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1 Introduction

The risk-neutral density of recovery rates in default is a necessary input to pricing credit derivatives

(Jarrow and Turnbull, 2000). In this paper we propose a method to extract the parameterized

risk-neutral density of default conditional recovery rates from the optionality embedded in the

prices of senior and junior debt of a firm. Our approach exploits the fact that relative prices of

securities facing identical arrival risks but differing in their default conditional recovery rates are

an important source of information on the price of recovery risk. Jarrow (2000) uses debt and

equity prices to estimate simultaneously the risk-neutral default probability with constant recovery

level. In contrast, our approach follows Madan and Unal (1998) and utilizes senior and junior debt

prices to estimate risk-neutral recovery density as well as the risk-neutral default probability.

An important statistic developed in this paper that synthesizes recovery information from

market prices is the adjusted relative spread. This is defined as the proportion of senior debt times

the ratio of the difference between the prices of senior and junior debt to the difference between

default-free and junior debt prices. We show that the adjusted relative spread is free of default

timing considerations, positively related to recovery levels and negatively related to the variance

of the recovery distribution. Recognizing that senior recovery is aggregate recovery less that of

the junior claimants, models for the adjusted relative spread are completed on valuing recovery

by the junior claimant conditional on default. Because the adjusted relative spread equation is

free of default timing risk, we term this equation the pure recovery framework. This equation is

fundamental to market-based recovery investigations.

Implementation of the framework leads to the construction of a specific parameterized pure

recovery model deriving a valuation formula for the default conditional recovery risk embedded in
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debt prices. Toward this end we follow Black and Cox (1976) and Stulz and Johnson (1985), and

express the recovery rate to junior debt holders in terms of the payoff to a call option written on the

aggregate default conditional recovery rate. We extend their approach by valuing this call option

assuming APR violation.1 Hence, we are able to develop models for the market observed adjusted

relative spread in terms of the mean and variance of the aggregate recovery rate and parameters

that capture APR violations. We show that an empirical model can be further developed by

expressing the risk-neutral mean of aggregate recovery rate in default in terms of macro and firm

specific variables.

Our empirical investigation follows two steps. First, we evaluate whether or not the cross-

sectional variation in the adjusted relative spreads reflects the variation of risk neutral recovery

rates. Noting that risk neutral recovery rates are related to actual recovery rates adjusted down-

ward for the effects of risk aversion, we anticipate that risk neutral recovery rankings should be

comparable to the rankings of physical recovery rates across firms, especially when risk aversion

adjustments are not firm specific. Hence, we compare adjusted relative spread rankings with those

obtained on the basis of actual recovery rates.

From the Lehman Brothers Fixed Income Data base we calculate adjusted relative spreads for

28 firms identified from 10 different industries. With respect to actual recovery rates observed

in practice we utilize Altman and Kishore (1996) estimates.2 They report the estimates of the

1There exists significant evidence documenting APR violation in banruptcy proceedings (See for example, Franks
and Torous (1989,1994), Eberhart, Moore, and Roenfeldt (1989), Weiss (1990), Eberhart and Sweeney(1992), Altman
and Eberhart(1994), Betker(1995)). As indicated by Weiss (1990) such violation is plausible because bankruptcy
law gives junior creditors the ability to delay final resolution. Hence, senior debt-holders will be willing to violate
priority not to incur any additional costs by the delay of the bankruptcy resolution. Frank and Torous (1994)
provide empirical evidence documenting deviation from absolute priority by creditor class.

2There is extensive literature estimating physical recovery rates by seniority and rating. See for example, Franks
and Torous (1994), Van de Castle (1999), Keenan, Hamilton and Berthault (2000), and Hamilton, Gupton, and
Berthault (2001).
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recovery rates on defaulted bonds stratified by Standard Industrial Classification sector. We show

that both cross-sectionally and in the time series (for 48 consecutive months) rank orders based on

adjusted relative spreads agree with those based on actual recoveries. These findings confirm our

basic contention that adjusted relative spreads are capturing variations in risk neutral recovery

levels.

We next investigate the determinants of expected risk neutral recovery rates. In this exercise

we specify the mean aggregate risk neutral recovery rate as a function of risk-free interest rates

and the level of the tangible assets of the firm. We estimate the pure recovery model for 11 firms

using time series data. Adjusted relative spreads are significantly related to interest rates and

firm tangible assets. Parameter estimates reflecting the APR violation vary significantly across

firms indicating that APR violation is not expected uniformly for all firms. As expected, risk

neutral mean recovery rates for the sampled firms lie below the physical recovery rate for the

respective industry. This finding suggests that recovery risk is actually being priced by the market

participants. Methods employing physical recovery estimates in pricing credit risk are thereby

called into question as underpricing the credit risk. Given the widespread prevalence of these

procedures we suspect that credit risk is being seriously mispriced by a lack of attention on the

issues of risk neutral recovery modeling. Hence, it is essential for correct pricing of credit risk

that efforts be made to learn about risk neutral recovery using market prices with embedded

optionalities.

An important application of risk neutral density estimation is the pricing of options on the

underlying risk. The pricing of puts on recovery is an important credit derivative of which the

binary credit default swap is an example (Hull and White (2000)). We couple our estimates of

risk neutral recovery densities with estimates of default probabilities inferred directly from market
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prices to derive prices for put options written on realized recovery levels. The pricing of excess

losses is an important activity in the evaluation of credit risk from a sound economic perspective.

In this regard we offer an easily implementable market based methodology.

The paper is organized as follows: Section 2 develops the pure recovery model. Section 3

provides evidence that the adjusted relative spreads reflect the variation of physical recovery rates

in defaulted bonds. Section 4 proposes an empirical specification for the pure recovery model

and provides the model estimates. Section 5 presents the details and results on pricing recovery

contingent options. Section 6 concludes the paper.

2 The Pure Recovery Model

We present a general statistic termed the adjusted relative spread that one may derive from market

prices and employ as a fundamental variable in recovery modeling. This statistic is defined in

subsection 2.1. An explicit model for pricing recovery contingent options is developed in subsection

2.2. This model forms the basis of empirical investigations into the risk neutral recovery density.

In subsection 2.3 we briefly summarize the comparative static results with respect to the adjusted

relative spread.

2.1 The Adjusted Relative Spread

Consider a frictionless economy where two classes of zero-coupon bonds are traded: default-free

and defaultable. Default-free bond price with unit face value and maturity τ = T − t, is given by

P (τ). In the case of defaultable bond, bondholders receive the promised unit face at maturity if

the firm survives till maturity. The survival probability of the firm is denoted by G(τ). Default

occurs at a random time and debt holders are paid a reduced value of the face. Expected value of
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this recovery is denoted by E[y]. Assuming the default arrival and the recovery processes to be

independent, the standard framework to express the price of defaultable bond is3:

v(τ) = P (τ)G(τ) + P (τ)(1−G(τ))E[y]. (1)

To extend this framework to value defaultable senior and junior debt issues of the firm requires

an explicit description of the payoff structure of the debt securities facing identical default arrival

risk but different conditional recovery. Toward this end, let S (τ) and J (τ) denote the promised

face to senior and junior debt with maturity τ , respectively. Further let S and J denote the sum

of the promised face across all maturities to senior and junior debt. Hence, total promised face of

all debt outstanding is P = S + J ,with the largest maturity denoted by T . At time of default,

the firm defaults on all its outstanding debt obligations. In this case, payment to the outstanding

senior and junior debt can be expressed as:

S =
Z T

0
S(τ)dτ, (2)

J =

Z T

0
J(τ)dτ. (3)

Thus, total payment to all debt claimants at time of default is P = S + J . This payoff structure

can also be expressed in terms of recovery rates. Denoting the aggregate recovery rate to all

outstanding debt by y we obtain:

y =
P

P
=

S

S + J
yS +

J

S + J
yJ . (4)

3Madan and Unal (2000) provide a detailed analysis of the assumptions behind this framework.
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or

y = psy
S + (1− ps)yJ . (5)

In equations (4) and (5) yS = S
S

and yJ = J
J

are the average recovery rates by senior and

junior debt holders, respectively. We assume that yS = S
S
= S(τ)

S (τ)
and yJ = J

J
= J(τ)

J (τ)
. This

assumption implies that at time of default the recovery rate yS and yJ are applicable to senior

and junior debt claimants regardless of maturity. Hence, utilizing the framework of equation (1)

we can express the prices of zero-coupon senior vS(τ) and junior vJ(τ) unit face debt instruments

of a firm with maturity τ as follows:

vS(τ) =
³
G(τ) + (1−G(τ))E[yS ]

´
P (τ), (6)

and

vJ(τ) =
³
G(τ) + (1−G(τ))E[yJ ]

´
P (τ). (7)

Note that, using equations (6) and (7), the relative spread of the prices of senior to junior debt

over the spread of default-free bond to junior debt is:

RS =
vS(τ)− vJ(τ)
P (τ)− vJ(τ) =

E(yS)−E(yJ)
1−E(yJ) . (8)

The relative spread expression, RS, is by design independent of the timing risk (G(τ)). The

attractiveness of the RS is that it gives information regarding the market’s expectation of the

conditions at which default will occur. To see this we simplify the right-hand side of equation

(8) such that the relative spread is expressed only in terms of the distribution of the aggregate
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recovery rate. Note that by definition

yS =
y

ps
− (1− ps)

ps
yJ ,

and

yS − yJ = y

ps
−
µ
(1− ps)
ps

+ 1

¶
yJ . (9)

Taking expectations

E(yS)−E(yJ) = 1

ps
(E[y]−E(yJ)), (10)

and substituting equation (10) in equation (8) we obtain the expression for adjusted relative spread

(ARS):

ARS = psRS =

Ã
E(y)−E(yJ)
1−E(yJ)

!
. (11)

We view equation (11) as the framework for pure recovery modeling. In particular one may

employ equation (11) to formulate a number of specific recovery models that can be empirically

investigated.

2.2 Valuing Post-Default Recovery Contingent Options

The adjusted relative spread may be computed from prices of senior and junior debt claimants

and information on the proportion of senior debt. From equation (8) we see that models for this

statistic essentially require a parametrization of the risk neutral recovery density and a specification

of the payoff structure of the junior claimant.

We begin with the specification of the junior recovery in default as a contingent claim on the

aggregate recovery rate y. Toward this end, we first relate yJ to y by the function yJ = J(y).
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Next, a specific density, f(y), is proposed for the default conditional aggregate recovery. This

results in:

E(yJ) =

Z 1

0
J(y)f(y)dy. (12)

Hence, integrating equation (12) yields the expected value of post-default recovery by junior debt-

holders, E(yJ), that is expressed in terms of the parameters of the density f(y).

To specify the payoff function J(y), note that in terms of equation (5), under strict APR,

junior debt-holders receive payments only after senior debt-holders are fully paid (y = ps). In

this case, the function J(y) can be obtained utilizing Black and Cox (1976). They show that

under strict APR, J(y) represents the payoff to a long position on a call option written on the

default-conditional recovery rate with a strike equal to the proportion of outstanding senior debt

(ps).
4 In Figure 1, the payoff to senior and junior debt-holders are shown by the bold lines and

the ps is 50 percent. Junior debt-holders receive payments only after the aggregate recovery rate

to all debt claimants is above 50 percent.

However, if we allow for APR violation, junior debt-holders receive payments before senior

debt-holders are fully paid. Hence, in general we would have a third region where sharing occurs.

We capture such sharing by introducing the parameter λ which reflects the argument that junior

debt-holders receive nothing (J(y) = 0) as long as y ≤ λps (region 1) and start sharing by receiving

payments (J(y) > 0) in the region (y > λps) (region 2). Figure 1 demonstrates such a sharing. We

assume λ = .50. As shown, violation of APR effectively makes the junior debt-holders better off

by reducing the strike-price of the call option they are holding and makes the senior-debt-holders

worse off. In the region, y ≤ λps, S(y) can be determined by the product of (
λ

1−(1−λps)) and y

4In the same manner, S(y) represents the payoff to a default-free bond and a short position on a put option
written on the firm’s default-conditional payout.
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which effectively equals y
ps
. For example, when y = λps, senior-debt holders will be paid only 25

percent of their promised amount and junior debt-holders will receive no payment. However, any

improvement in y above λ will not totally accrue to the senior debt-holders but will be shared

with the junior debt-holders. In region 2, (y > λps), J(y) is determined by the product of, (
1

1−λps )

and the increment of y over λps. However, in region 2, we suppose that the recovery rate to the

senior claimant 1/ps is reduced by a constant θ for a value of θ < 1. The specific recovery by the

senior claimant in this region starts at λ and increases at the rate θ/ps and is

S(y) = λ+
θ

ps
(y − λps). (13)

Note on this pattern the senior claimant is fully paid off at the aggregate recovery level y∗,

y∗ = λps +
(1− λ)ps

θ
. (14)

To ensure that y∗ ≤ 1 we must have

θ ≥ ps − λps
1− λps

. (15)

Hence, the recovery rate by the junior must be adjusted as (1−θ)(y−λps)
1−ps . In the region y > y∗

(region 3) we clearly have that S(y) = 1 and J(y) = y−ps
1−ps . In summary, the payments to the

junior claimant in the three regions are given by

J(y) =



0 y ≤ λps

(1−θ)(y−λps)
1−ps λps < y ≤ y∗

y−ps
1−ps y∗ < y ≤ 1

(16)
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Alternatively,

J(y) =
1− θ

1− ps Max(y − λps, 0) +
θ

1− ps Max(y − y
∗, 0) . (17)

As can be observed, for λ = 1 (APR enforced), we obtain the Black and Cox (1976) charac-

terization of junior debt-holders holding a call option and acting like equity-holders. With APR

violation, (λ < 1 ), the value of the call options increase making senior debt-holders worse off and

the junior debt-holders better off. Hence, equation (17) show that the junior debt-holders’ payoff

function can be expressed in terms of two call options written on the firm’s expected default-

conditional aggregate recovery rate, with strikes λps and y
∗. They are holding 1−θ

1−ps units of the

first and θ
1−ps of the second call option.

The second component to be evaluated in equation (12) is f(y). From this density one can

determine the probability of the call options given in equation (17) to be in the money once default

occurs. Hence, the integral in equation (12), for example, represents the value of the call option

held by the junior debt-holder.

A straightforward assumption would be to assume that y is normally distributed. However,

such an assumption violates two important characteristics of the aggregate recovery rate. First,

y lies between 0 and 1 because it is the ratio of recovery to the promised payments to debt

claimants at any default time. Second, the mean and variance of y are related because as the

mean approaches unity (100 percent recovery rate) or zero the variance of y becomes zero. Hence,

we propose that the aggregate recovery rate is related to a normal random variable x by the logit

transformation y = ex

1+ex . Further, we assume that the variable x, which is the logarithm of the

default conditional recovery to loss ratio
³
x = ln

³
y
1−y

´´
, is normally distributed with mean µ
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and variance σ2. It follows that the conditional density for the aggregate recovery rate, f(y), is:

f(y) =
1

σ
√
2πy(1− y) exp

Ã
− 1

2σ2

µ
ln

µ
y

1− y
¶
− µ

¶2!
, 0 < y < 1. (18)

The characteristics of the recovery rate are captured in the density given in equation (18).

Figure (2) shows the density for the recovery level for µ = ± 0.5 and σ = 0.25, and 0.5. We

observe that the density may be positioned at various points on the unit interval and it may be

widely or narrowly spread out.

The mean and variance of the recovery density can also be expressed in terms of µ and σ.

Proposition 1 The mean and variance of the firm’s aggregate recovery rate y, given µ and σ2

are :

E(y) = 1−
1Z
0

N

 ln
³

y
1−y

´
− µ

σ

 dy, (19)

V ar(y) =

1Z
0

2(1− y)N
 ln

³
y
1−y

´
− µ

σ

dy −
 1Z
0

N

 ln
³

y
1−y

´
− µ

σ

 dy
2 . (20)

Proof in the Appendix

Given this density, the value of the call option can be expressed as follows:

Proposition 2 The call option written on the firm’s aggregate recovery with strike k, pays the

following conditional on default:

C(k;µ,σ2) = 1− k −
Z 1

k
N

Ã
ln y

1−y − µ
σ

!
dy. (21)
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Proof in the Appendix.

The integral of N(·) in equation (21) is easily evaluated numerically. Hence, the post-default

expected recovery rate for the junior debt allowing for APR violation is given by:

E(yJ) =
1− θ

1− psC(λps;µ,σ
2) +

θ

1− psC(y
∗;µ,σ2), (22)

y∗ = λps +
(1− λ)ps

θ
.

Substituting equation (22) in equation (11),we obtain:

ARS =

Ã
C(0;µ,σ2)− 1−θ

1−psC(λps;µ,σ
2)− θ

1−psC(y
∗;µ,σ2)

1− 1−θ
1−psC(λps;µ,σ

2)− θ
1−psC(y

∗;µ,σ2)

!
. (23)

Hence, the pure recovery model is fully expressed in terms of option type payoffs with mean µ and

variance σ2, which are related to the mean and variance of the expected aggregate recovery rate

using Proposition 1. In other words, once µ and variance σ are estimated using proposition 1 one

can easily obtain the risk neutral mean and volatility of aggregate recovery rate in default.

2.3 Parameter Sensitivity of Adjusted Relative Spread

This section evaluates the sensitivity of the pure recovery model to parameters λ, θ,σ,and µ and

obtains empirically testable implications. Figure 3 assumes λ = 0.50 , θ = 0.50 and ps = 0.50 and

examines the behavior of the ARS as µ and σ vary. First, we observe that ARS is an increasing

function of µ. Higher levels of ARS implies higher aggregate recovery.

The second important observation is that ARS reflects the recovery by senior debt. This result

is expected because note that the numerator of equation (23) represents the difference between
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the aggregate recovery and the recovery by the junior debt holders. This difference is nothing but

the recovery by senior debt holders. Hence, ARS can be seen as a statistic capturing the recovery

by senior debt holders deflated by the premium of the junior debt over the risk-free debt. As σ

approaches zero the ARS curve begins reflecting the payoff structure described in Figure 1. This is

plausible because a low volatility implies the mean recovery will be realized with certainty. Hence,

the curve represents recovery for the senior debt at various levels of mean recovery as depicted

by the three different payoff regions. Junior debtholders receive nothing in region 1. Sharing

occurs in region 2, that starts after y = λps = 0.25. For y ≥ y∗ = 0.75 (region 3) senior debt

becomes risk-free and ARS becomes 0.5. However, ARS decreases with increased uncertainty of

the aggregate recovery rate which is negative news for the senior debt holders. Hence ARS curve

shifts down.

Figure 4 displays the impact of APR violation parameter λ on ARS. As λ increases, sharing

between senior and junior debtholders starts after a higher portion of senior debt is paid. Hence,

senior debt will be more valuable, and ARS will increase. This is what we observe in Figure 4

and the ARS curve shifts up as λ increases. Similarly, senior debt holders benefit as the rate of

increase in λ, the θ parameter, increases. This is because a higher θ indicates less of the recovered

face value is shared with junior debtholders. Therefore, senior debt is paid out more quickly and

is more valuable, which benefits the senior debt holders.

3 Adjusted Relative Spreads and Physical Recovery Rates

The pure recovery model relates the adjusted relative spread, a particular construct of market

prices, to the distribution of risk neutral recovery. This suggests that adjusted relative spreads
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should be related to physical recovery levels as we expect that risk neutral and physical recovery

rates are related. Our empirical analysis first investigates whether adjusted relative spreads, are

at all related to physical recoveries in default. Next we take up the full fledged estimation of the

proposed pure recovery model.

3.1 Data

Corporate bond data are obtained from the Lehman Brothers Fixed Income Data Base. The

database provides end-of-month bid price, coupon rate, yield-to-maturity, industry classification

and other important information for the bonds constituting the Lehman Bond Index. Putable

bonds, nonregular bonds and bonds with sinking fund features are excluded from the sample. We

further remove bond observations with more than 10 years and less than 6 months of maturity.

Firms with only senior or only junior bonds are also deleted from the sample. We include those

callable bonds where we could identify junior and senior bond issue of a firm that are both callable.

Majority of the corporate bond issues are coupon paying bonds and restricting the sample

to zero-coupon bonds would have caused very few observations. However, identifying senior and

junior debt issue of a firm with identical coupon structure is also very difficult. To include coupon

bonds in the study we follow the following matching strategy. For each date, we match a junior

bond to another senior bond issued by the same firm with closest possible duration and coupon

rate. Our decision criteria for this match is defined by two numbers, δ1 =
|dS − dJ |
(dS + dJ)/2

and

δ2 = |CS − CJ |, where CS and CJ are the coupon rates, and dS and dJ are the Macaulay

durations of senior and junior bonds, respectively. If δ1 ≤ 0.3 and δ2 ≤ 0.03 we accept the

match, otherwise the adjusted relative spread is considered to be missing for that junior bond

at this date. We calculate zero coupon senior, junior and Treasury bond prices vS(τ) ,vJ(τ) and
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P (τ) by discounting a $100 face value with the available yield-to-maturity at τ = dJ .

The resulting sample consists of 33 ARS statistics for 28 companies. The companies are

reported in Table 1 together with the industry they represent. The table also reports starting and

ending dates of the observations. As can be observed in three cases we are able to determine the

ARS statistic using more than one pairings of the bond.

3.2 Cross-sectional and time-series variation in adjusted relative spreads

Altman and Kishore (1996) document recovery rates in bond defaults classified by Standard In-

dustrial Classification (SIC) sectors. We utilize their study to contrast the industry estimates with

the ARSs reported in Table 1. Table 2 reports the comparison. We observe that the ranking rela-

tionship between ARSs and the recovery rates are remarkably close. Public utilities and chemical

and petroleum companies have the highest ARSs, which is consistent with the recovery rates es-

timated for these industries by Altman and Kishore. Furthermore, the correlation between ARSs

at the firm level and the recovery rates of the industry the firm belongs is 0.73 and is significant

at the 1 percent level.

To gain further insight, we group firms into high recovery, medium recovery, and low recovery

industries using the Altman and Kishore industry recovery estimates. Industries where Altman

and Kishore recovery rate estimates exceed 45% are defined as high recovery group, industries with

recovery rates below 35% constitute the low recovery group. Hence, industries 1-3, 4-7 and 8-10

in Table 2, constitute the High, Medium and Low recovery groups, respectively. Next we assign

firms reported in Table 1 to one of these three portfolios and obtain monthly average ARS for

each portfolio. Figure 5 plots the time series pattern of ARSs for the three portfolios. Consistent

with our expectations there is a pecking order going from the ARS curve of the high recovery
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group toward the low recovery group. This difference also persists over time.

Hence, the evidence presented strongly supports the argument that ARSs are indeed related

to physical recovery rates. A high level of ARS is associated with higher recovery level and this

prediction holds for cross-sectional as well time series behavior of adjusted relative spreads.

4 Estimating the Pure Recovery Model

4.1 Empirical Specification

The relative spread model of equation (23) may be adapted to analyze the conjectured dependence

of recovery rates on the business cycle and on appropriate firm specific information. For such an

exercise we denote by xt a time series on a vector of macro and firm specific variables that are

presumed to affect recovery levels. We then consider the model

µt = β0 + β0xt, (24)

and summarize the model of equation (23) by the relation

ARSt = Φ(λ, θ, µt,σ, ps) + εt, (25)

where it is supposed that the error term represents uncorrelated statistical noise.

Equation (25) in conjunction with equation (24) constitutes a potentially estimable economet-

ric model permitting estimation of the recovery model of equation (24) together with the APR

violation parameters, λ, θ and the volatility of the log recovery to loss ratio, σ.

To choose plausible firm specific variables we follow the study by Altman and Kishore (1996).
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They argue that recovery rates are related to the asset structure of firms and provide evidence that

firms with more tangible and liquid assets have a higher liquidation value, and therefore higher

recovery rates upon default. In addition, there exists evidence showing that recovery rates vary

with macro-economic variables ( Franks and Torous(1994)). As a result, we employ the following

two factor model to capture impact of firm specific and macroeconomic variables on mean recovery

rates.

µt = β0 + β1RFt + β2TANGt. (26)

The model is estimated is estimated using time series data. TANG represents the tangible

assets of the firm. We define tangible assets as the sum of current assets (COMPUSTAT quarterly

item 40) and net plant property and equipment (COMPUSTAT quarterly item 42) divided by total

assets (COMPUSTAT quarterly item 44). We predict a positive relationship between TANG and

implied recovery rates. RF is the risk free rate and controls for the interest rate risk environment.

The risk free rates at the desired date and maturity are calculated from daily treasury bond yields

that come from the H15 release of the Federal Reserve System. The yield curve is spanned with

cubic spline method to find the risk free rate at any maturity.

The requirement that data availability in COMPUSTAT files for firms whose adjusted relative

spreads are reported in Table 1 causes further shrinkage in our sample. We identify 11 out of 28

firms to have data in both sources and have sufficient time series data available for the ARSs.

Table 3 provides descriptive statistics about the time series data for the firms used in the

estimation. We observe that nine firms have speculatively rated bonds (B and BB). The average

duration of the bonds is approximately 5 years. In nine cases firms have a tangible asset ratio of

more than 60 percent and senior debt ratio varies between 38 percent and 90 percent. Finally, we
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note that there is a economically significant spread between between senior bond and treasuries

and senior bond and junior bonds.

4.2 Results

The nonlinear least squares estimate of the pure recovery model is reported in Table 4 for the

sample firms. The first three columns report estimates of the hypothesized determinants of the

aggregate recovery rate. The risk-free rate is positive and significant in six cases. This is plausible

given that rising interest rates benefit the assets by increasing cash and earnings implying a higher

recovery in case of default. The estimates relating to the tangible assets are also as expected. They

are all positive and in 9 cases the t-values are significant. This confirms Altman and Kishore (1996)

arguments that recovery rates are higher for firms having higher tangible assets.

Column 4 and 5 report estimates of the APR violation parameters. First we observe that

the estimated values vary significantly across firms. This can be construed as evidence that ex

ante there is no uniform expectation by the market participants about how APR will be violated

conditional on default, across firms. Column 6 shows the estimate of the volatility term, σ. The

uncertainty related to the recovery rate can vary significantly across firms.

The parameters λ, θ, and σ are structural and reflect variations in the functional form of the

dependence of adjusted relative spreads to the data on the explanatory variables (interest rates

and the level of tangible assets). The exact functional form is not identified with precision and

this is reflected in high standard errors for the estimates of λ, θ, and σ. Hence, the t-statistics

reported for the explanatory variables are conditional on the estimated values for λ, θ, and σ.
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4.3 Applications of the model

4.3.1 Risk Neutral Mean and Volatility of Recovery in Default

For the 11 firms we employ the parameter estimates reported in Table 4 along with equations (19)

and (20) to construct risk neutral mean recovery and its volatility. These are reported in Table 5

alongside with the corresponding mean physical recovery level for the industry. We observe that

in 9 of the 11 cases the risk neutral means are significantly below their physical counterparts.

We note that these distributional moments are risk neutral entities that are differentiated from

their physical counterparts. Specifically we anticipate that risk aversion reduces the risk neutral

recovery rate below the expected physical recovery and also raises the risk neutral variance above

the true variance. These differences between the risk neutral and physical outcomes are the

commonly observed impacts of risk aversion in options markets as documented by lower risk

neutral rates of return and higher implied volatilities. 5

It is recognized that in the absence of systematic risk in default recoveries, risk neutral and

physical recovery rates should be identical (Hull and White (2000)). However, given the particu-

larity in time of default occurrences, and their substantial size, it is difficult to see how the risk

of recovery in default can be diversified away. In the absence of such diversification, risk aversion

considerations predict that risk neutral expected recoveries would be lower and simultaneously

default probabilities would be higher. The comparison of our risk neutral estimates with physical

historical industry averages on both dimensions supports our contention that systematic risk is

an element of risk neutral recovery.

5For an excellent discussion on the differences between risk neutral and physical probabilities see Saunders(1999),
Chapter 9.
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4.3.2 Put Options on Realized Recovery in Default

An important application made possible by our identification of the risk neutral recovery density

is the ability to price credit derivatives written on the realized recovery rate. We illustrate the

calculation by directly applying our risk neutral density identifications to pricing put options

written on the level of post-default recovery levels.

Suppose that a counterparty has a claim to an agreed upon principal from an economic entity.

This may take the form of present values of promised coupons in a swap contract. Default by

the economic entity in question is then a serious issue for the counterparty and they could be

interested in insurance against excessive losses that exceed capital reserves set aside to carry such

a loss. The counterparty may then cover this potentially negative situation by purchasing a put

option that pays out in proportion to the shortfall of recovery levels below a prespecified strike

(the capital reserve).

This insurance contract can be priced as a put option written on the recovery rates of the

economic entity. Suppose the level of recovery measured in final dollars is y on debt with maturity

date T. For a notional principal of K the insurance pays the equivalent of

I = K (k − y)+ , (27)

with strike k in time T dollars if there is default at time z ≤ T with a recovery of y. The actual

dollar payment is the value of Treasury bonds at time z with a time-to-maturity of τ and a face

value of F.

Equation 28 gives the price, w(t; τ, k,K), of such an insurance contract as
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w(t; τ, k,K) = P (τ)K(1−G(τ))E(¡k − y)+¢ , (28)

where the expectation is taken with respect to the risk neutral distribution on recovery. Note that

the expectation in equation (28) denotes a put option written on recovery rate y with a strike of

k . Using put-call parity, the price of the insurance becomes

w(τ, k,K) = P (τ)K(1−G(τ))
kZ
0

N

 ln
³

y
1−y

´
− µt

σ

 dy. (29)

To complete the exercise on pricing the insurance we need to determine the risk neutral default

probability, G(τ). We determine G(τ) directly from market prices without formulating a model

for the arrival rate of default. Note that equations (5), (6), and (7) yield:

psvS(τ) + (1− ps)vJ(τ) = (G(τ) + (1−G(τ))E[y])P (τ), (30)

or equivalently,

G(τ) =
psvS(τ) + (1− ps)vJ(τ)−E[y]P (τ)

P (τ)(1−E[y]) . (31)

Hence, combining (31) with equation (29) we can price the option on post default recovery.

Table 6 provides estimates for our sample firms assuming the amount of capital reserves are set

at 8%, or k = 0.92. The price of this insurance varies between $3 and $21 per $100 of notional

amount.

These put options may be used by market participants to transform risky loans back to risk

free ones. The cost of the insurance raises the interest rate on the loan and builds in an implied
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risky yield spread. By way of example we note that the yield spread associated with the put option

prices for AMC, Flagstar, and Valassis Inserts are 226, 592 and 60 basis points respectively. The

corresponding ratings are B,B−, and BBB − . These spreads assume that the lender buys the

insurance and receives on average 96 dollars on a risk free basis. The risk free rate is assumed to be

6% with maturities as given in Table 3. These spreads are broadly consistent with the associated

ratings.

5 Conclusion

This paper proposes a parsimonious way to extract the parameterized risk neutral density of

default conditional recovery rates from data on a firm’s senior and junior debt prices, the level

of the senior debt, tangible assets, and risk free interest rates. This is an important advance in

understanding the determinants of default spreads as there is little possibility of direct observation

of the quantities of interest, given the absence of the occurrence of the event, ex ante.

The empirical experiments reported ascertain market sentiments on the recovery dimension

of default. An important contribution of the paper is to demonstrate that a new statistic, the

adjusted relative spread, captures recovery information embedded in debt prices. Risk-neutral

mean recovery-rate estimates for a sample of industrial firms show that the recovery rankings

for these firms are comparable to the industry-level recovery rankings reported in Altman and

Kishore (1996). However, the estimated risk neutral means are significantly below their physical

counterparts. This raises the concern that the use of physical recovery levels in pricing credit

risk may seriously underprice the risks involved. As an illustration we demonstrate the use of

the risk-neutral mean and volatility estimates to price put options written on the recovery risk.
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Hence, we conclude that it is essential for correct pricing of credit risk that efforts be made to

learn about risk neutral recovery using market prices with embedded optionalities.
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6 Appendix

Proof of Proposition 1: The mean of recovery rate y is defined as:

E(y) =

1Z
0

yf(y)dy. (32)

Applying integration by parts to (32):

E(y) = yF (y)
¯̄̄
1
0 −

Z 1

0
F (y)dy = 1−

Z 1

0
F (y)dy. (33)

We determine F (y) in terms of the standard normal distribution function N(·). For any real

number u, 0 ≤ u ≤ 1,

F (u) = Prob(y < u)

= Prob

µ
ex

1 + ex
< u

¶
(34)

= Prob

µ
ex <

u

1− u
¶

= Prob

µ
x < ln

µ
u

1− u
¶¶
. (35)

Assuming x ' N(µ,σ2)

= N

 ln
³

u
1−u

´
− µ

σ

 . (36)

E(y) = 1−
1Z
0

N

 ln
³

y
1−y

´
− µ

σ

 dy. (37)
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Variance of recovery rate y, can be expressed as a difference of two terms:

V ar(y) = E(y2)−E(y)2. (38)

Evaluating the first term in (38):

E(y2) =

1Z
0

y2f(y)dy. (39)

Applying integration by parts to equation (39) we obtain:

E(y2) = y2F (y)
¯̄̄
1
0 −

Z 1

0
yF (y)dy = 1−

Z 1

0
yF (y)dy. (40)

Substituting the expression for F (y) into equation (40):

E(y2) = 1−
Z 1

0
yN

 ln
³

y
1−y

´
− µ

σ

dy. (41)

Substituting this result and the expression for E(y) from equation (37) into equation (38) and

rearranging we obtain:

V ar(y) =

1Z
0

2(1− y)N
 ln

³
y
1−y

´
− µ

σ

dy −
 1Z
0

N

 ln
³

y
1−y

´
− µ

σ

 dy
2 . (42)

Q.E.D.
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Proof of Proposition 2: To obtain the pricing expression for the call option, note that for

strike k we can express the price of a call option written on the underlying asset y as follows:

C(k) =

Z 1

k
(y − k)f(y)dy, (43)

where f(y) is the probability density of y. Equation 43 can be expressed as:

C(k) =

Z 1

k
yf(y)dy − k

Z 1

k
f(y)dy. (44)

We evaluate the second integral first. Note that this term is equal to

1Z
k

f(y)dy = Prob(y > k) = 1− F (k), (45)

where F (y) is the distribution function of y. Using the expression for F (y) from Proposition 1,

equation (36) the second term in equation (44) becomes

k

1Z
k

f(y)dy = k − kN
 ln

³
k
1−k

´
− µ

σ

 . (46)

The first term in equation (44) is evaluated as:

1Z
k

yf(y)dy = yF (y)
¯̄̄
1
k −

1Z
k

F (y)dy (47)

= 1− kF (k)−
1Z
k

F (y)dy.
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It follows from equation (36) that

1Z
k

yf(y)dy = 1− kN
 ln

³
k
1−k

´
− µ

σ

− 1Z
k

N

 ln
³

y
1−y

´
− µ

σ

 dy. (48)

Substituting equation (46) and equation (48) into equation (44) we obtain the call option valuation

expression given in Proposition 2:

C(k;µ,σ2) = 1− k −
1Z
k

N

 ln
³

y
1−y

´
− µ

σ

 dy. (49)

Q.E.D.
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Table 1: The sample

This table reports for each ¯rm the issuer name, sample period, number of observations (T), and sample averages

of adjusted relative spread (ARS).ARS is the product of the senior debt ratio, ps; and the relative spread (price

di®erence between senior and junior bond divided by the price di®erence between default-free bond and junior

bond).

2 Digit Sample
SIC Code Company Name Period T Average of ARS

78 AMC Entertainment Inc. 9208-9601 42 0.250
80 American Medical Intn'l 9111-9503 40 0.123
49 Coastal Corporation 9002-9305 38 0.614
15 Del Webb Corp 9305-9703 30 0.262
75 Envirotest Systems 9403-9712 46 0.343
58 Family Restaurants 9402-9712 11 0.237
58 Flagstar 9309-9712 42 0.126
30 Foamex L.P. 9410-9706 24 0.284
58 Foodmaker, Inc 9206-9712 35 0.352
54 Grand Union 9207-9506 30 0.181
75 Hertz Corp 9105-9705 48 0.390
33 Kaiser Alum. and Chemical 9302-9712 47 0.140
54 Kroger I 9402-9701 36 0.148
54 Kroger II 9402-9510 21 0.105
54 Kroger III 9208-9712 28 0.162
48 Lenfest Communictions Inc. 9610-9712 15 0.092
37 Newport News Shipbuilding 9706-9712 7 0.057
76 Prime Hospitality Corp 9706-9712 7 0.141
26 Printpack Inc 9704-9712 9 0.178
54 Ralphs Grocery Co I 9506-9712 31 0.154
54 Ralphs Grocery Co II 9506-9712 31 0.185
28 Revlon Consumer Products 9308-9712 52 0.382
26 Riverwood International 9206-9606 45 0.190
54 Safeway Stores Inc. 9703-9712 8 0.033
44 Sea Containers 9412-9712 37 0.175
37 Sequa Corp 9312-9712 49 0.390
26 Stone Container Corp I 9204-9712 59 0.095
26 Stone Container Corp II 9705-9712 8 0.125
30 Sweetheart Cup 9309-9712 35 0.485
59 Thrifty Payless Holding 9404-9505 12 0.058
59 Thrifty Payless 9404-9604 25 0.087
37 UNC Inc 9611-9712 11 0.383
73 Valassis Inserts 9203-9712 60 0.143
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Table 2: Variation of adjusted relative spread across industries

This table classi¯es the ¯rms in the sample into ten di®erent industry groups and presents averages of actual

recoveries and adjusted relative spreads(ARS).ARS is the product of the senior debt ratio, ps; and the relative

spread (price di®erence between senior and junior bond divided by the price di®erence between default-free bond

and junior bond). Industry classi¯cations, and industry average recovery rates in Column 5 are obtained from Table

3 in Altman and Kishore(1996). Industry averages of ARS are calculated by averaging ARS statistic ¯rst across

time, then across ¯rms.

Industry Industry 2 Digit Number of Recovery rates Average of ARS
Number Name SIC Codes ¯rms by industry by industry

1 Public utilities 49 1 0.705 0.614

2 Chemicals, petroleum,rubber 28-30 3 0.627 0.383
and plastic products

3 Machinery, instruments 35,36,38 3 0.462 0.292
and related products

4 Building materials,metals 32-34 1 0.388 0.140
and fabricated products

5 Transportation and 37,41,42,45 4 0.384 0.251
transportation equipment

6 Communication,broadcasting,movie 27,48,78 2 0.371 0.171
production, printing and publishing

7 Construction and real estate 15,65 1 0.353 0.261

8 General merchandise stores 53-59 12 0.332 0.152

9 Wood, paper and leather products 24-26,31 4 0.298 0.147

10 Lodging, hospitals 70-89 2 0.265 0.132
and nursing facilities
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Table 3: Descriptive statistics

This table reports descriptive statistics for 11 sample ¯rms for which the pure recovery model is estimated. N denotes the number of

observations used for each estimation. The average S&P Rating of the ¯rm is calculated by by weighting the senior and junior debt rating

by the senior debt ratio. For each statistic the reported number represents averages over the sample period.

Company Sample N S&P Duration Senior Debt Risk Free Tangible Treasury Senior Debt Junior Debt
Period Rating (years) Ratio (pS) Rate Asset Ratio Price, P (¿) Price, vS(¿) Price, vJ(¿)

AMC 9208-9601 42 B 5.30 50.8% 6:1% 83:0% $73.19 $64.68 $57.45

American 9111-9412 37 B+ 5.20 53.7 6.1 56.8 73.72 61.60 57.75
Medical

Coastal 9002-9305 38 BBB- 4.62 90.1 6.8 87.0 73.61 70.38 64.12
Corp

Envirotest 9403-9712 46 B 4.92 63.0 6.4 78.9 73.61 63.56 52.52
Systems

Flagstar 9309-9702 42 B- 4.98 42.7 6.3 86.3 73.88 55.77 46.93

Revlon 9308-9712 52 B 5.07 68.6 6.3 72.8 73.61 66.81 59.59

Sequa 9312-9712 49 BB- 5.55 61.9 6.4 69.2 70.91 65.91 58.61
Corp

Stone 9204-9712 59 B+ 4.80 66.0 6.3 72.7 74.59 63.14 60.04
Container

Sweetheart 9412-9607 20 B 5.40 63.0 6.4 97.0 71.74 69.48 57.73
Cup

Valassis 9203-9712 60 BBB- 3.32 70.0 5.8 66.6 83.29 78.26 77.13
Inserts

Del Webb 9305-9511 30 B 5.80 38.1 6.3 3.0 70.35 66.23 56.27
Corp
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Table 4: Time-series estimation of the pure recovery model

The pure recovery model is ARSt =

µ
C(0;¹;¾2)¡ 1¡µ

1¡ps C(¸ps;¹;¾
2)¡ µ

1¡ps C(y
¤;¹;¾2)

1¡ 1¡µ
1¡ps C(¸ps;¹;¾

2)¡ µ
1¡ps C(y

¤;¹;¾2)

¶
where y¤ = ¸ps +

(1¡¸)ps
µ

and

¹t = ¯0 + ¯1RFt + ¯2TANGt: The dependent variable ARS is the product of the senior debt ratio, ps; and the

relative spread (price di®erence between senior and junior bond divided by the price di®erence between default-free

bond and junior bond). The parameters ¸ and µ capture APR violation. . The Treasury rate is RF and TANG

is the sum of current assets and net property,plant and equipment divided by total assets. The model is estimated

by non-linear least squares. The Root Mean Squared Error is RMSE ´
q

1
T

PT

t=1
(ARSt ¡ dARSt)2: For each

company the ¯rst row reports parameter estimates and the second row gives conditional t-statistics for ¯1 and ¯2:

Company ¯0 ¯1 ¯2 ¸ µ ¾ RMSE
(CONST) (RF) (TANG)

AMC -12.293 23.082 11.696 0.727 0.798 0.862 0.042
3.32 22.75

American Medical -3.185 3.948 1.607 0.800 0.800 0.500 0.037
0.54 2.02

Coastal Corp -11.645 36.012 11.229 0.782 0.745 0.010 0.100
3.89 17.15

Envirotest Systems -0.552 -37.983 2.947 0.960 0.798 0.118 0.075
-5.00 4.88

Flagstar -2.174 0.926 0.008 0.786 0.806 0.713 0.045
0.11 0.01

Revlon -35.596 19.259 46.636 1.000 0.999 0.447 0.083
2.43 66.75

Sequa Corp -41.105 4.337 58.437 0.997 0.393 0.097 0.079
1.01 136.77

Stone Container -17.391 -0.395 20.466 0.008 0.979 0.113 0.082
-0.02 13.79

Sweetheart Cup -67.898 10.808 69.566 0.661 0.814 0.124 0.064
0.97 94.38

Valassis Inserts -9.991 40.970 8.911 0.270 0.720 0.010 0.086
2.55 6.36

Del Webb Corp -3.346 43.224 -0.763 0.855 0.858 1.089 0.026
10.51 -0.09
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Table 5: Estimating the risk neutral mean and volatility of recovery in default

This table uses the results of the pure recovery model estimation and calculates the mean and volatility of risk

neutral recovery for each ¯rm. . Mean recovery is calculated as, E(y) = 1 ¡
1Z
0

N

µ
ln
¡

y
1¡y
¢
¡¹

¾

¶
dy. Volatility

of recovery is estimated by, V ol(y) =
p
V ar(y) =

vuuut 1Z
0

2(1¡ y)N
µ
ln
¡

y
1¡y
¢
¡¹

¾

¶
dy ¡

µ
1R
0

N

µ
ln
¡

y
1¡y
¢
¡¹

¾

¶
dy

¶2
.

The integrals in both expressions are evaluated numerically. Each statistic is calculated for each month and then

averaged across time. Industry recovery averages in bond defaults are obtained from Altman and Kishore(1996).

Estimated Mean Estimated Volatility Industry Average of
Company Recovery Rate of Recovery Rate Historical Recovery

E(y) V ol(y) Rates

AMC 27.3 % 15.0 % 37.1 %

American Medical 12.6 5.7 26.5

Coastal Corp 63.3 0.9 70.5

Envirotest Systems 34.3 2.9 46.2

Flagstar 12.7 8.0 33.2

Revlon 40.4 9.6 62.7

Sequa Corp 40.1 2.4 38.4

Stone Container 9.6 1.7 29.8

Sweetheart Cup 56.7 3.2 62.7

Valassis Inserts 19.1 1.3 46.2

Del Webb Corp 37.6 20.7 35.3
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Table 6: Pricing put options on realized recovery in default

This table uses the estimation results of the pure recovery model in Table 4 and prices the put options written on real-

ized recovery rates for each ¯rm. Risk neutral default probability is 1¡G(¿), whereG(¿) = psvS(¿)+(1¡ps)vJ (¿)¡E(y)P (¿)
P (¿)(1¡E(y))

The put options are written on recovery rates. All options have a constant strike, k = 0:92 and a notional principal,

K = $100. The prices of options are calculated by w(¿; k;K) = P (¿)K(1¡G(¿ ))
kR
0

N

µ
ln
¡

y
1¡y
¢
¡¹

¾

¶
dy: The prices

are calculated for each month and then averaged across time.

Probability Price of the
Company of Default Put Option

1¡G(¿) w(¿; 0:92; 100)

AMC 22.2 % $ 10.79

American Medical 21.7 12.72

Coastal Corp 13.6 3.04

Envirotest Systems 28.8 12.48

Flagstar 35.7 21.16

Revlon 20.5 7.94

Sequa Corp 18.1 6.78

Stone Container 19.6 11.91

Sweetheart Cup 21.1 5.39

Valassis Inserts 7.8 4.82

Del Webb Corp 24.0 9.05
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Figure 1: Senior and junior debt recovery structure The aggregate

recovery rate to debt-holders conditional on default is y and is shown on the horizontal
axis. The vertical axis shows the recovery rate to senior and junior debt. Solid (dashed)

lines depict the payout structure under(without) APR violation. ps denotes the strike
price of the call option junior debt-holders are holding. ¸(lambda) represents the recovery
level at which absolute priority rule (APR) is violated. Hence, ¸ps represents the exercise
price of the call option under APR violation assumption. The senior debt holders receive

payments at the rate of µ(theta)=ps once the APR is violated. y
¤ represents the strike at

which junior debt holders receives payment once the senior debt holders are fully paid. To

obtain the curves for senior and junior debt recovery, the parameters are set to ps = 0:5;
¸ = 0:5; µ = 0:5 under APR violation ( ps = 0:5; ¸ = 1; µ = 0 without APR
violation)
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Figure 2: Recovery density for di®erent parameter values The density
of recovery rate f(y) at any default time lies between 0 and 1. The mean and standard
deviation of the density is obtained by utilizing ¹(mu) and ¾(sigma):
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Figure 3: Adjusted relative spread(ARS) sensitivity to payout
volatility of recovery in default ARS is the product of the senior debt ra-

tio, ps; and the relative spread (price di®erence between senior and junior bond divided

by the price di®erence between default-free bond and junior bond). For all three curves

µ = 0:5; ¸ = 0:5 and pS = 0:5:
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Figure 4: Adjusted relative spread (ARS) sensitivity to APR viola-
tion level, ¸ ARS is the product of the senior debt ratio, ps; and the relative spread

(price di®erence between senior and junior bond divided by the price di®erence between

default-free bond and junior bond). For all three curves µ=0.5, pS=0.5, ¾=1.
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Figure 5: Time series behavior of adjusted relative spread (ARS) This
¯gure plots the time series graphs of ARS for High, Medium and Low recovery groups

from 93/12 to 97/12. ARS is the product of the senior debt ratio, ps; and the relative

spread (price di®erence between senior and junior bond divided by the price di®erence be-

tween default-free bond and junior bond). Industries where Altman and Kishore recovery

estimates exceed 45% are de¯ned as High recovery group, industries with recovery rates

below 35% constitute the Low recovery group. Curves are obtained by averaging ARS
statistics across the ¯rms in each recovery group.
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