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Abstract

Value-at-Risk (VaR) has emerged as the standard tool for measuring and reporting financial market
risk. Currently, more than eighty commercial vendors offer enterprise or trading risk management
systems which report VaR-like measures. Risk managers are therefore often left with the daunting
task of having to choose from this plethora of risk measures. Accordingly, this paper develops a
framework for answering the following questions about VaRs: 1) How can a risk manager test that
the VaR measure at hand is properly specified, given the history of asset returns? 2) Given two
different VaR measures, how can the risk manager compare the two and pick the best in a statis-
tically meaningful way? Finally, 3) How can the risk manager combine two or more different VaR
measures in order to obtain a single statistically superior measure? The usefulness of the method-
ology is illustrated in an application to daily returns on the S&P500. In the application, competing
VaR measures are calculated from either historical or option-price based volatility measures, and

the VaRs are then tested and compared.
JEL Codes: G10, C22, C53
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1 DMotivation

Sparked by the stock market crash in 1987, the past decade has witnessed a surge in the effort
financial market participants devote to risk management. In a recent survey of risk management
software, Risk (1999) lists more than eighty commercial vendors offering enterprise or trading
risk management information systems. This effort has been encouraged by regulatory authorities
imposing risk-based capital adequacy requirements on financial institutions (see Dimson and Marsh,
1995, and Wagster, 1996). The recent turbulence in emerging markets, starting in Mexico in
1995, continuing in Asia in 1997, and spreading to Russia and Latin America in 1998 has further
extended the interest in risk management to companies outside the traditional sphere of banking
and insurance.

Two important developments, one in academia and one on Wall Street have facilitated the
advancement in knowledge about risk management. First, the development of volatility models for
measuring and forecasting volatility dynamics began in academics with Engle (1982). The hundreds
of papers following Engle’s original work — many of them finding applications to financial data —
have had important implications for modern risk management techniques. Second, the introduction
of RiskMetrics by JP Morgan (1996) has enabled companies with just a minimum of computational
power and technical ability to compute simple measures of market risk for a given portfolio of assets.
RiskMetrics has also aroused the interest of academics as it offers a benchmark methodology upon
which improvements can be made, and against which alternatives can be tested. Research in this
tradition is reported in Jorion (1996), Duffie (1997), and Dowd (1998).

An important contribution of the RiskMetrics methodology is the introduction of the Value-
at-Risk (VaR) concept which collapses the entire distribution of the portfolio returns into a single
number which investors have found useful and easily interpreted as a measure of market risk. The
VaR is essentially a p-percent quantile of the conditional distribution of portfolio returns.

In RiskMetrics, the VaR measure has only a few unknown parameters which are simply cali-
brated to values found to work quite well in common situations. However, several studies such as
Danielsson and de Vries (1997), Christoffersen (1998), and Engle and Manganelli (1999) have found
significant improvements possible when deviations from the relatively rigid RiskMetrics framework
are explored. But, when one attempts to apply the results which have emerged from the GARCH
and related literatures to risk management, several questions remain open. We ask the following
questions: 1) Given a VaR measure, how can the risk manager test that the particular measure
at hand is appropriately specified? 2) Given two different VaR measures, say one using GARCH
and one using implied volatility, how can the risk manager compare the two and pick the best
in a statistically meaningful way? Finally, 3) How can the risk manager explore the possibility
of combining two or more different VaR measures in order to obtain a single statistically optimal
measure? Choosing an optimal VaR measure is important. Beder (1995) finds for example that
applying different VaR models to the same portfolio can yield significantly different assessments of
risk.

We illustrate the usefulness of our approach in an application to daily returns on the S&P500



index. We test and compare VaR measures based on GARCH-type volatilities estimated from
historical returns with measures based on implied and estimated volatilities from options contracts
written on the S&P500 index. We use the volatility measures constructed by Chernov and Ghysels
(1998).

The development of a specification testing methodology is complicated by the fact that the VaR
concept introduces an important nondifferentiability which invalidates existing statistical testing
procedures. In addition, when comparing two competing measures, it is essential to allow for them
to be nonnested. We tackle these challenges by extending the recent results by Kitamura (1997) to
allow for nondifferentiability.

The remainder of our paper is structured as follows: In Section 2, we establish some notation
and develop a moment-based framework for VaR specification testing, nonnested VaR comparison
testing, and VaR model combination. In Section 3, we introduce the econometric methodology
and show how it can be applied to testing VaR models. In Section 4, we apply our methodology
to returns on the S&P500 index, comparing traditional time series based VaR measures to VaRs
based on implied volatilities from options prices. Section 5 concludes and gives directions for future

research.

2 Value-at-Risk with Conditional Moment Restrictions

We set out by defining the notation necessary for establishing our testing framework.

2.1 Defining Value-at-Risk

Let the asset return process under consideration be denoted by

Yt = My + €t

where e Uy_q ~ (0, af) , and where W;_1 is the time-t — 1 information set. Then the Value-at-Risk

measure with coverage probability, p, is defined as the conditional quantile, Fy;_; (p), where

Pr (y, < Fyi—1 (P)‘ Uy_1) =p.

The conditionality of the VaR measure is key. Throughout this paper, we will assume that y; is
appropriately demeaned so that p; = 0 and y; = ;. But volatility will be allowed to be time-

varying.

2.2 Specifying Volatility

Risk managers have a plethora of volatility measures to choose from when calculating Value-at-Risk
(VaR) measures. Time series models of volatility range from exponentially smoothed and simple
autoregressive models, over single-shock GARCH models, to two-shock stochastic volatility models.
Furthermore, the risk manager can use option based measures of volatility to measure risk. Let us

therefore first give a brief overview of available volatility models.



The benchmark measure advocated in JP Morgan’s (1996) RiskMetrics sets the conditional

mean constant, and specifies the variance as an exponential filter
of = (1= XN ef g+ Aoy, (1)

where A is simply set to .94 for daily data. The innovations are assumed to be Gaussian, thus the

VaR measure is

Fﬁ% (p) = u+ @1 (p) oy
Obviously, for p = .05, we would have ®~! (p) = —1.64. In the standard Gaussian GARCH(1,1)
case (Bollerslev 1986) the conditional variance evolves as

o7 =w+ae;_ + o7y, (2)

and the one-step ahead conditional quantile with coverage p is

F;ﬁﬁ—l (p) = pype—1 + > (p) oy

Stochastic Volatility models instead assume volatility is driven by an unobserved factor. In the

simplest case,

Ot
Yt — Hyjg—1 = €L €XP (7) )
where

Ot ="y +V10t—1 + Ny_1-

Within each type of volatility model, many variants exist, based on considerations regarding long
versus short memory, nonlinear versus linear specifications, and exogenous variables such as seasonal
and trading volume effects.

GARCH, RiskMetrics and stochastic volatility models are all based solely on the history of
the return y; itself. But information on volatility may also be obtained from current market data
such as option prices. In an effort to incorporate the market’s belief about future returns, the risk
manager can apply implied volatilities from options prices. Given data options contracts traded,
the Black and Scholes (1972) implied volatility of a European call option can be found as the o

which solves
C=5-®(d1)—exp(—r(T—1) K-P(da), (3)
where C' is the quoted options price, @ (-) is the standard normal c.d.f., and

1og%—|—<r~l—%2> (T —1t)
' T -1 BT




where K, S,r,T —t, and o denote the strike price, the underlying asset price, the risk-free interest
rate, the time-to-maturity, and the implied volatility respectively. Jorion (1995), for example, has
found implied volatilities to work well as predictors of future volatility when using a standard mean
squared error criterion.

One can also use option prices and asset returns to estimate a more realistic model of returns
allowing for time-varying volatility. A benchmark model in this tradition is found in Heston (1993),

who assumes that the price of the underlying asset, S(t), evolves according to

dS(t) = pSdt + \/v(t)Sdz (t),

and volatility, v(t), evolves according to

dv(t) = k[0 — v(t)]dt + o/v(t)dza(t), (4)

where the two Wiener process innovations, dz1(t) and dza(t) are allowed to be correlated. Heston
(1993) derives a closed-form solution for a European call option price which is similar in structure
to equation (3). Chernov and Ghysels (1998) show how the parameters can be estimated using
data on options and returns.

Other measures of volatility, which differ in the return data applied, include Garman and Klass
(1980), and Gallant and Tauchen (1998) who incorporate daily high and low quotes, and Andersen
and Bollerslev (1998) and Andersen, Bollerslev, Diebold and Labys (1999), who average intraday
squared returns to estimate daily volatility.

In the empirical application at the end of the paper we will study VaR measures based on

volatility measures from equations (1), (2), (3), and (4) respectively.

2.3 Conditional Moment Restrictions

Implicit in the context of risk management and the related pursuit of a good measure of volatility
is an assumption that the return standardized by its conditional mean and some transformation
of volatility, say & (oy), is i.i.d.: If (y — py)/ & (0¢) is not i.i.d. for any transformation () of
volatility, then volatility alone would not be sufficient for characterization of conditional quantile.
Typically, we make an implicit assumption that y; belongs to a location-scale family: We assume
that (y: — )/ o¢ is 4.i.d., which would imply that the conditional quantile is some linear function
of volatility, where the relevant coefficients of such a linear function is determined by the common
distribution of the standardized return. Therefore, one can think of the VaR measure as the
outcome of a quantile regression. Treating volatility as a regressor, and ignoring conditional mean

dynamics, we have for example, that

E|t—1 (/Bp) = /Bp,l + /Bp,2at

for some 3,1 and 3, 5. Notice that the parameters will vary with the chosen coverage, p. A different

VaR measure, based on a different volatility model o}, or a different distributional assumption, or



both, could be written as
tthl (0p) = Op1 + bp 207

At least three questions now arise: First, “How do we evaluate the appropriateness of the speci-
fication of these measures?” Second, “How do we compare them?” And third, “Can we combine
them to make an even better measure?”

In order to answer these questions, we apply the following conditional moment framework:
Consider first the specification testing question. Given the risk manager’s information set, ¥;_1,

and under the null that the VaR measure is correctly specified, the following must hold:

Definition 1 The VaR is efficient with respect to the information set,W;_1, when

E[I(y: < Fy—1(8y)) —p| ¥i1] =0,
where I (-) is the indicator function.

This moment condition states that no information available to the risk manager at time ¢ — 1
should help predict whether time t’s return falls above or below the VaR measure reported at time
t — 1. The VaR measure should in other words be efficient with respect to the information set
W,;_1. We will refer to this as the efficient VaR condition. The first question can now be restated
as, “Does a particular VaR measure satisfy the efficient VaR condition?”

It seems plausible that most VaRs are potentially misspecified. After all, it is hard to imagine
that any econometric model underlying a VaR is an exact description of the data generating process.
This would for instance be the case if the true distribution did not belong to a location-scale
family. Under these circumstances, the conditional quantile of interest may not be a function of
the conditional variance only, and conditional kurtosis, for example, may play an additional role in
characterizing the conditional quantile. It is then likely that every VaR measure would be rejected
given a sufficiently large amount of observations. We therefore want our testing methodology to
allow for the possibility of misspecification.!

Our second research question may be restated as, “How do we compare misspecified VaR
measures?” In order to answer this question, consider now again the competing VaR measure,

F*

fii—1 (Bp) - We can write

E [(I (yt < (ep)) —p) |\Ift_1] ~0.

We then want to test whether Fy;_; (ﬁp) is significantly better than F tthl (6p) in a statistically
meaningful way, using these moment conditions.
Even if one VaR measure dominates the other, we can still ask whether we can improve on

it. This could be motivated again by questioning the implicit location-scale assumption. If this

LOf course, in finite samples, even statistical acceptance of the efficient VaR condition for some particular VaR
measure does not neccesarily imply that the efficient VaR condition is satisfied in population, as a lack of power

against the relevant alternative could be the culprit.



assumption is violated, it is entirely possible that one VaR measure is superior to the other one,
but neither of them satisfies the efficient VaR condition in population. Under these circumstances,
it is possible to improve even the “better” VaR measure by combining it with a “worse” volatility
measure. This concept of forecast combination was introduced to the literature on conditional mean
forecasting by Bates and Granger (1969), and Stock and Watson (1998) have recently reported new
evidence of its success in forecasting macroeconomic time series. So far, however, it has remained
unexplored in the context of risk management.

We have now established a moment condition framework for VaR measures but we still need
to find the distribution of the moment conditions. This task is complicated by the presence of the
indicator function. As it always takes on a value of either zero or one, it introduces a nondifferen-
tiability into the moment conditions. We will resolve this complication partly by using the results
of Pakes and Pollard (1989) and partly by extending the framework of Kitamura (1997).

3 Methodology
Recall that, if the VaR measure is correctly specified, we must have
E [I (yt < Fyiq (/Bp)) —p‘ ‘I’t—1] =0. (5)

Suppose that the instruments {2, 2;1,... } are contained in the information set ¥;. Note that, by

the law of iterated expectations, we should have

E[(I(ye < Fye—1(8p)) —p) X k(2t-1,2t-2,...)] =0 (6)
for every measurable vector-valued function k(-) of {2, z¢—1, ... }. For simplicity, omitting the time
and p-subscripts, we may write equation (6) generically as F [f(z,3)] = 0, where the vector z

contains the elements of z; and y; as well as o;.

3.1 VaR Specification Testing

Hansen’s (1982) GMM overidentification test, sometimes known as the J-test, can be used to test

the implication in (6). The test statistic is defined as
N e
Tfr (B) wir (B), ()

where

T
~ o _ _ 1
B =argmin fr (8) Wi (8), Tr(B) == f(0),
A r t=1
and W is the optimal weighting matrix making GMM a consistent and asymptotically efficient
estimator. It is clear that, due to the presence of the indicator function, I (-), the moment function
f (z, B) is not differentiable in 3, which presents an econometric challenge. For specification testing,

this challenge has been resolved by Pakes and Pollard (1989) who apply simulation-based techniques.



Although the standard GMM framework is thus suitable for specification testing of VaR measures,
it is ill suited for nonnested comparisons of possibly misspecified models. This is the topic to which

we now turn.

3.2 Nonnested VaR Comparison

For the specification test described at the end of the preceding subsection, we could in principle
have relied on the information theoretic alternative to GMM due to Kitamura and Stutzer (1997),

who consider solving the sample analog of the unconstrained problem
B = arggnax nqyin E, [exp (Y f (=, ﬂ))]

1.€.,

BT = argmax min M7 (8,v) = argmaxmm— Zexp v f (@, 0)) - (8)
B v B

Their estimator is based on the intuition that, under correct specification, $* minimizes the
Kullback-Leibler Information criterion (KLIC). Interestingly, their interpretation has a nice gener-
alization to the nonnested hypothesis testing as discussed by Kitamura (1997).

Suppose now that we are given two VaR measures, Fy;_4 (ﬁp) and F;“t 1 (0p), the moment

conditions of which can be written as:

B[ (2.8,)] = (1 (1 < Fyeer (8,)) ~ #) x  (2-0)] =0

and

Elg (0,0, = B |(I (e < Fji_y (6)) = p) x k (z-1)| =0,

where k (-) is a given finite-dimensional vector-valued function. Note that neither VaR measure
nests the other, and traditional nested hypothesis testing cannot be used for comparing these two
VaR measures. This alone presents a theoretical challenge for VaR comparisons. We take an even
more ambitious position by assuming that both specifications are potentially incorrect.

Kitamura (1997) proposed to deal with such nonnested hypothesis testing by comparing the
KLIC distance of the two moment restrictions in population. Under his proposal, the moment
restriction with smaller KLIC distance will be accepted: Our test will be based on the difference
between the KLIC distances

T

MT (BT??T) :mélXIIl’}IlMT(,H,’}/ ( Z 7f T, )]>

and

=1

T
Nr <§T,/)\\T> = méixm)%nNT (0, ) ( Z )\g T4, )]) )



Kitamura (1997) established the properties of such nonnested hypothesis testing for the case where
both f and g are differentiable. Due to the indicator function, differentiability is violated in our
application. We therefore generalize his result to our nondifferentiable case, and obtain the following

result.

Theorem 1 Under the null that M (3*,v*) = N (6%, \*), we have
\/T (MT <BT,/’}7T) — NT (§T73\\T>) — N (0,0'20) s
where 05, = limy_, o Var (\/— ST exp[y*1f (x4, %)) — exp[Nrg (s, 0*)])

Proof. See Appendix.

Thus, a significantly large value of the test statistic will cause a rejection of the hypothesis that the
two measures match the efficient VaR condition equally well in favor of the VaR model denoted by
Elg(x,07)] =0.

3.3 VaR Combination

Consider now that last of our three research questions: How can the risk manager optimally combine
competing VaR measures? For simplicity and practicality, we focus on the linear combination of

VaR measures. We consider combining the following n VaR measures

b (yt < R0, (59)] #2,) =, o
fori=1,2,...,n. Let 8 = (ﬂp , ,--- ,ﬂp ), 7 (mo, 1, ,Ty), and Wy g = N2 1\1’,(5)1 Denote

the combined VaR measure by

F;f|t1ﬁ7 _7T0+Z7Tz t|t1( >

Note that, if any of the individual VaR measures is correctly specified, then

Pr(yt<Ft|t 1 (B, |‘I’t 1)=p (10)

for some 7 trivially. Even if none of the VaR measures are correctly specified, it is plausible that
some linear combination would improve on all individual VaR measures. Notice that above we

wrote the moment condition as

E[(I(y < Fyo1 (B,7m) —p) x k(2-1)] =0

which in turn can be written simply as

Ef (z,8,m)] =

Note that we can consider m a part of the parameter vector in the moment condition, and the
asymptotic results underlying Theorem 1 can be applied again. The resulting combined VaR

measure is optimal in the sense that minimizes the Kullback-Leibler distance in population.



4 Application to Daily Returns on the S&P500

The focus of this application is to assess and compare the usefulness of different volatility measures
in risk management. We apply our testing methodology to a portfolio consisting of a long position
in the S&P500 index with an investment horizon of one day. The data applied was graciously
provided to us by Chernov and Ghysels (1998). They provide us with S&P500 index returns which
are recorded daily from November 1985 to October 1994, corresponding to 2209 observations. They
also supply a daily European options price on the at-the-money, nearest to maturity, call option
contract on the S&P500 index. Using the efficient GMM methodology of Gallant and Tauchen
(1996), Chernov and Ghysels (1998) estimate the Heston’s (1993) model in equation (4), and obtain
a series of daily "fitted” volatilities, using the reprojection algorithm in Gallant and Tauchen (1998).
We shall refer to these as reprojected volatilities below. In addition to the reprojected volatilities
from Heston’s model, Chernov and Ghysels produce a set of daily implied Black-Scholes volatilities
defined from equation (3).

In addition to the two volatility series calculated from option prices, we apply two volatility
measures based on the historical daily returns data. One is an estimated GARCH(1,1) volatility
as in equation (2), the other is the so called RiskMetrics volatility which is constructed simply
as an exponential filter of the squared returns, as in equation (1). As in RiskMetrics, we set the
smoothing parameter, A\, to .94. The four standard deviation series are plotted in Figure 1.

For each of the volatility series, and at each desired VaR coverage, p, we run a simple quantile
regression of returns on a constant and the time-varying standard deviation to get initial parameter
estimates. We then optimize this first estimate using equation (8) to get a final parameter estimate,
and thus a final VaR(p) measure for each model. We then turn to the testing of the four volatility

measures for VaR purposes across a range of coverage values, p.

4.1 VaR Specification Testing

When testing each of the four VaRs for misspecification, we could of course use the well-known
GMM J-test suggested in equation (7). However, in order to maintain continuity with the ensuing
comparison tests, we will instead apply Kitamura and Stutzer’s (1997) k—test. The k—test is the

information theoretic version of the J-test, and it takes the form

T

A~ > _ 1 2 o

kr = —2T log Mp (5T77T) = —2T'log (T E exp [V/f (ftwg)}) - X72~_m7
t=1

where 7 is the number of moments, and m is the number of estimated parameters. We will test the
VaR measures constructed from GARCH volatilities, RiskMetrics volatilities, implied volatilities,
and reprojected volatilities from the daily S&P500 returns. We use a constant as well as the first
lag of the four volatility measures as our linear conditioning information. As we are estimating two
parameters: the constant and the slope on volatility. We have r —m = (1 + 4) — 2 = 3 degrees of
freedom in the asymptotic y? distribution. The specification testing results are summarized in the

following table.



Table 1: Specification Testing Across VaR Coverage Rates

VaR Measure p=.01 p=.05 p=.10 p=.25
GARCH Volatility 3.84 4.85 3.41 11.35
RiskMetrics 0.33 8.09 7.58 10.40
Implied Volatility 4.76 9.72 10.07 14.44

Reprojected Volatility 7.20 8.02 7.44 9.04

The x?(3) distribution has a 5 percent critical value of 7.82 and a 10 percent critical value
of 6.25. Choosing the 5 percent level of significance, we see that no VaRs are rejected when the
coverage rate p = .01, all but the GARCH VaR are rejected when p = .05, the implied volatility
VaR is rejected when p = .10, and all VaRs are rejected when p = .25.

As volatility is inherently a symmetric phenomenon one might try, instead of using a VaR

moment condition, to use an interval type moment condition, such as

E [I (_Ft|t71(/8p) <yt < Ft|t71(ﬁp)) - QP“I/t—l] =0. (11)

We get the following results when testing the four VaR specifications using the double-sided
interval:

Table 2: Double-sided Specification Testing

VaR Measure p=.01 p=.05 p=.10 p=.25
GARCH Volatility 8.07 18.93 19.22 18.50
RiskMetrics 1.70 25.61 29.73 11.70
Implied Volatility 9.73 8.22 6.94 11.79

Reprojected Volatility 12.67 17.90 14.64 14.40

We now reject all VaR across p values with the exception of RiskMetrics for p = .01, and Implied
volatility for p = .10.

An important implication of these results is that different VaRs might be optimal for different
levels of coverage. This is not surprising as all the VaR models are no doubt misspecified. The
important thing to note is that our testing framework allows the user to assess the quality of a
VaR measure given the desired coverage probability, p. Should a risk manager want to test a model
across a set of coverage rates, he or she could simply stack the moment conditions corresponding

to each p in the set and run the test on all the conditions simultaneously.

4.2 Nonnested VaR Comparison Testing

In this section we perform the nonnested VaR comparison tests using the asymptotic result in
Theorem 1. The results from performing pairwise comparison testing of the four competing VaRs

are as follows:

10



Table 3: VaR Comparisons Across Coverage Rates
VaR Model 1 vs VaR Model 2: p=.01 p=.05 p=.10 p=.25

GARCH vs RiskMetrics -0.88 0.54 1.32 -0.24
GARCH vs Implied 0.21 0.65 0.93 0.48
GARCH vs Reprojected 0.59 0.40 0.55 -0.34
RiskMetrics vs Implied 1.30 0.17 0.32 1.06
RiskMetrics vs Reprojected 1.67 -0.01 -0.02 -0.28
Implied vs Reprojected 0.63 -0.44 -0.62 -1.90

Each entry in the table represents the test value from the null hypothesis of VaR Model 1 and
VaR Model 2 being equally suitable. A value larger than 1.96 in absolute terms denotes a rejection
of the null hypothesis at the 5 percent significance level, and a value larger than 1.65 denotes a
rejection at the 10 percent level. A positive value indicates that VaR Model 1 is preferred, and a
negative value that VaR Model 2 is preferred.

From the table, only a few rejections are possible, and only at the 10 percent significance level.
At a VaR coverage of 1 percent, the RiskMetrics VaR is preferred to the reprojected volatility VaR.
For p = .25, the reprojected volatility VaR is preferred to the implied volatility VaR.

When comparing the VaRs using the interval rather than the VaR criterion, we get the following

results:

Table 4: Double-sided VaR Comparisons
VaR Model 1 vs VaR Model 2: p=.01 p=.05 p=.10 p=.25

GARCH vs RiskMetrics -1.24 0.93 1.33 -1.27
GARCH vs Implied 0.24 -0.92 -0.96 -0.53
GARCH vs Reprojected 0.57 -0.08 -0.33 -0.30
RiskMetrics vs Implied 1.26 -1.32 -1.65 0.01
RiskMetrics vs Reprojected 1.66 -0.52 -1.01 0.22
Implied vs Reprojected 0.43 1.17 1.16 0.36

Again, we see that RiskMetrics is preferred to the reprojected volatility VaR when p = .01, and
now the implied volatility VaR is preferred to RiskMetrics when p = .10.

Notice that the comparison testing results in general correspond well to the inference drawn
from the specification testing exercise above. For example, two VaRs which were both rejected
in the specification tests typically receive a comparison test value close to zero. Notice also that
even though we do not find a lot of evidence to significantly discern between VaR measures in the
comparison tests, the test values will allow for an informal pairwise ranking of nonnested VaRs,
even if their differences are not statistically significant.

Finally, we note that we might be able to significantly rank more models if we change the
investment horizon from one to five or ten trading days. The GARCH and RiskMetrics models
typically provide very similar short-term variance forecasts, but they have very different implications

for the longer term.
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5 Summary and Directions for Further Work

Risk managers have an abundance of Value-at-Risk methodologies to choose from. Consequently,
we have considered specification tests of various VaR measures. From the perspective that relevant
VaR measures should satisfy an efficient VaR condition, which we define, we have provided various
methodologies with which such relevance can be tested. The methodology can (i) test whether a
VaR measure satisfies the efficient VaR condition; (ii) compare two misspecified VaR measures;
and (iii) combine several misspecified VaR measures. The usefulness of the new methodology was
illustrated in an application to daily returns on the S&P500 index.

Several issues are left for future research. We have implicitly assumed away estimation errors
in the volatility measures which is not completely justified in the GARCH(1,1) case. We have also
assumed that the volatility measures are stationary. This is not without loss of generality, but we
do not yet found an adequate yet theoretically rigorous way of incorporate such problems. In future

work, we intend to address these issues.
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Appendix: Proof of Theorem 1

Assumptions

. The process x; is stationary.
. B € O, a compact, m-dimensional set.

. There exists a unique solution, (5*,v*), to

mgxn}yinE [exp (7'f (2,0))]

. For sufficiently small 6 > 0,

FE sup exp (g’f (a:,ﬁ’))
B'er(B,6)

for all vectors ¢ in the neighborhood of v*. Here, I' (3, 6) denotes an open ball of radius §

around (.
E[f(x,0)f(x,3)'] is nonsingular for all 3 in O.

f(z, B) belongs to a measurable V-C subgraph class of functions the p-th moment of which

envelope function is finite.
The process x; is § mixing with # mixing coefficients ), satisfying

1P/ (0=2) (1og k)2P-D/=2) g, 0

for some 2 < p < oc.

. D= %;Q,E[exp('y*’f(x, (5*))] is of full column rank.

V =limp_ Var [% ST exp(Y* 1 f (e, 5%)) f (2, 5*)} is positive definite.

. x4 is a continuous random variable, and there is an integrable R"—valued function F'(x) such

that

lexp(y' f(x,3)) f(z,8)] < F(a),
lexp(y'f(z, B)) f(z,8)] < F(a),
lexp(v/ f(z, ) f(2, 8] < Fla),

for all z in a neighborhood of (8*,~*), where |-|, power, and < are element-by-element.

We also impose conditions on 6, A\, and g (z, ) which correspond to Assumptions 2-8.
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A.2 Theorem

Let

T
<3T7:Y\T) = argglax IT%inl MT(ﬂa’Y) ( = %Zexp('y/f(xtvﬂ))> )

T
S 1
<9T,AT) = argrgnaxmAinNT(&A)( :TZGXP(XQ(-TmG)))-

Under Assumptions 1-8,
(@) (Brs3r) & (57.7).
(b)

-1

VT (B - 67) 4 N (0. (0'sD) ' D's Vs (D'sD) )
VT Ry —v) & N (o, (Ir —(D'SD)™" D’) S5~y gt (Ln - D (D’SD)_1>) ,
where § = %{;,E[exp(’y*/f(m,ﬁ*))].
(¢) Under the null hypothesis that E [(v*)' f (z,8%)] = E [(X*) g (z,6)],
VT (MT (3TﬁT> — Ny (@T,XT» 4 N (0,0%),
where 02, = limr_,o, Var (ﬁ ZZ;I (exp [('y*)/ f (e, ﬁ*)] — exp [(X")’g (x4, 0*)]))

A.3 Proofs
A.3.1 Proof of (a): consistency

Kitamura and Stutzer’s (1997) consistency proof, which does not require differentiability, establishes
that

1. v (p) is continuous in F under Assumption 5.
2. For some L=F {exp [7 (B f (x,ﬂ*)]}
E{exp [v(8) f (=, 0)]} <L

and

lim F
6—0

sup exp (v(8)'f (x.9))

=E{exp [y (8)" f (=, 0)]} .
9T (5,6)

3. For all § > 0, there exists some h > 0 such that

T
lim Pr [ sup 1 Zexp (’y (ﬁ’)/ f (wt,ﬁ')> >L— h] =0. (12)

T—o0 p'eo-r(p*6) * 1=
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4. By definition,

T Zexp 7 (B) f (24,0)) < = Zexp (21,0)) .

which, when combined with (12), yields

lim Pr sup exp (fy f (e, 8 ) >L—h|=0. (13)

Consider the minimization of
1 & , )
£ e (11 0n.)
with the corresponding minimizer 7, (5*). Note that, for fixed g, we have by Taylor expansion
T 1 !
;exp ((’y* + ﬁg> (x4, B ) Zexp Y f (21, 67))

= 7= ex *If x, 5%)) f $t75*,'
\/T; p (Y f (e, 89) f (21,8 - g

from which we obtain
> L) >
exp ((7 + —g) (x4, 8 ) exp (v f (x4, 6%))
t=1 VT

1 ! 82 x/ *
= 39 {awv,E[eXp (v*'f (z,8 ))]}g

’ﬂ |

T
o 07 ) 40,

T
+% ;exp (v f (@, 89) f (24,8%) - g+ 0p (1) (14)

Pollard’s (1991) convexity lemma strengthens the convergence to uniform convergence: The last
op (1) is now over any compact set of gs. By replicating Pollard’s (1991) argument, we can prove
that

82

VI @) =1 = {558 e (07 @)
T
{ Z p (v f (xe, 8 )]f(xt,ﬁ*)}+op(1). (15)

Now, observe that

E [exp [y"f (x,8%)] f (,8")] =
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because it is the first order condition for minimization of F [exp [y f (x, 3%)]] with respect to 7.

Central limit theorem then implies that

52 (6% =7 (3) + 0, (%) = (8 + 0, (1). (16)

Furthermore, plugging (15) into (14), we obtain

T
Zexp (Fr (5% f (1.8 Zexp 7S (2, 7))

2

T / ! 5 / -1
;exp (v f (24, 8%)] f (4,8 )} {WE lexp (v f (2,8 ))]}

11
3
T
x {Zexp V' f (e, %) f(xt,m} +0p(1). (17)
t=1

Note that (16) in particular implies that
L I
Jim Pr [? ;exp (7 (6 f (2, 6)) < L — h] =0. (18)

Combination of (13) and (18) delivers the consistency of BT.
We now show that 7p = Fp (B) 2, ~*. This can be accomplished by the convexity lemma

again. For this purpose, we note that

TZ (77 (w0.5)) 2 2 [exo (05 (5]

uniformly in v within some compact neighborhood of v*. This can be proved as follows. Theorem 2.1
of Arcones and Yu (1994) and Theorem 10.2 of Pollard (1990) imply the stochastic equicontinuity
of 7 ST exp (' f (x1,-)). For fixed 7, the consistency of B and this stochastic equicontinuity

deliver

T T
1 ~ 1 . ~
=2 exp (71 (v Br) ) = 7 Yo exp (V/f (@1.89) = h (7. 51 ) = h (7.8 +0, (1),
t=1 t=1
where
h(v,8) = B [exp (v'f (x.8))] .
For fixed =, the almost sure continuity of f (z,3) in # combined with Assumption 9 delivers

h (% Br) —h (.89 =0, (1).

We therefore have
T

2o (75 () 3o (75 0 ) = a0

=1
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pointwise in . Note that

T
% Zexp (v f (x4, 8%)) = E [exp (' f (z, 6%))] + 0p (1)
t—1

by the ergodic theorem. We therefore have
= Zexp (71 (v Br) ) = B [exp (7' (0, 57)] + 05 (1)

for each fixed . Convexity strengthens it to uniform convergence, and the consistency of 7 (BT)

follows.

A.3.2 Proof of (b): Root-T-Consistency

We first show that

T
P2 () 17 ()] =00 ()

Given an arbitrary vector g, let

By definition, we should have

ZT:exp (;Y\T (5*)/ (xt’ Zexp (’VT (ﬂT) ((Etv ﬂT)) Zexp (gT’ (ztv 3T>> :
t=1
By (17), we have

T
> exp (7 (87)' f (1, B Zexp v f (@, 87))
t=1

2

T ! -1

T
X {% Zexp [ f (e, B7)] f (wt,ﬁ*)} +o0,(1). (19)
t=1

As for the last expression, we can make use of basically the same argument that leads to the

quadratic approximation (14), and conclude that

iexp((’y’“—k%g)l (xt,ﬂT>) ZeXp v f (21, 5%))
ZT:exp (V*/f (%ﬁT)) f <l’taBT>/ g

t=1

2
g {8387,15 lexp (v f (x, 5%))] } g+op(l). (20)

§|H

_|_
N =
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We therefore have
1 d */ 5
77 e (7 7 (20:82) ) £ (70 52) 9+ 50 {a 5
—1
> —%{\/_Zexp Y (ze, B%)] f (21, 8 } { exp V*If(if B ))]}

{\/,Zexp v f t, 3" )]f(fﬂt,ﬁ*)}'

With a little bit of algebra, we can show that this actually implies that

E [exp (1 (e, 5° m}g+op<1>

/ 82 */ *
%(9+5T) {WE [exp (v f (2,8 ))]} (9+&r)

> (fT - % ZT:GXP (’Y*If (ﬂft,BT)) f (thT)/) gtop(1). (21)
t=1

where

52 N
tr= {61} e e 6 ) e =0y )

Now recall from the convexity lemma that the oy, (1) terms in (19) and (20) hold uniformly in
compact sets of g. Therefore, we can replace g in (21) with any arbitrary O (1) random vectors,

say gr, and rewrite (21) as

1 !/ 82 */ *
3 (or+ €0 { 52 B loxp (07f o))} ar + €2)

> (fT - % XT:GXP (’Y*/f (ﬂft,ET)) f <$t73T>/) ~gr +0p(1).
t=1

If this is to hold for arbitrary gr = O (1), we should have

§r — % ieXp (’Y*If <$t;BT>> f (l’taBT)/ =0p (1).

We therefore conclude that
T

%Zf (I’taBT) exp [f’f (%BT)] =0p

t=1

/N
Sl
\./

Now, note that
i [V*If (l’t,BTﬂ ! (%ﬁ»BT)

= %;GXP [ f (4, B7)) f (24, 8%) + D (BT - /3*) +0p (iT) (22)

H |
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by the usual stochastic equicontinuity argument, where the stochastic equicontinuity follows from

Theorem 2.1 of Arcones and Yu and Theorem 10.2 of Pollard (1990).

Because

ﬂl

T T
=2 (3 Br) =0u 0 =3 7 a8 .5 = 0y 1),

we have

or

A.3.3 Asymptotic Distribution

Now, combine (20) and (22), and obtain
T 1 / R T
exp ((’Y* + —g> flae B ) =) _exp (v"f (21, 8%)
; \/T ( t T) ; ( t )

1 d */ * * > «
ﬁ;e@ (v f (2, B9)] f (24, B )+D\/T<ﬁT—ﬂ >

1
g+ 59’59+0p(1),

where the oy, (1) is uniform in compact sets of gs. By repeating Pollard’s (1991) argument, we can

obtain

V (5 () ~ )

— 1 d */ * * 7a *
= S1x [ﬁ;exp[’y f($t,ﬂ)]f($t75)+D\/T(5T_ﬂ>

from which we can obtain

IIMH

VT (BT - 5*> = —(D's7'D)” ‘D 5_ S (e, %) exp [Y*'f (24, 5)]

—VTD' G —* )+0p(1)-
Now, consider the maximization of
1
Mr (7, 8) = = ;exp (S (0, 3)]
with respect to 8. First note that, by definition, we have

Mr (37, 8%) < Mr (?TaBT) .

19

+0p (1)7

(23)

(24)
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An empirical process argument again delivers
My ('/Y\Tv/BT) =M ('/Y\Tv/BT) + Mr (3, %) = M (Vp, B%) + 0p (%) :
Combined with the above inequality, we obtain
M ('/Y\Tv/BT) -M®,8%) +op (%) > 0.

Now, let ET be an arbitrary sequence of random vectors in the /T neighborhood of 3*:
VT (BT — ﬂ*) = Op (1). Recall the quadratic approximation:

o (4 o) 1 () - Byt

= % ZT:eXp (v'f (#0.82) ) f (w0 52) -9+ %g’ {8,?;,13 [exp (471 (2, 5%))] } g+op(1).
t=1

Therefore, we have

Mr (7T:ﬁT> T Zexp v f (¢, 5 + % XT:QXP (’Y*If (fﬂt,ET)) / <$t7BT>, ) \/T(WT -7")
t=1

1 2

+ 36— {55 B e (01 (. 5]} G =17 +on (2 ).

We can similarly establish

Mr <;?T75T) ZGXP (v'f (z ZGXP (’Y*/f (xhﬁT)) f (ﬂft,ﬂT) VT (G —7")
+ % =" {%;, [exp (v f (2, 87)) } ")+ op (%)

By definition, we should have
My (a\T?BT) > Mrp (ﬁT;BT)

Therefore, we should have
1 & ~ o
T > exp (’Y*/f (ﬂft,ﬂT)) f («%ﬂT) - —7")
t=1

1 & ol N
> T ;exp <7* f <$t,ﬂT>> / ($t75T> (Y —=7") +op (T)

By the usual stochastic equicontinuity argument, we can establish
1 & ~ -
=S exp (v (w1, 8r) ) £ (2. 8r) = 7 Zexp (v'1 (w0 Br) ) 1 (w0, Br)
t=1
~ ~ 1
:D(ﬁT—ﬁT) +0p T
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Therefore, we obtain
N . 1
<5T—5T> DA r—7")+op (T) >0
or
~ ~ !/
VT (Br—Br) DVT (r =) 2 0, (1).
Because this holds for arbitrary sequence ET in the /T neighborhood of 3*, we should have
VT Gip =7 D = 0, (1).

Getting back to (25), we obtain

VI (Br =) = = (D'S7D) " DS = 3 e [37'f (o )] £ (2 ) + 0 (1)

IIMH

Returning to (24), we also obtain
1 X
VT (p =) = S_lﬁ t_zlexp [ f (e, 87)] f (2, 57)
T
—57'p.(D's7'D)”! D’S‘l% > exp [v7f (@i, B%)] f (a1, 8%) + 0p (1)
=

A.3.4 Proof of (c): nonnested hypothesis testing

Suppose we want to compare
VT (MT (BTﬁT) — Nr (/éTa/):T))
Note that
VT (MT (ETﬁT) - M(ﬁ*ﬁ’*)> =T (M (ETﬁT) — Mr (5*»7*)) +0p(1)
by the usual stochastic equicontinuity argument. Also note that

VT (M (Brir) = 3 (5°,77) = 57

NI (Br - 87) + 55 VT Gr =) + (1) = 0, (1),

which follows from

oM oM

8—5’_’ 37’:

which in turn follows from the first order condition in the population. Therefore, we have

VT (M (Br.Ar) = M (8'.7") = VT (Mr (8.4°) = M (8,7°) + 0, (1)
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Similarly, we obtain
VT (NT (@T, XT> ~ N (0%, /\*)> = VT (Np (6%, X*) — N (6*,\)) + 0, (1).
Under the null that
M (5% 7%) = N (07, A7),
we have
VT (M (Br.A7) = Nr (0r.3¢) ) = VT (M (8°.47) = Nz (6°,2%) + 0, (1)
Therefore, under the null

VT (MT (ET,3T> — Ny (@T,XT» — N (0,0%).
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Figure 1: Four Volatility Measures of Daily S&P500 Returns
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