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Abstract

We study an M /M M PP/1 queueing system, where the arrival process is Poisson and service
requirements are Markov modulated. When the Markov Chain modulating service times has
two states, we show that the distribution of the number-in-system is a superposition of two
matrix-geometric series and provide a simple algorithm for computing the rate and coefficient
matrices. These results hold for both finite and infinite waiting space systems and extend results
obtained in Neuts [5] and Naoumov [4].

Numerical comparisons between the performance of the M /M M PP/1 system and its M /G/1
analogue lead us to make the conjecture that the M /MM PP/1 system performs better if and
only if the total switching probabilities between the two states satisfy a simple condition. We

give an intuitive argument to support this conjecture.

1 Overview

Consider the following FCFS single-server queue: the arrival process is Poisson and service times
are exponentially distributed. However, the rates of these exponential service times are determined
by an underlying Markov chain. Transitions of the Markov chain take place at service completions.

Suppose the Markov chain has m states. When a service is completed, the Markov chain makes
a transition. If the new state of the Markov chain is 7, 1 < i < m, then the rate of next exponential

service time will be p1;. We will call this an M/MMPP/1 queueing system.
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Our interest in this type of queueing system comes from the study of service systems with human
servers. Employee learning and turnover cause the sequence of service-time distributions to exhibit
systematic non-stationarities: as an employee learns, his or her service speed increases; when an
employee turns over, s/he is usually replaced by a new person with lower service speeds. We wish
to understand the effect of employee learning and turnover on measures of system performance such
as average waiting time and queue length.

We model employee learning and turnover as transitions through states of a Markov chain. After
each service an employee may learn and advance to a higher skill level with a pre-specified probability.
After each service an employee may also turn over with another pre-specified probability, in which
case s/he is replaced by a new employee at the lowest skill level. Skill levels correspond to states
of the Markov chain and the Markov chain modulates the service-time distribution. In the simplest
case, when there is only one employee, the human server queueing system becomes an M/M M PP/1
system.

In addition to modeling server “learning and turnover”, the M/MMPP/1 queue may be used
to model a processor in a data network. The processor works at a constant speed but processes
jobs from several sources. The aggregate arrival process is a stationary Poisson process, but the
source from which a particular job comes (the job “type”) is determined by an underlying Markov
chain. Jobs from different sources carry with them exponentially distributed amounts of work with
different means.

When the waiting space is infinite, the dynamics of the two systems are equivalent. When there
is a finite limit on the waiting space, however, the behavior of the two systems differs. In the
data-processor model, arriving jobs that are lost still generate transitions of the modulating Markov
chain, and changes in the service-time distribution from one job to the next depend on whether or
not the waiting space is full. Alternatively, in the human-server model it is service completions that
generate transitions of the modulating Markov chain, and these transitions are unaffected by lost
arrivals.

Using a matrix difference equation approach, we are able to obtain a complete characterization of
the system’s behavior when the Markov chain has two states (m = 2). In this case, we can also use
closed-form solutions to the resulting cubic equations to obtain ezact solutions for the computation
of required rate coefficient matrices in the numerical study. Our analysis yields the following results.

We obtain traditional measures of queueing performance for this M/MMPP/1 system: the



distribution of the number of customers in the system and, in turn, the system utilization, the
average number in the system, the average waiting time in queue and in the system. In the case of
systems with finite waiting rooms we also obtain the loss probability.

More fundamentally we show that, for systems with either infinite or finite waiting spaces, the
steady-state distribution of the number of customers in the system can be represented as the su-
perposition of two, matrix-geometric series: X, = (RYK; + Ry Ks) Xo. Here Ry and Ry are two
square matrices and X, is the vector of steady-state system probabilities for states which have n
customers in the system.

Furthermore, we prove that even when system utilization is strictly less than one, the spectral
radius of at least one of the rate matrices will always be at least one. In this case, the process
is ergodic and exhibits a unique, positive steady-state distribution, even though an eigenvalue lies
outside the interior of the unit disk.

Moreover, our analysis develops explicit, computable analytical expressions for both the rate and
coefficient matrices of the geometric series. Thus, for the case of a 2-state Markov chain, we obtain
an efficient computational procedure for calculating the steady-state distribution of the number-in-
system for M /MM PP/1 systems with both finite and infinite waiting rooms. In the discussion at
the end of this paper, we also discuss how this procedure may be extended to M /MM PP/1 systems
whose underlying Markov chain has m > 3 states.

For the infinite waiting space system, we compare the M/M M PP/1 model with an analogous
M/G/1 model with the same arrival rate and the same first two moments of service time. Through
numerical examples we show that the M/G/1 system, which has independent service times, does
not necessarily out-perform the M/MMPP/1 system with correlated service times. When the
transition probabilities of the modulating Markov chain are invariant across states, the M/M M PP/1
system is equivalent to an M/Hy/1 system, and therefore it has the same expected backlog as its
M/G/1 analogue. When the modulating Markov chain’s transition probabilities out of the current
state fall below these M/H;/1 transition probability levels, however, numerical results show that
M/MMPP/1 performance suffers. Conversely, when the transition probabilities out of the current
state exceed these levels, then the expected backlog in the M /MM PP/1 system is smaller than in
the M/Hs/1 system. In the finite waiting space case, loss probabilities of the M/M M PP/1 system
and its M/G/1 analogue exhibit the same pattern.

This numerical evidence leads us to believe that the pattern of observed differences between the



M/MMPP/1 system and its M/G/1 analogue is provably true. We give an intuitive argument to

support this conjecture.

2 Literature Review

The M/MMPP/1 system is a special case of a “Quasi Birth and Death” (QBD) process. QBD
processes can be used to model a wide variety of stochastic systems, in particular many telecommu-
nications systems. For background and examples, see Neuts [5] and Servi [7].

Neuts’s [5] seminal work characterizes QBD systems with countable state spaces as having, when
a certain boundary condition holds, a steady-state distribution of the number-in-system that can be
described as a single, matrix-geometric series: X,, = R"Xo. The rate matrix R may be difficult
to calculate, however, and the required boundary condition that R must satisfy is difficult to verify
and not guaranteed to hold.

For finite QBD processes with a limit of N in the system, Naoumov [4] develops results that are
similar to ours. He demonstrates that the steady-state distribution of the number-in-system can be
represented as the superposition of two matrix geometric series. His results differ from ours, however,
in two important ways. First, his characterization relies on finiteness of the QBD process and cannot
be generalized in a straightforward fashion to infinite QBD systems. Second, his determination of
the rate matrices, Ry and Rs, requires the computation of two infinite series of (recursively defined)
matrices. Hence his solution is not easily computable.

Thus, for M/MMPP/1 systems with m = 2, we have developed a characterization of system
performance that represents a link between Neuts’s single-geometric-series characterization of infinite
QBD processes and Naoumov’s dual-geometric-series characterization of finite QBD systems. It is a
single characterization of system performance that covers both the finite and countable-state-space
cases. In addition, it requires no assumptions concerning the rate matrices, and its rate matrices
are easy to compute.

For M/MMPP/1 systems with m > 3, however, our characterization has not been proved. In
particular, the determination of the rate matrices becomes more difficult. (For a further discussion,
see the Conclusion, §6.) Servi[7] provides efficient numerical procedures for solving QBD systems
such as these.

Morrice et al. [3] study Markovian queueing systems in which inter-arrival times and service



times are modulated according to a deterministic, cyclic structure. For the case of cyclic service
times (and stationary inter-arrival times) this model is a special case of ours.

Prabhu [6] develops a Markov-modulated model that applies to the infinite waiting space, data-
processor systems described in the introduction. The analysis yields elegent, Wiener-Hopf represen-
tations of the waiting-time distribution of jobs. Zhu and Li [9] develop MacLaurin series expansions
to describe these quantities. In that they characterize waiting times, rather than the distribution
of the number-in-system, these works complement ours. We also note that the analyses apply only
to systems with infinite waiting spaces, while we characterize both infinite and finite waiting-space
systems.

The rest of the paper will be organized as follows. In §3.1-§3.3 we give a complete solution
to the steady-state probability distribution of the number-in-system of an M/M M PP/1 system.
Then in §3.4 we compute important queueing performance measures, such as average number in
the system. In §4 we analyze the finite waiting space queueing system, M/MMPP/1/N. In §5 we
present numerical analyses which compare both the infinite and finite systems to their analogues

that have 7.7.d. service times. Finally, in §6 we discuss possible extensions of our results.

3 M/MMPP/1 queueing system solution

3.1 The steady-state probability distribution.

In the following analysis, m = 2, i.e., the underlying Markov chain has only two states. We denote
the two states of the Markov chain as fast, F', and slow, S.

Jobs arrive according to a Poisson process of rate A\, and service times are exponentially dis-
tributed. When the Markov chain is in state F', the server works at a rate of pp, and when the
Markov chain is in state S, the server works at rate ps < pp. When the server is in state F'
and completes a service it remains fast with probability ppr and becomes slow with probability
prs = 1 — ppp. Similarly, when the server is in state S and completes a service, it remains slow
with probability pss and becomes fast with probability psr = 1 — psgs.

We let Psp,n =0,1,... denote the steady-state probability that the server is slow and there are
n jobs in the system. Similarly, Pr, denotes the steady-state probability that the server is fast and

there are n jobs in the system.
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Figure 1: State-transition diagram of the Continuous Time Markov Chain

The state-transition equations of the M /M M PP/1 system’s associated Continuous Time Markov
Chain (CTMC) are presented below. While they are easy to formulate, they are difficult to solve, due
to the high-dimensionality of the recursive equations. The corresponding state-transition diagram
can be found in Figure 1.

We have, for n = 0, that

APso = pspssPsi1+ prprsPra (1)
APpo = pspsrPsi+ prprrPra, (2)
and for n > 1,
(s +A)Psn = APsp 1+ pspssPsnt1 + prprsPrns1 (3)
(hr +AN)Ppn = APpn_1+ pspsrPsni1 + prprrPray1- (4)

We can present the balance equations in a matrix-vector notation. Let

Ps ., L 1) ) 0
X, = S, 7 A— HspPss HFPFS ’ and B — Hs

Prp HSPSF MFPFF 0 A+ pp



Then the balance equations (1), (2), (3), (4) become

BXn+1 = )\Xn + AXn+2 Vn 2 0

Mo = AXy,

Furthermore, we can define C = AA~! and D = A~ B, and equivalently represent the balance

equations as:

Xn+2 — DXn+1 + CXn = 0, vn > 0 (5)
X, = CX,. (6)

We note that when psp+prs = 1 (psr = Prr, Pss = Prs), the service times become i.i.d. hyper-
exponential random variables. In this case, the M/MMPP/1 system becomes an M/Hs/1 system,
which is simpler to analyze and has been studied by many before (see, for example, Kleinrock [1,
page 205]). Furthermore, if either pgr or prg is zero, then in the steady-state, the system operates
as an M/M/1 queue, which has been well studied (see also Kleinrock [1] for an example). In this
paper we will focus on the case in which psr + prs # 1 and psp - prps # 0.

Given the representation (5) and (6), we are ready to state our main result.

Theorem 1 When psp + prs # 1 (i.e. psF # DrF,Pss # Prs) and psp - prs # 0, the solution to
(5) and (6) is of the form

where Ry, Ro, K1, and Ko are such that

R?—DR;+C = 0 i=1,2 (8)
Ki+Ky, = I (9)
RIK| + RoKy = C. (10)

Once the matrices Ry, Ro, K1, and K3 satisfying (8)-(10) are found, {X,,}52 o as defined by (7) is
clearly a solution to (5). Moreover, given Xo, (5) and (6) uniquely determine all other probabilities
Xn, ¥n > 0. So it suffices to prove the existence of a solution of the form (7) such that (8)-(10) are
satisfied.

We constructively prove the existence of Ry, Ry, K1, and K5. Because we consider the proof to

be an important result of this paper, and because it is quite long and technical, we will present it



in §3.2. Readers mainly interested in how we use Theorem 1 to derive the M/M M PP/1 queueing

measures should go directly to §3.3.

3.2 Proof of Theorem 1
Lemma 1 Suppose R satisfies (8), then if v is its eigenvalue, it satisfies
det (Y2 —yD 4+ C) = 0. (11)

Proof Let V be the corresponding eigenvector, i.e., RV = V. Then R? — DR + C = 0 implies
(R? — DR+ C)V = 0. Therefore

(YT —yD+C)V =0 (12)
Since eigenvectors are non-zero, this implies (11).

A

Lemma 1 shows that the eigenvalues and eigenvectors of any solution to (8) satisfy (11) and
(12). Moreover, it shows that they can be directly computed from (11) and (12). The following two
propositions show how to construct the two solutions to (8), Rj 2, based on the solutions to (11)
and (12).

Since psg + prs # 1, there are four roots to equation (11): 1, Y2, 73, and 4. Let Vi, Vo, Vs,

and V4 be the corresponding vectors given by (12).

i 0
Proposition 1 IfV; and V; are linearly independent, then R = (V;,V}) 7 (Vi,V;)tisa
0
solution to (8).
Proof It can be verified as follows:
2 712 0 Vi
0 77 0

= (WVi,V;) = D(viVi, v Vi) + C(Vi, V;)
-0

from (12). Therefore (R? — DR+ C) = 0, as (V;,V;) is invertible.



If a solution to (8), R, is non-diagonalizable, then let 4 be its multiple eigenvalues. Since clearly

R # 41, R can be transformed into a Jordan form: 3(V, U) such that R = (V,U) 7 (V,U)~ 1,
U
i.e.,
RV = AV (13)
RU = V4+AU. (14)

The following proposition shows that the inverse is also true. See Appendix A for its proof.

Proposition 2 If ¥ is a multiple root of (11) and V is its corresponding solution in (12), then there

exists a U, linearly independent of V', such that R = (V,U) 7 (V,U)~t is a solution to (8).
0 5
Now, define
] 1 ] 1
p=A {(—[)FS ) —+ <—[)SF > —} . (15)
PSF +PFs/) ks PSF +Prs/ HF

The following lemma is needed for Proposition 3. Its proof can also be found in Appendix A.

Lemma 2

1. When p # 1, one and only one of the four v’s is 1. Furthermore, the other three eigenvalues

cannot all be the same, and, none equals 0.

2. The eigenvector corresponding to the eigenvalue 1 is (/Lppps,uspsp)l, and it is linearly inde-

pendent of the eigenvectors of other eigenvalues.
3. If vi = v, then Vi and V; are linearly dependent.

4. If vi # vvj and V; and V; are linearly dependent, 1 < i # j < 4, then v;7y; is an eigenvalue of
C.

5. If Vi, Vi, and Vj, are linearly dependent, 1 < i # j # k < 4, then v;, v;, and v cannot be all

distinct.

The following proposition uses the results of Propositions 1 and 2 to provide a procedure for
determining solution to (7)-(10). Thus it provides a constructive proof of Theorem 1. Without loss

of generality, we can let v, = 1.



Proposition 3

1. Let v, Viyi=1,2,3,4, be given by (11) and (12), and let 41 = 1. There are two possibilities:

(a)

(b)

Suppose there exist a pair of linearly independent vectors in Va, Vs and Vy, say Vs and
Vyi. There are two possible cases. In the first, vo is different from both 3 and ~4, then

0 0
n (Vi, Vo)=L and Rs = (Va, Vi) | °
0 7 0 M

solutions to (8). In the other case, yo = 73 or 4. Without loss of generality, let vo = 3.

Ry = (V1,V2) (V3, V)"t are both

st Y2

Then Ry = (Vi,Vi) (V1,Va)™! and Ry = (V,Us)
0 Y4 0 Y2

are both solutions to (8), where Uy is found via Proposition 2 (equation (56)).

(Va, U2)71

Suppose Vo, Vi and Vy are pair-wise linearly dependent, then s, 73, and 4 can be
neither all distinct nor all the same. Suppose v3 = v4 = v # 2. Then, Ry =
(Vi, Vo)™ and Ry = (Va,Us) |

0 Y2 0 Y
tions to (8), where Us is found via Proposition 2.

Y1

V1, V2) (V3,U3) "t are both solu-

2. Ry and Ra, as constructed in (1a) and (1b), have no common eigenvalues.

3. Let Ry and Ry be given in (1a) and (1b). Then there exist Ky and Ko such that (9) and (10)

are satisfied.

Proof

according

To prove part (la), we note that in the latter case, V4 and Vj are linearly independent

to part 2 of Lemma 2. Part (1a) then follows from Proposition 1 in the former case and

Propositions 1 and 2 in the latter case.

To prove part (1b), we note that parts 1 and 5 of Lemma 2 together show that o, s, and 74

can be neither all distinct nor all the same. The rest follows again from Propositions 1 and 2.

From our construction of R; and Ry in (1a) and (1b), it is clear that they have no common

eigenvalues in all cases. We note that, in the latter case of (1a), 1 = 1 # 72 and v = v3 # 4 from

part 3 of Lemma 2.

We will defer the proof of part 3 to Appendix A.
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3.3 Complete Solution of the Steady State Probability Distribution

From Theorem 1, we see that, once we know Xo = (Pg,0, PFSO)I, then all the other probabilities can
be obtained from equation (7). The following two propositions provide two independent equations

to determine Pgo and Ppo and, in turn, the entire probability distribution.

Proposition 4

(i) The long-run average service time of the M/MMPP/1 system is 1/p where

1 prs 1 PSF 1

= — —_— 16
{4 DPSF +DPFS S PSF + DFS IF (16)

(ii) Let p be defined as in (15). Then p = A/u. Moreover, when p < 1, the system is stable, and p

is the long-run proportion of time the system is busy.

(1ii) When p > 1, the system is unstable.

Proof The transition probability matrix of the Embedded Markov Chain (EMC) at service

. . bss Psr . PR
completion epochs is P = , with the steady-state distribution 7 = (7g,7p) =

PFs PFF

(psfj_;m, psfj_*;Fs> such that # = 7 P. Note that (7g,7F) are also the long-run proportion of slow

and fast services. More specifically, if we let m(n) be the number of slow services in the first n

n =TrF

services the server provides, then lim, . m(n) = oo, lim,_ = 7g and lim,_, o
with probability one.
Let Sy, 59, ... denote the sequence of services provided by this server, and let

2, = {i:i <nand S; is a slow service}, then m(n) = ||, and

n S; i S; i S;
lim 721:1 = lim <Z ST - 0 >
n—oo n n—00 n n
L ((2zieu S m(n) n 2igo, Si n—m(n)
n—oo m(n) n n —m(n) n
T T P 1 p 1
_ Ts + F Prs — Psr L

fis  piF PSP +PFS[is  DPSF +PFS [iF
with probability 1. Hence the long-run average service time 1/p is defined as in (16), and it follows
from (15) that p = A/u. When p < 1, by Little’s Law, p is the long-run average fraction of time the

system is busy.
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To derive stability conditions, we define (in Loynes’s [2] notation) 11,75, ... to be the sequence

of inter-arrival times. Moreover, define U,, = S,, — T;,. Then

n <0 ifp<1,
lim —Zk:l Uk = l f

1
e n oA >0 ifp>1

w.p.1.

Therefore, the system is stable when p < 1 and unstable when p > 1. This follows directly from
Theorems 1 and 2 and Corollary 1 in Loynes [2].

A

Proposition 4 provides the first equation relating Pso and Ppo:
Pso+ Pro=1-p. (17)
To provide the second equation, we use the fact that probabilities sum to one. Let (aps,bys) =

(1,1) Zi\f:o (RYK1 + RYKs). Then

M —o0

1=(1,1)) X, = lim [(an,by)Xol- (18)

Arrange v1, 72, 73, and 74 in descending order with regard to their absolute values (or, in the case
. ’ ’
of complex numbers, modulus). Let the corresponding vectors be Vi = (v11,v12) , Va = (v21,v92) ,

’ ’ . . .
Vs = (vs1,v32) , and Vi = (v41,v42) . Since one is an eigenvalue, we must have |y;| > 1.

For the following discussion, we will assume Ry = (V4,V3) e (V1,Vo)™t and Ry =
0, 7
Y3, 0 1 ..
(V3, Vi) (V3,Vy)~ L. Other cases are similar.
07 V4
Now let us denote the coefficient matrices Ky and Ko by
K.(1,1), K (1,2 Ko(1,1), Ks(1,2
K — 1(1,1), Ki(1,2) Ky 2(1,1), K»(1,2) ,
Ki(2,1), Ki(2,2) K»(2,1), Ky(2,2)
and
= (Kl(l, 1)1}22 — K1(2, 1)’021)(1]11 —+ Ulg) ﬂ _ (Kl(l, 2)’022 — K1(2, 2)’021)(’011 + 1)12)
B V11V22 — VU12V21 ’ ! V11V22 — V12V91 ’
g = (K1(2,1)v1; — K1(1,1)v19)(va1 + va2) By = (K1(2,2)v11 — K1(1,2)v19)(va1 + v22)

V11V22 — V12021 V11022 — V12021

12



(K2<17 1)1)42 — KQ(Q, 1)’041)(1J31 + 1)32) (K2(17 2)’042 — KQ(Q, 2)’041)(’031 + ’032)

g = 3 /83 = ’
V31V42 — V32041 V31V42 — V32V41
o = (KQ(Q, 1)1)31 — K?(L 1)’032)(1)41 —+ 1)42) ﬁ4 _ (KQ(Q, 2)’031 — Kg(l, 2)’032)(’041 + ’042)
' V31V42 — V32041 ’ V31V42 — V32V41
Then
M M
) = 1) |3 RDK 4 (Y Rm]
n=0 n=0
Sl o 0 N
= (1,1) |(V,Vh) o (Vi, Vo) 1Ky
0 Y on=075
’ n=0 /2
S, 0 ~
+(Vs,Va) 07 o (Va, Va) 1Ko
0, Zn=o oA

4 4
<Z ;i B, Z ﬁiEM,i) , (19)
i—1 i=1

M . . .
where Epri =3, o7, and «y, (i, i = 1,2,3,4, are constants as defined before.

Proposition 5 If p < 1, then the Markov process is ergodic and there exists a positive probability

vector Xo such that equation (18) is satisfied. Moreover, either

(1) (anr,bpr) does not converge to finite (a,b) but the ratio ap /by converges to a constant, K,
and

Pro . oapn
D ] - - _K 2
Ps_o J\Iliil)o b]\{ ’ ( 0)

(i1) or, (apr,bar) converges to finite vector (a,b) and

G,PS’O + bPF’O =1. (21)

Proof  From (17), we know that Pso + Prg > 0 when p < 1. Suppose, by contradiction, that
Ps., (or Pp,,) equals zero for some n > 0. Then from equations (1)-(4), Ps 41 = 0 (or Pryy1 = 0).
Because psp - prs # 0, it follows that Pg, = 0 (or Ps, = 0), and recursively Ps = Ppj; = 0 for
all k. This contradicts Pgo + Pro > 0. Therefore, all the probabilities (Ps,, Ppn, ¥n > 0) are
positive, and the Markov process is ergodic.

Because there might be identical 4’s in 1, 72,73, 74, we first collect terms in (19). Then we

denote by ~; the lowest ranking v whose o and 3 coefficients are not both zero.

13



Suppose |7y;| > 1, and without loss of generality, suppose o; # 0. Then since limps—o0 |Epr,i| = 00
and ap; = 2?:1 a;Epp 4, this means limps o |ap| = 00. Because limps o (aps, bpr)Xo = 1, this
also implies that lima/ oo |[bar]| = 00. Otherwise we would have Pg ¢ = 0, contradicting the fact that
the solution to (18) is positive. So ; # 0 as well.

The coefficient of the ¥ term in (ayr, bar) Xo is a;Pso + $iPro. As M — oo, this coefficient
must vanish. Therefore

Pro .oam o

B0 =_—, 22
Pso M50 bar Bi (22)

This corresponds to the first case in the proposition statement.

Now suppose |v;| < 1. Since the eigenvalues with non-zero «v and f coefficients all lie within the
unit disk, we have, from (18), that limpys—.e0 (ans, bar) = (a, ) for finite (a,b). Therefore, from (18),
we have equation (21). This corresponds to the second case in the proposition statement.

A

In general, eigenvalues of the rate matrices are usually restricted to the inside of the unit disk.
Lemma 1 shows that in our system, however, the spectral radii of the rate matrices could be no
smaller than one. But the divergence of the powers of rate matrix provides us with equation (20) or

(21), a simpler second equation than (18).

Remark 1 Note that the underlying CTMC steady-state probability distribution can be modeled
in the following way. First, arrange the states as (Ps o, Pr0, P31, Pr,1,...). Then the infinitesimal

generator @ is

and the solution to the steady-state probability balance equation is as follows:

14



(XO?X17 "'7Xn’ ) = <X07X1a "'aX’rw )Q

This is an example of a “Quasi-Birth-and-Death Process”. Theorem 3.1.1 in Neuts [5] states
that the Markov process is positive recurrent if and only if the minimal nonnegative solution R to
the matrix-quadratic equation (8) has all its eigenvalues inside the unit disk and the finite system

of equations

(R—C)Xo = 0 (23)
(LI -R) Xy = 1 (24)

has a (unique) positive solution Xg. In this case,
X, = R"X,. (25)

It is not evident, however, that conditions (23)-(24) are always satisfied, and even if they are
satisfied, they may be difficult to verify. Our algorithm, as described in Proposition 3, guarantees a
solution as a superposition of two matrix-geometric series and the major computation requirement
is the solution of a polynomial equation (11), and the solution of linear equations (12). Hence, our
approach provides a numerically simple algorithm for all cases, including those in which (23)-(24)

are satisfied and Neuts’s results apply.

3.4 Average waiting time and queue length.

Once we know the complete distribution of the number in the system, we can compute all the
important queueing measures - average number in the system, average queue length, average waiting
time in the system, and average waiting time in queue. In fact we only need to compute any one of
the four. The others follow easily from Little’'s Law and W, = W, + 1/u. We will focus on finding
the average number in the system.

Because X, = (RY K + Ry K9)Xo, Vn, if we let L denote the long-run average number in the
system, then L = (1,1) Y77 n(RT K1 + RS K2)Xo.

We can find L from the following two equations. Let G = Y o7 (nPs, and H = 0" nPp.,,

then L = G + H. There are many ways to find G and H, including differentiation of the moment



generating functions. The following are just two examples.

(bs = NG+ (pp —NH = A (26)

PEs )\_2 APy - ADPFs

PSF +DFs  Jis (psr + prs)

wspsrG — prpprsH (27)

We can also directly compute L from the matrices Ry, K1, Ry, Ko - which we have already
obtained when determining Xg. This method will be particularly useful in the finite waiting space
case. So we will defer the discussion till then.

Detailed derivation of (26) and (27) can be found in Appendix B.

4 M/MMPP/1/N queueing system solution

In many applications, there is a physical limitation on the waiting space and the system loss proba-
bility is of primary concern. In the following analysis we will assume a limited capacity of N in the
system. Any job that arrives when there are already N jobs in the system will be lost. We shall use

the same Ps, and Pr, notation. The new balance equations are as follows:

APso = pspssPsi1+ prprsPra
APro = pspsrPsi + prprrProa,
(s + A)Ps;n = APspn—1+ pispssPsn+1 + HFPFSPra+1 (28)
(bp + N Ppn = APpp_1+ pspsrPsni1 + pipprrPrns1, 1<n <N (29)
nsPsn = APsn-1 (30)
prPrN = APpN-1. (31)

Again we need two equations to solve for Pgg and Prg. The first comes from solution of (28)
and (29). As in the infinite waiting space case, we know that there exist Ry, Ro, K1, and K» such

that (8)-(10) are satisfied and for all n,
X, = (R'K1 + RV K») Xo. (32)
In particular

Xyo1=(RY 'Ky + RY 'Ko)Xo and Xy = (RY K + RY K3)Xo. (33)
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This, together with (30) and (31), implies

1
s (RVK, + RYK:)Xo = AMRY'K, + RY=1Ky) X,
0 HFE
(RYK, + RYKy) Xy = J(RY 'K, + RY1Ks) X
So
[(Ry — J)RY 'Ky + (Ry — J)RY 'Ks] Xo =0 (34)
AMps 0 . . . :
where J = provides us with the first equation we need.
0 A pr

The second equation is obtained from the normalization condition that the probabilities sum to
one. In this finite waiting space case, we do not have the problem of divergence. Therefore the
second equation is quite straightforward:

N N
(L)Y X, =1 = (1,1) Y (RYKy + REK5) X = 1. (35)

n=0 n=0

We will use the following algebraic identities to facilitate the computation of > R™ and Y  nR™.
Let

N 17’[‘ +1
1@ N) :Z Cl-x
n=0
N N+1<
n T—T 1+ N — Nx)
fQ('T7N):Zn'T = (177‘)2 )
o T

N
- 1—-aN¥(14+ N - Nz

n=1 1_'7:)2 ’
and
N
1+a—a2N(1 42N+ N2+ 2 — 2Nz —2N?%x + N22?)
_ 2. . n—1 __
QQ(T’N)_T;”'T - (171,)3 ’
then

0 no
citR= Vo) [ " (Vi, Vo)=Y, then R” = (Vi,Va) | (V1,Va)~1

0 7 0 73
N

n Ji(n, N) 0 _
> R = (V1,Vh) (W1, V)™,
n=0 0 J1(72, V)
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and

N N 0
Y k"= (1, V) 220 (Vi,Va) ™
n=0 0 Ja(v2, N)
1 n n n—1
eitR=,00) | | VL, U)~ then R = (vi, o) | Vi, 00)~,
0 ~ 0 4"
o A(nN) gi(y, N) .
> R = (Vi,Uy) (W1, U0)7,
n=0 0 fl("y’N)
and

X N N

S nR" = (.00 2, N)  g2(7, N) Vi),
n=0 0 Ja(y, N)

Note that all the ~;’s and V;’s have already been obtained in the process of computing R; and
Rs. So the above computations are straightforward. Using these identities, we can simplify (34) and
(35) and quickly compute Xg. After that, we can calculate X,, for all n via (32). The other queueing
measures follow from straightforward computation and will not be presented here. Again, we will
take advantage of the fact that we have already obtained all the eigenvalues and eigenvectors in
computing X to facilitate these computations. For example, to find the long-run average number-
in-system, we directly compute L = Zf:;o nX,, using the identities above concerning >  nR".

Because arrivals are Poisson, the PASTA property for continuous-time Markov chains (see
Wolff [8] for example) implies that the loss probability equals the probability that there are N
in the system: Pgny + Py = (1,1)Xn.

Remark 2 Naoumov [4] proves that, in finite QBD systems, the steady-state distribution of the
number-in-system may be described as the superposition of two matrix-geometric series: X, =
R"a + SM~"b. Here a and b are vectors that satisfy certain boundary conditions. While this
solution form holds for m > 3, the calculation of the two matrices, R and S, necessitates the
computation of two infinite series of (recursively defined) matrices. In particular,

R= lim Ry,  where  Ro=0,  Ryp=Rp—(D-I)Rx+C

S = klggo Sk, where So =0, Sp1=CS: —(D—-1)S, +1

Therefore in the case of a 2-state M/M M PP/1 system, we extend his results by providing more

properties of the rate matrices and by providing a more computationally efficient procedure.
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5 Numerical analysis

In this section, we study the performance difference between the M/MMPP/1 system and an
analogous M/G/1 system in which service times have the same first two moments as those in the

M/MMPP/1 system but are i.i.d.

5.1 Infinite waiting space: the M/MMPP/1 system.

We first consider the case of systems with infinite waiting spaces. The Pollaczek-Khintchine formula
implies that the average queue length of an M/G/1 system depends on the service time distribution
only through the first two moments (for example, see Wolff [8, page 385]). Therefore, without loss of
generality, when calculating queueing measures such as the average queue length, we can assume that
the M/G/1 system has i.i.d. hyper-exponential (Ha) service times, with prs/(psr + prs) fraction
of the services being slow and psr/(psr + prs) fraction being fast.

The cases we study include a wide variety of scenarios: high/low system utilization, high/medium/low
switching probabilities, and combinations of these. In Table 1 we report the average queue length
in these systems, and we observe two interesting phenomena from these results.

First, when pg < A and pgp is very small (at the same time ppg cannot be very large as otherwise
the system may be unstable), the expected queue length in the M/M M PP/1 system is much larger
than that in the M/Hs/1 system. This is not surprising: when psp is small, once the server becomes
slow it tends to stay slow for a long time; if at the same time pg < A, then the queue length grows
very quickly. In the corresponding M/Hs/1 system, however, the i.i.d. service times prevent this
from happening, and the system backlog fluctuates less. Neuts [5, page 266, Example 2] observes
similar numerical phenomenon as well.

Second, when psp+prs > 1, the expected backlog in the M/ Hy /1 queue actually exceeds that for
the M/MMPP/1 system. This phenomenon is somewhat unexpected because one would normally
think that the serial correlations among the modulated service times would cause the M/M M PP/1
system to have a worse performance than the M/Hy/1 system.

As we noted before Theorem 1, however, the M/Hs /1 system is in fact an M /MM PP/1 system

with switching probabilities (pp, prg) = psr,Prs) where psp 4+ plg = 1. So, the com-

1 (
PSF+PFS
parison in Table 1 is equivalent to the comparison between an M /MM PP/1 system with switching

probabilities (psp,prs) and an M/MMPP/1 system with switching probabilities (psp, Prg)-
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Table 1: M/MMPP/1/o00 vs M/G/1]/o0

A Hs HF  PSF  PFS P QM/MMPP/l QM/H2/1 Diff.%

10 8 50 0.6 0.3 0.550 1.262 1.217 -3.60%
0.3 0.6 0.900 10.803 10.550 -2.34%
0.9 0.15 0.350 0.389 0.396 1.77%
0.15 0.9 1.100 unstable
0.15 0.15 0.725 4.596 2914 -36.61%
0.55 0.55 0.725 2.836 2.914 2.73%
09 09 0725 2.518 2.914 15.74%

10 125 50 0.6 03 0.400 0.409 0.400 -2.20%
0.3 0.6 0.600 1.115 1.100 -1.39%
0.9 015 0.286 0.174 0.176 1.00%
0.15 0.9 0.714 1.934 1.940 0.30%
0.15 0.15 0.500 0.867 0.680 -21.56%
0.55 0.55 0.500 0.669 0.680 1.67%
0.9 09 0.500 0.619 0.680 9.82%
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When psp + prs > 1, pyp < psp and plhg < prps. From the intuition obtained in the first
observation, we conjecture that because the M /MM PP/1 system representing the M/G/1 analogue
has smaller switching probabilities, the underlying Markov Chain tends to stay in both states longer
and therefore the system performance is actually worse than the original M /MM PP/1 system.

Conversely, when psr + prs < 1, the M/G/1 system performs better.

Conjecture 1 The long-run average queue length of the M/MMPP/1 system is smaller than that
of its M/G/1 analogue when psp + prps > 1, larger when psp + prs < 1, and the same when

psr +prs = L.

We will not attempt to prove the conjecture in this paper. The numerical results in Table 1,
however, show that this conjecture holds for a wide variety of examples.

Most significantly, we find concrete examples to show that the system performance (average queue
length, average number in the system, average waiting time in queue, and average waiting time in
the system) of the M /MM PP/1 system is not necessarily worse or better than its analogous M/G/1

system. As the conjecture states, the difference appears to depend on the switching probabilities.

5.2 The M/MMPP/1/N System.

We next compare results for systems with finite waiting spaces. Table 2 reports results that are
computed for the same set of parameters as those in Table 1. The difference here is that there is an
N =7 limit on the waiting space. In addition, we also compare the loss probabilities here.

Note that Conjecture 1 not only holds in this finite-waiting-space for the expected queue length,
it also holds for the loss probabilities. The intuition provided in the previous section also appears
to apply here.

Note also that the relative difference in loss probabilities between the M/M M PP/1 system and
its M/Hy/1 analogue is magnitudes higher than the difference in expected queue length in all the
cases. This suggests that while an M/G//1 approximation may perform well in terms of the expected

queue length, it may not be a good approximation in terms of real loss probability.

21



Table 2: M/MMPP/1/N vs M/M/1/N when N =7

) P{Loss}
A ps  pr pse prs @ Diff.% PJ\I/J\IMPP/l/?{LOSS} P]\l/Hg/l/?{LOSS}
Diff. %
10 8 50 0.6 0.3 -1.93% 3.11% 2.93% -5.76%
0.3 06 -0.44% 11.05% 10.85% -1.79%
0.9 0.15 1.28% 0.78% 0.82% 4.49%
0.15 0.9 0.01% 17.92% 17.96% 0.22%
0.15 0.15 -13.35% 9.08% 6.13% -32.49%
0.55 0.55 0.98% 5.93% 6.13% 3.28%
0.9 09 5.50% 5.06% 6.13% 21.00%
10 125 50 0.6 0.3 -1.76% 0.52% 0.49% -6.28%
0.3 06 -0.86% 1.91% 1.86% -2.70%
0.9 0.15 0.86% 0.14% 0.14% 4.15%
0.15 0.9 0.14% 3.37% 3.39% 0.47%
0.15 0.15 -14.82% 1.63% 1.02% -37.67%
0.55 0.55 1.20% 0.98% 1.02% 4.17%
0.9 09 7.13% 0.79% 1.02% 27.98%

6 Conclusion

Our analysis and procedures should also hold in more general cases in which the Markov chain that
modulates service times has m > 3 states. Because of the birth-and-death nature of the system -
in which the number of jobs in the system can only move up or down by one at a time - the state
balance equations can be represented as quadratic difference equations even when m > 3. Therefore
the matrix-geometric type solutions should still hold. We argue as follows.

Since the state transition equations can be represented by (5) (where the matrices D and C' are
of dimension m > 3 now), the eigenvalues and eigenvectors of the rate matrices should still satisfy
(11) and (12). Therefore we will follow the same procedure to solve (11) and (12) first and get 2m

~v’s and v’s. Then we will follow Propositions 1 and 2 to generate m rate matrices. Finally we will
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find m coefficient matrices, K, such that boundary conditions such as (6) are satisfied. As a result,
X,, could be represented as X,, = Z:’;l RYK; Xo.

Unlike the case m = 2, however, it is difficult to prove that m > 3 rate matrices can be generated
from the 2m solutions of (11) and (12) such that boundary conditions can be satisfied. Other
difficulties may include the fact that there is no closed-form solution to high degree polynomial
equation (11), as well as the fact that, once the dimension grows big, it may become difficult to invert
the matrices. However, there are numerical procedures for finding roots to polynomial equations and,
with the fast-increasing available computing power, even large matrices can be inverted relatively

quickly.

A Proofs of the results in 3.2

Proof of Proposition 2 We prove that the required vector, U, can be found via the following
equation,
(3%I — DY + C)U = —(241 — D)V, (36)

and that it always exists. To do this, we note that

d
29I — D = —(v*I — Dy + C).
dy

wy(y), w —wi(v), —w
Therefore if we denote y2I—D~+C by 1) 2(7) ,then —(2yI—D) = 1(7) 2(7)

ws(7y), wa(v) —ws(y), —ws(7)
Furthermore, det (y2I — Dy + C) = wy (y)w4(y) — wa(y)ws (7). 4 being a multiple solution to

(11) implies that:

det (Y1 — Dy + O)y=4 = wi(H)wa(¥) — wa()ws(9) = 0, (37)
and

ddet (21 — Dy + C)
dy 7=

= wy (Nwa(3) +wi(H)wy(§) — wy(H)ws(§) — wa(H)ws(3) =0.  (38)

’

Moreover, V being a solution to (12) means (42 — Dy + C)V = 0; i.e. if we denote V = (vy,vs) ,

then

wl(ﬁ/)v w2 (’3/) U1 —0. (39)

w3 (), wa(Y) V2
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Without loss of generality, from (39) we can assume that

w3 () = cwi1(¥), wa(F) = cwa2(¥), v1=—w2(¥), v2=wi(¥),

where ¢ is a constant.

Then (38) reduces to:

0 = w(Nwi(A) +wi(Hwy(§) — wy(Hws(§) — wa(F)ws (%)

= wi(§)(—cvr) + vowy(3) — wy(3)(cva) — (—v1)wy(3).

Hence
wy(A)or + wy(§)v2 = e(un ()1 +wa(3)va), (40
and (36) becomes:
w1 (%), wa(H — (W, () vy + wo(H)v
1(%) 2(%) U— ( ,1(’7) 1 12(7) 2) . (41)
cawy (%), cwa() —c(wy (F)v1 + wy(§)v2)

Since these two equations are linearly dependent, a non-trivial solution U always exists for (36).
Now suppose, by contradiction, that U and V' are linearly dependent. Then U = ¢V for some

constant ¢g. From (39) this means that if we denote U by (uy,usz)’, then

wy(Y)ug + wo(H)us =0, ws(§)ur + wa(F)ug = 0,

and therefore from (41)

wll(‘y)ul + w; (H)uz =0, wé (Auy + w;(‘y)ug = 0.

That is, (421 — DY + C)U = 0 and (241 — D)U = 0. Pre-multiplying both equations by A we

get (442 — By + AU = 0 and %;B'H—M) U = 0. Because
=4

' 2 (N +ps)y+ A 2
(Ay? — By + AI) = pspssy” — ( 1s)Y WEPFSY

HSPSFY2, urprrY? — (A + pp)y + A

this would imply (pspssy? — (A + ps)y + Nuy + prprsy’us = 0 and (2uspssy — A — ps)u +

; 2 — tq vane A — 27 g . A _2A 3
2upprsyus = 0. This means 4 = pwr. Similarly we can show ¥ = pwnet and, in turn, that

fts = pup, which contradicts the assumption pg < pp.
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Thus U and V are linearly independent. If we let R = (V,U) (V,U)~1, then (13) and

o =

gl
(14) hold. Moreover,
(R* = DR+C)(V,U) = RGV,V +4U) — D(3V,V +3U) + C(V,U)
—  (FV.24V +4°U) = DAV, V +4U) + C(V, )
= (B*I = DA+ C)V,(3*1 = DA+ C)U + (241 — D)V))
= 0.
Therefore (R? — DR+ C) = 0, as (V,U) is invertible.
A

Proof of part 1 of Lemma 2  Once we substitute v = 1 into (11), it is straightforward to verify
that the determinant of the resulting matrix is zero.

As a result, (11), or equivalently, det (Ay? — By + AI) = 0 can be simplified to

0 = (uspr(pssprr —pseprs))Vt = (A + ps)uppre + (A + pip) pspss )y’
+(\(uspss + ueprr) + A+ ps) A+ pe))y® — (207 = Mis — Mup)y + X2

(v = Dluspr(pss + prr — 1)v° — (Auspss + Mipprr + pspir)y?

FAN A+ g 4 pp)y — A2,

Obviously 0 cannot be a root because A2 # 0. Now suppose we have another root that is 1. Then

we would have

pspr(pss + prr — 1) — (Mispss + Mpprr + psiir) + A + ps + pr) — A% =0, (42)

which amounts to

1 = \HsPsE + HLFPFS ’ (43)
tspr(Pse + Prs)

i.e. p=1, a contradiction.
. ’
Now suppose the other three eigenvalues are the same, v . Then

/ A A
3y = (spss + AUFPFF + /LS/LF7 (44)
pspr(pss +prr — 1)
/ A(A
52— (A + ps + pur) 7 (45)
wuspr(pss +prrp — 1)




13 A2

T lsur(pss +pre—1)
(44) and (45) imply
(Mspss + Mipprr + pspr)® = 3AA+ ps + pr)pspr (pss + prr — 1)
ie.
0 = N[udpes+ 1ipie + 2usprpssprr — 3psir (pss + pre — 1)] (46)

+  A2udprpss + 2uspppre — 3(pus + pp)pspr(pss + pre — 1) 4+ pEpg.

To show contradiction, we now prove that (46), as a quadratic equation of A, has no real roots.

That is, the discriminant is negative:

0 > [2udurpss + 2puspiprr — 3(ps + pr)puspr(pss + prre — 1))
—A[pEpts + prEpEp + 2usiEpssPEF — Spsir(pss + prF — 1)k pr
= 3(pss +prr — Dpipt{pi[—3prs — pss| + pr—3psr — prr] + pspr2(pss + prr — 1))}

But (pss+prr—1) > 0, due to (45), and the coefficients of the quadratic terms in the parenthesis

are negative. Thus we, again, only need to prove that the discriminant is negative:
0 > Apss+prr —1)° —4(=3pps — pss)(—3psr — prr)
= —16psrpss — 16prsprr — 32psrprs,

which is clear. Therefore, we have proved that (44) and (45) are contradictory. As a result, the
other three eigenvalues cannot all be the same.

A

Proof of part 2 of Lemma 2 If we let v = 1, it is straightforward to verify that (urprs, uspSF)/
is a solution to (12). Moreover, if we fix V = (uppps, pspse) in (12), then we get the following

two equations:

pspEprsY? — (A + pis)ppprsy + Mipprs = 0

|
o

psprpseY’ — (A + ) pspsry + Mispsr
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The first equation has two roots: 1 and A/ug, and the second equation has two roots: 1 and A\/up.
Because pg < pup, 1 is then the only solution.

A

Proof of part 3 of Lemma 2 By contradiction, suppose v; = 7v; = v and V; and V; are linearly

independent. Then due to Proposition 1, the matrix R = (V;,V;) 7 (V;, V;)~ 1 is a solution
0 ~

to (8). Note, however, that here R = «I. But this is impossible because there exists no v such that

vl —~yD+C = 0.

A
Proof of part 4 of Lemma 2 If V; and Vj are linearly dependent then V; = ¢V where ¢ is a
constant. Therefore we have
(VI — Dy +C)V; =0 (47)
(i1 =Dy +C)W; =0<= (7j1 = Dy; +C)Vi =0 (48)
Multiplying (47) by ; and (48) by 7; and taking the difference, we have
(vivi(vi =) + (v = w)CWVi = 0
(v I = C)Vi = 0,
since 7; # ;. Therefore v;7; is an eigenvalue of C.
A

Proof of part (5) of Lemma 2 Suppose, by contradiction, that 7;, v;, and +; are distinct.
Then from Lemma 4, v;v;, 77k and ;7 are all eigenvalues of C. Furthermore, if 7;, 7v;, and 7
are distinct and non-zero, then these three eigenvalues are distinct as well. But C' has at most two
distinct eigenvalues, a contradiction.

A

The following two lemmas are used in the proof of part 3 of Proposition 3:
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Lemma 3 Let R be a 2x2 matriz with distinct eigenvalues v, and 2 and corresponding eigenvectors
Vi and V. Then for any vector V # 0, if R?V = ¢V for a non-zero constant ¢, then ¢ = 42 (i =1
or2), and RV = ~;V for the same i.

Proof Since v; and g are distinct, V3 and V3 are linearly independent, and V' can be expressed
as a linear combination of V; and Va: V = ¢; Vi + ¢oVa. Then R?V = ¢V implies ¢;vi V) + cavy3Va =
c(e1Vh 4+ Vi), i=1or 2.

Again, since V; and Vi are linearly independent, this implies ¢;97 = ci¢c and a5 = coc.
Because ¢; and ¢z cannot both be 0, if ¢; # 0, then ¢ = 4%, c3 = 0, and V = ¢, V4; else if ¢o # 0,
then ¢ =42, ¢; =0, and V = 3 V5.

A

Lemma 4 R; — Ry is invertible.
Proof Suppose, by contradiction, that Ry — Rg is non-invertible. Then there exists V' #£ 0 such

that RV = RoV. This, together with (8), implies that R%V = R%V, and hence R1RsV = Ro R V.

Now from (8), we have:

[R? — DRy + C|R;V — [R? — DRy + C|R,V = O
Ry(RiR3)V — Ry(RoR)V = 0
(R, — Ro)(R1RV) = O.

Since Ry # Ra, the dimension of solution space of (R; — R2)X = 0 is at most one. Because V' and
R1R5V are both solutions, we have R{R>V = ¢V for some constant ¢;. Morecover RV = RoV
and R RoV = 1V imply R?V = ¢V, and hence R3V = ¢;V. Without loss of generality, let Iy be
the one-matrix solution of (8) with one as its cigenvalue. Then from Lemma 1, Ry has two distinct
eigenvalues. Since ¢; is an eigenvalue of R and V its corresponding eigenvector, Lemma 3 implies
that V' is an eigenvector of Ry: RV = V. This implies RoV = vV as well. But R; and Ry do not
have common eigenvalues according to part 2 of Proposition 3. This is a contradiction.

A

Proof of part 3 of Proposition 3 From (9) and (10), (R — R2)K; = C — Ry and
(Ry — Ry)Ky = Ry — C. Then by Lemma 4, K} = (R; — Rg)™Y(C — Ry), Ko = (R — Ry) ™Y (R, — CO)
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is a solution to (8), (9), and (10).

B Derivation of L in the infinite waiting space case

Figure 2: Two cuts in the state-transition diagram

To derive (26), we first balance flows across cuts 1 in the state-transition diagram (Figure 2). As

a result we obtain the following equations:

XN Psn + Pppn) = pisPsni1 + pipPpay1 VY (49)

Ifwelet G=3 " nPs,, H=>",nPr,, multiply both sides of (49) by n+ 1, and sum over all

n, then we obtain

A ((n+1)Psp+ (n+1)Pppn) = ps Y (n+1)Pspsr+pr Y (n+1)Ppnp
n=0 n=0 n=0
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MG+H)+X = psG+purpH.

This is (26), the first equation needed.

Next we rewrite (5):

Xpio — DXpiy +CX,, = 0, ¥n >0 (50)

X, = (CXo.

Again, we multiply (50) by n 4+ 1 and sum over n from 0 to co, to obtain:

Y 42X Xppo = DZW+1 1 — CZWX CZX
n=0 n=0 =

ian - an = DZan —CZan —CZXn
n=2 n=2 n=1 n=0 n=0
ianlefan = DianfCianfCan
n=2 n=0 n=0 n=0

n=0
oo oo oo
(I-D+C)Y nX, = > X,=CY X, (51)
n=0 n=1 n=0
Now if we balance the flow across cut 2 in Figure 2, then we obtain pgrpg 2;’;1 Ps, =
, S P Moreover, S°°° . (P, P = Therefore, S °° . Pg, = —2£s . A
PFSIE Yyt Pra. Moreover, 377 (Psyn + Prn) = p. erefore, ) -y Pspn = 5o — - -
oo _ PSF . .
and 307 Ppp = - B28— . -2 5o (51) becomes:
B Pprs) PFS | A
pisPsp  prPrs G _ Psp+Prs _ PSF+PFs  Hs + Pspo
_ _PspX _Psr .\ ’
sPsp hrPrs H Psp+Prs PSFFPFS BF + Pro

out of which we obtain (only) one independent equation, equation (27).
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