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Empirical tests of models of catastrophe insurance futures.

Knut K Aase and Bernt Arne Ødegaard*

29 April 1996

Abstract

In this paper we empirically investigate models of insurance futures derivative contracts.

1 Introduction.

In the fall of 1993 the Chicago Board of Trade (CBOT) started trading a contract designed to securitize
catastrophe risk, which is currently done in the reinsurance markets. There are obvious advantages to trading
on organized exchanges (standarization, liquidity, much reduced credit risk, etc) as opposed to OTC markets.

There has so far been little academic work on these contracts. In this paper we look at the price history for
the first two years within the context of a pricing model of Aase [1995]. The questions we investigate are

Ž

Ž

Ž

Does the model seem to be able to explain the data?

Are the estimated parameters meaningful. (E.g: Does the risk parameters seem meaningful?)

In what dimensions do the model have problems?

2  C o n t r a c t s .

2 . 1  Futures .

2 . 2  O p t i o n s .

2 . 3  S p r e a d s .

3       Data.

Our data consists of the observed prices for various insurance futures derivatives. The time period is the first
two years of trading. Appendix B lists the contracts in more detail.

Figure 3 gives an example of the typical price development for the SEP 94 40/60 spread contract.

Figure 1 Price observations for the SEP 94 40/60 spread contract.

We are also getting data on the underlying claims process, which will be incorporated in the estimations in
a later version of the paper.

*Norwegian School of Economics and Business Administration and Norwegian School of Management. We thank the Chicago
Board of Trade for providing the data for this study.



4  Pr i c ing  mode l

There has so far been little academic interest in the pricing of these contracts. In the estimations
this paper we investigate the model described in Aase [1995].

The only other published work we are aware of is Cummins and Geman [1995]. (Describe model)

Although we will want to compare these models at a later stage, the Cummins and Geman [1995]

we do in

does not
have a closed form solution, which makes it hard to estimate without going to simulation methods, as e.g.
used in Bossaerts and Hillion [1993]

Let us now describe the Aase model. The important feature of the model is an assumed stochastic process
for the underlying claims process.

Figure 2 illustrates the assumed process. The process is assumed to be a compound jump process. The

Figure 2 The underlying stochastic process for claims.

5  R e s u l t s

6  C o n c l u s i o n



A  N o t a t i o n .

This appendix summarizes the notation that is used in the paper.

B Description of the price data.

The price data has been provided by the CBOT, and consists of daily price observations.

Table ?? gives an overview of the various contracts available to us, with the time intervals we have price
observations for.
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An equilibrium model of
catastrophe insurance futures and spreads

by

Knut K. Aasel
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Abstract

This paper presents a valuation theory of futures contracts and derivatives on such contracts
when the underlying delivery value follows a stochastic process containing jumps of
random claim sizes at random time points of accident occurrence. Applications of the theory
are made on insurance futures, a new type of instrument for risk management launched by
the Chicago Board of Trade in 1992, anticipated to start soon in Europe, and perhaps also
in other parts of the world in the near future.

The welfare loss in ordinary insurance markets due to adverse selection is likely to be
reduced due to the introduction of this new market.

Several closed pricing formulas are derived, both for futures contracts and for futures
derivatives, such as caps, call options and spreads. The framework is that of general, and
partial, economic equilibrium theory under uncertainty.

Key words: Insurance futures, futures derivatives, claims processes, reinsurance
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1. Introduction
The newly founded market for insurance derivatives is the motivation behind this

paper. This market was established in December 1992 by the Chicago Board of Trade

(CBoT), and offers insurers an alternative to reinsurance as a hedging device for

underwriting risks. The terminal cash flow is related to the aggregate claims incurred

during a calender quarter, or more precisely, to moves in a loss ratio based on figures for

claims and premiums compiled by the Insurance Services Office (ISO). The settlement

price for each futures contract increases by $250 for each percentage point upwards

movement in the ratio.

Another interesting innovation is a set of new agricultural insurance contracts approved

by the CBoT on October 18, 1994, expected to begin trading in the first half of 1995.

These contracts - known as area yield options - provide a means for hedging against

shortfalls in the harvest of particular crops. An advantage of the crop yield contracts is that

there is already an OTC derivatives market in this area. More ambitious OTC deals are on

the drawing board. For example it would be possible to devise instruments which would

effectively swap hurricane risk for earthquake risk. Another possibility is “act of God”

bonds with coupons which decline as the number of catastrophe insurance claims rises.

Insurers would be natural issuers of such products. With all these new and old

instruments, markets are getting more and more complete, and we are indeed getting close

to Arrow-Debreu securities in the end.

The present paper presents a situation where the underlying stochastic dynamics is

assumed to allow for unpredictable jumps at random time points. In particular we have in

mind claims caused by accidents in an insurance framework, as the loss ratio index in the

CBoT exchange, and we intend to model an index of such claims by a random, marked

point process. An arbitrage pricing model based on this assumption usually contains many

equivalent martingale measures, so this approach does not lead to a unique pricing rule.

Although some progress has been made in this direction (see e.g., Føllmer and

Sondermann (1986), Schweitzer (1991)), we choose to stay within the framework of

equilibrium theory, and derive prices of forward contracts and relevant derivatives within

this setting. There is, however, an arbitrage type approach given by Cummins and Geman

(1995) for catastrophe insurance futures. They use the time integral of geometric Brownian

motion as a model for the accumulated claims, and use an Asian options approach.

Unlike reinsurance, hedging through futures has the advantage of reversibility since

any position may be closed before the maturity of the contract. In principle also a traditional

reinsurance contract may be reversed, however in practice reversing a reinsurance
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transaction exposes the insurer to relatively high transaction costs presumably to protect the

reinsurer against adverse selection.

Adverse selection is also present in traditional reinsurance even if transactions are

supposed to take place under umberrimae fidei. The rating system for insurance companies

by e.g., Insurance Solvency International may be taken as an indication of this. Traditional

insurance against shortfalls in the harvest of crops would be practically impossible because

of the adverse incentives this would create for the farmers. Insurance through area yield

options or catastrophe insurance futures are not subject to these kinds of objections since

the contracts relate to anonymous indexes rather than individual crops or contracts, so it

may seem like the problem with moral hazard is essentially eliminated with these new

instruments. Because of this and the absence of adverse selection, the low transactions

costs that are common to traditional futures contracts could be presumed to prevail also for

these new types of contracts. Furthermore there should be the advantages of liquidity
.

associated with ordinary futures markets. Put together this new market is likely to improve

welfare.

The paper deals with the delicate problem of pricing catastrophe risk, as such, risk

which is priced in this model and not treated as unsystematic risk. In the representation of

the loss ratio index, we follow insurance tradition by using a standard actuarial approach.

The presented model thus combines economic theory with actuarial practice and theory.

The paper is organized as follows. In section 2 the underlying economic model is

presented as well as the pricing results from general equilibrium theory under the kind of

uncertainty indicated above. In section 3 the theory is applied to futures contracts on

indexes represented by random marked point processes, and in section 4 some applications

are made to the CBoT market, where a simple futures pricing formula is derived. In section

5 derivatives on the futures index are discussed, and as some particularly important

applications we analyze in detail a futures cap, a futures call option and a futures spread. In

section 6 we offer some concluding remarks.

2. The economic model
We consider a pure exchange economy along the lines of Aase (1992, 1993a, b).

2.1 The model of uncertainty.
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adapted processes satisfying the integrability constraint

We assume that the preferences of I agents, I= {1,2, . . . , I}, can be represented by

utility functions Ui which are additively separable, that is

(2.1)

sufficiently smooth. Conditions are known on the

endowments, or accumulated portfolios X(i) of the agents, and the utility functions Ui for a

contingent-capital market equilibrium of the Arrow-Debreu type to exist (see e.g. Araujo

and Monteiro (1989) and Duffie and Zame (1989)). Given an equilibrium, a utility function

representing the market is a function Uk of the form

(2.2)

representative agent (see e.g. Lucas (1978)). Under assumptions known in the literature it

(2.3)

is the aggregate endowment in the market, and where prime stands for differentiation with
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respect to the first argument. Our underlying assumption is that the vector of dividend

processes in the market are marked point processes driven of random measures explained

the following result can be proved (see e.g., See Aase (1993b))

Proposition 1

(2.4)

2.2 An insurance index of the CBoT-type

We now think of the model above as an insurance syndicate, where each member is

We now define an index of insurance claims as the aggregate of processes of the above

type, i.e. let
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where W is a stochastic process independent of the insurance claims and where

premiums earned in the market by time t. The length of the calendar quarter (the “event

is a (possibly time-varying) premium rate, which may be a bounded variation, predictable

stochastic process. The stochastic process Z(t) represents the aggregated claims by time t

reported to, say, the ISO pool. Since claims, and in particular catastrophes, can not be

considered as infinitesimal, we represent Z by a process of the type

(2.7)

This interpretation will be used in the rest of the

paper. For more on this model in reinsurance markets, see e.g., Aase (1992), (1993 c).

3. Futures and forward contracts on insurance indexes

3.1 The CBoT-index

In this section we apply the results of the previous section to the pricing of forward and

futures contracts on insurance indexes. We start by describing the index introduced by the

Chicago Board of Trade in December 1992, but we do not intend to give any detailed

explanation of these contracts, only the skeleton necessary to understand the principles.

Before the insurance risk can be securitised, it must be standardized. In the case of the

CBoT’S catastrophe insurance contracts, this meant devising an index on which to base

derivatives. Unlike the equity, bond or commodity markets, the insurance market has no

obvious, continuously updated underlying cash price. The solution chosen by the Board of

Trade is the loss ratio index, calculated by the Insurance Service Office, which uses data

from at least 25 designated reporting companies. The loss ratio is the dollar value or

reported losses incurred in a given quarter (the loss quarter) and reported by the end of the

following quarter (the run-off quarter) divided by one fourth of the dollar value of the

premiums collected in the previous year. The contract value is $25,000 times the loss ratio.

The premiums in the pool is a known constant throughout the trading period, and price

changes are attributable solely to changes in the market’s attitude towards risk and

expectations of loss liabilities at each time t, given the available information at that time.
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The idea for the insurers is to use this market to hedge against unexpected losses in the

following quarter. Clearly, if the loss ratio of the pool is not perfectly correlated with that

of the insurer, this hedge will not be perfect. The splitting of the index into different

regions, with some common pattern of risk exposures within each region, and with the risk

inhomogenity being between the regions, is clearly an advantage towards making the hedge

more effective.

The opposite side of the market (sellers of futures) consists primarily of investors and

speculators. We should add here that the way the loss ratio index is constructed may lead to

a moral hazard problem. It would be an advantage if it had been a purely scientific index of

some sort.

A perfect hedge can only be obtained using traditional reinsurance, but since insurers’

business is precisely that of risk bearing, they will normally not be interested in a “perfect”

hedge, since the best they can hope for then is profits close to the riskless rate, which will

not satisfy most stock holders of insurance companies. Partly due to adverse selection, a

perfect hedge can be expensive, and sometimes traditional insurance is impossible to

obtain. This new futures insurance market may therefore be an excellent innovation in the

insurance business, and possibly improving welfare at large through better risk sharing and

risk distribution, at least when combined with traditional insurance and reinsurance.

Since risk averse insurers are seeking “reinsurance” protection in the CBoT futures

index, they should normally be willing to pay a risk premium for this protection. On the

other side are the investors requiring compensation for bearing risk.

3.2 Forward (and futures) prices on insurance indexes.

Returning to the general economic theory in section 2, consider now a forward contract

written on an index Z. The aggregate endowment process appearing in Proposition 1 is

(3.1)

where r is the short term world interest-rate in the market, which we assume exogenously

given for the moment, making our approach a partial equilibrium analysis. We return to a

full equilibrium model below. With an appropriate independence assumption, our price for

the forward contract will also coincide with the futures price. Thus we concentrate on

forward contracts for the moment. We denote one fourth of the dollar value of the
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contract is zero. We now use the pricing rule of Proposition 1 and get

(3.3)

Since our application is to the insurance market, where it seems reasonable to assume that

perhaps anticipate that the theoretical futures price is close to the forward price. More

precisely, the following can be shown in the present model:

Proposition 2.

Then the equilibrium real futures price process F(t) is given by

A proof can be constructed using the definition of a futures contract.

In the case that the interest rate process r is conditionally statistically independent of the

reduces to the expression (3.3). Without the independence of r and X, still this may happen

3.3 An equilibrium model involving also interest rate

In a full equilibrium model also the interest rate r must be endogenized, and this is possible.

Referring to Aase (1993a), it follows from the analysis there that the equilibrium interest

rate r(t) is given by the expression

(3.5)

where

where F(s; du) is the claim size distribution, and where hX stems from the representation
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(3.7)

In words; there exists an equilibrium under our stipulated conditions, in which the real

interest rate process r(t) equals minus the growth rate of the market’s marginal utility for

aggregate wealth.

If the dimension d is large enough, all the relevant assets could in principle be included

in the model. In such a world it would not be a natural assumption that r is independent of

Z; in fact the main reason for adopting this more involved model is precisely to take into

account a possible dependency here. Such a stochastic association is then motivated from

the fact that we are considering catastrophes, which, after having occurred also may

influence the values of the interest rate r (consider e.g. a scenario with a major earthquake

in Tokyo).

3.4 An interpretation of the market price of insurance risk.

Returning to the model explained in section 2, consider a predictable process h.

Stochastic integrals can be defined with respect to such processes as follows:

dual predictable projection of v, can be factored into a conditional joint probability

follows

(3.9)

For any dividend process D there exists a probability measure Q equivalent to P - an

(3.10)

representation theorem and Girsanov’s change of probability theorems for random

9



(3.13)

After some calculations we obtain

(3.14)

Noticing from (3.7) that hX is positive, under risk aversion we see that the product

As an illustration, consider the case of power intertemporal utility function and time

get

(3.14a)

(3.14b)

respective type of risk aversion increases. We return to these examples later.
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4 A model for catastrophe futures contracts

4.1 Introduction

In this section we apply the results of the previous sections to the pricing of futures

contracts on insurance indexes for a specific model.

4.2 A basic futures formula

In order to illustrate the ideas we make some simplifying assumptions. For the

constants. Assume now that the aggregate endowment process X(t) = W(t) + at – Z(t),

where W is some stochastic process independent of Z. Furthermore we assume that the

market. We now want to show that the following:

Theorem 1

Under the assumptions above, and assuming that the short rate process r is conditionally

(4.1)

Proof: Direct computation. Alternatively, see section 4.5.

4.3 Discussion of the futures formula.

Notice that the formula (4.1) only depends on parameters that can be estimated from

be estimated from available data. The formula (4.1) can be written, modulo $25,000,
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following:

coefficient of absolute risk aversion in the market. The futures price process Ft is seen to

expensive “reinsurance” as well as to higher required risk premiums for the

investors/speculators on the opposite side of the contracts. This seems to be well in

accordance with intuition.

in the market. This is a consequence of the fact that for the exponential utility, the absolute

risk aversion is not depending on the level of wealth. This is of course one unrealistic

feature of our model, since it would indeed be desirable with some kind of wealth

however, a known quantity in this market. More precisely, as the level of premiums

4.4 Risk premiums

From the information manual of the CBoT - market, it seems as if no economic risk

the futures prices and hence the risk premiums, not the actuaries. In our model the risk

premium equals

both the expected size of the loss and in the variance of the loss, so as a result a risk averse

market would tend to require less compensations for risk bearing, also well in accordance

12



with economic intuition. Finally we notice that the risk premium decreases with the

4.5 Risk adjusted evaluation

finding the distribution of Z under the equivalent martingale measure Q, which in the

a.

Furthermore the claim sizes Y1, Y2,

claim size distribution more risky under Q than under P. Thus, in the constructed Q -

economy where the “pseudo-agents” are all risk neutral, they agree on a probability

distribution for the loss ratio index that is more risky than the objective distribution.

Now the above computation is straight-forward, since Z is a compound Poisson

process also under Q (see e.g. Delbaen and Haezendonck (1989), Aase (1993c)) and F(t) =

which is exactly the formula

(4.1). Thus we here have an alternative proof of Theorem 4.1.

(4.3)

with an obvious simplification if also W is Q-martingale.

In conclusion the formulas (4.1), (4.2) and (4.3) for the market value of the insurance

catastrophe futures contract, the associated economic risk premium and the market value of

the insurance claims for the next quarter all seem to capture well some essential economic

features of the pricing of the risky instruments under investigation. In the final section of

the paper we turn to the pricing of derivatives on the futures index.
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Example 1. In order to illustrate the use of catastrophe insurance futures, consider the

following simple numerical example. Ins Ltd. expects to earn $1 million in premiums on its

insurance policies during the third quarter of 1995. Ins Ltd.’s actuaries have forecasted that

$400 000 in catastrophic losses will be incurred by the company for this period. It is also

predicted that the third quarter catastrophic losses for the sample companies that report to

ISO will be $200 million, with associated premiums amounting to $400 million. Ins Ltd.

decides to buy December 1995 Eastern Catastrophe contracts at the beginning of July.

Ignoring possible reporting lags, we assume that the key parameters are estimated as

million/25 000).

Scenario A: Assume that the weather in August and September was worse than

anticipated. Ins Ltd.’s actual catastrophic losses turn out to be $600 000, $200 000 more

than anticipated. The ISO reporting companies were similarly affected and the total

catastrophic losses incurred by these companies during the third quarter were $300

million, $100 million more than expected. The final settlement price then becomes $25

Scenario B: Assume that the weather in the third quarter turned out better than

forecasted. Ins Ltd. lost only $200 million ($ 200 million less than anticipated), the ISO

reporting companies lost $150 million ($ 50 million less than expected). In this case the

futures position long until settlement, the loss would amount to $175 000 on this position,

resulting in only $25 000 more than anticipated in the final result. On these contracts the

14



5 Derivatives

5.1 Introduction

on the futures index

In practice futures contracts are not the frequently traded instruments in CBoT - market,

but rather spreads on the futures index. Usually insurers are accustomed to profit from

losses that are less than originally anticipated. As an alternative the insurer can e.g., buy a

call option on the futures index.

Furthermore it is likely that a cap is needed to limit the credit risk in the case of

unusually large losses, and this will also have the advantage of making the contract behave

more like a non-proportional reinsurance policy. The contract is therefore really a futures

market as follows:

We make a distinction here between a pure futures option and a conventional futures

option. A conventional call option, for example, requires payment of the option premium

when purchased, and at exercise pays the buyer any excess of the underlying asset price

over the exercise price. A pure futures option, on the other hand, calls for the buyer to

receive (or pay) daily any change in the futures option price in order to mark the buyer’s

margin account to market. The equilibrium market price of a pure futures contract in our

model then becomes

(5.2)

while that of a conventional contract is

(5.3)

The connection between the price of the conventional and the pure futures instrument is

instrument. It is

(5.4)

and since the price of a zero coupon bond is given by

it follows that

15



(5.5)

instrument has a price higher than or equal to that of a conventional futures contract.

5.4 Prices of futures derivatives for a fully specified model

We consider the model of section 4, where Z is a compound Poisson process and the

intertemporal representative utility function is exponential. We retain the conditions of

the above assumptions

Theorem 2

The market premium of the pure futures instrument is given by

of the conventional futures instrument is

The denominator in (5.8) is given by the expression
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in the time interval (t, T], in which case the size of the additional claims equals zero, an

written

(5.6). The expression (5.7) follows from (5.3) and the above result, assuming the

We notice in particular that the market price of the conventional instrument depends in

The formulas (5.6) and (5.7) may be taken as the starting point for deriving useful

pricing formulas for futures derivatives in practice. Usually one would expect that

numerical techniques must be employed, but we are indeed able to derive closed form

expressions and approximations below.

5.4 A futures cap

non-proportional reinsurance treaty with an upper limit. We concentrate on the pure futures

derivative, since the conventional market price just differs by some multiplicative constant,

Theorem 3

The real market price at time t of the futures cap with expiration T is given by

where

17



(5.11)

and where

(5.12)

compute

distribution, called the incomplete gamma function. Since n is supposed to be an integer,

we have the following relation

(5.13)

(see e.g., Abramowitz and Stegun (1972)). Using (5.13) we obtain

Inserting this into (5.6) we get

Consider now the series. The first two terms are:

18



and the last two terms can be written

at the 200% point of the loss ratio.

The above formula is fairly simple, and can be further simplified by observing that the

substitute the exponential for this truncated sum. Assume now that this approximation is

reasonable. We shall comment on the error we are doing below. In this case we get the

approximations

(5.14)

and

where the given formulas are both upper bounds. Inserting these expressions into (5.9) we

get the approximation

the market price in (5.16) is seen to be an increasing function of the claim frequency

conventional futures cap, this price is in addition a decreasing function of the subjective

5.5 The bound of the approximation error

Here we give a bound on the approximations (5.14) and (5.15). Let us use the notation x =

19



which tells us that the approximations we have done are good for n even of moderate size,

due to the rapid increase of factorials. Since the bounds of the above sums are both upper

bounds, and since these sums appear with opposite signs in all our pricing formulas, the

final error is further reduced. However, in certain ranges of the parameter values the

small relative to 2, or in general, compared to some cap-off-point c (see (5. 18)-(5. 19)

below).

5.6 Futures call options

In this subsection we compute the market price of futures call options. This contract

mimics to some extent a standard stop loss reinsurance treaty. Again we only treat the pure

futures version. Let us denote the market value of the pure futures call option by

O). Assuming the futures call option has the same expiration date as the underlying futures

contract, according to Theorem 2 we have to compute

previous section, Theorem 3 and the use of (5. 1) with c instead of the number 2 for the

where

(5.18)

and

20



(5.19)

From our two expressions for the market price for the futures call option, we see that

is a non-decreasing process in the time parameter.

If we can use the above approximation, we get approximately in the interesting case

We notice that the futures call option decreases as the strike price c increases, and it

large compared to the other parameter values, the approximation becomes poor and

eventually invalid, since the price can become negative because of the linearity in c. A

closer examination of the proof of Theorem 3 reveals why this is so.

Example 2. Consider again Ins Ltd. in Example 1 in the same market structure. Instead

of buying futures contracts, the company decides to buy at-the-money call options on the

futures index. Using formula (5.20) with c = .55 (corresponding to the futures contract

Still buying 40 contracts, the immediate call option cost equals $35 274.

Scenario A: In this case the final settlement price equals $18 750, so Ins Ltd.’s total

option position settled at a market value equal to $200 000, an overall market net gain of $

164 726, offsetting 82% of its $200 000 in unexpected incurred losses, a hedge slightly

less effective than the futures position of Example 1.

Scenario B: In this case the final settlement price equals $9 375, and with a strike price

of $ 13 750, the gain equals zero, resulting in an overall market loss of $35 274. In this

case the company made $200 000 more than anticipated, resulting in net $164 726 more

than expected. This is to be compared to the futures position in Example 1, leading to a net

result of $25 000 more than anticipated, illustrating the advantages to the buyer of call

options over that of a buyer of futures contracts in a scenario with losses less than

projected. In the present scenario the insurer keeps his upside potential.

Summary of examples 1 and 2:
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Ins Ltd.

Scenario A 600 000

Scenario B 200 000

Net result

5.7 A capped futures call option

The final contract we consider is

ISO Futures

300 m 200 000

150 m -175 000

25 000

(a spread)

a capped futures call option

Options

164 726

-35 274

164 726

By this we mean a

The capping of the call option will limit the risk of the investors on the opposite side of the

insurers at the exchange. This contract looks very much like a conventional non-

c 2, where c1 < c2.

The market price of this contract follows from the above results, since to hold such a

contract is equivalent to hold long one futures call option with strike price c1  and to sell

short one futures call option with strike price c2. This follows since the payoffs at

expiration are identical for these two positions. Thus

(5.22)

where the two expressions to the right are found from equation (5.17) above. This is the

market price of a bull spread. For the simplified version in (5.20), we get an approximation

of the market price of the contract (5.21) as

increases with the difference (C2 – c1) between the upper limit and the “retention” limit, the

attitude, and with the risk parameter n of the loss ratio index. The market price is seen to be

increasing this parameter decreases the “riskiness”, properly interpreted, of the loss ratio
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increases. Otherwise the same remark about the validity of this approximation is valid here,

as for the formula (5.20), in terms of the parameter (C2 – c1).

The formulas in this section remain valid also in the case where there is no underlying

futures index which is traded, since we have used the principle of convergence F(T)=

Z(T), and only considered futures instruments with the same expiry date T as the futures

contract. Thus only a loss ratio index is really needed.

Conclusions
We have presented a valuation theory of forward and futures contracts, and of futures

derivatives, when the underlying asset is an accumulated insurance loss ratio. We have

taken into account the essentials in modeling such an index; by a relevant non-decreasing

stochastic process containing claim size jumps at random time points of accidents.

We have derived partial equilibrium market premiums of futures prices and of futures

derivatives. In particular we have presented closed form formulas for the futures price,

futures call options, futures caps and capped futures call options - the most important

contracts traded on the CBoT-insurance futures exchange. From these the prices of most

other futures instruments can readily be derived. We have used an approximation to

simplify the formulas for the futures derivatives, making the expressions tractable for

comparative statics and analytic treatment.

The theory is in a form where it may easily be tested from market data. This may reveal

if we have gone too far in our simplification. Parsimony is important in theoretical

analyses, but realism is important in practice. It will be an interesting question to see how

well the values derivable from this paper will fit observed prices in this insurance market.

We will also get an estimate of the risk attitude in this market. The paper contains the

general theory, however, from which more realistic approaches could start. This is not

likely to lead to closed form solutions, but numerical techniques can then be employed.

Using statistical inference for stochastic processes on the data from the CBoT -

exchange, we intend to test our results empirically, in particular the simple formulas. If

more realism is needed, we will try to handle that as well, within the framework of this

paper, in a subsequent investigation.
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