogeneous and non-homogeneous duration, where 1999 was

shown to have the largest deviation in our SVD-based metric, and 1984 U.S. matrices, where 1984 had

the smallest deviation.  In addition we compare 1982 where the difference in the two duration methods

was the largest.  For 1984, all three matrices yielded the same result: no options premium.  Figure 7

compares the option premiums for 1982 and 1999 (three methods) as well as the premiums implied by the

recession/expansion matrices (cohort only).  The difference implied by the duration methods, holding

year fixed at 1999, is on the same order as the difference between two economic regimes, expansion and

recession, holding method fixed.  These results are broadly consistent with those obtained from the credit

portfolio example.  Using the “wrong” matrix can result in substantial mispricing.  However, a year where

overall differences as measured by SVD are modest, namely 1982, also yields modest differences in the

options premium.  To be sure, consistent with the SVD metric, differences in pricing between duration

methods for this year (recall that 1982 was the year with maximum difference for these two methods) is

smaller than between cohort and, say, homogeneous.
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6. Concluding Remarks

In this paper we presented three estimation methods for credit migration matrices: a popular but

inefficient approach called cohort, and two efficient duration approaches, with and without the

assumption of time-homogeneity.  We ask three questions: 1) how would one measure the scalar

difference between these matrices; 2) how can one assess whether those differences are statistically

significant; and 3) even if the differences are statistically significant, are they economically significant?  

To best answer these questions, we focus on the mobility matrix, defined as the migration matrix

P less the identity matrix I of same size.  The identity matrix corresponds to a static migration matrix, i.e.

the state vector is unchanged by the action of the matrix from one period to the next.  In subtracting the

identity matrix, we are left with only the dynamic part of the original matrix.  

The first question is addressed using a metric based on singular value decomposition, SVD,

developed in Jafry and Schuermann (2003).  We argue that a metric based on singular values best

captures the dynamic properties in the migration matrix.  The second question is addressed using

resampling methods, and the third using two approaches: the first is to estimate by simulation the credit

risk capital levels implied by the credit portfolio model in CreditMetrics™ which is used to generate

value distributions of a portfolio of credit assets such as loans or bonds.  The second is the pricing of a

credit derivative called a credit yield spread using the pricing model of Kijima and Komoribayashi

(1998).

We find that indeed, the method matters, both statistically and economically, when analyzing

migration matrices estimated for a one-year horizon which is typical for many risk management

applications.31  For years where the SVD metric is small we cannot reject the null that they are not

different; for years where the SVD metric is large we are able to reject the null of no difference, but only

between the homogeneous duration and cohort methods.  Relaxing the time homogeneity assumption

                                                     

31 To be sure, we would expect this difference to decrease for shorter horizon matrices, e.g. quarterly, but increase

for longer, multi-year horizons.
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yields little difference; even at its maximum, the two methods yield statistically indistinguishable

migration matrices.  Looking at the credit risk capital implied by the credit portfolio model we find that

the differences between the cohort and more efficient duration methods are larger than between the

different duration methods, with differences of 30% to nearly 50% for the former, and never more then

2% for the latter.  Thus ignoring the efficiency gain inherent in the duration methods is more damaging

that making a (possibly false) assumption of time homogeneity.  These differences in risk capital are on

the same order as are implied by business cycle effects which, in turn, are about 40%.  These results from

the credit derivative pricing exercise are broadly consistent with those obtained from the credit portfolio

example: using the “wrong” matrix can result in substantial mispricing, often by more than 50%.
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Figures

Figure 1: Number of Obligors (Excluding ‘NR’) at Start of Each Year, S&P, 1981-2001 (left axis);
% U.S. domiciled (right axis).
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 Figure 2: Overall Ratings Distribution, 1981 – 2001, S&P, Global
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Grade at T+1

Figure 3: Stylized Migration Matrix
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Figure 4: Avg. SVD Distance Metric: Annual Mobility Matrices, Cohort, Homogeneous and Non-
Homogeneous Duration.  Matrices estimated using S&P rated U.S. obligors, 1981-2001.
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Figure 5: Bootstrapped SVD Distributions, Cohort minus Homogeneous Duration: 1984 and 1999.
Matrices estimated using S&P rated U.S. obligors.
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Figure 6: Bootstrapped SVD Distance Metric Distributions, Non-homog minus Homog. Duration:
1982 and 1990. Matrices estimated using S&P rated U.S. obligors.
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 Figure 7: Yield Spread Option Premiums Compared.  Yield spread option premium using the risk-free
yield curve and term structure of credit spreads as of April 1, 2002, an option maturity of 2 years, a yield
spread maturity of 4 years, a strike price of 9% (with a current forward yield spread of 7.69%, meaning
that we are betting on a widening of credit spreads), a current obligor rating of CCC, a recovery rate
assumption of 50%, and different migration matrices.
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Tables

Credit Grade at

year-end

Marrison

(2002), ch. 18

Saunders and Allen

(2002), ch. 6

AAA 101.7% 101.7%

AA 101.4% 101.5%

A 100.9% 101.0%

BBB 100.0% 100.0%

BB 96.9% 94.9%

B 92.6% 91.2%

CCC 89.3% 77.8%

D 70.0% 47.5%

Table 1: Value Change of BBB Bond 1 Year Hence.  Comparison is relative to no rating change.
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Total number of obligors32 9,178 (9,769)

Total number of obligor years 55,010

Total number of defaults (annual default rate) 840 (1.53%)

% U.S. in Jan. 1981 (Jun. 2001)33 98% (60%)

% investment grade in Jan. 1981 (Dec. 2001) 77% (71%)

Total number of NR / WR (through Dec. 2001) 3,605

Table 2: Descriptive Statistics of S&P CreditPro™ Data, 1981-2001

                                                     

32 Through 2001Q4, including NR/WR ratings.  The larger number in parentheses includes firms which have re-

emerged from either D or NR/WR states.
33 Includes firms that have re-emerged from either D or NR states.
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Rating
Categories 

Frequentist /
Cohort

Duration:
time

homogeneous

Duration:
time non-

homogeneous

AAA 0.000 0.008 0.002

AA+ 0.000 0.033 0.038

AA 0.000 0.406 0.105

AA- 2.760 0.331 0.458

A+ 6.402 0.495 0.593

A 4.449 1.247 1.012

A- 4.838 1.041 0.733

BBB+ 18.878 6.344 6.611

BBB 28.309 14.014 13.996

BBB- 35.155 21.323 25.706

BB+ 47.071 29.611 28.912

BB 104.910 54.148 47.221

BB- 192.794 46.188 92.845

B+ 351.824 454.378 199.043

B 1003.344 788.898 778.295

B- 1313.240 1337.681 1309.674

CCC34 2726.098 3816.125 3910.413

Table 3: S&P Annual Estimated PDs in Basis Points (1981 – 2001), across methods.  All obligors
(global).

                                                     

34 Includes all grades below CCC.
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Min (year) Max (year)

Cohort minus Homog. Duration 0.000731 (1984) -0.05254 (1999)

Cohort minus Non-homog. Duration 0.000354 (1982) -0.06044 (1999)

Non-homog. minus Homog. Duration 0.000076 (1990) 0.01004 (1982)

Table 4: Min and Max mSVD.  Migration matrix distances using SVD metric.  Matrices estimated using
S&P rated U.S. obligors, 1981-2001.
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Cohort minus
Homogeneous Duration

Non-Homogeneous minus
Homogeneous Duration

Stats 1984 (min) 1999 (max) 1990 (min) 1982 (max)

ˆ SVDm 0.000731 -0.05254 0.00008 0.01004

mean 0.0005 -0.0508 0.000334 0.0109

st.dev. 0.0056 0.0161 0.001969 0.0106

Q1 -0.0162 -0.0904 -0.00498 -0.0014

Q5 -0.0107 -0.0764 -0.00317 0.0008

Q50 0.0014 -0.0508 0.00043 0.0081

Q95 0.0078 -0.0240 0.00325 0.0325

Q99 0.0112 -0.0128 0.00542 0.0515

Table 5: Bootstrapped SVDs: ( , ) , ( , )c h nh h
svd svdm mP P P P� � � � .  Quantiles from bootstrapping (k=1000) the

SVD-based distance metric using S&P rated U.S. obligors, 1981-2001.
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Cohort – Homog.
Duration

Cohort – Non-
homog. Duration

Cohort – Homog.
Duration

Non-homog. –
Homog. Duration

Mean -0.012 -0.014 -0.012 0.002

Std. Dev. 0.019 0.020 0.019 0.004

F (∆ mean = 0) 0.952 29.717

Pr (F ≤ f) 0.456 0.00001

Table 6: Difference in Means of mSVD between Methods.  F-test assumes different variances. mSVD
estimated for each method for S&P rated U.S. obligors, 1981-2001.
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Homogeneous Duration: Recession vs. Expansion ( ( , ) 0.04908h h
svd R Em =P P� � )

Recession Expansion % 
Recession
Expansion

Mean horizon (1-yr) value $406,527,149 $410,329,633 99.1%

Std. dev. of horizon value $6,415,535 $4,486,968 143.0%

VaR (99.0%)35 $22,917,169 $16,399,228 139.7%

VaR (99.9%) $38,471,154 $29,871,826 128.8%

Table 7: Credit Risk Capital: Recession vs. Expansion. Credit risk capital as computed by
CreditMetrics using a 1-year horizon, 5000 replications (using their importance sampling option).  The
sample portfolio is as described in Section 5.2.1.  Recession and expansion migration matrices (quarterly)
were estimated using NBER dating.  The quarterly matrices were raised to the 4th power to obtain the
annual matrix.

                                                     

35 All values ±1%.  For details on the derivation of sampling noise for quantiles, see JP Morgan (1997), Appendix B.
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Average, 1981 – 2001

Cohort Homogeneous Non-
Homogeneous

Cohort%
Homog.

Non - homog.%
Homog.

Mean horizon
(1-yr) value

$409,464,723 $409,643,552 $409,623,251 99.96% 100.00%

Std. dev. of
horizon value

$5,708,601 $4,942,358 $4,960,373 115.50% 100.36%

VaR (99%) $21,067,231 $18,024,322 $18,040,026 116.88% 100.09%

VaR (99.9%) $38,788,885 $32,470,519 $32,432,528 119.46% 99.88%

1982 (max mSVD for Non-homog. minus Homog. Duration)

Cohort Homogeneous Non-
Homogeneous

Cohort%
Homog.

Non - homog.%
Homog.

Mean horizon
(1-yr) value

$408,742,427 $408,927,127 $408,778,510 99.95% 99.96%

Std. dev. of
horizon value

$6,472,555 $5,995,187 $5,976,406 107.96% 99.69%

VaR (99%) $24,424,298 $22,667,586 $22,321,742 107.75% 98.47%

VaR (99.9%) $44,570,378 $40,011,622 $39,603,882 111.39% 98.98%

1984 (min mSVD for Cohort minus Homog. Duration)

Cohort Homogeneous Non-
Homogeneous

Cohort%
Homog.

Non - homog.%
Homog.

Mean horizon
(1-yr) value

$410,799,680 $410,963,324 $410,962,755 99.96% 100.00%

Std. dev. of
horizon value

$5,064,971 $4,691,610 $4,718,069 107.96% 100.56%

VaR (99%) $19,203,545 $17,666,536 $17,715,169 108.70% 100.28%

VaR (99.9%) $34,405,042 $32,066,682 $32,282,974 107.29% 100.67%
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1990 (min mSVD for Non-homog. Minus Homog. Duration)

Cohort Homogeneous Non-
Homogeneous

Cohort%
Homog.

Non - homog.%
Homog.

Mean horizon
(1-yr) value

$406,910,320 $407,337,486 $407,304,866 99.90% 99.99%

Std. dev. of
horizon value

$7,582,866 $6,404,211 $6,447,963 118.40% 100.68%

VaR (99%) $26,954,866 $22,200,095 $22,267,688 121.42% 100.30%

VaR (99.9%) $43,873,036 $36,105,445 $36,241,071 121.51% 100.38%

1999 (max mSVD for Cohort minus Homog. Duration)

Cohort Homogeneous Non-
Homogeneous

Cohort%
Homog.

Non - homog.%
Homog.

Mean horizon
(1-yr) value

$408,959,782 $408,903,194 $408,727,098 100.01% 99.96%

Std. dev. of
horizon value

$5,538,481 $4,268,472 $4,288,106 129.75% 100.46%

VaR (99%) $20,807,339 $15,302,729 $15,371,934 135.97% 100.45%

VaR (99.9%) $41,186,362 $27,504,616 $27,582,252 149.74% 100.28%

2001 (most recent)

Cohort Homogeneous Non-
Homogeneous

Cohort%
Homog.

Non - homog.%
Homog.

Mean horizon
(1-yr) value

$405,423,695 $405,638,699 $405,741,009 99.95% 100.03%

Std. dev. of
horizon value

$7,756,065 $6,560,998 $6,469,952 118.21% 98.61%

VaR (99%) $29,064,517 $23,414,913 $23,236,163 124.13% 99.24%

VaR (99.9%) $52,052,920 $39,123,757 $39,013,106 133.05% 99.72%

Table 8: Credit Risk Capital: Comparing Estimation Methods.  Credit risk capital as computed by
CreditMetrics using a 1-year horizon, 5000 replications (using their importance sampling option).  All
input parameters save migration matrices the same across runs.  The sample portfolio is as described in
Section 5.2.1.
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