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1 Introduction

Loss systems arise in the modeling of telecommunication and data networks, as well as
certain service and manufacturing operations. This paper considers a particular type of
loss system that has emerged from a study of call center operations in financial service
firms (Aksin and Harker 1996a). While this is the application that motivates the analysis
herein, loss systems with similar characteristics are encountered elsewhere in the modeling
of telecommunication systems (Ross 1995; De Waal and Van Dijk 1991). The distinguishing
features of the model are (i) the presence of multiple resources that define capacity, (ii)
multiple call types that result in multiple access channels, and (iii) the handling of calls
that follow a processor sharing discipline. The growing importance of product and service
customization, the extensive use of technology that automates parts of operations, and the
trend in consolidating information systems (i.e., data warehousing) motivates the multi-class,
multi-resource, processor-shared characteristics of the model described herein.

As the application of the model to the call center management problem in Aksin and
Harker (1996a,b) indicates, the use of the model to determine performance is restricted
by one’s ability to compute performance measures in large systems. The presence of nor-
malization constants in the expressions for blocking and reneging probabilities gives rise to
summations over typically very large state spaces, eliminating the possibility of computa-
tion via brute-force methods. This paper addresses this problem by describing two different
approaches to develop effective and efficient computational schemes for the normalization
constants.

In earlier literature, several approaches have been adopted to deal with this problem.
Buzen (1973), Lam and Lien (1983), Reiser and Kobayashi (1975) tackle the problem by us-

ing specialized recursive algorithms in the context of certain queueing networks. Exploiting



special structures in specific loss networks, Kaufman (1981), Roberts (1981), and Tsang and
Ross (1990) develop efficient combinatorial algorithms to compute normalization constants
and blocking probabilities. The use of integral representations and their asymptotic expan-
sions constitutes the basic idea for the technique developed by McKenna et al. (1981) and
Mitra (1987). Ross and Wang (1992) demonstrate an application of Monte Carlo summation
and importance sampling to product-form summations; it turns out that this method can
be successfully applied to a diverse set of networks with product-form solutions.

The analysis in this paper will follow the combinatorial approach in Tsang and Ross
(1990) as well as the Monte Carlo summation approach in Ross and Wang (1992). After
a brief overview of the model in Section 2, the two methods for computing performance
measures will be explored. In particular, Section 3 shows that the expressions for blocking
probabilities can be transformed into a function of single or multi-dimensional convolutions,
which then enable the use of convolution based computational algorithms. A similar ap-
proach for the computation of renege probabilities is proposed. In Section 4, it is shown how
one can implement the Monte Carlo summation method in the context of the loss model de-
scribed in this paper. Section 5 provides numerical examples for small systems that compare
exact renege probabilities to those obtained by the Monte Carlo Summation method. The

paper ends with a discussion of future research directions.

2 Preliminaries

The operations of a phone center has been modeled earlier in Aksin and Harker (1996a).
Capacity of this phone center is a stochastic entity, which is a function of demand and
resource allocations. Resources that jointly determine capacity are human resources in the

form of service agents, telecommunication resources such as phone lines and VRUs (voice



response units), and information technology resources. A customer call will require the
availability of a phone line, through which the call can gain access to a service representative
or a VRU. At the same time, the representative will need access to certain applications or
databases in order to provide the requested services. The distinguishing characteristic of
the model is the information processing resource that is shared across multiple call types.
As call centers have increased the intensity with which they use this resource, its role in
determining system capacity has become critical.

In the sequel, this multi-channel queueing system with processor sharing is used as the
performance model for a phone center. The specific assumptions underlying the proposed
performance model are summarized below. The reader is referred to Aksin and Harker
(1996a) for a detailed exposition and analysis of this model. Three different ways of mea-
suring performance can be used, each based on different assumptions regarding customer
behavior and the system configuration. In the basic case, which is called the loss system,
it is assumed that customers are extremely impatient. Hence, any customer who cannot
initiate service immediately will leave the system. It is assumed that all customers who
leave are lost demand and will not retry until their next transaction. In this configuration
of the system, the number of trunks or phone lines are equal to the number of service repre-
sentatives. Next, consider a system which may have phone lines in excess of the number of
service representatives. Upon arrival of a call, if all trunks are taken, the customer receives
a busy signal and leaves the system. On the other hand, if a trunk is available but all agents
are busy, the customer is put on hold. The case which assumes that customers on hold
will always wait for service initiation is called the queueing system. While some customers
wait until an agent becomes available, some customers may exhibit impatience and leave the

system while on hold before service initiation. This loss of customers is labeled as reneges



and the system is called the system with reneges. For many inbound call centers, the renege
system will constitute the most realistic model.

Consider a phone center with K access channels. Each access channel consists of Ty,
k =1,..., K phone trunks and Sg, £k = 1,..., K service agents specializing in product line
k, with T}, > S,. Customers arrive at the various access channels with an arrival rate of
Ak, where arrivals in each channel are independent of each other and the arrival process is
assumed to be Poisson. Upon service initiation, the service representative will need access to
the information system. This joint pool of information technology is capable of processing
all transactions from different customers simultaneously. Notice that during times of high
congestion, such central information systems respond with longer processing times. In other
words, service times in the system are a function of the total number of customers being
served in all channels. This characteristic is modeled as a processor sharing service discipline.

Let the information system be considered to be a single server that processes at a constant
rate of one service unit per unit time. Assume that each customer in class k withk =1,..., K
has a service requirement that is exponentially distributed with an average of 1/ux. Then,
letting n = (ny, no, ..., ng) denote the state vector, with n; being the number of customers of
class k in the system, the state dependent service rate for class k customers in the processor-

shared system takes the form

Ny Ui
ni+...+ng)

:uk(n) = (

for the loss system, and the form

min(ng, Sk) [
(min(ny, S1) + ... + min(ng, Sg))

pux(n) =

for the queueing system and the system with reneges. Note that the model assumes simulta-

neous use of the service representative and the information processing resource throughout



the duration of the call. While in its basic form, as considered in this paper, it is assumed that
the labor content and computer content of a call are equal to each other, a minor modifica-
tion of the state dependent service rate allows for the case of call centers where the computer
content of a call is less than its labor content. This case is discussed in more detail in Aksin
and Harker (1996a). Define 7(n) as the equilibrium probability of being in state n (i.e., of
having ny, customers of class k in the system). Define the sets A = {n € ZX : n;, < T}
and Ay = {n € A : n, < T}, where Z, denotes the nonnegative integers. Finally, e is a
K-dimensional vector of zeros with a one in its k™ position and 0 is a K-dimensional vector
of zeros.

In order to characterize the performance of the phone center, one must establish the
behavior of the system in steady state. To this end, one must first determine the equilibrium
distributions, m(n), for the two systems being considered. In general, this distribution takes

the form
Y (n)
ZnGA 1/) (n)

where G = 3" ,c 4 ¥ (n) is known as the normalization constant. For the derivation of equilib-

m(n) =

(1)

rium distributions in the loss and renege systems, the interested reader is referred to Aksin
and Harker (1996a); these results are presented below without proof. For the loss system,
one obtains the equilibrium distribution as

Nk

K
m(n) = é(nl 4o I (”’“2
k=1

(2)

!

where p, = \i/px. For the queueing system, using the convention that >z = 0 and

122 = 1if b < a, this expression takes the form

K
Y(n) = (Z min(ng, Sk

k=1

5 (pr)"™ (Zﬁ;l min(ng, Sk))(nk_sk)+
|
I 2

min(nk, Sk))!(sk)("kfsk)-i_



where

at = max(0, a).

For the reneging system, the added customer loss due to call abandonments while on hold
needs to be incorporated. To this end, the time a customer waits in queue k is assumed
an exponential random variable with rate aj. This implies a renege rate of ri(ng) =
ar(ng — Sp)1(Sky < np < Ty) for b = 1,..., K. Letting 74(j,n) = px min(j, Sk) +
76(7) (K min(ny, Sy)) for more compact notation, it can be shown that

K K yng K . (ne—Sp)+
Y(m) = (O min(ng, Sp)! [] AF (o5, min(ng, Sy)) 9

k=1 k=1 H?i1 Tk (j: n)

The equilibrium distribution is then given by

m(n) = &
Ynea¥(n)
Given the equilibrium distributions, the next step is to determine revenue losses that
result from congestion in the system. To this end, certain performance measures need to
be established. Specifically, one would be interested in determining the probability of a

customer being blocked upon arrival, as well as the loss that occurs due to reneging. In

general, blocking probability in channel k is given by

ned, T(n

B, =1— ZL() (5)
ZnGA 7T(n)

Reneges are the second source of customer loss, made up by the portion of customers that

are lost after entering the system. Denote the long-run probability of renege for a customer
of type k by Ry. Then,

Ry — gw(n)%. (6)

Note that obtaining these probabilities requires the calculation of a normalization con-

stant (7, which involves summing the expressions given in equations (2), (3), and (4), over a

7



state space that can typically be very large. The following two sections address this difficulty
and develop computational schemes that significantly reduce the complexity of determining

performance measures in these loss sytems.

3 Calculating Performance Measures Using Convolu-

tions

In this section, appropriate transformations to the expressions for (¢ in the loss and queueing
systems will be made, enabling the implementation of a convolution based algorithm. For
the reneging system, a similar analysis based on the idea of multi-dimesnional convolutions

yields exact results for blocking probabilities and reneging probabilities.

3.1 The Loss System

Let us start by analyzing the performance of the loss system. Recall that the normalization
constant is given by G = 3", 4 ¥ (n). Similarly, define G, = Y ,,c 4, ¥(1n); then, the blocking

probability of a type k customer can be written as

G,
Bp=1-— 2%
=12 ™

Let ® denote the convolution operator. Also, define the total number of service agents in
the system as S = Zszl S and total number of trunks as T' = ZKKZI Ti.. The convolution of

two vectors g1 = [g1(0), g1(1), ..., 1(5)] and g2 = [92(0), g2(1), ..., g2(5)] is given by

81 @82)(s) => q1(h)g2(s —j), s=0,1,...,85. (8)
=0
Using these definitions, if
gr(s) = %1(8 < Sk), (9)

8



then the sum of equation (2) over the entire state space can be written as

S
G:Zs![g1®...®gK](s). (10)
s=0
A similar simplification leads to the expression

Sp—1 S—1—h
Gr= > a(h) > (h+3)gw(s), (11)
h=0 s=0
where g denotes the convolution of all vectors g; with j =1,..., K and j # k.

Consider a system where S, = S for all k. Then, calculation of blocking probabilities
using a brute-force summation to determine the normalization constant requires a compu-
tation of order O(K%S%). This computation clearly grows exponentially in problem size.
Let us now consider a binary tree implementation of the convolution algorithm to compute
blocking probabilities (Tsang and Ross, 1990). Without loss of generality, let K = 2= for

any integer . Using the convolution scheme, and noticing that 3, S, = KS, computation

of blocking probabilities becomes of order O(K (K S)?logK) or O(K?(S)*logK).

3.2 The Queueing System

For the queueing and renege systems, the “min” term in the expression for state dependent
service rates, p(n), creates difficulty when one tries to collapse the multiple summations for
each class into a single summation as in (10). In particular, note that the terms involving
25:1 min(ng, S;) cannot be put in a product form, hence preventing a separation by class as
required for the convolution scheme. Furthermore, given the total number of customers in
the system (s), it is not obvious what will be the value of the expression > | min(ny, Si).
To overcome this difficulty, introduce an additional dimension in our convolution operator.
Note that for the loss system, the vectors that are convolved (gi(s)) are indexed by s, the

total number of customers in the system. For the queueing system, define vectors that are
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indexed by two numbers s and b, where the latter will denote the total number of customers
on hold. This definition allows one to extend the idea used for the analysis of the loss system
to that of the queueing system, as described below.
Partition the state space such that
K K
Asb:{neA:an— an—Sk =b,s >b};

k=1 k=1

that is, the set of states for which there are exactly s customers in the system and exactly b

of these are on hold. Based on the earlier definition, one has
S
A=UlZg UL, Ag.

Recall that the normalization constant is given by

G=3 v(n)

neA

Then, using the definition for A, this can be restated as

T-S T

G=>Y_ > > v(n). (12)

b=0 s=bnEAg,
Recalling the expression for 1»(n) and the fact that S5  min(ny, Sp) = s — b for all n € Ay,
(12) can be rewritten as

T-S T

B s (pr)"™
G=3 Y (s=b)(s—b) ; ]J (i (e, 50 (50T (13)

b=0 s=b

It is now clear that the innermost summation in (13) can be expressed as a convolution just
as in the case for the loss system. To this end, redefine the convolution operator given in
(8), so that one has a two dimensional convolution

[g1®g2 Sb Zzgl j7 928_.]7b )’ 8:0717"'5T7 b:O71a7T_S (14>

n=0 j=n



Similarly, (9) is redefined as

B if s < S, andb=0

9r(5,0) = | FLhp if Sy <5< Tk, and b < Ty — S (15)
Mk
0 otherwise.

Using the new definitions for gx(s, ), and the convolution operator in (14) within the first
two summations in expression (13), one obtains the normalization constant for the queueing

system as
T-S T

G=> Y (s=b(s-0)"g1®...®gkl(s,Db). (16)

b=0 s=b

An analogous argument allows one to state the corresponding GG, as

(T, —Sk—1) (Tx,—1) (I'—S—m~—1)(T—1-h)
Ge= >, > elhm) Y. (G+h—m=n)(j+h—m—n)"""gu(j,n). (17)
m=0 h=m n=0 j=n

While this computation is more complex than the one that is required for the loss system,
one would nevertheless expect it to perform better than a brute-force summation for growing
problem size. To compare the two, consider a system where T}, = T for all k. For the brute-
force computation, the complexity can be expressed as O(K?T*). The same computation
using the convolution scheme, again with a binary tree implementation, is easily seen to be of
order O(K(KT(KT — KS))%*logK) or equivalently O(K?®(T (T — S))?logK). Note that while
this does not grow exponentially in K, performance does deteriorate rapidly for large K.
One may need to resort to a different approach to deal with larger problems; one potential

method will be explored in Section 4.

3.3 The System with Reneges

Calculation of blocking probabilities in the renege system require summations involving the

expression in (4). Again, observe the presence of the same complicating terms encountered

11



in the case with no reneges. In addition to these terms, observe that 7 is defined as a
function of S5 min(ng, Sg), making the expression further non-separable as a product in
k. It will now be demonstrated how the idea used for the queueing case can be implemented
in the renege case. This time, it is convenient to introduce a third dimension p, denoting

the number of customers in service in the entire system (all classes). The vectors g are now

defined as
A )
—_k lfSSTk, bSTk—Sk, (S—b)+§p§5
a(s,b,p) = { =GP "
0 otherwise,
where

. prmin(g, Sp) +re(j)p J<Tk, j<p<S
Tk(]7p) -
1 otherwise.

The convolution operator for this case takes the form

b s
(g1 ®@82)(s.0,p) = D> a1(j.n,p)ga(s — 4,b—n,p),

n=0 j=n

s=0,1,....,T, b=0,1,...,T— S, p=0,1,...,5.

Note that this is identical to (14) except that we now have to perform a convolution for each
p=0,1,...,5. The expressions for G and GG take a similar form to those in the queueing

case; however, one now uses the revised definition of the convolution operator. Specifically,

we get
T-S T
G=Y > (s=bl(s—b)"g1®...®gk|(s,b,s—b), (19)
b=0 s=b
and
(Ty—Sk—1) (T —1) (T—S5—m—1) (T—1-h)
Gk - ZO hz gk(h7 m, h — m) Zo Z (‘])'(J)n+mg(k) (ja naj - n)a (20>
m= =m n= j=n

where J = j+h—m—n. The argument used to derive these expressions parallels that for the
queueing case and is not repeated here. The complexity of calculating blocking probabilities

using a binary tree implementation becomes O(KS(T(T — S))%logK).
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For all three systems, one has been able to transform the expressions for the normalization
constants GG and the term (7, into summations of a vector of convolutions. Refined convolu-
tion algorithms that exploit the similarity between the computation required to determine
(G and G, have been developed by Tsang and Ross (1990). A straightforward adaptation of
their algorithm which uses a binary tree implementation can be used to compute blocking
probabilities. Their numerical experiments indicate that while this is not the fastest method
in terms of CPU time required, it seems to be the most reliable in terms of numerical errors.
Since the ultimate goal of the proposed model is that it be used within an optimization model,
as in Aksin and Harker (1996¢), it is important to choose the implementation with the least
potential for such numerical errors. Other implementations are possible for other applica-
tions. The complexity analysis given above indicates that the performance of the algorithms
deteriorates fast in the number of classes for the queuing and renege cases. Depending on the
problem sizes one needs to deal with, and the desired computational times, one may need to
refine these algorithms or resort to a non-exact computation using Monte-Carlo summation.

Reneges are the second source of customer loss, so in addition to blocking probabilities,
one needs to determine the portion of customers that are lost after entering the system.

Denote the long-run probability of renege for a customer of type k by Rj. Then,

B ri(ng)
Ry = I%;47T(n) (= By

which can equivalently be stated as

B = 3 v @1

neA

The computation of Ry essentially involves a weighted sum of all the ¢ (n)’s, where the
weights constitute the only difference between this and the computation of the normalization

constant G.

13



Using the weights 7 (ny)/Ag, it follows that Ry can be obtained as

(Tx—Sk) Ty (T—S—m) (T—h)
1 ri(h) (J)! (J)ntm . .
Bi=a S Y shomh-m) Yy WO, G 2)
k m=0 h=m n=0 j:n k

where J = j+h —m —n.
Given the similarity between this expression and the expression for Gy in (20), it is clear

that a refined convolution algorithm as discussed above can be used to compute Ry.

4 The Monte-Carlo Summation Technique

In Aksin and Harker (1996b), data from a retail banking phone center is presented and,
subsequently, performance measures for this center are evaluated. A quick look at this
data indicates that with approximately two hundred shared 800-trunks, one hundred fifty
VRU trunks, and nine departments in the center, computing the normalization constant and
performance measures for this center constitute a major challenge. The most appropriate
form of the model for this analysis is identified as the system with reneges. This implies that
the combinatorial algorithms in Section 3 require a three dimensional convolution of vectors
whose size is determined by the number of trunks, two hundred in this instance. Since the
trunks are shared among departments for this particular call center, this indicates that the
state space determined by the set A is even larger compared to a center that has devoted
phone lines for each department. These characteristics of the problem indicate the need for a
different type of computational scheme. In this section, a brief overview of the Monte Carlo
summation technique along with a description of its implementation in the phone center
context of this paper is provided.

Monte Carlo summation and integration has been suggested as a useful tool in evaluating

performance measures for both queueing and loss networks (Ross et al. 1993; Ross and
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Wang 1992). An overview of the method in the context of general loss networks is provided
in Ross (1995). The method entails randomly sampling from a product form solution over
the state space and then taking averages to obtain consistent estimators for performance
measures. It can be adapted to arbitrary product form solutions and, in that sense, is more
flexible than the earlier proposed combinatorial methods. The performance of the method
is assessed based on the computational effort required to generate a sample and the variance
of the estimates. In what follows, the method is adapted to the multi-class, multi-resource,
processor-shared loss system.

Let Vi = (Vi,..., V%), i=1,2,..., be a sequence of i.i.d. random vectors where V*
denotes the ith sample. Each V has probability density function p(n) := P(V? = n), where

n can take values in A = {n € Z{* : n;, < T }. Letting

one can define
B q(VH1(Vi e A)

7t = . 23
p(V?) %)
Then, an unbiased estimator for the normalization constant GG is given by
_ 1 &
Zp==3 7, (24)
Li=

where L denotes the total number of iterations or samples taken in the Monte Carlo method.

For the current implementation, a sampling function is proposed that takes the form

p(n) = kl:[ pr(n), (25)

where each pg(n) is given by
Lypeog

pr(n) = (26)

- an;’il Tk(j7 Il) .

15



The term ¢ represents the normalization constant for p.

The variance of Z?, 02, is a critical determinant of the effectiveness of the Monte Carlo
Summation technique. Choice of the appropriate sampling function p(n) is known to reduce
this variance significantly. In particular, it has been shown that a sampling function p(n) that
closely resembles ¢(n) in shape yields estimates with lower variance. This idea of sampling
from those parts of ¢(n) with higher “importance” is known as importance sampling. In (26),
v, is a positive real number known as the importance sampling parameter. By adjusting
the value of this parameter, one can modify the shape of p(n), thus trying to increase the
similarity between p(n) and ¢(n).

Another factor determining the effectiveness of the Monte Carlo summation technique is
the ease with which samples are generated from a sampling distribution p(n). The choice
of sampling function in (25) ensures that V¢ V3, ... Vi are independent. This enables use
of the alias algorithm to generate each V' in O(K) time (Bratley et al. 1987). Recall that
the product form solution in (6) does not have independence between the different classes.
This is a result of the term > | min(ng, Si) that appears in various parts of (6). Thus, to
simplify the sampling procedure, an approximation to (6) is used as the sampling function.
In (26), & is a parameter that attempts to approximate the term Sp_, min(ny, Sy) in (6).
For the results reported herein, d; has been set as

min(Vy, Sp) + > o,
J#k
where p; = v;/p;. This choice for d; can be motivated as follows. For each class k, at
every iteration 4, V) is known as an estimate for ny. For all other classes, pj is taken as
an approximation for the term min(ng, Si). In a pure loss system, pr = A\i/ux is a good
approximation for the average number of customers of class k in service. In an attempt to

use a simple approximation for the number of customers being served in a renege system,

16



the same approximation is used with 7, replacing \;. In the application of the method to
a call center problem in Aksgin and Harker (1996b), a slight modification is made to d; for
some k. In that paper’s context, some classes are served by VRUs as opposed to servers. It
turns out that for these classes, reneges can also occur during service. To account for this
difference, the term d; for the VRU channels is determined by setting pp = vi/(pr + ).
The performance measures that one would like to estimate can be expressed as ratios,
as in (5) and (6), which are nonlinear functions of the normalization constants. In general,

both acceptance (1 — By) and renege probabilities take the form of a ratio:

 Taeah(m)g(m)
Snea J(m)g(n)

with fi(-) and f3(-) as some known functions. Note that for acceptance probabilities f(n) =

¢ (27)

1(n € A;) and f3(n) = 1, while for renege probabilities

_ rk(nk)

fl(ﬂ) e

and fo(n) = 1(n € Ay). Using the Monte Carlo technique, an estimate for ¢ can be obtained

as

Lyt
¢ ===
Lz
where Y := fi(V)q(V)/p(V?) and Z¢ = [fo(V)q(V))/p(V?). 100(1 — )% confidence

(28)

intervals for the acceptance probability 1 — By and renege probability R; can easily be
constructed as sampling proceeds. The interval estimators proposed in Ross (1995) are used

in the phone center context.

5 Numerical Examples

In the Monte Carlo summation method, one obtains approximate blocking and renege proba-

bilities. Before using the method, one would like to have a sense of performance with respect
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to exact blocking and renege probabilities. This section provides a set of numerical examples
that explore the performance of the method in terms of its accuracy. Performance in terms of
computation time is not explored in this paper. The computation time for the Monte Carlo
summation method changes as a function of the number of iterations of the algorithm one
chooses to perform. One can, however, state that while computation time performance for
the convolution scheme is expected to deteriorate with an increase in the number of classes,
the Monte Carlo summation method can deal with systems with a high number of classes
more effectively.

Since the objective is to test for accuracy rather than speed, examples of identical size
parameters are considered. In particular, all of the examples deal with systems with three
customer types (K = 3), five trunks reserved for each class of customer (T = (5,5,5)),
and two servers for each class (S = (2,2,2)). Two sets of arrival rates, A\! = (1.0, 1.0, 1.0)
and A2 = (10.0,10.0,10.0) are considered. Table 1 tabulates renege rate and service rate
parameters for each example problem. The problems have been labeled in a way that reflects
the degree of heterogeneity in their renege rate and service rate parameters. In particular, the
first letter stands for the degree of heterogeneity between oy, as, and a3, where L denotes
low and H denotes high heterogeneity. Similarly, the second letter denotes the degree of
heterogeneity between i, o, and pus. Two versions of LL and HH examples were tested,
denoted by subscripts 1 and 2.

Exact blocking and renege probabilities for these problems are tabulated in Table 2.

For the same set of problems, the results obtained using the Monte Carlo summation
method are presented next. Table 3 tabulates the results for the problems with A! and Table
4 tabulates the results for the problems with A2. Both blocking and renege probabilities are

reported, since both of these are determined approximately for this method. Each point
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Table 1: Parameters for the Numerical Examples

Problem « 1

LI, (0.25, 0.50,0.75) (2.5,2.8,3.5)
LL, (1.5, 1.7,2.0) (2.5,2.8,3.5)
LH (1.5, 1.7,2.0) (0.5,2.8,13.5)
HL (0.25, 2.50,8.75)  (2.5,2.8,3.5)
HH, (0.25, 2.50,8.75)  (0.5,2.8,13.5)
HH, (0.25, 2.50,8.75) (13.5,2.8,0.5)

estimate is followed by its 95% confidence interval. All of the estimates have been obtained
by performing 500,000 iterations of the Monte Carlo summation method, using importance
sampling parameters determined by trial and error. The importance sampling parameters
that were used are tabulated in Table 5, where 7! is the vector of importance sampling
parameters for the problems with Al, i = 1,2. The estimates could be further improved by
increasing the number of iterations or by selecting importance sampling parameters that are
closer to the optimal ones.

Comparing the estimates in Tables 3 and 4 to the exact values in Table 2, it is clear that
the Monte Carlo summation technique performs well in terms of accuracy. The performance
of this method does not seem to depend on the homogeneity of parameters in a direct way.
However, for the examples with A? (tabulated in Table 4) the method performs better than
for the same problems with A\1. The importance sampling parameters in Table 5 demonstrate
that while for most of the problems with Ay one obtains good estimates with v2 = A2, the

same is not true for the problems with A\!. Four out of six of these problems required setting
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Table 2: Exact Renege and Blocking Probabilities

Problem

Rb R27 R3)

B17 B27 B3)

LL;, \!
LLy, A1
LH, \!
HL, \!
HH;, \
HHy, N
LL;, \2
LI, \2
LH, \?
HL, \2
HH,, \2

T H,, \2

0.1352, 0.1701, 0.1527)
0.2091, 0.1897, 0.1505)
0.6913, 0.2107, 0.0139)
0.1078, 0.2293, 0.2153)

0.5823, 0.2912, 0.0394)

(
(
(
(
(
(
(0.0024, 0.2126, 0.6990)
(0.4588, 0.5939, 0.6271)
(0.8120, 0.8088, 0.7902)
(0.9566, 0.8058, 0.4283)
(0.4569, 0.8484, 0.8921)
(0.8070, 0.8426, 0.6159)
(

0.1102, 0.8478, 0.9839)

0.0549, 0.0239, 0.0098)
0.0036,0.0024,0.0013)
0.0159,0.0027,0.0)
0.0423,0.0012,0.0)

0.2825,0.0015,0.0001)

(
(
(
(
(
(
(0.0002,0.0011,0.0002)
(0.8461, 0.7707, 0.6890)
(0.5589, 0.5156, 0.4513)
(0.6097, 0.5145, 0.2632)
(0.8455, 0.3954, 0.0697)
(0.9100, 0.3933, 0.0423)
(

0.5054, 0.3952, 0.0799)
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7! to values other than A!. This suggests that for systems with higher load (characterized
by higher arrival rates relative to renege and service rates), the proposed implementation
generates reliable estimates, even in the absence of importance sampling. The robustness of
this observation needs to be further tested. In general, the accuracy of the method depends
on the choice of importance sampling parameters. As a result, determination of optimal
or near-optimal importance sampling parameters should be the first step in future research

endeavours.

6 Conclusion and Directions for Future Research

Recognizing the difficulty of implementing loss models with product form or near-product
form solutions in the absence of computational methods that simplify their analysis, this
paper has developed such methods for a specific type of loss system. By introducing the
notion of multi-dimensional convolutions, one was able to extend the existing methodology
for computing performance measures for the pure loss case to that of the queueing and
reneging cases. Observing that for the reneging case, this combinatorial method may still
be too expensive for some applications, the use of Monte Carlo summation to perform these
computations was explored. An adaptation of the Monte Carlo summation technique to the
multi-class, multi-resource, processor-shared system was proposed.

Depending on the industry they are in, phone centers may be very large in terms of
the total number of service representatives and phone trunks. For very large problems,
difficulties have been encountered in implementing the methods to compute the performance
measures proposed in this paper. Numerical underflow and overflow problems that arise
from having extremely large values for the normalization constant constitute the source for

these difficulties. The factorial term in the product form solutions further magnifies this
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Table 3: Renege and Blocking Probabilities and Associated Confidence Intervals for the

Monte Carlo Summation Approach: Problems with \!

Problem

Ry
By

Ry
By

Rs
Bs

LI,

0.1418 (0.1255,0.1581)

0.052 (0.0366,0.0663)

0.1467 (0.1232,0.1703)

0.0110 (0.0059,0.0165)

0.1319 (0.1020,0.1619)

0.0060 (0.0030,0.0072)

LL,

0.2098 (0.1937,0.2259)

0.0041 (0.0022,0.0060

(
(
0.1869 (0.1694,0.2044)

(

0.0013 (0.0008,0.0018)

0.1429 (0.1288,0.1569)

L,

0.6798 (0.6681,0.6915

0.0162 (0.0150,0.0176

0.02373 (0.2274,0.2472)

0.0023 (0.0025,0.0041)

0.0094 (0.0045, 0.0142)

0.0001 (0.0001,0.0002)

HL

)
)
)
)

0.0446 (0.0438, 0.0544)

0.2150 (0.1910,0.2390)

0.0005 (0.0003,0.0007)

(
(
(
0.0011 (0.0007,0.0014)
(
(
(

0.2041 (0.1671,0.2411)

0.0 (0.0,0.0001)

HH,

0.5806 (0.5738,0.5873)

0.2809 (0.2762,0.2866)

0.0015 (0.0011,0.0019

0.0325 (0.0201, 0.0448)

0.0 (0.0,0.0001)

HH,

(
(
(
(
0.1100 (0.1009,0.1191
(
(
(
(

0.0015 (0.0008, 0.0021)
0.0 (0.0,0.0)

(
(
(
0.2872 (0.2745,0.3000)
(
(
(

)
0.2401 (0.2278,0.2524)
)

0.0011 (0.0007,0.0014

0.7066 (0.6729,0.7403)

0.0002 (0.0001,0.0002)

22




Table 4: Renege and Blocking Probabilities and Associated Confidence Intervals for the

Monte Carlo Summation Approach: Problems with \?2

Problem

Ry
By

Ry
By

Rs
Bs

LI,

0.4598 (0.4566, 0.4630)

0.846 (0.8455,0.8475)

0.5925 (0.5891, 0.5958)

0.7710 (0.7710,0.7715)

0.6275 (0.6245, 0.6305)

0.6900 (0.6888,0.6904)

LL,

0.8130 (0.8096,0.8163)

0.5593 (0.5379,0.5617

0.8078 (0.8047, 0.8110)

0.5163 (0.5139,0.5168)

0.7906 (0.7877,0.7935)

0.4515 (0.4501,0.4529)

L,

)
0.9554 (0.9505,0.9603)
)

0.6094 (0.6087,0.6110

0.8053 (0.8017,0.8090)

0.5142 (0.5126,0.5169)

0.4278 (0.4261, 0.4295)

0.2632 (0.2618,0.2646)

HL

0.8458 (0.8446,0.8460)

0.3952 (0.3936,0.3977)

0.0700 (0.0690,0.0710)

HH,

0.8065 (0.7943,0.8188)

0.9100 (0.9087,0.9124

0.8450 (0.8402,0.8498)

0.3943 (0.3920,0.3966

0.6138 (0.6095,0.6180)

0.0421 (0.0411, 0.0430)

HH,

(
(
(
(
0.4577 (0.4541, 0.4614)
(
(
(
(
(

)
0.1082 (0.1077,0.1087)
)

0.5054 (0.5037,0.5070

(
(
(
(
(
(
0.8479 (0.8447, 0.8512)
(
(
(
(
(

)
0.8320 (0.8285,0.8354)
)

0.3966 (0.3949,0.3982

(

(

(

(

(

(

0.8917 (0.8884, 0.8950)

(

(

(

0.9863 (0.9827,0.9900)
(

0.0080 (0.0794,0.0812)
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Table 5: Importance Sampling Parameters for the Numerical Examples

Problem ~1 ~2

LL, (1.0,1.0,1.0)  (10.0,10.0,10.0)
LL, (1.0,1.0,1.3)  (10.0,10.0,10.0)
LH (0.98,1.0,1.0) (11.0,10.0,12.0)
HI (1.0,1.0,1.4)  (10.0,10.0,10.0)
HH,  (1.0,.0,1.3)  (10.0,10.0,10.0)
HH,  (1.0,.0,1.0)  (10.0,10.0,10.0)

problem of excessive growth in the normalization constant. An implementation such as the
one suggested by Mitra and Ramakrishnan (1990) and Ross et al. (1993) has been used to
overcome this problem.

In the proposed implementation of the Monte Carlo summation method, it was mentioned
that v, acted as an importance sampling parameter which can be used to reduce the variance
of the estimators. For the numerical examples in this paper as well as the analysis that was
performed in Aksin and Harker (1996b), these parameters were obtained through trial and
error. Determining optimal importance sampling parameters is an important issue for future
research. Use of Monte Carlo summation coupled with optimal importance sampling would

result in tighter confidence intervals for performance measure estimates.
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