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Abstract

We study the problem of asset and liability management of par-

ticipating insurance policies with guarantees. We develop a scenario

optimization model for integrative asset and liability management, an-

alyze the tradeoffs in structuring such policies, and study alternative

choices in funding them. The nonlinearly constrained optimization

model can be linearized through closed form solutions of the dynamic

equations. Thus large-scale problems are solved with standard meth-

ods. We report on an empirical analysis of policies offered by Italian

insurers. The optimized model results are in general agreement with

current industry practices. However, some inefficiencies are identified

and potential improvements are highlighted.
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1 Introduction

Insurance products become increasingly more innovative in order to face
competitive pressures. Insurance policies today come with guarantees on the
minimum rate of return, bonus provisions, and surrender options. These
features make them attractive for investors who seek not only insurance but
also investment vehicles. However, the new policies are much more complex
to price than traditional insurance products, and we have witnessed an in-
terest in applying financial pricing techniques to the valuation of insurance
liabilities. The focus is shifting away from the traditional actuarial pricing,
from static models to stochastic models; see Vanderhoof and Altman (1998),
Babbel and Merill (1999), and Embrechts (2000). Among the most complex
insurance products today we find participating policies with guarantees.

1.1 Features of policies with guarantees

Financial products with guarantees on the minimum rate of return come
in two distinct flavors: maturity guarantees and multi-period guarantees.
In the former case the guarantee applies only at maturity of the contract,
and returns above the guarantee at some time before maturity offset short-
falls at other times. In the later case the time to maturity is divided into
subperiods—quarterly or biannually—and the guarantee applies at the end
of each period. Hence, excess returns in one sub-period can not be used to
finance shortfalls in other sub-periods. Such guaranteed products appear in
insurance policies, guaranteed investment contracts, and some pension plans,
see, e.g., Hansen and Miltersen (2001).

With the historically low interest rates of the last decade the management
of such policies is becoming more challenging. Reliance on fixed-income
assets is unlikely to yield the guaranteed rate of return. For instance, Italian
guaranteed rates after 1998 are at 3%. The difference between the guaranteed
rate and the ten-year yield is only 1%, which is inadequate for covering the
firm’s costs. In Germany the guaranteed rates after 1998 are at 3.5% differing
from the ten-year yield only by 0.5%. Danish products offered guarantees
of 3% until 1999, which were reduced to 2% afterwards. In Japan Nissan
Mutual Life failed on a $2.56 billion liability arising from a 4.7% guaranteed
investment, highlighting the difficulties faced by this industry.

In response to market pressures and regulatory conditions insurers of-
fer currently very conservative guaranteed returns. Policyholders are com-
pensated, however, by participating in the firm’s profits, receiving a bonus
whenever the return of the firm’s portfolio exceeds the guarantee, creating a
surplus for the firm. Bonuses may be distributed only at maturity, at multiple
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periods until maturity, or using a combination of distribution plans. The ear-
lier unit-linked policies would pay a benefit—upon death or maturity—which
was the greater of the guaranteed amount and the value of the reference port-
folio. These simple were maturity guarantees with bonus paid at maturity as
well. At the other extreme of complexity we have the modern UK insurance
policies. These policies declare at each subperiod a fraction of the surplus
as reversionary bonus which is then guaranteed. The remaining surplus is
managed as an investment reserve, and is returned to customers as terminal
bonus if it is positive at maturity or upon death. These policies are multi-
period guarantees with bonuses paid in part at intermediate times and in
part at maturity. Further discussion on the characteristics of products with
guarantees is found in Kat (2001) and the papers cited below.

In this paper we consider multi-period guarantees with bonuses that are
paid at each subperiod and are subsequently guaranteed. The bonus is con-
tractually determined as a fraction of the portfolio excess return above the
guaranteed rate during each subperiod. The guaranteed rate is also contrac-
tually specified. To understand the nature of this product we illustrate in
Figure 1 the growth of a liability that participates by 85% in a given portfolio
while it guarantees a return of at least 3% in each period. The liability is
lifted every time a bonus is paid and the minimum guarantee applies to the
increased liability: what is given can not be taken away.

1.2 Current models

The pricing of the option embedded in the early products with guarantees was
addressed in the seminal papers of Brennan and Schwartz (1976) and Boyle
and Schwartz (1977). They analyzed unit-linked maturity guarantee policies.
Perhaps the most complete analysis of modern life insurance contracts—
complete in the sense that it prices in a unified framework several components
of the policy—is due to Grosen and Jørgensen (2000). They decompose
the liability of modern participating policies with guarantees into a risk-free
bond (the minimum guarantee), a bonus option, and a surrender option.
The first two taken together are a European contract and all three together
are an American contract, and the authors develop numerical techniques
for pricing both. Hansen and Miltersen (2001) extend this model to the
pricing of contracts with a smoothing surplus distribution mechanism of the
form used by most Danish life-insurance companies and pension plans. They
use the model to study different methods for funding these products, either
by charging the customers directly or by keeping a share of the surplus.
Similarly, Bacinello (1999) develops pricing models that permit her to study
the interplay between the volatility of the underlying asset portfolio, the
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Figure 1: Typical returns of the asset portfolio and a participating policy
with multi-period guaranteed return of 3% and participation rate 85%. The
guarantee applies to a liability that is lifted every time a bonus is paid as
illustrated at period seven. The asset portfolio experienced substantial losses
at period seven while the liability grew at the 3% guaranteed rate. Subse-
quent superior returns of the assets allowed the firm to recover its losses by
the tenth period and achieve a positive net return at maturity.

participation level for determining bonuses, and the guaranteed rate. Boyle
and Hardy (1997) take this line of inquiry in a different direction by analyzing
alternative reserving methods for satisfying the guarantee. More practical
aspects of the problem are studied by Giraldi et al. (2000).

It is worth noting that current literature assumes the asset side is given
a priori as a well-diversified portfolio which evolves according to a given
stochastic process. For instance Brennan-Schwartz, Grosen–Jørgensen and
Bacinello assume a geometric Browning motion, while Miltersen and Persson
(1999) rely on the Heath-Jarrow-Morton framework and price multi-period
guaranteed contracts linked either to a stock investment or the short-term
interest rate. There is nothing wrong with these approaches, of course, except
that part of the problem of the insurance companies is precisely to determine
the structure of the asset portfolio. Indeed all of the above references carry
out simulations for different values of the volatility of the assets. Brennan and
Schwartz (1979) devote a section to the analysis of “misspecification of the
stochastic process”. Bacinello goes on to suggest that the insurance company
should structure several reference portfolios according to their volatility and
offer its customers choices among different triplets of guaranteed rate, bonus
provision, and asset portfolio volatility. To this suggestion of endogenizing
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the asset decision we subscribe. It is a prime example of integrated financial
product management advocated by Holmer and Zenios (1995).

Independently from the literature that prices the option embedded in
the liabilities we have seen an interest in the use of portfolio optimization
models for asset and liability management for insurance companies. The
most prominent example is for a Japanese insurance firm—not too surprising
given what has transpired in the Japanese financial markets—the Yasuda
Kasai model developed by the Frank Russel Company. This model received
coverage not only in the academic literature but also in the press, see Cariño
and Ziemba (1998). Other successful examples include the Towers Perrin
model of Mulvey and Thorlacius (1998), the CALM model of Consigli and
Dempster (1998) and the Gjensidige Liv model of Høyland (1998). These
models have been successful in practical settings but their application does
not cover participating policies with guarantees. One reason is that insurance
firms pursued integrated asset and liability management strategies for those
products they understood well. This has been the case for policies that
encompass mostly actuarial risk such as the fire and property insurance of
the Yasuda Kasai model. Another reason is that the technology of scenario
optimization through large-scale stochastic programming has only recently
been developed into computable models, see, e.g., Censor and Zenios (1997).
Finally, the combination of a guarantee with a bonus provision introduces
nonlinearities which complicate the model.

1.3 Contributions of this paper

This paper extends current asset and liability management literature to ad-
dress problems that have been studied thus far only from a pricing per-
spective. We develop a scenario optimization asset and liability management
model for multi-period participating policies with guarantees. Our model op-
timizes the choice of an asset portfolio to deliver the contractual obligations
of the policy while maximizing shareholder value.

The specific contributions of this paper, and the findings from the empir-
ical analysis, are as follows:

1. A model that endogenizes the asset structure which has been considered
exogenous in the pricing literature on guaranteed products. Exogeneity
of the asset returns is justified for unit-linked policies, but is not quite
acceptable for modern participating policies whereby the issuer has
control of the asset portfolio.

2. An analysis of the tradeoffs between shareholders and policyholders in
offering guaranteed products. In this respect our paper addresses pre-
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cisely the suggestion made by Bacinello by structuring optimal asset
portfolios. Thus it allows the insurance company to present policyhold-
ers with choices that are efficient.

3. The identification of optimal asset portfolio volatility for each target
guaranteed return. Too low volatility is associated with low expected
returns and portfolios that are unlikely to meet the guarantee. High
volatility portfolios are associated with higher expected returns, and
are more likely to meet the guarantee. However, the embedded option
is in this case expensive and may erode shareholder value. Siglienti
(2000) argued that portfolios with more than 10 to 15% in equities
are likely to destroy shareholder value. We find that, indeed, too high
equity content destroys shareholder value, but for properly optimized
portfolios the cutoff point is around 20 to 25% in equities.

4. Flexibility in financing the guarantee either through reserving or by
issuing long- or short-term debt. The model explicitly recognizes that
the reserves will depend on the asset structure—a fact also recognized in
Boyle-Hardy—and optimizes this asset structure viz-a-viz the liability.

5. A benchmark of the policies offered by Italian insurers against opti-
mized policies. We see that policies backed by optimized portfolios
dominate in risk-return space policies backed by the typical portfolios
of Italian insurers.

The paper is organized as follows: Section 2 defines the dynamics of assets
and liabilities and develops the optimization model. Section 3 shows how the
model analyzes risk and return tradeoffs for different policies, and addresses
questions pertaining to the cost of the guarantee and ways for funding this
cost. It also analyzes tradeoffs between policyholders and shareholders, and
examines the ability of the firm to satisfy regulatory requirements. Section 4
benchmarks the Italian policies and looks at international diversification and
investments in credit products. The solution of the dynamic equations is
given in Appendix A. Appendix B presents extensive results with the use of
the model and can be obtained from the authors.

2 The Scenario Optimization Nonlinear Pro-

gramming Model

We develop now the model for asset and liability management for multi-
period participating policies with guarantees. It is a mathematical program
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that models stochastic variables using discrete scenarios. All portfolio deci-
sions are made at t = 0 in anticipation of an uncertain future. At the end of
the planning horizon the impact of these portfolio decisions in different sce-
narios is evaluated and risk aversion is introduced through a utility function.
Portfolio decisions optimize the expected utility over the specified horizon.

2.1 Features of the model

In the model we consider three accounts: (i) a liability account that grows
according to the contractual guaranteed rate and bonus provision, (ii) an
asset account that grows according to the portfolio returns, net any payments
due to death or policy surrenders, and (iii) a shortfall account that monitors
lags of the portfolio return against the guarantee. In the base model shortfall
is funded by equity but later we introduce alternative reserving methods.

The multi-period dynamics of these accounts are conditioned on discrete
scenarios of realized asset returns and the composition of the asset portfolio.
Within this framework a regulatory constraint on leverage is imposed. At
maturity the difference between the asset and the liability accounts is the
surplus realized by the firm after it has fulfilled its contractual obligations.
In the policies considered here this surplus remains with the shareholders. Of
course this surplus is a random variable, and a utility function is introduced
to incorporate risk aversion.

2.2 Notation

We let Ω denote the index set of scenarios l = 1, 2, . . . N , U the universe of
available asset instruments, and t = 1, 2, . . . , T, discrete points in time from
today (t = 0) until maturity T . The data of the problem are as follows:

rlit, rate of return of asset i during the period t− 1 to t in scenario l.

rlft, risk free rate during the period t− 1 to t in scenario l.

g , minimum guaranteed rate of return.

α, participation rate indicating the percentage of portfolio return paid to
policyholders.

ρ, regulatory equity to debt ratio.

Λl
t, probability of abandon of the policy due to lapse or death at period t in

scenario l.

7



The variables of the model are defined as follows:

xi, percentage of initial capital invested in the ith asset.

ylAt, expenses due to lapse or death at time t in scenario l.

zlt, shortfall below the guaranteed rate at time t in scenario l.

Al
t, asset value at time t in scenario l.

El
t, total equity at time t in scenario l.

Ll
t, liability value at time t in scenario l.

Rl
P t, portfolio rate of return during the period t− 1 to t in scenario l.

y+l
t , excess return over g at time t in scenario l.

y−l
t , shortfall return under g at time t in scenario l.

2.3 Variable dynamics and constrains

We invest the premium collected (L0) and the equity required by the regula-
tors (E0 = ρL0) in the asset portfolio. Our initial endowment A0 = L0(1+ρ)
is allocated to assets in proportion xi such that

∑

i∈U xi = 1, and the dy-
namics of the portfolio return are given by

Rl
P t =

∑

i∈U

xir
l
it, for t = 1, 2, . . . T, and for all l ∈ Ω. (1)

The investment variables are nonnegative so that short sales are not allowed.
We now turn to the modelling of the liability account. Liabilities will

grow at a rate which is at least equal to the guarantee. Excess returns over g
are returned to the policyholders according to the participation rate α. The
dynamics of the liability account are given by

Ll
t = (1− Λl

t)L
l
t−1(1 + max

[

αRl
P t, g

]

), for t = 1, 2, . . . T, and for all l ∈ Ω.
(2)

The max operator introduces a discontinuity in the model. To circumvent
this difficulty we introduce variables y+l

t and y−l
t to measure the portfolio

excess return over the guaranteed rate, and the shortfall below the guarantee,
respectively. They satisfy

αRl
P t − g = y+l

t − y−l
t , for t = 1, 2, . . . T, and for all l ∈ Ω, (3)
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y+l
t ≥ 0, y−l

t ≥ 0, y+l
t y−l

t = 0, for t = 1, 2, . . . T, and for all l ∈ Ω. (4)

Only one of these variables can be nonzero at any given time and in a given
scenario.

The dynamics for the value of the liability are rewritten as

Ll
t = (1− Λl

t)L
l
t−1(1 + g + y+l

t ), for t = 1, 2, . . . T, and for all l ∈ Ω. (5)

Liabilities grow at least at the rate of g. Any excess return is added to the
liabilities and the guarantee applies to the lifted liabilities.

At each period the insurance company makes payments due to policy-
holders abandoning their policies because of death or lapse. Payments are
equal the value of the liability times the probability of abandonment, i.e.,

ylAt = Λl
tL

l
t−1(1 + g + y+l

t ), for t = 1, 2, . . . T, and for all l ∈ Ω. (6)

Whenever the portfolio return is below the guaranteed rate we need to
infuse cash into the asset portfolio in order to meet the final liabilities. The
shortfall account is modelled by the dynamics

zlt = y−l
t Ll

t−1, for t = 1, 2, . . . T, for all l ∈ Ω. (7)

In the base model shortfalls are funded through equity. We assume that
equity is reinvested at the risk-free rate and is returned to the shareholders
at the end of the planning horizon. (This is not all the shareholders get; they
also receive dividends.) The dynamics of the equity are given by

El
t = El

t−1(1 + rlft) + zlt, for t = 1, 2, . . . T, and for all l ∈ Ω. (8)

By assuming the risk free rate as the alternative rate at which the sharehold-
ers could invest their money we analyze the excess return offered to share-
holders by the participating contract modelled here, over the benchmark risk
free investment. In principle one could use the firm’s internal rate of return
as the alternative rate, and analyze the excess return offered by the policy
modelled here over the firm’s other lines of business. In this setting, however,
the problem would not be to optimize the asset allocation to maximize share-
holder value, since this would already be endogenous in the internal rate of
return calculations. Instead we could determine the most attractive features
for the policyholders—g and α—that will make the firm indifferent in offer-
ing the new policy or maintaining its current line of business. This approach
deserves further investigation. For the purpose of optimizing alternative poli-
cies for the shareholders, while satisfying the contractual obligations to the
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policyholders, the estimation of excess return over the risk free rate is a rea-
sonable benchmark. In sections 3.2 and 3.4 we consider other alternatives
for funding the shortfalls through long-term debt or short-term borrowing.

We now have the components needed to model the asset dynamics, taking
into account the cash infusion that funds shortfalls, z lt, and the outflows due
to actuarial events ylAt, i.e.,

Al
t = Al

t−1(1 +Rl
P t) + zlt − ylAt, for t = 1, 2, . . . T, and for all l ∈ Ω. (9)

In order to satisfy the regulatory constraint the ratio between the equity
value and liabilities must exceed ρ. That is,

V l
ET

Ll
T

≥ ρ, for all l ∈ Ω, (10)

where V l
ET is the value of equity at the end of the planning horizon T . If the

company sells only a single policy the value of its equity will be equal to the
final asset value—which includes the equity needed to fund shortfall—minus
the final liability due to the policyholders, and we have

V l
ET = Al

T − Ll
T . (11)

Having described the assets and liability accounts in a way that the key
features of the policy—guaranteed rate and bonus provisions—are accounted
for, we turn to the choice of an appropriate objective function. We model
the goal of a for-profit institution to maximize the return on its equity, and,
more precisely in this case, to maximize any excess return on equity after
all liabilities are paid for. Since return on equity is scenario dependent we
maximize the expected value of the utility of excess return. This expected
value is converted into a certainty equivalent for easy reference. The objective
function of the model is to compute the maximal Certainty Equivalent Excess
Return on Equity (CEexROE) given by

CEexROE
.
= U−1

{

Maximize
x

1

N

∑

l∈Ω

U

{

Al
T − Ll

T

El
T

}

}

, (12)

where U{·} denotes the decision maker’s utility function and Al
T −Ll

T is the
shareholder’s reward in scenario l. We assume a power utility function with
constant relative risk aversion of the form U(V ) = 1

γ
V γ, where V ≥ 0, and

γ < 1. In the base model we assume γ = 0 in which case the utility function
is the logarithm corresponding to growth-optimal policies for the firm. In
section 3.5 we study the effect of changing the risk aversion parameter.
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As a byproduct of our model we calculate the cost of funding the guar-
anteed product. Every time the portfolio return drops below the guaranteed
rate, we counterbalance the erosion of our assets by infusing cash. This cost
can be charged either to the policyholders, as soon as they enter the insur-
ance contract, or covered through shareholder’s equity or by issuing debt.
These choices entail a tradeoff between the return to shareholders and return
to policyholders. We study in the next section this tradeoff.

The cost of the guarantee is the expected present value of reserves required
to fund shortfalls due to portfolio performances below the guarantee. The
dynamic variable E l

t models precisely the total funds required up to time t,
valued at the risk–free rate. However, E l

t also embeds the initial amount of
equity required by the regulators. This is not a cost and it must be deducted
from El

t. Thus, the cost of the guarantee is given as the expected present
value of the final equity E l

T adjusted by the regulatory equity, that is,

ŌG =
1

N

N
∑

l=1

(

El
T

∏T

t=1(1 + rlft)
− ρL0

)

. (13)

ŌG is the expected present value of the reserves required to fund this
product. This can be interpreted as the cost to be paid by shareholders in
order to benefit from the upside potential of the surplus. A more precise
interpretation of ŌG is as the expected downside risk of the policy. This is
not the risk-neutral price of the participating policies with guarantees that
would be obtained under an assumption of complete markets for trading the
liabilities arising from such contracts. This is the question addressed through
an options pricing approach in the literature cited above, Brennan-Schwartz,
Boyle-Schwartz, Bacinello, Grosen-Jørgensen, Hansen-Miltersen, Miltersen-
Persson.

2.4 Linearly constrained optimization model

The model defined in the previous section is a nonlinearly constrained op-
timization model and is computationally intractable for large scale applica-
tions. However, the nonlinear constraints (5)–(9) are definitional constraints
which determine the value of the respective variables at the end of the hori-
zon. We solve these dynamic equations analytically (Appendix A) to obtain
end–of–horizon analytic expressions for Al

T , L
l
T , and El

T . These expressions
are substituted in the objective function to obtain the equivalent linearly con-
strained nonlinear program below. The regulatory constraint (10), however,
can not be linearized. For solution purposes the regulatory constraint is re-
laxed and its validity is tested ex post. Empirical results later on demonstrate
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that the regulatory constraint is not binding for the policies considered here
and the generated scenarios of asset returns. However, there is no assurance
that this will always be the case, and we may need to resort to nonlinearly
constrained optimization for solving this model.

Maximize
x≥0

1

N

∑

l∈Ω

U

{[

(1 + ρ)
T
∏

t=1

(1 +Rl
P t)+

+
T
∑

t=1

(

y−l
t − Λl

t (1 + g + y+l
t )
)

T
∏

τ=t+1

(1 +Rl
P τ )

t−1
∏

τ=1

(1 + g + y+l
τ )(1− Λl

τ )+

−
T
∏

t=1

(1− Λl
t)(1 + g + y+l

t )

]

/

[

ρ

T
∏

t=1

(1 + rlft) +
T
∑

t=1

y−l
t φ(t, T )

t−1
∏

τ=1

(1− Λl
τ )(1 + g + y+l

τ )

]}

(14)

s.t.
∑

i∈U

xi = 1, (15)

αRl
P t − g = y+l

t − y−l
t , for t = 1, 2, . . . T, and for all l ∈ Ω, (16)

Rl
P t =

∑

i∈U

xir
l
it, for t = 1, 2, . . . T, and for all l ∈ Ω. (17)

The inverse utility function U−1 of the optimal objective value of this problem
is the CEexROE.

2.5 Model extensions

We point out possible extensions of this model. Periodic premia can read-
ily be incorporated, as well as bonus policies based on averaging portfolio
performance. Guaranteed rates and bonus rates that are functions of time,
gt and αt, are easy to incorporate. Similarly we can incorporate liabilities
due to lapse, although a lapse model must first be built and calibrated such
as the one given by Asay, Bouyoucos and Marciano (1993) or Nielsen and
Zenios (1996). Incorporating participation rates that are functions of the as-
set returns—as is the case with the UK insurance policies—complicates the
model and requires additional work.
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The base model developed here funds shortfalls through equity. Exten-
sions to deal with the funding of shortfalls through long- or short-term debt
are given in sections 3.2 and 3.4, respectively. Furthermore, unlimited ac-
cess to equity for funding shortfalls is assumed in the base model. We could
do away with this assumption by imposing additional constraints, but this
would complicate the model rendering it computationally intractable. The
probability of insolvency is analyzed through post-optimality analysis in sec-
tion 3.3, and is used to guide the debt structure in funding shortfalls using
a combination of equity and debt.

3 Model Testing and Validation

We now turn to the empirical testing of the model. First, we show that the
model quantifies the tradeoffs between the different targets of the insurance
firm: providing the best products for its policyholders, providing the high-
est excess return to its shareholders, satisfying the guarantee at the lowest
possible cost and with high probability. Some interesting insights are ob-
tained on the structure of the optimal portfolios as the tradeoffs vary across
the spectrum. Second, we analyze different debt structures whereby the cost
of the guarantee is funded through equity or through debt with either long
or short maturities. Third, we will see from the empirical results that the
Italian insurance industry operates at levels which are close to optimal but
not quite so. There is room for improvement either by offering more com-
petitive products or by generating higher excess returns for the benefit of
the shareholders. How are the improvements possible? The answer is found
in the comparison of the optimal portfolios generated by our model with
benchmark portfolios. We will see that the benchmark portfolios generate
tradeoffs in the space of cost of guarantee vs net excess return on equity that
are inefficient. The optimized portfolios lead to policies with the same cost
but higher excess return on equity.

The asset classes considered in our study are 23 stock indexes of the Mi-
lano Stock Exchange, and three Salomon Brother indexes of the Italian Gov-
ernment bonds (Appendix B). We employ a simple approach for generating
scenarios using only the available data without any mathematical modelling,
by bootstrapping a set of historical records. Each scenario is a sample of
returns of the assets obtained by sampling returns that were observed in the
past. Dates from the available historical records are selected randomly, and
for each date in the sample we read the returns of all assets classes realized
during the previous month. These samples are scenarios of monthly returns.
To generate scenarios of returns for a long horizon—say 10 years—we sample
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120 monthly returns from different points in time. The compounded return
of the sampled series is one scenario of the 10-year return. The process is
repeated to generate the desired number of scenarios for the 10-year period.
With this approach the correlations among asset classes are preserved.

Additional scenarios could also be included, although methods for gener-
ating them should be specified. Model-based scenario generation methods for
asset returns are popular in the insurance industry—e.g., the Wilkie (1995)
model—and could be readily incorporated into the scenario optimization
model. Alternatively, one could use expert opinion or “scenario proxies” as
discussed in Dembo et al. (2000).

For the numerical experiments we bootstrap monthly records from the ten
year period Jan. 1990 to Feb. 2000. The monthly returns are compounded
to yearly returns. For each asset class we generate 500 scenarios of returns
during a 10 year horizon (T = 120 months). We consider an initial liability
L0 = 1 for a contract with participation rate α = 85% and equity to liability
ratio ρ = 4%. The model is tested for guarantees ranging from 1% to 15%.

The probability that a policyholder abandons the policy is Prob(death)+
Prob(lapse). In our experiments we set lapse probabilities to zero and use
probabilities of death from the Italian mortality tables. For each model run
we determine the net annualized after–tax CEexROE

(
T
√
CEexROE− 1)(1− κ), (18)

where κ is the tax rate set at 51%.

3.1 Analysis with the base model

The tradeoffs between the guaranteed rate and the net CEexROE is shown
in Figure 2. Figure 3 shows the optimal asset allocation among the broad
classes of bonds and stocks for different target guaranteed returns.

At first glance the portfolio structures appear puzzling. One expects
that as the guarantee increases the amount of stock holdings should grow.
However, we observe that for low guarantees (less than 7%) the holdings
in stock increases with lower guarantees. For low g the embedded option
is far out of the money even when our assets are mostly in equity and very
volatile. The asset allocation strategy maximizes CEexROE by taking higher
risks in the equities market. A marginal increase of the shortfall cost allows
higher CEexROE. This is further clarified in Figure 4, showing the tradeoff
between cost of the guarantee and net annualized CEexROE. At values of g
less than 7% the option embedded in the liability is out-of-the-money and any
excess return is passed on to the shareholders thus improving CEexROE. As
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Figure 2: Net CEexROE (annualized) for different levels of the guarantee.
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Figure 4: Cost of the guarantee vs net CEexROE.

the guarantee increases above 7% the option goes deeper into the money, the
cost of the guarantee increases significantly and CEexROE erodes. Note from
Figure 3 that higher values of the guarantee must be backed by aggressive
portfolios with high equity content, but in this case the portfolio volatility
is not translated into high CEexROE but into higher guaranteed returns for
the policyholders. This is consistent with the conclusion of Siglienti (2000)
that excessive investments in equity destroy shareholder value. However, for
the guaranteed rates of 3 to 4% offered by Italian insurers it appears that
the optimal portfolios consist of 20 to 25% in equities, as opposed to 15%
that was obtained by Siglienti using simulations.

Finally, we show in Figure 5 the distribution of the equity to liability
ratio (cf. eqn. 10) for a guarantee of 5%. Similar figures were obtained
for guarantees ranging from 1% to 10%. This figure shows that for different
values of the guarantee the minimum ratio of equity to liability is greater
than the regulatory requirement. For the type of policies analyzed here, and
for the scenarios sampled from the past ten bullish years, the regulatory
constraint is satisfied without explicitly including it in the model.

3.2 Financing shortfalls through long term debt

So far we have assumed that the cost of the guarantee is covered by sharehold-
ers. It is possible, however, that such costs are charged to the policyholder
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Figure 5: Distribution of equity-to-liability ratio at the end of the planning
horizon for a guarantee of 5%.

or be funded by issuing debt. (Note that for mutual insurance firms the
policyholders are the shareholders so the point of who pays for the cost is
mute. However the issue of raising debt remains.) In either case there are
advantages and disadvantages. In particular, if we let the policyholder as-
sume the total cost, we run the risk of not being competitive, loose market
share, and experience increased lapse. If we issue debt, we are liable for in-
terest payments at the end of the planning horizon which could reduce our
final return. Furthermore, companies face leverage restrictions. It may not
be possible to cover all the cost of the guarantee by issuing debt because
it will increase the leverage of the company beyond what is allowed by the
regulators or accepted by the market.

Another important point in pursuing this question concerns the maturity
of the issued debt. To issue long term debt we determine the amount of
cash that we need to borrow in order to cover, with a certain probability,
future expenditures due to shortfalls over all scenarios. If we indicate by β a
confidence level we are searching for the β–percentile Oβ

G such that the cost
of the guarantee Ol

G in scenario l satisfies

P
(

Ol
G ≥ Oβ

G|l ∈ Ω
)

= β. (19)

The cost of the guarantee in scenario l is given by equation (13) as

Ol
G =

El
T

∏T

t=1(1 + rlft)
− ρL0. (20)
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Note that Oβ
G need not to be raised through the issue of debt only. It is

just the reserves needed to fund shortfalls. Strategic considerations will sub-
divide Oβ

G among policyholder charges, CG, issue of debt or direct borrowing
from money markets, DG, and/or equity supplement, ES. Thus, we have

Oβ
G = CG +DG + ES. (21)

Given the debt structure implied in (21) we determine the final income I lT ,
for each scenarios l ∈ Ω, as

I lT = Al
T − Ll

T −DG(1 + rb)
T + (CG − JS)

T
∏

t=1

(1 + rlft), (22)

where JS are the fixed costs (in percentage of the initial liability) and rb is the
borrowing interest rate. Debt structures for which at least one I l

T < 0 should
be discarded as leading the firm into insolvency, even if the probability of
such events is very low.

The net Return–on–Equity (ROE) corresponding to a given debt struc-
ture in each scenario is given by

ROEl =
I lT (1− κ)

ρL0 + ES

. (23)

This is not the ex ante excess return on equity optimized with the base mode,
but the ex post realized total return on equity achieved when the structure
of debt has also been specified. This measure can be used to analyze the
probability of insolvency when all the cost of the guarantee is funded by
shareholders instead of being charged, at least in part, to policyholders.

In Appendix B we report results with the analysis described here. Tables
are generated to study the tradeoffs between leverage, policyholder charges,
and shareholder returns. Similarly, we can study the effects of different guar-
anteed returns to the policyholder charges and shareholder returns.

3.3 Insolvency risks

So far we analyzed alternative decisions based only on the net CEexROE
and market constrains (policyholder charges, leverage, etc.). Our analysis
is missing a measure of risk of the ROE. It is not yet clear how alternative
guarantees and debt allocations according to eqn. (21) affect the risk of ROE
in eqn. (23). One could argue that the risk aversion of the decision maker is
embedded in the utility function of the optimization model. This is true, but
the utility function was used only to guide decisions on the asset side, and
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estimating the net total CEROE from (23) does not incorporate risk aversion
when choosing a debt structure. Furthermore, the utility function ensures the
solvency of the fund by covering shortfalls with infusion of equity. However,
under certain conditions no external sources of equity will be available. The
analysis we carry out here compensates for these omissions. It considers the
risk of insolvency when structuring the debt structure, thus incorporating risk
aversion in structuring the debt in addition to structuring the asset portfolio.

Define R̄I as the expected excess return over the risk free rate for this line
of business and r̄f as the expected risk free rate. The rate at which we must
discount the final income I lG is given by Rµ = r̄f + R̄I . For our shareholders
I lG represents the value of the equity at the end of the planning period and
they are willing to stay in this business if the discounted value of this equity
is not less than the initial capital invested. The shareholders will keep their
shares if the Excess Value per Share (EVS) is greater than zero with a high
probability. Recalling that the initial amount of equity is ρL0+ES (ES could
be equal to zero) the EVS in each scenario is given by

EV Sl =
I lG (1− κ)

(1 +Rµ)T
− (ρL0 + ES). (24)

The risk related to a specific debt allocation is given by the probability
that EV S is less than zero, i.e., P−EV S = P (EV Sl < 0|l ∈ Ω). This is the
probability of insolvency and can be determined by calculating the EV S l for
each l ∈ Ω, order from the lowest to the highest and look for the rank of the
first EV Sl that is negative, i.e.,

P−EV S =
rank(EV Sl < 0)

N
. (25)

The EV S can be used to determine the amount of policyholder charges
required to make P−EV S equal to a given confidence level. Recall that I lG, and
consequently EV S l, is a function of CG, ES, and DG. If we fix EG then IG
is a function of CG (DG is determined from eqn. 21). Through a linesearch
we can determine C∗G such that

P [EV S(C∗G) < 0] = β. (26)

In our experiments we set R̄I = 6% and the probability of insolvency
β = 1%. Figure 6 shows the results of the line search which solves equation
(26) for different values of equity supplement ES. We observe that for guar-
antees higher than 6% the CEROE increases. How is it possible that higher
guarantees can yield higher returns? The puzzle is resolved if we note that
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the increase in returns is accompanied by a significant increase of policy-
holder charges. The increases in the policyholder charges fund the guarantee
and preserve equity from falling below its present value.

Significant increase in charges would be unacceptable to policyholders and
would lead to increased lapses. Our analysis can be used as a demarcation
criterion between “good” and “bad” levels of the guarantee. For instance
the Italian insurance industry offers products with g in the range 3% to 4%.
Our analysis shows that they could consider increasing g up to 6% without
significant increase of charges to policyholders or reduction of CEROE. (One
may justify the difference from the operating guarantee of 4% to the peak
optimized value of 6% as the cost of running the business. If so this cost
is high.) For guarantees above 6% we note a substantial increase to poli-
cyholder charges at a marginal improvement in CEROE, and this is clearly
unacceptable to both policyholders and shareholders.

3.4 Short term financing of shortfalls

To this point our analysis has determined the cost of the shortfalls Oβ
G and

funded it through a combination of debt DG, charges to policyholders CG,
and equity ES. Now, let us fix CG and ES, and let DG fluctuate according
to the shortfall Ol

G realized in each scenario. This is equivalent to funding
part of the shortfall through short term financing. Instead of issuing a bond
for a notional equal to DG and maturity T , we will borrow money when a
shortfall occurs. The debt for each scenario is given by

Dl
G = Ol

G − CG − ES. (27)

We assume that it is possible to borrow money at a spread δ over the risk-free
rate. The definition of the final income becomes

I lT = Al
T − Ll

T −Dl
G

T
∏

t=1

(1 + rlft + δ) + (CG − JS)
T
∏

t=1

(1 + rlft). (28)

We can apply the analysis of the previous section to determine policy-
holder charges CG, and estimate the distribution of Dl

G. We solve equation
(26) and display in Figure 7 the C∗G for different levels of the guarantee, and
for δ = 2%. Note that policyholder charges C∗G are substantially lower than
those obtained by solving (26) in the previous section as reported in Figure 6.
This is expected as short-term financing of the cost is a dynamic strategy, as
opposed to the fixed strategy of issuing long-term debt. These findings are
consistent with the comparison of the two reserving methods in Boyle-Hardy.
Since Dl

G is scenario dependent, it compensates for those scenarios with high
shortfalls, while it is low (or null) for those scenarios with low shortfalls.
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Figure 6: The levels of policyholder charge, debt and net CEROE such that
the probability of insolvency is P [EV S(C∗G) < 0] = 1%. We show these levels
for equity supplement ES = 0.0 (top) and ES = 0.02 (bottom).
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Figure 7: The levels of policyholder charges, and net CEROE for different
guarantee such that P [EV S(C∗G) < 0] = 1%.

3.5 Choice of utility function

The decision maker’s risk aversion specifies unique asset portfolio to back
each guaranteed policy. Clearly increased risk aversion will lead to more
conservative portfolios with higher contents of fixed income. The result will
be a simultaneous reduction in both the CEexROE to shareholders and the
cost of shortfalls required to fund the policy. Figure 8 illustrates the tradeoff
as the risk aversion parameter γ varies from 0 (base case) to -2 (increased
risk aversion) for five different target guarantees.

Note that for low target guarantees increased appetite for risk results
in higher CEexROE for a marginal increase in cost of the guarantee. For
higher target guarantees (e.g., 15%) we note a substantial increase in the
cost of the guarantee as the embedded option goes deep in the money when
we increase the risk tolerance and invest into volatile assets. These results
confirm our expectations on model performance, and allow users to generate
efficient tradeoffs that are consistent with the contractual obligations and the
firm’s risk tolerance.

4 Benchmarks of Italian Insurance Policies

In order to asses the effectiveness of our model we compare the optimal port-
folios with industry benchmarks. We take as benchmark a set of portfolios
with a fixed broad asset allocation between bonds and stocks, and random
allocation among specific assets. In order to be consistent with the usual
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Figure 8: Tradeoff of CEexROE against cost of the guarantee with varying
risk aversion for target guarantees 8% (left), 11%, 12% and 15% (right).

fixed-mix strategies and follow industry practices we set the broad asset al-
location between bonds and stocks to 90/10, 80/20, and 70/30. The results
of this experiment are reported in Figure 9. Note that the optimized port-
folios always dominate the benchmark portfolios in the cost-of-guarantee vs
CEexROE space. This figure justifies the integrative approach taken in this
paper, whereby the insurance policy is analyzed jointly with the asset allo-
cation decision instead of being analyzed for an a priori fixed asset portfolio.

The results of this section can be extended to incorporate other assets
permitted by regulations, such as mortgages, corporate bonds and interna-
tional sovereign debt. Italian insurers are allowed to invest up to 10% of the
value of their portfolio in international assets. We run the base model for a
guarantee of 4%, and allowing investments in the Morgan Stanley stock in-
dices for USA, UK and Japan and the J.P. Morgan Government bond indices
for the same countries. The internationally diversified portfolio achieves CE-
exROE of 0.14 at a cost of the guarantee of 0.02. By contrast, the results
of Figure 4 show that domestic investments in the Italian markets fund the
guarantee at the same cost but yield a CEexROE of only .11. Similarly, in-
vestments in the US Corporate bond market improves the CEexROE to .16,
but this comes at an increase of the cost to 0.033.

The results of this section are in general agreement with the current
practices of Italian insurers. However, the optimized results suggest that
improved policies and associated asset strategies are still possible.
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Figure 9: Performance of benchmark portfolios (diamonds) against the op-
timized portfolio (square) for g = 4%. Asset allocation for the benchmark
portfolios is set to 90/10 (bonds/stocks), 80/20, and 70/30, respectively, from
top to bottom.
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5 Conclusions

We have developed an integrative asset and liability management model for
endowments with guarantees. It has been demonstrated that the integra-
tive model generates asset structures for specific insurance policies that are
efficient as opposed to asset strategies developed in a non-integrated model.

Several interesting conclusions can be drawn from the use of the model
on data from the Italian insurance industry. First, we have quantified the
tradeoffs between the different targets of the insurance firm: providing the
best products for its policyholders, providing the highest excess return to its
shareholders, satisfying the guarantee at the lowest possible cost and with
high probability. Some interesting insights are obtained on the structure of
the optimal portfolios. In particular we observe that too little equity in the
portfolio and the insurer cannot meet the guarantee, while too much equity
destroys shareholder value.

Second, we have analyzed different debt structures whereby the cost of
the guarantee is funded through equity or through debt with either long or
short maturities. The effects of these choices on the cost of the guarantee and
on the probability of insolvency can be quantified, thus providing guidance
to management for the selection of policies.

Third, we have seen from the empirical analysis that Italian insurers op-
erate at levels which are close to optimal but not quite so. There is room
for improvement either by offering more competitive products or by gener-
ating higher excess returns for the benefit of the shareholders and/or the
policyholders.

A significant extension for the long time horizons of the products con-
sidered would be to a multi-stage model where decisions are revised at time
instances after t = 0 until maturity. Such dynamic stochastic programs with
recourse have been developed for asset and liability management by the ref-
erences given in the introduction. However, for the highly nonlinear problem
we are addressing here such models are difficult to develop. The linearization
of the single-stage model developed in appendix A does not apply directly to
multistage formulations. Specialized algorithms for geometric programming
must be employed for the solution of multistage extensions of this model.
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A Solving the nonlinear dynamic equations

In this section we show how to solve the nonlinear equations (5)–(9) in order
to obtain the objective function (12). At time t = 0, the liability is the
pure premium L0. At t = 1 (to simplify the notation we drop the scenario
superscript) we have

L1 = L0(1− Λ1)(1 + g + y+1 ). (29)

At t = 2 we use the value of L1 from (29) to obtain

L2 = L1(1− Λ2)(1 + g + y+2 )

= L0(1− Λ2)(1− Λ1)(1 + g + y+1 )(1 + g + y+2 ). (30)

Applying this process recursively for each t we obtain the final liability as

LT = L0

T
∏

t=1

(1− Λt)(1 + g + y+t ). (31)

For the equity dynamics we have that E0 = ρL0. At t = 1

E1 = ρL0(1 + rf1) + y−1 L0. (32)

At t = 2 and substituting for E1 and L1 from (32) and (29) we obtain

E2 = E1(1 + rf2) + y−2 L1

= ρL0(1 + rf1)(1 + rf2) + L0y
−
1 (1 + rf2)

+ L0y
−
2 (1− Λ1)(1 + g + y+1 ). (33)

At t = 3 we have

E3 = E2(1 + rf3) + y−3 L2 =

= ρL0(1 + rf1)(1 + rf2)(1 + rf3) + L0y
−
3 (1 + rf2)(1 + rf3)

+ L0 y
−
3 (1 + rf3)(1− Λ1)(1 + g + y−1 )

+ L0 y
−
3 (1− Λ2)(1− Λ1)(1 + g + y+1 )(1 + g + y+2 ). (34)

Applying this process recursively for each t we obtain after some simple
algebra

ET = L0

[

ρ

T
∏

t=1

(1 + rft) +
T
∑

t=1

(

y−t φ(t, T )
t−1
∏

τ=1

(1− Λτ )(1 + g + y+τ )

)]

, (35)
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where φ(t, T ) =
∏T

τ=t+1(1 + rfτ ) is the cumulative return of the short rate
during from t to T .

With the same arguments it is possible to show that

yAt = L0 Λt (1 + g + y+t )
t−1
∏

τ=1

(1− Λτ )(1 + g + y+τ ). (36)

For the asset dynamics we have that A0 = L0(1 + ρ). At t = 1,

A1 = A0(1 +RP1) + y−1 L0 − yA1

= L0(1 + ρ)(1 +RP1) + y−1 L0 − yA1. (37)

At t = 2 substituting L1 from (29) we obtain

A2 = A1(1 +RP2) + y−2 L1 − yA2

= L0(1 + ρ)(1 +RP1)(1 +RP2) + y−1 L0(1 +RP2)

− yA1(1 +RP2) + y−2 L1 − yA2. (38)

The value of the assets at maturity is given by AT =

L0(1 + ρ)
T
∏

t=1

(1 +RPt)L0

T
∑

t=1

y−t

T
∏

τ=t+1

(1 +RPτ )
t−1
∏

τ=1

(1 + g + y+τ )
t−1
∏

τ=1

(1− Λτ )

−
T
∑

t=1

yAt

T
∏

τ=t+1

(1 +RPτ ). (39)

By substituting yAt with the expression in (36) we obtain

AT = L0(1 + ρ)
T
∏

t=1

(1 +RPt)

+ L0

T
∑

t=1

y−t

T
∏

τ=t+1

(1 +RPτ )
t−1
∏

τ=1

(1 + g + y+τ )(1− Λτ )

− L0

T
∑

t=1

Λt (1 + g + y+t )
T
∏

τ=t+1

(1 +RPτ )
t−1
∏

τ=1

(1 + g + y+τ )(1− Λτ ).(40)

Collecting terms we obtain

AT = L0(1 + ρ)
T
∏

t=1

(1 +RPt) (41)

+ L0

T
∑

t=1

(

y−t − Λt (1 + g + y+t )
)

T
∏

τ=t+1

(1 +RPτ )
t−1
∏

τ=1

(1 + g + y+τ )(1− Λτ ).
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Code Description
SBGVNIT.1-3 Salomon Brother Italian Government Bond 1-3 years
SBGVNIT.3-7 Salomon Brother Italian Government Bond 3-7 years
SBGVNIT.7-10 Salomon Brother Italian Government Bond 7-10 years
ITMSBNK Milan Mib Historic Banks
ITMSAUT Milan Mib Historic Cars
ITMSCEM Milan Mib Historic Chemicals
ITMSCST Milan Mib Historic Construction
ITMSDST Milan Mib Historic Distribution
ITMSELT Milan Mib Historic Electronics
ITMSFIN Milan Mib Historic Finance
ITMSFPA Milan Mib Historic Finance Holdings
ITMSFMS Milan Mib Historic Finance Misc.
ITMSFNS Milan Mib Historic Finance Services
ITMSFOD Milan Mib Historic Food
ITMSIND Milan Mib Historic Industrials
ITMSINM Milan Mib Historic Industrials Misc
ITMSINS Milan Mib Historic Insurance
ITMSPUB Milan Mib Historic Media
ITMSMAM Milan Mib Historic MineralsMetals
ITMSPAP Milan Mib Historic Paper
ITMSMAC Milan Mib Historic Plants & Machine
ITMSPSU Milan Mib Historic Pub. Util. Serv
ITMSRES Milan Mib Historic Real Estate
ITMSSER Milan Mib Historic Services
ITMSTEX Milan Mib Historic TextileClothing
ITMST&T Milan Mib Historic Transportation & Tourism

Table 1: Asset classes used in testing the model.

B Asset classes and Further Empirical Re-

sults

The asset classes used in testing the model are given in Table 1. They
consist of bond indices for short, medium and long-term debt of the Italian
government, and stock indices of the major industrial sectors traded in the
Milano stock exchange.

The broad asset allocation shown in Figure 3 is broken down among the
different indices as shown in Figure 10. Table 2 displays net CEexROE and
ŌG for the range of guarantees reported in Figure 4. The difference of cost
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SBGVNIT.1-3 0 0 0.19178 0.49818 0.78706 0.82202 0.83583 0.61661 0.78934 0 0 0 0 0 0

SBGVNIT.3-7 0.64738 0.67995 0.52544 0.24668 0 0 0 0.16398 0 0.78617 0.76099 0.62464 0.54353 0.47134 0.4041

ITMSFMS 0 0 0 0.00346 0.00905 0.01492 0.0169 0.01589 0.02759 0.03237 0.03491 0.02615 0.023 0.02076 0.01903

ITMSPSU 0.35262 0.32005 0.28278 0.25167 0.20389 0.16306 0.14727 0.20351 0.18307 0.18146 0.20411 0.34921 0.43346 0.5079 0.57687

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

Figure 10: Asset allocation for different levels of guarantee.
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g CEexROE ŌG

0.01 0.1347 0.0235
0.02 0.1288 0.0266
0.03 0.1215 0.0256
0.04 0.1134 0.0240
0.05 0.1043 0.0208
0.06 0.0944 0.0255
0.07 0.0838 0.0370
0.08 0.0717 0.0819
0.09 0.0605 0.1372
0.1 0.0488 0.1780
0.11 0.0378 0.2407
0.12 0.0284 0.4117
0.13 0.0212 0.5755
0.14 0.0152 0.7635
0.15 0.0098 0.9809

Table 2: Net CEexROE and cost of the guarantee (ŌG) for different levels of
guarantee (g).

between guarantee levels g = 0.01 and g = 0.05 is just 0.2%. Further results
on the distribution of equity to liability, for different levels of guarantee, are
shown in Figure11. These results are in agreement with Figure 5 presented
in the main paper.

B.1 Leverage, policyholder charges and shareholder

returns

In Table 3 we summarize data that assist the decision maker to take a position
according to her strategic views and constrains. If no entries are displayed
these choices cannot be implemented, either because some I lT are negative
(this occurs when charges to policyholders are very low and high debt levels
yield a negative final income), or because the amount of money necessary to
cover shortfalls is absorbed by the policyholder charges, implying negative
debt levels.

For example, by choosing a leverage level equal to 0.5, the highest yearly
net CEROE is 0.183. Note that, if the firm wishes to achieve higher per-
formance level, the leverage should also increase. Also, observe the inverse
relation between leverage and policyholder charges. The greater the amount
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Figure 11: Equity-to-liability ratio at the end of the planning horizon for
different levels of the guarantee.
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we charge to the policyholder, the lower is the leverage level and the higher
the annualized net CEROE.

Our model can generate similar tables to study the many interactions of
endowment with guarantee. For example, we could be interested in investi-
gating the effect of different guarantee levels to the policyholder charges and
yearly returns. We first estimate, at a given confidence level β, the cost of
the guarantee Oβ

G, and then apportion this cost to policyholders (CG in eqn.
21) and fund the rest through debt or equity surcharge. Depending on CG

we observe a change in the CEROE to shareholders.
Table 4 shows this relationship. We observe the same behavior we had

seen between ŌG and net CEexROE. The model chooses more aggressive
strategies for low g because it is then possible to achieve higher levels of
CEexROE at little cost. Recall that we are working with percentiles and the
impact of aggressive strategies is much more evident on the tails. When the
guarantee is low at g = 0.01 we need higher policyholder charges to reach
the highest return, while for g = 0.05 lower charges are required.

The results in Table 3 should be examined taking into account the mea-
sure of risk P−EV S associated with the CEROE of every combination of policy-
holder charges and leverage level. The probabilities corresponding to Table 3
are shown in Table 5. Observe that the upper–left entry has a P−EV S equal to
0.58. This means that in 58% of the cases the present value of the final equity
is less than the amount invested today by the shareholder, even though, net
CEROE is acceptable (12%). This position is risky. The reason why this
position is quite risky is due to the fact that we are asking our shareholders
to fund the total β–percentile cost of the guarantee. No charges are passed
on to policyholders.
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.121125 0.124595 0.128295 0.132256 0.136515 0.141118 0.146123 0.151602 0.15765 0.164391

0.125 0.123946 0.127684 0.131656 0.135891 0.14043 0.145317 0.150612 0.156387 0.16274 0.169795
0.25 0.126654 0.13064 0.13486 0.139346 0.144137 0.14928 0.154834 0.160873 0.167495 0.174827

0.375 0.12926 0.133474 0.137923 0.142638 0.147659 0.153033 0.158821 0.165097 0.17196 0.179538
0.5 0.13177 0.136197 0.140857 0.145783 0.151014 0.156599 0.162599 0.169089 0.176169 0.183968

0.625 0.134193 0.138817 0.143673 0.148794 0.154219 0.159997 0.16619 0.172875 0.180151 0.188151
0.75 0.136533 0.141343 0.146381 0.151682 0.157285 0.163242 0.169612 0.176475 0.183932 0.192114

0.875 0.138798 0.143781 0.148989 0.154458 0.160227 0.166348 0.172882 0.179909 0.18753 0.195879
1 0.140991 0.146137 0.151505 0.15713 0.163053 0.169327 0.176013 0.183191 0.190964 0.199468

1.125 0.143118 0.148417 0.153935 0.159706 0.165774 0.172189 0.179016 0.186335 0.19425 0.202896
1.25 0.145182 0.150626 0.156285 0.162194 0.168396 0.174944 0.181903 0.189353 0.197399 0.206177

1.375 0.147188 0.152769 0.15856 0.164599 0.170928 0.177601 0.184682 0.192255 0.200423
1.5 0.149138 0.154849 0.160766 0.166927 0.173375 0.180165 0.187362 0.19505 0.203333

1.625 0.151037 0.156871 0.162907 0.169183 0.175744 0.182644 0.18995 0.197745
1.75 0.152886 0.158837 0.164986 0.171371 0.178039 0.185044 0.192452 0.200349

1.875 0.154688 0.160751 0.167007 0.173497 0.180265 0.187369 0.194875
2 0.156446 0.162616 0.168974 0.175562 0.182427 0.189624 0.197222

2.125 0.164433 0.17089 0.177572 0.184528 0.191814
2.25 0.166207 0.172757 0.179529 0.186571 0.193942

2.375 0.167938 0.174577 0.181435 0.188561
2.5 0.16963 0.176354 0.183294 0.190499

2.625 0.178089 0.185108
2.75 0.179785 0.186879

2.875 0.181443
3 0.183064

3.125
3.25

3.375

L
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r
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l
e
v
e
l
s

Policyholder Charges

Table 3: Net CEROE for different combinations of leverage and policyholder
charges. The table is built for a guarantee g = 4% at a confidence level
β = 1%.
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0 0.144564 0.139163 0.135832 0.13177 0.130433 0.120909 0.110348 0.099402

0.01 0.148057 0.142648 0.139726 0.136197 0.136011 0.126397 0.115193 0.102442
0.02 0.151703 0.146281 0.143803 0.140857 0.141965 0.132226 0.120278 0.105562
0.03 0.155517 0.150077 0.148086 0.145783 0.148361 0.138457 0.125641 0.10877
0.04 0.15952 0.154056 0.152599 0.151014 0.155289 0.145166 0.131326 0.112075
0.05 0.163732 0.158239 0.157375 0.156599 0.162863 0.152453 0.13739 0.115487
0.06 0.168182 0.162651 0.162452 0.162599 0.171238 0.16045 0.143903 0.119017
0.07 0.1729 0.167323 0.167876 0.169089 0.180626 0.169337 0.150957 0.122676
0.08 0.177925 0.172291 0.173703 0.176169 0.191338 0.17937 0.15867 0.126479
0.09 0.183304 0.177599 0.180007 0.183968 0.190924 0.167202 0.130443
0.1 0.189093 0.183304 0.18688 0.192664 0.176778 0.134586

Minimum Guarantee

P
o

li
c

y
h

o
ld

e
r 

C
h

a
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e
s

Table 4: The relation between net CEROE, policyholder charges and guar-
antee. The table is built with confidence level β = 1% and liability (debt-to-
equity ratio) equal to 0.5.

36



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.58 0.522 0.462 0.4 0.344 0.278 0.208 0.148 0.096 0.042

0.125 0.534 0.478 0.416 0.366 0.302 0.242 0.172 0.112 0.072 0.02
0.25 0.508 0.444 0.394 0.338 0.274 0.212 0.15 0.1 0.06 0.012

0.375 0.476 0.416 0.368 0.306 0.252 0.188 0.134 0.092 0.042 0.012
0.5 0.444 0.396 0.346 0.284 0.226 0.162 0.118 0.076 0.032 0.006

0.625 0.418 0.374 0.322 0.266 0.212 0.152 0.106 0.068 0.022 0.004
0.75 0.404 0.366 0.304 0.258 0.198 0.144 0.098 0.056 0.016 0.002

0.875 0.4 0.354 0.286 0.234 0.184 0.136 0.092 0.05 0.012 0.002
1 0.378 0.33 0.28 0.224 0.162 0.124 0.088 0.04 0.012 0.002

1.125 0.37 0.318 0.266 0.216 0.156 0.114 0.078 0.036 0.008 0.002
1.25 0.364 0.31 0.264 0.208 0.146 0.108 0.074 0.032 0.008 0.002

1.375 0.356 0.296 0.254 0.2 0.146 0.104 0.07 0.026 0.004
1.5 0.35 0.286 0.24 0.196 0.142 0.098 0.062 0.026 0.004

1.625 0.332 0.282 0.234 0.188 0.136 0.096 0.06 0.02
1.75 0.322 0.276 0.224 0.178 0.132 0.094 0.054 0.016

1.875 0.316 0.266 0.22 0.162 0.126 0.092 0.052
2 0.314 0.266 0.214 0.156 0.122 0.086 0.05

2.125 0.264 0.214 0.15 0.118 0.084
2.25 0.264 0.208 0.148 0.116 0.08

2.375 0.26 0.202 0.146 0.112
2.5 0.244 0.202 0.146 0.11

2.625 0.198 0.146
2.75 0.196 0.144

2.875 0.196
3 0.19

3.125
3.25

3.375

Policyholder Charges
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Table 5: Relationship between P−EV S—the probability that excess value per
share will fall below zero— leverage and policyholder charges. The table is
built for a guarantee g = 4% and confidence level β = 1%.
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