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Abst ract:   This paper derives the optimal size of the financial sector using a general
equilibrium framework that is an extension of Holmstrom and Tirole’s 1997 paper.  We show
that the financial sector has a unique optimal size relative to the size of the economy as a whole.
Creating and maintaining this sector requires diversion of some physical capital from
production of output to monitoring that production.  However, the efficiency gain in output
production brought about by monitoring warrants the diversion.  It is also found that the
optimal size of the financial sector is independent of the state of the economy and does not vary
over the business cycle.  
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I. Introduction

The advent of the Euro is the latest phase in the financial integration that is sweeping

across Europe.  Earlier events of special significance were the promulgation of the Second

Banking Coordinating Directive, allowing banks to branch across national boundaries, and the

establishment of the Financial Services Policy Group, designed to study inter-country issues

arising from financial integration.  It is clear that a unified continental financial services market is

emerging in Europe.  As that market develops, important questions will arise concerning the kind

of market structure that will emerge, its appropriate size, and its organization.  In many ways,

both the developments and questions concerning them parallel those that have arisen in the United

States over the last two decades with the increasing degree of financial integration taking place

there.  In both Europe and the United States, there are related questions concerning the public

policies that should be enacted to guarantee that the resulting financial services industry is socially

optimal - policies concerning mergers, types of services that can be offered by various types of

institutions, capital adequacy requirements, and so on.

In this paper, we address a theoretical question that is important both for the positive and

normative analysis of the financial industry, namely, what is the optimal size of that industry?  This

seems an obvious question for policy analysis, which concerns intervention in the financial

industry precisely to guarantee some sort of social optimality, but the question also is important

for a positive analysis, for determining the optimal size of the industry is closely related to

analyzing the size that will emerge in competitive equilibrium.  Thus the subject of this paper

would seem important to several groups, including students of the financial industry, that

industry’s regulators, and both macroeconomists and macroeconomic policy makers.  However, it
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is only recently that economic theory has begun to address this important issue.  This is, in large

part, due to the fact that the financial sector has occupied a rather secondary position in formal

macroeconomic theory for most of the past few decades.  In Patinkin’s (1965) neo-classical

framework, the financial sector was limited to the demands and supplies of money and bonds;

financial institutions played no significant role.  Subsequent developments, such as Brunner and

Meltzer (1968) and Tobin (1969), continued to assign to financial institutions only a minor role in

determining macroeconomic equilibrium.

This view began to change with Bernanke’s (1980) evidence that the Great Depression

was at least partly the result of a reduction in the banking sector’s ability to perform its evaluation

and monitoring role.  Bernanke’s subsequent work with Gertler (1988, 1989) showed the

importance of introducing into macroeconomic analysis the insights of the growing banking and

intermediation literature.  In particular, the work of Leland and Pyle (1977), Diamond (1984), and

others had clearly established the importance of the monitoring function undertaken by such

institutions.   Since this earlier work, a number of articles have developed a macroeconomic role1

for banks, emphasizing the value added by banks and often spotlighting banks’ possible role in

exacerbating business cycles and credit crunches.

Once one accepts the notion that the financial sector is important for real economic

activity, however, some obvious questions come to mind.  What is the appropriate or optimal size

of the financial sector?  What does that size depend on?  How does it respond to changes in

economic conditions?  How do departures from the optimal size affect the economy?  Holmstrom

and Tirole’s recent 1997 contribution is the first step in addressing some of these questions with
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their analysis of the appropriate allocation of capital in a competitive market.  Their results are

provocative but are limited by their partial equilibrium setting.

In this paper, we develop a model of the economy similar in spirit to the Holmstrom and

Tirole framework but in which all results are obtained in a general equilibrium framework,

allowing us to address the interaction of the financial and real sectors more completely than has

been done heretofore.  We show that there is an optimal size for the financial sector,  and that

depends on some characteristics of the production and monitoring technologies.  Interestingly, the

optimal size of the financial sector is unrelated to the economic cycle and is not causally linked to

things such as credit cycles, a result that contrasts sharply with those emerging from the partial

equilibrium models of Holmstrom and Tirole and of Bernanke and Gertler.  The general

equilibrium framework also permits us to obtain other new results.  For example, the size of the

financial sector affects not only the level of output but also its growth rate.  Also, both the

magnitude and, more interestingly, even the direction of the response of aggregate consumption

to a change in the financial sector’s size depends on the current size of the financial sector relative

to that of the economy as a whole and on several parameters of various behavioral functions. 

Finally, our results have implications for the regulation of financial intermediaries’ capital ratios.

Section II of the paper presents the background for our approach.  Section III builds a

simple static model to establish some fundamentals and lay the foundation for the dynamic model. 

Section IV presents the dynamic model.  Section V concludes the paper.

II. The Microfoundations of the Financial Intermediation Model.

Our approach is motivated by Holmstrom and Tirole’s (1997) analysis of financial
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intermediation.  We therefore begin by summarizing the basic view of the world captured in their

model to provide the foundation for our own analysis.

1. Ownership of Capital.  There are three kinds of agents: firms, intermediaries, and uninformed

investors (hereafter called households for simplicity).  Each type of agent holds capital.  The

individual firm holds an amount A of capital, and all firms together hold K  = IAdG(A) where G isf

the distribution of A across firms.  Intermediaries and households hold the total amounts of capital

K , and K , respectively.m h

2. Investment.  Entrepreneurs own firms that undertake investment projects, all of which are of

the same fixed size I.  The return to a project is random in that a project can either succeed or fail. 

It has a return of R if it succeeds, and a return of zero if it fails.  The probability of success

depends on how the firm behaves.  Firms can behave diligently or can shirk.  Firms derive a

benefit of unspecified nature if they shirk; that benefit is denoted B.  If the firm behaves diligently,

the probability of success is p ; if the firm shirks, the probability is p <p .  This is a similar set uph l h

to the return from effort modeled elsewhere by Allen and Gale (1988).  Finally, there is an

opportunity cost of undertaking an investment project equal to "I, where ">0 is the return the

firm could get on its capital if it invested in the financial market instead of in its own project.  The

firm thus faces two possible expected net returns on its investment project:

p R - "I if it is diligenth

p R - " I + B if it shirksl

3. Borrowing and Lending: No Intermediaries.  It is assumed that shirking never is profitable if

the firm finances its investment project entirely with its own funds:

p R - " I + B < p R - " Il h
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This assumption is merely for convenience in the discussion below.  The essential element of what

follows is that firms that borrow some of their capital are more likely to shirk than firms that do

no borrowing (intuitively, because the former have less at stake than the latter).  The easiest way

to frame the argument is simply to assume that firms that do no borrowing also do not shirk. 

Some firms, however, must borrow if they are going to invest.  Those are the firms that do not

own enough capital to undertake an investment project, that is, for whom I > A.  Such firms

borrow from households.  If the investment project is successful, the firm pays its creditors the

contracted part of the total return and keeps the rest for itself.  If the project fails, the creditors

are paid nothing.  Thus the two expected returns facing the firm now are

p (R-P) - " I if it is diligenth

p (R-P) - " I + B if it shirksl

where P is the contracted payment to the creditors.

Clearly, once the firm has financed some of its project with borrowing, it has an increased

incentive to shirk because its expected return from the project itself is lowered by the required

payments to its creditors.  This kind of situation has been modeled extensively elsewhere in the

finance literature as the incentive effect of debt.  As that literature shows, the firm that seeks to

borrow must guarantee its creditors that it will not shirk, which it does by paying itself a large

enough fraction of the total expected return p R to make shirking unprofitable.  It then pays theh

creditors out of the residual return.  Using this framework, Holmstrom and Tirole have shown

that only firms with sufficiently large values of A can borrow.  Small firms cannot borrow because

they cannot pay themselves enough to guarantee that they will not shirk and simultaneously pay a

competitive rate of return to their creditors.



 This set up is similar to the argument in Fama (1985).2

Actually, Holmstrom and Tirole show that firms that borrow from intermediaries also borrow directly from households. 3

By financing some of their loans through intermediaries, the firms reduce the exposure of the households in two ways. 
First, the firms are monitored, which reduces their return from shirking.  Second, the total amount of capital that the
households lend to the firms is reduced by the amount the firms obtain from the intermediary.
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4. Borrowing and Lending with Intermediaries.  Next, consider an environment in which

intermediaries lend to firms.  Intermediaries finance these loans with their own capital K  and bym

borrowing from households.  Intermediaries also monitor the firms to which they lend.  This

monitoring reduces the benefit of shirking to b<B but costs the intermediary C per firm

monitored.  A firm that is too small to borrow directly from households may be large enough to

borrow from the intermediary.  To get a loan from an intermediary, the firm must agree to be

monitored, and it must pay the intermediary a premium to cover the costs of intermediation.  2

Because of this premium, borrowing from the intermediary is more costly than borrowing directly

from households, but it will be worthwhile if b is sufficiently less than B.

 It is assumed that the various parameters satisfy the conditions necessary for intermediary

lending to occur.  Financial intermediaries then lend only to firms of intermediate size.  Large

firms either do not borrow at all or borrow directly from households, because the absence of the

monitoring cost premium makes it cheaper to do so; small firms still do not have enough capital to

guarantee that they will not shirk.  Thus there is a range of firms (A , A ) interior to the support ofl u

the distribution G(A) that receives loans from the financial intermediaries.   The bounds A  and A3
l u

both depend positively on the market rate of return ", and A  also depends positively on thel

expected gross return to intermediary capital (the expected gross payment p R less the monitoringh

cost C divided by the amount of intermediary capital K  ).  Competition among intermediariesm
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forces them to invest their own capital K  in the firms.  Doing so regulates the rate of returnm

earned by intermediaries in such a way as to make the market for capital clear.

5. Some Important Results. Three types of capital tightening are possible in this model: a

collateral squeeze, a credit crunch, and a savings squeeze, in which K , K , and K  fall,f m h

respectively.  In all three cases, aggregate investment falls, and A  rises.  Consequently small,l

poorly capitalized firms lose their financing in any of these situations.  In an extension of the

model to the case where investment size I is not fixed but can be chosen by firms, Holmstrom and

Tirole show that the “solvency ratios” r  = K /(K +K +K )  and r  = K /(K +K ) respond to thef f f m h m m m h

three kinds of credit tightening in different ways.  In a collateral squeeze, r  falls, and r  rises.  In af m

credit crunch, exactly the opposite occurs: r  rises, and r  falls.  In a savings squeeze, both r  andf m f

r  rise.  These last results suggest that optimal regulation of financial institutions’ capital ratiosm

may have to allow for cyclical variation in the minimum required ratios.  However, the allowance

will depend on the source of the cycle.  Two types of reductions in capital availability lead to

increases in the optimal value of r ; the remaining type leads to a decrease.m

6. Some Limitations.  The Holmstrom-Tirole model is very interesting and offers many insights

into the behavior of the credit market and its interaction with the real sector.  It is limited,

however, to a partial equilibrium analysis of the credit market.  In their model, the quantities of

firm capital K  and intermediary capital K  are fixed and do not respond to economic conditions,f m

and the source of household capital is unspecified.  In reality, households own all the capital, Kf

and K  as well as K .  Thus, changes  in one type of capital presumably would come at least inm h

part from opposite changes in one or both of the other types.  Also, total capital can change only

if total output changes or if households alter their consumption.  The Holmstrom-Tirole model
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ignores the household sector’s optimization problem entirely.  Finally, the Holmstrom-Tirole

model leaves unexplained the reasons for the three types of credit tightening.  Why should

intermediary capital (or either of the other types) change?  Shouldn’t the reason have implications

for the other kinds of capital?  It is unclear how inclusion of these various aspects of the

aggregate economy would alter the conclusions of the model.  We therefore examine a version of

the model in a general equilibrium setting.

III. A Static Model

Like Holmstrom-Tirole, we assume the only function that intermediaries perform is the

investigation and/or monitoring of firms.  The banking literature referenced above does

concentrate on this role as unique to the intermediary sector.  According to that literature, other

intermediary products (such as conversion of small loans into large loans or conversion of short

term loans into long term loans,) can be seen as by-products or at least joint products of

monitoring.  While households can perform many of the functions of a bank on their own,  it is

our view that one key reason that households use the bank is to collect information instead of

collecting it themselves.  Banks are specialized in performing precisely this function.  In any case,

here, we will restrict attention to intermediaries as investigators and monitors of firms.

Given this simplification, we must find a tractable way to represent the provision of

monitoring services in the context of the aggregate economy, which turns out to be the major

difficulty in constructing the general equilibrium model.  Once that has been done, we can

introduce a straightforward household utility function and obtain the general equilibrium solution

for the economy, which also is quite straightforward.  We begin with a static model; the results
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obtained from it then carry over to a dynamic model that we discuss later.

1. Basic Production.  The underlying production technology is the AK production function:

(1)

The AK technology has been widely used in the growth literature as the simplest production

function permitting endogenous growth.  Several more sophisticated models of technical progress

end up with equilibrium solutions that are merely elaborate versions of the AK model.   We4

simplify by just assuming AK production at the outset.

There is a continuum of firms distributed uniformly from 0 to F .  We assume theU

distribution of firms is fixed, so there is no variation in the number of firms or in the concentration

of mass along the interval [0,F ].  Firms differ in size, measured by the firm’s capital stock.  TheU

firm’s capital is proportional to its position in the interval [0,F ]; firm F has capital stock 6F,U

where 6 is the factor of proportionality, constant across firms.  The distribution of capital thus is

also uniform, with the largest capital stock being K =6F .  We do not address in detail why aU U

distribution of firms exists at all.  One obvious possibility is that the variance of returns differs by

firm size.  Perhaps small firms are innovators and so have a higher variance of returns than larger,

established firms.  A formal analysis of such a possibility requires making each firm’s return

random and also requires one to examine household (i.e., investor) behavior toward risk.  Such

issues are well beyond the scope of the present paper, although they would provide interesting

grounds for extensions of the present analysis.  We simply assume the existence of the appropriate

distribution of firm sizes.
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The aggregate capital stock is

(2)

It may seem that the aggregate capital stock is not proportional in the individual firms’ stocks, but

it is.  If we change every firm’s capital by the same proportion so that the new factor of

proportionality is 6’=p6, then the aggregate capital stock is

(3)

The proportionality parameter 6 plays no role in the subsequent analysis, so henceforth we

assume 6=1 for simplicity.  Thus we can write aggregate capital in terms of the fixed distribution

of firm capital as

(4)

From the preceding analysis we know that proportional changes in all firms’ capital simply

multiplies this integral by the relevant factor of proportionality.  This fact will be useful in our

analysis of the growth path of the economy.

Similarly, aggregate output is
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(5)

which, like aggregate capital, responds proportionally to a given proportional change in all firms’

capital stocks.  All variation in output arises from changes in the amount of capital firms own.  To

be consistent with our assumptions on the distributions of firms and capital, the only variations in

capital that we permit are equiproportional changes in all firms’ capital.  As we have seen above,

the aggregate capital stock changes by the same proportion, so (5) tells us that aggregate output

changes by that proportion, too.

2. Inefficient Production.  Firms may behave inefficiently, perhaps because managers receive

some private benefit such as excessive perks from inefficient behavior.  Inefficient behavior leads

to reduced production:

(6)

where 0#v#1.  The probability that a firm behaves inefficiently is w.  Thus the expected output of

a firm is

(7)

We assume that the inefficiency probability w is inversely related to firm size; in particular, we

assume the linear relation

(8)

Given this function, the smallest firm (K=0) is guaranteed to be inefficient (w=1), and the largest
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(K=K ) is guaranteed to be efficient (w=0).  The assumed inverse relation between w and firmU

size is justifiable if the benefit of being inefficient is unrelated to the size of the firm.  For example,

the benefit could extra leisure obtained by shirking responsibilities (think of an efficiency wage

framework).  The cost of inefficiency, however, is the opportunity cost of foregone output (1-

v)AK, which falls with firm size K.  Thus inefficiency is more likely for small firms.

Combining (7) and (8) gives the expected output for a firm of size K:

(9)

3. Production with Monitoring.  Monitoring of firms by financial intermediaries increases the

expected output of the firm.  We can think of the mechanism as either a reduction in the

probability w or an increase in the inefficiency parameter v, that is, a reduction in the cost of

inefficiency.  Under the first mechanism, the monitored firm is less likely to be inefficient but, if it

does act inefficiently, it is just as inefficient as if it had not been monitored.  Under the second

mechanism, the firm is just as likely to be inefficient as if it were not monitored but its departure

from efficiency is less.  In reality, both mechanisms probably function, but we assume just one for

simplicity.  The two turn out to have virtually identical implications, so we choose the second

mechanism for concreteness.

The expected output of the monitored firm is

(10)

where the monitoring effectiveness parameter m satisfies 1<m#v .  The benefit of monitoring a-1

firm is the increase in output obtained:
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(11)

which is quadratic in K with zeroes at 0 and K  and a maximum of (m-1)vAK /4 at K /2.U U U

Monitoring for a given firm is a zero-one decision: either the firm is monitored or it is not. 

We do not include here the possibility of changing the intensity of monitoring a given firm.  Thus

the only decision concerning monitoring is the choice of which firms to monitor.  This decision

depends on the nature of the monitoring cost, which we treat as entirely an opportunity cost. 

Monitoring is achieved by diverting capital from production to monitoring.  We assume that all

firms contribute equiproportionally to K , so that K =µK with 0#µ#1 and the aggregate stock ofm m

monitoring capital is just K *=µK*.  This assumption can be motivated by supposing that a socialm

planner chooses the level of monitoring capital and finances it with a proportional wealth tax or by

assuming that households divide their assets between manufacturing firms and financial

intermediaries.  We discuss the social planner in more detail shortly.  The upshot is that the social

monitoring cost is the foregone output due to diverting capital from production, equal to AK * =m

µAK*.

We also suppose that the amount of effort required to monitor a firm is proportional to the

firm’s size.  This is equivalent to assuming that it takes a fixed amount of effort to monitor one

unit of capital.  Firms with more capital then require proportionately more monitoring effort.  In

the aggregate, then, the fraction N of total capital that is monitored is proportional to the amount

of monitoring capital K *:m
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(12)

The fraction N is measuring the efficiency of monitoring, that is, the amount of productive capital

that is monitored by a given amount of monitoring capital.  In contrast, the effectiveness

parameter m in equation (10) measures the impact of monitoring on the performance of capital

that is monitored.  It seems reasonable to suppose that it takes much less than the total capital

stock to achieve monitoring of all productive capital, so we suppose that N  is much greater than0

1.  Also, it is impossible for N to exceed 1, so optimal µ must satisfy 0#µ#N .0
-1

4. Optimal Monitoring.  We are interested in the socially optimal amount of monitoring, so we

suppose there is a social planner who makes all allocation decisions for the economy.  The planner

seeks to maximize social welfare, which is equivalent to maximizing the utility of the

representative household.  To avoid unnecessary complications, we assume all households are

alike, so the representative household is the same as any actual household.  We also suppose

households have the Constant Relative Risk Aversion utility function

(13)

where C is consumption per person.  The planner seeks to maximize (13) subject to the aggregate

resource constraint Y * = C *, where C* is aggregate consumption.  In this static, one-periodt t

setting, maximizing utility is equivalent to maximizing current output.  The only instrument

available to the planner for affecting current output is monitoring, so he chooses monitoring to

maximize Y *.  It will turn out that the choice he makes in this static setting will be the samet
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choice he makes in a dynamic, multi-period setting, which we discuss later.

There are two aspects to the choice of monitoring: how much total monitoring to do,

which is determined by the choice of µ (or, equivalently, of N or K *), and which capital tom

monitor.  For any given total amount of monitoring, the choice of which capital to monitor is

straightforward.  From the continuity of all functions, it is clear that this capital will fall in a

continuous interval, which is easily represented.  The total amount of capital that is monitored is

NK* = N µK*.  The continuous interval of monitored capital then can be written as0

(14)

where K  is the midpoint of the interval.  Making an optimal choice of monitoring consists ofC

choosing K  and µ.C

Let M be an indicator of monitoring, equal to 1 if a firm is not monitored and m if it is

monitored.  Then aggregate output with inefficiency and monitoring is

(15)

In the last line, the first term is aggregate output with no monitoring, the second term is the
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Notice that this is the midpoint of the range of capital, not of firms.  Denote by F  the5 C

firm that holds the capital stock K .  As much capital above K  is monitored as below it. C C

Consequently, the monitored firms larger than F  fewer in number than the monitored firmsC

smaller than F .C

16

opportunity cost of monitoring (the output lost by diverting K *=µK* capital from production tom

monitoring), and the third term is the output gained through the efficiency increases due to

monitoring.  Only the last term depends on K , so K  is chosen to maximize it.  SubstitutingC C

w=(1-K/K ) gives the following expression for the last term in (15):U

(16)

This expression is maximized for K =K /2, the midpoint of the range of K.C 5
U

Substituting this value of K  into (15) and carrying out the integration gives the followingC

expression for aggregate output as a function of µ:

(17)

The entire choice of optimal monitoring thus reduces to choosing µ.

The first-order condition for µ is

(18)

This expression is a cubic in µ and gives little immediate insight into the optimal value of µ. 

However, by rewriting (18), we can learn something about the optimal µ.  The production
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function can be written as

(19)

where

(20)

If we define G(µ)/(1-µ)g’(µ), then the first-order condition can be written as

(21)

The function g is cubic and so has there three possible roots.  To find them, we begin by

noting that the first and second derivatives of g are

(22)

If we evaluate g, g’, and g” at 0, we obtain the following results:

(23)

Thus 0 is an inflection point of g, and g is positive and rising there.  These results mean that g has

the general shape shown in Figure 1, with two negative roots and one positive root.  We have

drawn Figure 1 with distinct negative roots, but they could be a double root or two imaginary

roots.  We do not dwell on this detail because only the positive root is economically meaningful.
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To find the maximum of g in the positive quadrant, we set g’(0) equal to zero and solve

for µ, obtaining µ = ± 2N .  Only the positive value is economically meaningful, so g(µ) has0
-1

single maximum in the positive quadrant at µ = 2N ; the value of g at that point is (vm+2)/3. 0
-1

Recall that µ is restricted to lie in the interval [0, N ], so g(µ) is rising over the entire permissible0
-1

range of µ.

The function g’(µ) is positive and falling over all permissible values of µ, reaching 0 at the

value µ = N .  The function G(µ) therefore also has these characteristics because (1-µ) is0
-1

positive for all values of µ in the interval [0, N ].  We have drawn G in Figure 2.0
-1

The optimal value of µ, denoted µ*,  occurs at the intersection of the g(µ) and G(µ)

functions.  The existence condition for a positive value of µ* is

(24)

If this inequality is satisfied, the vertical intercept of G(µ) is above that of g(µ), and the two

functions intersect at a positive value of µ.  If (24) is not satisfied, the costs of monitoring exceed

the benefits, and no there will be no monitoring (i.e., µ* = 0).  If (24) is satisfied, an intersection

may occur at a value of µ above N , which is the upper bound for µ.  In that case, µ* would0
-1

equal N  itself, implying that the fraction N = N µ of productive capital that is monitored is 1.  In0 0
-1

any case, there is only one solution for µ*, even though the first-order condition is cubic in µ. 

The solution for µ is illustrated in Figure 3, which is drawn for the intermediate case where

0<µ*<N .0
-1

The optimal value µ* is the goal of our quest.  It determines all aspects of socially optimal

monitoring, including the appropriate quantity of society’s capital that should be used for
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monitoring, that is, the optimal size of the financial sector.  It would be of interest to investigate

how the sector’s size is related to total capital, the degree of inefficient behavior, and the impact

of monitoring on output.  It is surprisingly difficult to say much about how µ* responds to

changes in the three parameters N , v, and m.  Total differentiation of the first-order condition0

yields an expression of the form dµ = X dN  + X dv + X dm, but the X  coefficients are highly1 0 2 3 i

non-linear in the parameters and generally of ambiguous sign.  In the next section, we examine

how µ* responds to changes in the state of the economy.

Before we move to the dynamic model, we should address one issue concerning the

distribution of firms.  We have assumed implicitly that the distribution of firms is invariant to the

existence or scope of monitoring.  This assumption is unlikely to be literally correct in practice. 

Monitoring is applied only to middle-sized firms, so it raises their productivity relative to all other

firms.  In response, one would expect the social planner to shift resources to middle-sized firms

away from the large and small firms.  We have ignored this possibility.  We doubt that any of our

conclusions would be affected by allowing the distribution to change in response to the existence

of monitoring, at least as long as the distribution did not degenerate to a point located at the mean

size of firms.  It seems likely that degeneration would not occur for the same reasons that the

distribution exists in the first place.  Monitoring alters the relative returns to firms of various sizes,

but it does not eliminate whatever differences across firms leads to a non-degenerate distribution

in the absence of monitoring.  Thus we expect that the general character of the distribution of

firms would be the same with and without monitoring.  In that case, our analysis can be regarded

as an approximation that ignores the changes in the distribution that monitoring might induce.
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IV. A Dynamic Model

We turn now to a dynamic model in which a social planner chooses a path of µ to

maximize lifetime utility of a representative household.

1. The Planner’s Problem.  Population growth plays no important role in this model, so we set it

to zero.  The planner seeks to maximize the present value of the representative household’s

lifetime utility

(25)

subject to the constraint on capital growth

(26)

where

(27)

is the benefit of monitoring.  The Hamiltonian for the social planner’s problem is

(28)

The necessary conditions are (26) and

(29)

(30)
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(31)

(32)

(33)

We already can say something important about the optimal path of µ.  Notice that (31),

the first-order condition for µ, reduces to

(34)

which is exactly the same as the first-order condition (18) from the static model.  Consequently,

the optimal value of µ  is equal to its value µ* in the static model and depends only on the threet

parameters N , v, and m.  In particular, it does not depend on the state of the economy (K *, R )0 t t

or the path of consumption C .  There are two important implications of this result.  First, µ* ist

independent of the size of the economy, which in turn means that the stock of monitoring capital

K * is just proportional to the aggregate stock of capital K*.  The relative size of the monitoringm

sector is constant, so the absolute size is proportional to the size of the economy as a whole. 

Second, µ* displays no cyclical behavior, in contrast to the Holmstrom-Tirole model.  In this

model, business cycles would be induced by shocks to A; such shocks change the paths of C and

K*, as we show momentarily.  However, A, C, and K all are absent from (34), so µ* does not
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depend on them.

2. Growth Rates.  Our aggregate model is an extended form of the standard AK model from

growth theory with A replaced by AB(µ).  We therefore obtain the growth rates in the usual way. 

Differentiating the first-order condition (30) for consumption with respect to time and rearranging

gives the growth rate of consumption:

(35)

which implies a time path for consumption of

(36)

We are interested in the case where ( >0, so we suppose that AB(µ) > *+D.  We also want toC

ensure bounded lifetime utility.  Lifetime utility along the optimal path is

(37)

Unambiguously, X 60 as t64, but X 64 as t64 unless2 1

(38)

We therefore assume that this last inequality is satisfied, which gives us the inequality chain
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(39)

The first part guarantees bounded lifetime utility, and the second part guarantees positive growth.

Using the solution (36) for C , we havet

(40)

where

(41)

and the last inequality is guaranteed by (38).  From the equation for dR/dt we have

(42)

  Transversality requires

We thus have that consumption is proportional to the capital stock:

(43)

from which we conclude that the growth rates of C and K* are equal.  Also, the growth rate of

aggregate output equals the growth rate of aggregate capital because of the linearity of the

production function (17) in K*.  In summary, all growth rates are equal:
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(44)

Two important characteristics of the common growth rate ( are that it is constant over time and it

is a function of µ.

Constancy of ( over time means that there are no transition dynamics.  Any shock moves

the economy instantly to its new balanced growth path (the dynamic equivalent of the steady

state).  For example, a permanent increase in A raises > and thus C  and also raises (.  However,0

the economy jumps to its new balanced growth path with no transition, unlike the behavior one

sees in a Cass-Ramsey model of aggregate growth.

The dependency of ( on µ means that the extent of monitoring affects the growth rate of

the economy, not just the level of output.  We showed earlier that B’(µ)=G(µ)-g’(µ).  It is clear

from Figure 3 that B’(µ)  0 as µ  µ*.  Therefore, the economy’s growth rate ( increases in µ if>_
<

<_
>

µ<µ* and decreases in µ if µ>µ*.  It is maximized at µ=µ*.

The response of consumption to changes in µ is somewhat surprising.  From (41) and

(43), we obtain the response of C  to µ:0

(45)

But

(46)

So C  responds to a change in µ with an instantaneous jump, but the direction of the response0

depends on the magnitudes of both µ and 2.  If 2<1, then a movement of µ toward µ* always
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reduces initial consumption C , irrespective of whether µ is moving up from a value initially below0

µ* or is moving down from a value initially above µ*.  Conversely, if 2>1, a movement in µ

toward µ* always raises C .  In all cases, however, a movement of µ toward µ* raises the growth0

rates of consumption, capital, and output.

3. Capital Regulation.  In our analysis, there is no role for financial regulation.  The social planner

chooses the socially optimal amount of intermediation directly by allocating capital between

production and monitoring to maximize output.  However, if one were to extend the analysis to

allow a role for regulation, one would need to proceed within the kind of general equilibrium

framework used above, analyzing the allocation of physical capital between the production and

intermediary sectors.  Such an approach suggests a new orientation for thinking about the

regulation of financial institutions= capital ratios.  The discussion of capital adequacy requirements

generally is couched in terms of which financial assets belong in the required capital ratios, how to

adjust for their risk characteristics, and so on.  Our type of analysis addresses none of those

issues.  In the central planning version we have presented here, all concern centers on the

allocation of physical capital, and the financial sector’s capital structure does not even exist. 

Nonetheless, we suggest that our approach is the right place to start thinking about regulating

capital ratios.  In general equilibrium, financial asset ratios and regulation affect the allocation of

physical capital.  Regulation changes not only the allocation of financial assets but also the

allocation of the corresponding physical capital.  Ultimately, it is the allocation of physical assets

that is important to economic activity, so the first concern in evaluating financial regulation should

be how it affects that allocation.  Other issues are of secondary importance.



See chapters 4 and 5 of Barro and Sala-i-Martin, 1995, for a discussion of those models.6
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V. Conclusion

In this paper, we have addressed the theoretical question of what is the optimal size of the

financial sector.  This question recently has become especially important for Europe, in light of the

continuing financial integration taking place there, as most recently evidenced by the advent of the

Euro, a single currency for much of the continent.  Proceeding in a general equilibrium framework

that is an extension of Holmstrom and Tirole’s partial equilibrium model, we have shown that

there is indeed a unique optimal size for the financial sector.  We derive the conditions necessary

to determine the optimal size of the financial sector relative to the size of the economy as a whole. 

 Creating and maintaining this sector requires diversion of some physical capital from production

of output to monitoring that production, but the efficiency gain in output production brought

about by monitoring warrants the diversion.

Some implications of our model are quite different from Holmstrom and Tirole’s, even

though our model is based on theirs.  In particular, we find that the optimal size of the financial

sector is independent of the state of the economy and does not vary over the business cycle.  Also,

we are able to address issues beyond the scope of their model, such as the effect of intermediation

on the level and growth rate of aggregate output and on the behavior of consumption.

We suspect our conclusions on the acyclicality of the financial sector’s optimal size arise

from the AK type of production function that we have used and would not hold in a growth

model with transition dynamics, such as the Lucas-Uzawa two-sector model or a one-sector

growth model with a CES or Jones-Manuelli production function.   Extending our work to such6

models would be useful.  Whatever the outcome of such extensions may be, the general
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equilibrium framework we have used here is necessary if one is to address the kinds of questions

that must be asked in any attempt to regulate the financial sector.  Even our simple model shows

how incorrect choice of the financial sector’s capital ratio, µ=K */K*, has adverse consequencesm

for aggregate output, investment, consumption, growth rates, and social welfare.
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