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1.  Introduction

Volatility is a central concept  in finance, whether in asset pricing, portfolio choice, or risk

management.  Not long ago, theoretical models routinely assumed constant volatility (e.g.,

Merton, 1969; Black and Scholes, 1973).  Today, however, we widely acknowledge that volatility

is both time-varying and predictable (e.g., Andersen and Bollerslev, 1997).  Stochastic volatility

models are now central; they have emerged as the paradigm of choice for modeling time-varying

and predictable volatility.  Discrete- and continuous-time stochastic volatility models are

extensively used in theoretical finance, empirical finance, and financial econometrics, both in

academe and industry  (e.g., Hull and White, 1987; Heston, 1993; Bates, 1996; Ghysels, Harvey,

and Renault, 1996; Jarrow, 1998).

Unfortunately, the estimation of stochastic volatility models has proven quite difficult. 

The Gaussian quasi-maximum likelihood estimation (QMLE) approach of Ruiz (1994) and

Harvey, Ruiz, and Shephard (1994), which initially seemed appealing because of its simplicity, fell

by the wayside as it became apparent that stochastic volatility models are highly non-Gaussian. 

The problem is that standard volatility proxies, such as log absolute or squared returns, are

contaminated with highly non-Gaussian measurement error (e.g., Andersen and Sorensen, 1996). 

Unfortunately, highly non-Gaussian volatility proxies produce highly inefficient Gaussian quasi-

maximum likelihood estimators.

The literature therefore turned toward alternative estimators.  In particular, attention

turned to variants of the generalized method of moments (GMM) that use moment conditions

obtained by integrating out volatility, either through simulations (e.g., Duffie and Singleton, 1993)

or analytically (e.g., Singleton, 1997).  These estimators, however, can also be highly inefficient,



1 Gallant, Hsu, and Tauchen (1999) also  make use of the log range, albeit with a very different estimator. 
Although they are aware of the efficiency of the log range, they are unaware of and do not exploit its normality. 
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depending on the choice of moment conditions and weighting matrix.  Although recent work has

tried to maximize the efficiency of these GMM estimators through the optimal choice of moment

conditions, the empirical implementation of this approach remains challenging (Gallant, Hsieh, and

Tauchen, 1997; Gallant, Hsu, and Tauchen, 1999; Chernoff and Ghysels, 1999).

Another literature focuses on likelihood-based estimation using importance sampling or

Markov chain Monte Carlo methods, whether in a Bayesian setting (e.g., Jacquier, Polson, and

Rossi, 1994) or in a classical setting (e.g., Danielsson 1994; Kim, Shephard, and Chib, 1998;

Sandmann and Koopman, 1998).  Such simulation methods can in principle deliver highly

accurate approximations to the exact maximum likelihood estimator, but they are not widely

adopted due to practical considerations.  In particular, all of these methods are computationally

intense and rely on assumptions that are hard to check in practice, such as the accuracy of mixture

approximations to non-Gaussian distributions and the convergence of simulated Markov chains to

their steady state.

Motivated both by the popularity of stochastic volatility models and by the difficulties

associated with estimating them, we propose a simple yet highly efficient estimation method based

on the range, defined here as the difference between the highest and lowest log asset price during

a discrete sampling interval.  The range is a volatility proxy with a long and colorful history in

finance (e.g., Garman and Klass, 1980; Parkinson, 1980; Beckers, 1983; Ball and Torous 1984;

Rogers and Satchell, 1991; Anderson and Bollerslev, 1998).  Curiously, however, it has been

neglected in the recent stochastic volatility literature.1
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dSt ' µ(St ,<t) dt % F(St ,<t) dWSt

d<t ' "(St ,<t) dt % $(St ,<t)dW<t ,
(1)

We set the stage for the paper in Section 2, in which we describe a general class of

continuous-time stochastic volatility models and the particular discretization that we exploit.  In

Section 3 we use both analytical and numerical methods to motivate and establish the remarkable

normality of the log range.  In addition, we note that the log range is a highly efficient volatility

measure, a fact known at least since Parkinson (1980) and recently formalized by Andersen and

Bollerslev (1998).  The approximate normality and high efficiency of the log range suggest its use

in Gaussian quasi-maximum likelihood estimation.  We pursue this idea first in the Monte Carlo

study of Section 4, which reveals huge efficiency gains from our approach relative to traditional

methods, and then in a substantive empirical analysis of exchange rate volatility in Section 5,

which delivers sharp new insights.  In Section 6 we summarize, conclude, and sketch directions

for future research.

2.  Stochastic Volatility

A Continuous-Time Stochastic Volatility Model

In a generic continuous-time stochastic volatility model, the price S of a security evolves as a

diffusion with instantaneous drift  and volatility .  Both the drift and volatility depend on aµ F

latent state variable , which itself evolves as a diffusion.  Formally, we write: <

where  and  are two Wiener processes with correlation  = .  TheWSt W<t E t [dWSt dW<t] 2(St ,<t)

functions  and  govern the drift and volatility of the state variable process." $

The stochastic volatility literature contains numerous variations on the generic model (1). 

In this paper we work with a first-order parameterization, which is rich enough to be interesting,



2 Harvey and Shephard (1996) show how to relax this zero correlation assumption in a setting that is very
similar to ours, in order to capture the leverage effect in equity volatilities (e.g., Schwert, 1989; Nelson, 1991;
Engle and Ng, 1993).  Since our empirical work focuses on exchange rates, not equities, we maintain the zero
correlation assumption.

3 The assumption of equally spaced observations is made for notational convenience and can be relaxed. 
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dSt

St

' µ dt % Ft dWSt

d lnFt ' "( lnF̄ & lnFt) dt % $dW<t .

(2)

yet simple enough to permit a streamlined exposition:

The simple stochastic volatility model (2) emerges from the general model (1) when

, , , , and .  In thisF(St ,<t)'Ft St Ft'exp(<t) "(St ,<t)'"( lnF̄&<t) $(St ,<t)'$ 2(St ,<t)'0

parameterization, the log volatility  of returns  is the latent state variable.  It evolves as alnF dS/S

mean-reverting Ornstein-Uhlenbeck process, with mean  and mean reversion parameter . lnF̄ ">0

The instantaneous drift of returns and the instantaneous drift and standard deviation of log

volatility are assumed constant.  Furthermore, the return innovations are independent of the log

volatility innovations.2

Discretization of the Continuous-Time Model

In practice, we have to rely on  discrete-time price observations to draw inference about theN

continuous-time model.  Thus, we divide the sample period  into   intervals, each of[0,T ] N

length , corresponding to the discrete-time data.3  We then replace the continuousH'T/N

volatility dynamics with a piecewise constant process, where within each interval  i, that is 

between times  and , for , volatility is assumed constant at , butiH (i%1)H i'1,2, ...,N Ft'FiH

from one interval to the next, volatility is allowed to be stochastic.



 4 This conditional distribution is only an approximation for small H.  The exact conditional distribution
of  is normal with mean  and variance  ThelnF(i%1)H ln F̄%exp(&"H)(lnFiH&lnF̄) $2[1&exp(&2"H)]/(2").
approximation follows from Taylor series expansions of  and  around exp(&"H) exp(&2"H) H'0.

5 See, for example, Merton (1980).
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lnF(i%1)H* lnFiH - ; ln F̄ % DH ( lnFiH& ln F̄), $2H . (5)

dSt

St

' µ dt % FiH dWSt , for iH < t # (i%1)H, (3)

dst ' (µ& 1
2
F2

iH) dt % FiHdWSt , for iH < t # (i%1)H. (4)

This piecewise constant approximation implies that within each interval the security pricei

evolves as a geometric Brownian motion:

and, by Ito’s lemma, that the log security price  evolves as a Brownian motion:st' lnSt

Log volatility varies from one interval to the next according to its Ornstein-Uhlenbeck

dynamics.  For small interval lengths , the conditional distribution of log volatility isH

approximately:4

In words, the discretized log volatility follows a Gaussian first-order autoregressive process with

mean , autoregressive parameter , and variance .lnF̄ DH'1&"H $2H

3.  Econometric Approach

Measuring Volatility

Even the discretized stochastic volatility model is difficult to estimate because the sample path of

the asset price within each interval is not fully observed.  If it were observed, we could infer the

diffusion coefficients  with arbitrary precision.5  In practice, we are forced to use discretelyFiH

observed statistics of the sample paths, such as the absolute or squared returns over each interval,
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ln* f (siH,(i%1)H)* ' ( lnFiH % ln* f (s (

iH,(i%1)H)* , (7)

ln* f (siH,(i%1)H)* ' ( lnFiH % E * f (s (

iH,(i%1)H)* % ,(i%1)H. (8b)

lnF(i%1)H ' ln F̄ % DH ( lnFiH&ln F̄) % $ H<(i%1)H (8a)

f (siH,(i%1)H) ' F(
iH f (s (

iH,(i%1)H) , (6)

to draw inferences about the discretized log volatilities and their dynamics.

To formalize this idea, consider a statistic  of the continuous sample pathf (siH,(i%1)H)

 of the log asset price between times  and .  If the statistic is homogeneous insiH,(i%1)H iH (i%1)H

some power  of volatility, then we can write it as:(

which implies that:

where  denotes the continuous sample path of a standardized diffusion generated by thes (

iH,(i%1)H

same innovations as , but with volatility .siH,(i%1)H F(

iH'1

Equation (7) makes clear that the statistic  is a noisy volatility proxy:  the first term isf (@)

proportional to log volatility, but the second term is a measurement error.  Other things the same,

the variability of the measurement error reduces the informational content of the volatility proxy. 

The more variable the measurement error, the less precise is our inference about discretized log

volatility and its dynamics.

Linear State Space Representation

Following Ruiz (1994) and Harvey, Ruiz, and Shephard (1994), we recognize that equations (5)

and (7) form a linear state space system:

The transition equation (8a) follows from the conditional distribution of log volatility.  It describes



6 For a recent overview of the Kalman filter, see Hamilton (1994).
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ln‹ ln* f (s0,H)*, ln* f (sH,2H)*, ..., ln* f (s(N&1)H,NH)*;2 ' c &
1
2 j

N

i'1
ln0 i &

1
2 j

N

i'1

e 2
i

0 i

, (9)

ei ' ln* f (s(i&1)H,iH)* & Ei&1 ln* f (s(i&1)H,iH)* (10a)

0 i ' Vari&1[ei]. (10b)

the dynamics of the unobserved log volatility.  The transition errors  are i.i.d. N[0,1], which<

follows from the fact that  is a diffusion.  The measurement equation (8b) makes precise thelnFt

way in which the log volatility proxy  is related to the true log volatility ; it followsln* f (@)* lnFiH

from equation (7) with the projection .  The expectation ofln* f (@)* / E ln* f (@)* % ,

 depends on , the functional form of , and interval length , but it is by* f (s (

iH,(i%1)H)* s (

iH f (@) H

construction independent of the log volatility .  The projection errors  have a zero mean,lnFiH ,

but are not necessarily Gaussian.

Quasi-Maximum Likelihood Estimation

If the projection errors in the measurement equation are Gaussian, exact maximum likelihood

estimation of the stochastic volatility model is straightforward.  Consistent and asymptotically

efficient estimates of the model parameters  are obtained by maximizing the Gaussian log2

likelihood function:

where we can use the Kalman filter to evaluate the one-step ahead forecast errors and their

conditional variances:6

When the projection errors in the measurement equation are not Gaussian, maximum likelihood



7 Watson (1989) provides sufficient conditions for consistency of the Gaussian quasi-maximum likelihood
estimator in linear state space models, and Ruiz (1993) verifies these conditions for stochastic volatility models.

8 See Ghysels, Harvey, and Renault (1996) for a survey.
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ln* f (siH,(i%1)H)* ' ( ln*s(i%1)H & siH* ' ( lnFiH % ( ln*s (

(i%1)H & s (

iH*, (11)

estimation is more involved.  In that case, a tidy closed-form expression for the likelihood such as

equation (9) does not exist in general, which makes the evaluation and maximization of the

likelihood extremely challenging.  Related, in the non-Gaussian case the prediction errors ei

produced by the Kalman filter are merely linear projection errors, not a conditional expectation

errors, since the linear projections produced by the Kalman filter do not in general coincide with

conditional expectations in non-Gaussian settings.

Nevertheless, maximizing the Gaussian likelihood function (9) can yield consistent

parameter estimates even when the projection errors are not Gaussian.  This approach is called

Gaussian quasi-maximum likelihood estimation (QMLE).7  The benefits of Gaussian quasi-

maximum likelihood estimation  are its simplicity and consistency.  Its drawbacks are that the

estimates are inefficient, even asymptotically, and that its small-sample properties are suspect. 

Intuitively, the further the distribution of the projection errors is from a Gaussian density, the

more severe are the problems with Gaussian quasi-maximum likelihood estimation.

Properties of Alternative Volatility Proxies

a.  Log Absolute or Squared Returns

The stochastic volatility literature routinely uses absolute or squared returns as volatility proxies.8 

The continuously compounded return over the  interval is just the difference between the logith

asset prices at times  and .  Thus, the traditional log volatility proxy is:(i%1)H iH



9 The assumption  allows us to interpret directly as a continuously compounded return.x0'0 xJ
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where , depending on whether we consider absolute or squared returns.  Because ('1 or ('2 (

only scales the volatility proxy, and hence does not affect the distribution of the projection errors

in the measurement equation, we focus exclusively, but without loss of generality, on absolute

returns. That is, throughout the remainder of the paper, we set ('1.

The second equality of equation (11) formally requires that the log price is a martingale,

so that it is homogeneous in volatility.  This assumption is not too troubling because over

sufficiently small sampling intervals H, such as a day or even a week, the price drift of most

securities is negligible in practice.  In fact, from a statistical perspective, the assumption is likely

to be helpful.  By using a drift estimator that always takes the value zero we inject only a small

bias, to the extent that the true drift differs slightly from zero, but we greatly reduce the variance

relative to other estimators.  This results in a very small mean squared error forecast of the drift.

It is by now well known that the conditional distribution of log absolute or squared returns

is far from Gaussian.  Jacquier, Polson, and Rossi (1994), Andersen and Sorensen (1996), and

Kim, Shephard, and Chib (1998) argue that, as a result, quasi-maximum likelihood estimation

with these traditional volatility proxies is highly inefficient and often severely biased in finite

samples.  Indeed, the relevant subset of our own Monte Carlo results, which we present in the

next section, confirm their conclusions.

To deepen our theoretical understanding of why the conditional normality assumption for

log absolute or squared returns fails, we examine the distribution of the log absolute value of a

driftless Brownian motion x, with origin  and constant diffusion coefficient F, over anx0'0

interval of finite length J.9  Karatzas and Shreve (1991) characterize the distribution of the



10 The use of log absolute returns is even more problematic in empirical work, where some returns can be
exactly zero because of the discreteness in  prices.  In that case, the logarithm of absolute returns is undefined and
the quasi-maximum likelihood approach fails.  Various ad hoc procedures have been devised to skirt this problem. 
For example, Kim, Shephard, and Chib (1998) suggest adding a small constant to absolute returns.
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Prob ln*xJ* 0 dy '
2ey

F J
N ey

F J
dy, (12)

absolute value of a Brownian motion.  A simple transformation of their result reveals that the

distribution of the log absolute value is:

where  denotes a standard normal density.  N

From this distribution, we can compute the mean, standard deviation, skewness, and

kurtosis of , which we present in the first row of Table 1.  Notice that different values of ln*xJ* F

and  affect only the mean, not the variance, skewness, or kurtosis of log absolute returns.  InJ

other words, those parameters determine the location, but not the shape, of the distribution. 

Without loss of generality then, we graph in Figure 1a the distribution of with both  andln*xJ* F

 set to one.  For comparison, we also show a Gaussian density with matching mean andJ

variance.  

Table 1 and Figure 1a clearly demonstrate that the distribution of log absolute returns is

far from Gaussian.  The skewness and kurtosis of are  -1.5 and 6.9, instead of zero andln*xJ*

three for a normal random variable.  The intuition of this result is that both positive and negative

returns close to zero, observations that are “inliers” of the return distribution, become large

negative outliers of the distribution of log absolute returns.10



11 Instead of assuming a zero drift, we can perform a change of variable from the Brownian motion to a
Brownian bridge (e.g., Doob, 1949; Feller, 1951).  The distribution of the log range of the Brownian bridge is
nearly identical to that of the log range of the corresponding Brownian motion (i.e., it is virtually Gaussian). 
However, the Brownian bridge is by construction independent of the drift.  See Alizadeh (1998) for details.
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ln* f (siH,(i%1)H)* ' ln sup
iH<t#(i%1)H

st &
inf

iH<t#(i%1)H
st

' lnFiH % ln sup
iH<t#(i%1)H

s (

t & inf
iH<t#(i%1)H

s (

t .

(13)

b.  The Log Range

Now consider using the range as volatility proxy, where the range over the  interval is definedith

as the difference between the security’s highest and lowest log price between times  andiH

.  Formally, consider use of the log volatility proxy:(i%1)H

For the second equality we require again that the log price is homogeneous in volatility (i.e., that

it is a martingale).11  We drop the absolute value signs because the range cannot be negative.

The log range is a superior volatility proxy, relative to log absolute or squared returns, for

two reasons.  First, it is more efficient, in the sense that the variance of the measurement errors

associated with the log range is far less than the variance of the measurement errors associated

with log absolute or squared returns.  Second – and this is a central insight exploited throughout

this paper – the log range is Gaussian, to a very good approximation.  On both counts, the log

range is an attractive volatility proxy for Gaussian quasi-maximum likelihood estimation of

stochastic volatility models.

Let us first discuss in more detail the superior efficiency of the log range.  The intuition for
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Prob ln sup
0<t#J

xt &
inf

0<t#J
xt 0 dy ' 8 j

4

k'1

(&1)k&1 k 2ey

F J
N key

F J
dy. (14)

this result is simple: on days with substantial price reversals, return-based measures underestimate

the daily volatility because the closing price is not very different from the opening price, despite

the large intraday price fluctuations. The range, in contrast, reflects the intraday price fluctuations.

The mathematics underlying the superior efficiency of the log range is less simple, but

nevertheless standard.  Specifically, consider the log range of a driftless Brownian motion x, with

origin  and constant diffusion coefficient F, over an interval of finite length J.  Feller (1951)x0'0

derives the distribution of the range of a Brownian motion.  A simple transformation of his result

reveals that the distribution of the log range is:

Although this distribution is expressed as an infinite series, it is straightforward to compute its

moments after suitably truncating the sum.  In the second row of Table 1 we report the mean and

standard deviation.  The superior efficiency of the log range, relative to the log absolute return,

emerges clearly. Both proxies move one-for-one with log volatility on average, but the standard

deviation of the log range is a quarter of the standard deviation of the log absolute return!

The efficiency of the range as a volatility measure has been appreciated implicitly for

decades in the business press, which routinely reports high and low prices and sometimes displays

high-low-close, or so-called “candlestick,” plots.  Range-based volatility estimation has featured

in the academic literature at least since Parkinson (1980), who proposes and rigorously analyzes

the use of the range for estimating volatility in an i.i.d. setting.  Since then, Parkinson’s estimator

has been improved by combining the range with opening and closing prices (e.g., Garman and



12 Although including the opening and closing prices can improve the estimation of volatility in principle,
the gains are not necessarily realized in practice.  In particular, Brown (1990) argues against the inclusion of the
opening and closing prices on the grounds that they are highly influenced by microstructure effects, such as the
lack of trading at the close or “market on the close” orders that have a disproportionate effect on the closing price. 
Furthermore, experimentation by Alizadeh (1998) reveals little theoretical efficiency gain from combining the
range with the opening and closing prices in the estimation of stochastic volatility modes.  Thus, we shall not
pursue the idea in this paper.
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Klass, 1980; Beckers, 1983; Ball and Torous, 1984)  and correcting the downward bias in the

range induced by discrete sampling (Rogers and Satchell, 1991).12  More recently, Andersen and

Bollerslev (1998) formalize the efficiency of the range in the context of estimating the integrated

volatility of a diffusion.

Let us now  discuss in more detail the approximate normality of the log range, or

equivalently, the approximate log-normality of the range.  This aspect of the range is not

particularly intuitive, and it is certainly not widely appreciated.  Nevertheless, it is a fact.  The

second row of Table 1 shows that the skewness and kurtosis of the log range are 0.17 and 2.80,

respectively.  These values are very close to the corresponding values of zero and three for a

normal random variable, and they represent a sharp contrast to the earlier-presented skewness and

kurtosis of the log absolute return.  Figure 1b plots the density (14), with F and J set to one,

together with a Gaussian density with matching mean and variance.  Again, the distribution of the

log range is remarkably Gaussian, except that it is slightly skewed to the right and has somewhat

thinner tails.

4.  Monte Carlo Analysis

The diffusion theory sketched above reveals that the log range is a much less noisy volatility proxy

than log absolute or squared returns and that the distribution of the log range is approximately

Gaussian, in contrast to the skewed and leptokurtic distribution of log absolute or squared
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st ' st&)t % FiH ,st )t (15)

lnF(i%1)H ' ln F̄ % DH ( lnFiH & lnF̄) % $,<i H , (16)

returns.  Both of these findings suggests that Gaussian quasi-maximum likelihood estimation with

the log range as volatility proxy is highly efficient, not only relative to Gaussian quasi-maximum

likelihood estimation with the traditional volatility proxies, but also relative to the corresponding

exact maximum likelihood estimation.

Using a Monte Carlo study, we now compare the small-sample properties of Gaussian

quasi-maximum likelihood estimation with the log range as volatility proxy to those of  Gaussian

quasi-maximum likelihood and exact maximum likelihood estimation with the log absolute return

as volatility proxy.  For each of two data-generating processes, which we describe below, we

generate 5000 return samples of length T = 500, 1000, and 1500 “days,” where each daily return

is generated by 1000 intraday price moves.  For every Monte Carlo sample, we perform Gaussian

quasi-maximum likelihood estimation of the diffusion parameters with either the log range or the

log absolute return as volatility proxy.  For comparison, we also perform exact maximum

likelihood estimation using the simulated likelihood method of Sandmann and Koopman (1998).

Constant Intraday Volatility

We first use a data-generating process for which volatility is in fact constant throughout the day. 

In particular, we simulate the data from the following Euler discretization of the stochastic

volatility model (4)-(5):

for  where  and  are independent N[0,1] innovations.  The discrete timeiH < t # (i%1)H, ,st ,<i

increment , a small fraction of the discrete sampling interval , approximates the continuous)t H
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time .  We set and , which corresponds to using daily data generated bydt H'1/257 )t'H/1000

1000 trades per day.  We set ,  and , which implies a volatility process"'3.855 lnF̄'&2.5 $'0.75

with a daily autocorrelation of  and an annualized average volatility of 8.51 percent. DH'0.985

These volatility dynamics are broadly consistent with our empirical results for five major

currencies, presented in the next section, as well as with the literature.

Table 2 summarizes the sampling distributions of the three estimators of the diffusion

parameters , $, and  for the benchmark case of T=1000 observations.  Using the absoluteDH lnF̄

return as the volatility proxy, the average Gaussian quasi-maximum likelihood estimate of  isDH

0.95, compared to an average estimate of  0.98 using the range and the true value of 0.985.  The

standard deviations of the estimates are 0.13 and 0.01, respectively.  Thus, using the range instead

of the absolute return as volatility proxy produces quasi-maximum likelihood estimates that are

less biased and dramatically less variable.

The performance difference between the two quasi-maximum likelihood estimators is even

more striking for the volatility $ of innovations to log volatility.  The average estimate using the

log absolute return is 1.07, with a standard error of 1.10.  In contrast, the average estimate using

the log range is 0.8, close to the true value of 0.75, with a standard error of only 0.11!

Interestingly, the performances of the quasi-maximum likelihood estimators of the mean

volatility  are basically identical.  Both estimators appear unbiased and equally efficient.lnF̄

In Figure 2, we illustrate graphically the very different sampling properties of the two

Gaussian quasi-maximum likelihood estimators.  The first three plots of the first two rows show

the empirical  distributions of the parameter estimates using the log absolute return and the log

range as volatility proxy, respectively.  The drastic efficiency gains from using the range are



13 Notice different scales of the second plots in each row.  The horizontal axis of the second plots of the
second and third row corresponds to the region between the two vertical lines in the second plot of the first row.

14 Alternatively, we could compare the sampling properties of the range-based quasi-maximum likelihood
estimator to the sampling properties of the exact maximum likelihood estimator for the range.  However, given the
near-normality of the log range, the difference in performance between these two estimators would be minimal. 
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immediately apparent.13  Notice also that the sampling distribution of the estimates of  and $ forD

the log absolute return are severely skewed, which implies  that the usual Gaussian inferences

based on asymptotic standard errors are not trustworthy.  In contrast, the distribution of the

corresponding estimates using the log range are very close to Gaussian.

The results thus far indicate that Gaussian quasi-maximum likelihood estimation with the

log range as volatility proxy is highly efficient relative to quasi-maximum likelihood estimation

with the log absolute return as volatility proxy.  This efficiency gain stems from the fact that the

log range is approximately Gaussian, as well as the fact that the range is a much less noisy

volatility measure than absolute or squared returns.  To separate these two effects, we now

compare the range-based quasi-maximum likelihood estimator to the exact maximum likelihood

estimator for absolute returns, which we compute using the simulation method of Sandmann and

Koopman (1998).  If the only benefit from using the range is its approximate normality, the

sampling properties of the range-based quasi-maximum likelihood estimator should be very similar

to the sampling distribution of the exact maximum likelihood estimator for absolute returns.  If,

however, the information about intraday volatility that is revealed by the range but not by absolute

or squared returns is useful in the estimation of the model, the sampling properties of the range-

based quasi-maximum likelihood estimator could well dominate the sampling properties of the

exact maximum likelihood estimator for absolute returns.14

 Comparing the third row of each panel in Table 2, which summarizes the sampling
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properties of the exact maximum likelihood estimator for absolute returns, to the first two rows of

each panel, reveals that much but not all of the efficiency gain from using the log range as

volatility proxy is attributed it its approximate normality (for a graphical representation of this

result, see also the third row of Figure 2).  In terms of bias, the range-based quasi-maximum

likelihood estimator and the exact maximum likelihood estimator for absolute returns perform

equally well.  However, the standard deviations of the range-based estimates of  and $ are lessD

than half of the standard deviations of the corresponding exact maximum likelihood estimates. 

This demonstrates that the information about intraday volatility contained in the range is an

important aspect of the success of our range-based estimation of the stochastic volatility model.

Once the model has been estimated, the Kalman filter can be used to extract the latent

stochastic volatility series.  When using a Gaussian volatility proxy, the extraction of the latent

volatilities is best (i.e., minimum variance) unbiased, whereas the extraction is merely best linear

unbiased when using a non-Gaussian volatility proxy.  Hence there are two reasons to expect

volatility extraction with the log range as volatility proxy to dominate the extraction with the log

absolute return as volatility proxy.  First, the range-based parameter estimates are more accurate. 

Second, even for the same parameters values, the approximate normality of the log range yields a

more efficient volatility  extraction.

With this in mind, we summarize in the last two panels of Table 2 (and in the last column

of Figure 2) the sampling distributions of the average extraction error , which is
1
T j

T

t'1

( lnF̂t& lnFt)

an estimator of the expected extraction error , and the average squared extractionE[ ln F̂t& lnFt]

error , which is an estimator of the expected squared extraction error
1
T j

T

t'1

( lnF̂t& lnFt)
2



15 When we write , we are referring to an estimator of  not the log of an estimator of lnF̂ lnF , F.
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.15  Not surprisingly, the among the quasi-maximum likelihood estimators theE[ ln F̂t& lnFt]
2

range-based estimator is superior:  both extractions of  appear unbiased, but the range-basedlnFt

estimator is much more efficient.  Using the log absolute return as volatility proxy, the average

squared extraction error is 0.05, with a 90 percent confidence interval of [0.03, 0.08], whereas

using the log range as volatility proxy, the average squared extraction error is only 0.02, with a

confidence interval of [0.01, 0.05].  Furthermore, comparing the range-based quasi-maximum

likelihood extractions to the exact maximum likelihood extractions for absolute returns, we again

notice that the information about intraday volatility contained in the range is important.   

It is of interest to see how the Monte Carlo results vary with the sample size T.  We have

already discussed in detail the results for T = 1000 observations, and in particular the clear

superiority of our range-based estimator.  Now we discuss the results for a smaller sample size  of

T = 500 observations and a larger sample size of T = 5000 observations.  

We show the results for T = 500 in Table 3; they are qualitatively identical to those in

Table 2.  Quantitatively, however, the relative performance of the quasi-maximum likelihood

estimator with the log absolute return as volatility proxy, which was already poor with T = 1000

observations, is much worse with T = 500 observations.  This is largely due to dramatic increases

in the biases of the estimators of  and $, which then translate into larger extraction errors.D

We present the results for T = 5000 in Table 4.  Qualitatively, they are again identical to

the results in Table 2; quantitatively, the comparative performance of the quasi-maximum

likelihood estimator with the log absolute return as volatility proxy is improved in some respects,

but it remains poor in others.  On the up-side, the estimators’ biases largely vanish, and their



16 Except that the exact maximum likelihood estimator is now for the data-generating process with time-
varying intraday volatility (17)-(18), in contrast to the exact maximum likelihood estimator examined earlier,
which was for the data-generating process with constant intraday volatility (15)-(16).
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st ' st&)t % Ft&)t ,st )t (17)

lnFt ' ln F̄ % D)t( lnFt&)t & lnF̄ ) % $,<t )t , (18)

standard deviations are close to those of the exact maximum likelihood estimator, except for $. 

On the down-side, however, the mean squared volatility extraction error remains poor.

In summary, the clear superiority of range-based estimation evident with T = 1000

observations is amplified with T = 500 observation and remains significant even with  T = 5000

observations.  In particular, it generates substantially smaller mean squared volatility extraction

error regardless of the sample size, both because of the strong optimality of the Kalman filter in

the Gaussian case, in contrast to the weak optimality in the non-Gaussian case, and because of the

information about intraday volatility contained in the range. 

Stochastic Intraday Volatility

The assumption of constant intraday volatility is perhaps controversial.  Therefore, we repeat our

Monte Carlo study assuming this time that log volatility evolves continuously, just as it does in the

continuous time stochastic volatility model.  We simulate data from the following Euler

discretization of the bivariate diffusion (2):

where  and  is a N[0,1] innovation independent of .  All other details are theD)t' (1&")t) ,<t ,st

same as in the case of constant intraday volatility.16

Tables 5-7 summarize the second set of Monte Carlo results.  Most of the statistics are

virtually identical to those in Tables 2-4, which suggests that the discretization of the volatility



17 Our results, as with all Monte Carlo results, are of course specific to the particular data-generating
process studied, and perhaps in particular to the high degree of persistence in the log volatility process.

18 The data source is FAME Information Services.
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process has minimal effects on the small sample properties of the estimators.17 

5.  Empirical Analysis of Exchange Rate Volatility Dynamics

We estimate stochastic volatility models for the U.S. dollar price of five actively-traded

currencies:  the British pound, Canadian dollar, Deutsche Mark, Japanese yen, and Swiss franc. 

The volatility proxies are constructed from daily high, low, and closing futures prices.  We first

tabulate some statistics describing salient aspects of the volatility proxies, and then we estimate

and interpret both one- and two-factor stochastic volatility models.

Data

We use daily high, low, and closing (3pm EST) prices of currency futures contracts traded on the

International Monetary Market, a subsidiary of the Chicago Mercantile Exchange, from January

1978 through December 1998.18  A futures contract represents delivery of the currency on the

second Wednesday of the following March, June, September, or December.  Each day there are at

least three futures contracts with different quarterly delivery dates traded on each currency.  We

use futures prices from the front-month contract, which is the one closest to delivery with at least

ten days to delivery.  This front-month contract is typically the most actively traded contract.

There are several advantages to using futures, as opposed to spot, exchange rate data. 

First, all futures prices (including the daily high and low) result from open outcry, so that all

transactions are open to the market and orders are filled at the best price.  Currency spot market

trading, in contrast, is bilateral between banks, and any one particular executed price is not
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necessarily representative of overall market conditions.  Second, the closing, or “settlement,”

futures price is based on the best sentiment of the market at the time of close (3pm EST, after

which spot market trading declines) and is widely scrutinized, since it is used to mark account

balances to market.  Therefore, the futures closing price is likely to be a very accurate measure of

the “true” market price at that time.  Finally, futures returns are the actual returns from investing

in a foreign currency, whereas spot “returns” are less meaningful, unless one accounts for the

interest rate differential between the two countries.

Empirical Description of the Volatility Proxies

In Table 8 we present statistics summarizing the distributions of log absolute returns and the log

range for each of the five currencies.  The superior efficiency of the log range as a volatility proxy

emerges not only in terms of its smaller standard deviation stressed thus far, but also in terms of

its time-series dynamics.  In particular, the large and slowly-decaying autocorrelations of the log

range clearly reveal strong volatility persistence for each exchange rate, in sharp contrast to the

spuriously small autocorrelations of log absolute returns.  Clearly, the measurement errors

associated with the log absolute returns masks the persistence in volatility.

Estimation of the One-Factor Stochastic Volatility Model With the Log Range as Volatility Proxy

We report estimates of the one-factor stochastic volatility model described by equations (4)-(5) 

for the five currencies in the left panel of Table 9.  For now, we focus on the estimates obtained

using our preferred volatility proxy, the log range.  The most striking result concerns the volatility

persistence parameter D, which tends to be small compared to typical values reported in the

literature (ranging typically from 0.80 to 0.99).  The estimates range from 0.62 to 0.85, with four



19 In fact, the sum of the unconditional variance of the measurement errors and the unconditional variance
of the latent log volatility process exceeds the unconditional variance of the log range (from Table 8), which
suggests a negative correlation between log volatility and the measurement errors.  In theory, of course, the
measurement errors are uncorrelated with log volatility.
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of the five estimates less than 0.75.

However, the residual diagnostics presented in Table 10 indicate serious problems with the

one-factor model.  While the residuals are clearly less persistent than the log range itself,

substantial residual serial correlation remains.  Effectively, the one-factor stochastic volatility

model adequately accounts for the volatility correlation at lag one, but not at longer lags, which

results in a humped-shaped residual autocorrelation function.

The misspecification of the one-factor model can be seen in another way.  To obtain the

estimates in Table 9, we set the standard deviation of the measurement equation disturbances to

0.29, per the results in Table 1.  Alternatively, however, we can estimate the standard deviation of

the measurement errors along with the other parameters, and when we do so, we typically obtain

a much larger estimate of D.  Consider, for example, the British pound.  When we set the standard

deviation of the measurement errors to 0.29, we obtain , as recorded in Table 9, but whenD̂'0.66

we estimate the standard deviation of the measurement errors along with the other parameters, we

obtain  and an estimate of the standard deviation of  0.42.  The difference in maximizedD̂'0.97

log likelihoods, moreover, is greater than two hundred.  Hence, the measurement errors of the

one-factor model are much more variable than expected if the one-factor model were correct – a

standard deviation of 0.42 vs. 0.29 – which again suggests that the model is not correct.19

It should be noted that except for the remaining residual autocorrelation, the residual

diagnostics in Table 10 are encouraging.  The measurement equation residuals display little



20 A Gaussian QQ plot is simply a graph of the quantiles of a standardized distribution against the
corresponding quantiles of a N[0,1] distribution.  Hence if a volatility proxy is normally distributed, its Gaussian
QQ plot is a straight line with a unit slope, which enables simple visual assessment of closeness to normality.
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lnF(i%1)H ' lnF1 ,(i%1)H % lnF2,(i%1)H , (19)

lnF1,(i%1)H ' ln F̄1 % D1,H ( lnF1,iH & ln F̄1) % $1 H<1,(i%1)H

lnF2,(i%1)H ' ln F̄2 % D2,H ( lnF2,iH & ln F̄2) % $2 H<2,(i%1)H .
(20)

skewness or excess kurtosis, and more generally, the histograms and quantile-quantile (QQ) plots

in Figure 3 illustrate that the residuals are virtually indistinguishable from Gaussian.20 

Estimation of a Two-Factor Stochastic Volatility Model With the Log Range as Volatility Proxy

In light of the severe deficiencies of the one-factor stochastic volatility model revealed by our

range-based estimation and analysis, we move to a two-factor model, with transition equation:

where

The model is similar in spirit to the two-factor stochastic volatility models of Chacko and Viceira

(1999), Gallant, Hsu, and Tauchen (1999), and Chernov, Gallant, Ghysels, and Tauchen (1999). 

It also resembles the component GARCH approach of Engle and Lee (1999).  The difference is

that ours is a truly two-factor stochastic volatility model, whereas theirs is a one-factor

GARCH(2,2) model decomposed tautologically into a component structure.

When we estimate the above two-factor stochastic volatility model, the results of which

we report in the right panel of  Table 9, we obtain a persistent and a transient factor.  Each factor

is responsible for about half the long-run (unconditional) variance of log volatility, but the

transient factor responsible for much more of the short-run variance.  This result is intuitively

appealing and in line with properties of volatilities estimated using very different procedures, such

as the realized volatilities of Andersen, Bollerslev, Diebold, and Labys (1999), which display slow
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lnFt ' c % lnF1,t % lnF2, t , (21)

lnF1,t ' D1 lnF1, t&1 % <1,t

lnF2,t ' D2 lnF2, t&1 % <2,t,
(22)

Cov lnFt , lnFt&1 ' Cov lnF1,t%lnF2, t , lnF1, t&1%lnF2,t&1

' Cov lnF1,t , lnF1,t&1 % Cov lnF2, t , lnF2, t&1

' D1 Var lnF1, t % D2 Var lnF2,t ,

(23)

D '
Cov lnFt , lnFt&1

Var lnFt

'
D1Var lnF1,t % D2Var lnF2,t

Var lnF1, t % Var lnF2, t

. (24)

persistent movement of log volatility with high-frequency noise superimposed.

The residual diagnostics in Table 11 and Figure 4 indicate that the two-factor models are

adequate.  The measurement equation residuals are serially uncorrelated and virtually  Gaussian.

An interesting feature of our results is that the estimated one-factor volatility persistence

parameter is an average of the estimated persistence parameters from the two-factor model.  To

understand this finding, assume that, in the spirit of equation (19):

where

and the volatility innovations  and  are independent.  Suppose, however, that although the<1,t <2,t

two-factor model is true, we fit a one-factor model, which captures only the sum of the

components , instead of the components  and  themselves.  Then, the firstlnFt lnF1,t lnF2,t

autocovariance of  is:lnFt

where of course the variances are unconditional.  Hence the first autocorrelation of  in thelnFt

one-factor model is simply:

In words, the first autocorrelation in the one-factor model is a relative variance weighted average

of the first autocorrelations of the two factors.  This is approximately true in the estimates.  The



21This explains the current state of the literature, which centers primarily on one-factor models.  
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fact that we can successfully predict the outcome of estimating a one-factor model on the basis of

our estimates of the two-factor model is further evidence in favor of the two-factor model.

The range-based estimates of the one- and two-factor models are also consistent in terms

of implied unconditional variances of log volatility.  Obviously, given the independence of lnF1

and , the unconditional variance of  in the one-factor model should be equal to the sumlnF2 lnFt

of the variances of the two factors in the two-factor model.  This is approximately true.

Estimation With the Log Absolute Return as Volatility Proxy:  Comparison and Reconciliation

At first sight, the estimates of the one-factor model based on the log absolute return, in the left

panel of Table 9, and the corresponding residual diagnostics, in the left panel of Table 10, show

no evidence of model misspecification.21  In particular, the single factor that emerges resembles

closely the persistent factor of our two-factor model, instead of the variance-weighted average of

the two factors.  Apparently, the choice of volatility proxy drastically effects our inferences.

The explanation of this result is that the additional noise in the log absolute return,

compared to the log range, masks the presence of the second, less persistent factor.  More

mechanically, both estimators choose the parameters , , and  to match two features of thelnF̄ DH $

data:  the autocorrelation of the volatility proxy and the difference between the unconditional

variance of the volatility proxy and the corresponding unconditional variance of the measurement

errors from Table 1.  The relative importance of those features, however, differs across the

volatility proxies.  Specifically, the latent volatility dynamics explain less than 10 percent of the

unconditional variance of log absolute returns, but more than 70 percent of the variance of the log



26

range, which is just another manifestation of the informational efficiency of the log range.  The

quasi-maximum likelihood estimator for log absolute returns therefore chooses parameters that

explain entirely the autocorrelation of the volatility proxy, but leave half of the variance of log

absolute returns that is attributed to the volatility dynamics (which is very little relative to the total

variance of log absolute returns) unexplained.  In contrast, the estimator for the log range chooses

parameters that explain all of the variance of the volatility proxy, but leave a significant amount of

autocorrelation (about half) unexplained.  

In summary, upon closer inspection we notice that both sets of one-factor models are

equally misspecified, but that the misspecification is revealed along different dimensions.  The

misspecification of the range-based models is immediately apparent from the autocorrelations of

the residuals.  The misspecification of the absolute return-based models, in contrast,  is more

subtle.  It appears as a  violation of the adding up constraint Var[ ln| ft | ]'Var [ lnFt ]%Var[,t] .

6.  Summary, Conclusions and Directions for Future Research

The range has a long history in finance, from the stock charts in business newspapers to highbrow

academics.  We have used the log range to develop a simple, yet highly efficient method for

estimating stochastic volatility models.

We argued both theoretically and empirically that the log range is nearly Gaussian, and

moreover, that it is a much less noisy measure of volatility than popular volatility proxies, such as

log absolute or squared returns.  This translates into a simple range-based Gaussian quasi-

maximum likelihood estimator that is highly efficient, both in small and large samples, which we

established through a Monte Carlo study.

We conclude that range-based Gaussian quasi-maximum likelihood estimation of



22 See Andersen and Bollerslev (1998) and Andersen, Bollerslev, Diebold, and Labys (1999).
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stochastic volatility models provides the best of both worlds:  simplicity and efficiency.  Daily high

and low prices are available over long historical periods for a variety of assets, in contrast to high-

frequency intra-day data, which can be used under certain conditions to produce volatility proxies

even more efficient than the range, but which have become available only recently and only for

selected highly-developed markets.22

We also performed an empirical analysis of volatility dynamics for a set of five major

dollar exchange rates, which not only illustrated the simplicity and flexibility of our method, but

also produced sharp and substantive results.  In particular, for each exchange rate the analysis

points emphatically to a two-factor stochastic volatility model, with one highly persistent and one

transient factor.  We are not the first to suggest that a two-factor stochastic volatility model is

desirable; see Chacko and Viceira (1999), Gallant, Hsu, and Tauchen (1999), Chernov, Gallant,

Ghysels, and Tauchen (1999), and Engle and Lee (1999).  Our results do, however, contribute

importantly to what may be an emerging consensus.

One appealing direction for future research is an extension of our methods to the

multivariate case, through the construction and study of measures of covariation based on daily

ranges.  One might consider, for example, the daily maximum divergence Range(si&sj) ,

effectively a “cross-range.”  A key question is whether this cross range, for which we typically do

not have data, is related to and for which we do have data.  It is obvious thatRange(si) Range(sj) ,

but a more subtle relationship may nevertheless be operative.Range(si&sj)…Range(si)&Range(sj) ,

A second direction for future research concerns the robustness of the range to market

microstructure effects.  If high-frequency intra-day data are available, then under certain
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conditions daily realized volatilities constructed from this data are even more efficient than the

range as volatility proxy (e.g., Andersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold, and

Labys, 1999).  We conjecture, however, that market microstructure effects may plague daily

realized volatilities constructed from high-frequency intra-day data more than they plague the

daily range, depending on the specifics of the market.
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Table 1
Moments of Alternative Volatility Proxies

We consider a driftless Brownian motion x, with origin  and constant diffusion coefficient ,x0'0 F
over an interval of finite length .  The table shows the first four moments of two volatilityJ
proxies:  the log absolute return  and the log range ln|xJ| ln|sup xt&inf xt| .

  Volatility Proxy            Mean         Standard          Skewness        Kurtosis
        Deviation

Log Absolute Return 1.11 -1.53 6.93&0.64 % ½lnJ % lnF

Log Range    0.29  0.17 2.800.43 % ½lnJ % lnF



st ' st&)t % FiH ,st )t

lnF(i%1)H ' lnF̄ % DH ( lnFiH & lnF̄) % $,<i H,

Table 2
Monte Carlo Analysis of Alternative Estimators

Constant Intraday Volatility, T = 1000

We report statistics summarizing the sampling distribution of several estimators of the parameters and the latent
volatilities in the stochastic volatility model:

where  and  are independent N[0,1] random variables.  The discrete time increment , aiH< t # (i%1)H , ,st ,<i )t
fraction of the discrete sampling interval , approximates the continuous time .  We set andH dt H'1/257

, which corresponds to using daily data generated by 1000 trades per day.  We set ,)t'H/1000 "'3.855
 and , which implies a volatility process with daily autocorrelation of  and anlnF̄'&2.5 $'0.75 DH'0.985

annualized average volatility of 8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum
likelihood estimator with the log absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian
quasi-maximum likelihood estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator
that maximizes the exact likelihood of log absolute returns, evaluated by simulation methods.  All results are
based on 5000 Monte Carlo replications.

Estimator Mean Std. Dev. 1% 5% 25% 50% 75% 95% 99%

D'0.985
QML (Log Abs. Return)  0.95 0.13 0.14 0.84 0.97 0.98 0.99 0.99 1.00
QML (Log Range) 0.98 0.01 0.95 0.96 0.97 0.98 0.99 0.99  0.99 
Exact ML 0.98 0.02 0.92 0.95 0.97 0.98 0.99 0.99 1.00

$'0.750
QML (Log Abs. Return) 1.07 1.10 0.22 0.37 0.61 0.82 1.09 2.37 7.53 
QML (Log Range) 0.80 0.11 0.55 0.63 0.72 0.79 0.87 0.98 1.07 
Exact ML 0.80 0.22 0.34 0.49 0.64 0.77 0.91 1.16 1.44

lnF̄'&2.50
QML (Log Abs. Return) -2.49 0.10 -2.74 -2.66 -2.56 -2.49 -2.42 -2.33 -2.27 
QML (Log Range -2.53 0.09 -2.75 -2.68 -2.59 -2.53 -2.46 -2.38 -2.31 
Exact ML -2.51 0.10 -2.73 -2.66 -2.58 -2.50 -2.44 -2.35 -2.27

E[lnF̂t& lnFt]
QML (Log Abs. Return) 0.00 0.09 -0.22 -0.16 -0.06 0.00 0.07 0.15 0.22 
QML (Log Range) 0.00 0.09 -0.22 -0.15 -0.06 0.00 0.07 0.15 0.22 
Exact ML 0.00 0.09 -0.22 -0.15 -0.06 0.00 0.07 0.16 0.23

E[lnF̂t& lnFt]
2

QML (Log Abs. Return) 0.05 0.02 0.02 0.03 0.04 0.04 0.05 0.08 0.11 
QML (Log Range) 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.05 0.07 
Exact ML 0.03 0.01 0.01 0.02 0.02 0.02 0.03 0.06 0.08



st ' st&)t % FiH ,st )t

lnF(i%1)H ' ln F̄ % DH ( lnFiH & lnF̄ ) % $,<i H,

Table 3
Monte Carlo Analysis of Alternative Estimators

Constant Intraday Volatility, T = 500

We report statistics summarizing the sampling distribution of several estimators of the parameters and the latent
volatilities in the stochastic volatility model:

where  and  are independent N[0,1] random variables.  The discrete time increment , aiH < t # (i%1)H , ,st ,<i )t
fraction of the discrete sampling interval , approximates the continuous time .  We set andH dt H'1/257

, which corresponds to using daily data generated by 1000 trades per day.  We set ,)t'H/1000 "'3.855
 and , which implies a volatility process with daily autocorrelation of  and anlnF̄'&2.5 $'0.75 DH'0.985

annualized average volatility of 8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum
likelihood estimator with the log absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian
quasi-maximum likelihood estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator
that maximizes the exact likelihood of log absolute returns, evaluated by simulation methods.  All results are
based on 5000 Monte Carlo replications.

Estimator Mean Std. Dev. 1% 5% 25% 50% 75% 95% 99%

D'0.985
QML (Log Abs. Return) 0.86 0.27 0.00 0.02 0.91 0.97 0.98 0.99 1.00
QML (Log Range) 0.97 0.02 0.90 0.94 0.97 0.98 0.98 0.99 1.00 
Exact ML  0.96 0.06 0.72 0.89 0.96 0.98 0.99 0.99 1.00

$'0.750
QML (Log Abs. Return) 1.58 1.90 0.11 0.28 0.63 0.93 1.50 6.42 9.36  
QML (Log Range) 0.82 0.16 0.47 0.56 0.71 0.81 0.92 1.09 1.26
Exact ML 0.88 0.43 0.19 0.38 0.62 0.81 1.03 1.56 2.49

lnF̄'&2.50
QML (Log Abs. Return) -2.49 0.14 -2.83 -2.72 -2.59 -2.49 -2.40 -2.26 -2.16 
QML (Log Range) -2.52 0.13 -2.83 -2.74 -2.61 -2.53 -2.45 -2.32 -2.21  
Exact ML -2.51 0.13 -2.82 -2.72 -2.59 -2.50 -2.41 -2.28 -2.18

E[lnF̂t& lnFt]
QML (Log Abs. Return) 0.00 0.13 -0.30 -0.21 -0.08 0.00 0.09 0.21 0.32  
QML (Log Range) 0.00 0.13 -0.29 -0.21 -0.08 0.00 0.09 0.21 0.31 
Exact ML 0.00 0.13 -0.29 -0.20 -0.07 0.01 0.10 0.22 0.32

E[lnF̂t& lnFt]
2

QML (Log Abs. Return) 0.06 0.03 0.02 0.03 0.04 0.05 0.07 0.12 0.17 
QML (Log Range) 0.03 0.02 0.01 0.01 0.01 0.02 0.03 0.08 0.13 
Exact ML 0.04 0.03 0.01 0.01 0.02 0.03 0.04 0.08 0.14



st ' st&)t % FiH ,st )t

lnF(i%1)H ' ln F̄ % DH ( lnFiH & lnF̄ ) % $,<i H,

Table 4
Monte Carlo Analysis of Alternative Estimators

Constant Intraday Volatility, T = 5000

We report statistics summarizing the sampling distribution of several estimators of the parameters and the latent
volatilities in the stochastic volatility model:

 where  and  are independent N[0,1] random variables.  The discrete time increment , aiH < t # (i%1)H , ,st ,<i )t
fraction of the discrete sampling interval , approximates the continuous time .  We set andH dt H'1/257

, which corresponds to using daily data generated by 1000 trades per day.  We set ,)t'H/1000 "'3.855
 and , which implies a volatility process with daily autocorrelation of  and anlnF̄'&2.5 $'0.75 DH'0.985

annualized average volatility of 8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum
likelihood estimator with the log absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian
quasi-maximum likelihood estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator
that maximizes the exact likelihood of log absolute returns, evaluated by simulation methods.  All results are
based on 5000 Monte Carlo replications.

Estimator Mean Std. Dev. 1% 5% 25% 50% 75% 95% 99%

D'0.985
QML (Log Abs. Return) 0.98 0.01 0.96 0.97 0.98 0.98 0.99 0.99 0.99  
QML (Log Range) 0.98 0.00 0.97 0.98 0.98 0.98 0.99 0.99 0.99 
Exact ML  0.98 0.00 0.97 0.98 0.98 0.98 0.99 0.99 0.99

$'0.750
QML (Log Abs. Return) 0.77 0.15 0.48 0.55 0.67 0.76 0.86 1.02 1.19  
QML (Log Range) 0.78 0.05 0.68 0.71 0.75 0.78 0.81 0.86 0.89 
Exact ML 0.73 0.08 0.56 0.61 0.69 0.77 0.80 0.89 0.96

lnF̄'&2.50
QML (Log Abs. Return) -2.49 0.05 -2.60 -2.57 -2.53 -2.49 -2.46 -2.42 -2.39  
QML (Log Range) -2.53 0.04 -2.63 -2.60 -2.56 -2.53 -2.50 -2.46 -2.43 
Exact ML -2.50 0.05 -2.60 -2.57 -2.52 -2.49 -2.47 -2.43 -2.39

E[lnF̂t& lnFt]
QML (Log Abs. Return) 0.00 0.04 -0.10 -0.07 -0.03 0.00 0.03 0.07 0.10  
QML (Log Range) 0.00 0.04 -0.10 -0.07 -0.03 0.00 0.03 0.08 0.10 
Exact ML 0.00 0.04 -0.10 -0.07 -0.02 0.00 0.04 0.08 0.11

E[lnF̂t& lnFt]
2

QML (Log Abs. Return) 0.04 0.00 0.03 0.03 0.04 0.04 0.04 0.05 0.05  
QML (Log Range) 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 
Exact ML 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.03



st ' st&)t % Ft&)t ,st )t

lnFt ' ln F̄ % D)t( lnFt&)t & lnF̄ ) % $,<t )t,

Table 5
Monte Carlo Analysis of Alternative Estimators

Stochastic Intraday Volatility, T = 1000

We report statistics summarizing the sampling distribution of several estimators of the parameters and the latent
volatilities in the stochastic volatility model:

where  and  are independent N[0,1] random variables.  The discrete time increment , a fraction of the,st ,<t )t
discrete sampling interval , approximates the continuous time .We set and , whichH dt H'1/257 )t'H/1000
corresponds to using daily data generated by 1000 trades per day.  We set ,  and ,"'3.855 lnF̄'&2.5 $'0.75
which implies a volatility process with daily autocorrelation of  and an annualized average volatility ofDH'0.985
8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum likelihood estimator with the log
absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian quasi-maximum likelihood
estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator that maximizes the exact
likelihood of log absolute returns, evaluated by simulation methods.  All results are based on 5000 Monte Carlo
replications.

Estimator Mean Std. Dev. 1% 5% 25% 50% 75% 95% 99%

D'0.985
QML (Log Abs. Return) 0.95 0.13 0.13 0.84 0.96 0.98 0.99 0.99 1.00 
QML (Log Range) 0.98 0.10 0.95 0.96 0.97 0.98 0.99 0.99 0.99 
Exact ML 0.98 0.11 0.92 0.95 0.97 0.98 0.99 0.99 1.00

$'0.750
QML (Log Abs. Return) 1.07 1.08 0.24 0.39 0.61 0.82 1.11 2.46 7.10 
QML (Log Range) 0.79 0.11 0.56 0.62 0.72 0.78 0.86 0.97 1.05 
Exact ML 0.79 0.22 0.37 0.47 0.68 0.77 0.92 1.17 1.43

lnF̄'&2.50
QML (Log Abs. Return) -2.50 0.10 -2.73 -2.66 -2.56 -2.50 -2.43 -2.34 -2.27 
QML (Log Range) -2.53 0.09 -2.75 -2.68 -2.59 -2.53 -2.47 -2.38 -2.32 
Exact ML -2.50 0.09 -2.73 -2.66 -2.56 -2.50 -2.44 -2.35 -2.28

E[lnF̂t& lnFt]
QML (Log Abs. Return)   0.00 0.09 -0.22 -0.16 -0.06 0.00 0.06 0.15 0.21 
QML (Log Range) 0.00 0.09 -0.22 -0.15 -0.06 0.00 0.06 0.15 0.22 
Exact ML 0.00 0.09 -0.22 -0.15 -0.06 0.00 0.07 0.15 0.21

E[lnF̂t& lnFt]
2

QML (Log Abs. Return) 0.05 0.02 0.02 0.03 0.04 0.04 0.05 0.07 0.10 
QML (Log Range) 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.07 
Exact ML 0.03 0.01 0.01 0.01 0.02 0.02 0.03 0.05 0.08



st ' st&)t % Ft&)t ,st )t

lnFt ' ln F̄ % D)t( lnFt&)t & lnF̄ ) % $,<t )t,

Table 6
Monte Carlo Analysis of Alternative Estimators

Stochastic Intraday Volatility, T = 500

We report statistics summarizing the sampling distribution of several estimators of the parameters and the latent
volatilities in the stochastic volatility model:

where  and  are independent N[0,1] random variables.  The discrete time increment , a fraction of the,st ,<t )t
discrete sampling interval , approximates the continuous time .  We set and , whichH dt H'1/257 )t'H/1000
corresponds to using daily data generated by 1000 trades per day.  We set ,  and ,"'3.855 lnF̄'&2.5 $'0.75
which implies a volatility process with daily autocorrelation of  and an annualized average volatility ofDH'0.985
8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum likelihood estimator with the log
absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian quasi-maximum likelihood
estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator that maximizes the exact
likelihood of log absolute returns, evaluated by simulation methods.  All results are based on 5000 Monte Carlo
replications.

Estimator Mean Std. Dev. 1% 5% 25% 50% 75% 95% 99%

D'0.985
QML (Log Abs. Return) 0.85 0.27 0.00 0.00 0.91 0.97 0.98 0.99 1.00 
QML (Log Range) 0.97 0.02 0.90 0.94 0.96 0.98 0.98 0.99 0.99 
Exact ML   0.97 0.05 0.82 0.90 0.96 0.98 0.98 0.99 1.00

$'0.750
QML (Log Abs. Return) 1.54 1.86 0.11 0.25 0.61 0.91 1.49 6.10 9.37 
QML (Log Range) 0.81 0.16 0.46 0.57 0.70 0.80 0.91 1.08 1.23 
Exact ML 0.85 0.42 0.23 0.37 0.59 0.78 1.01 1.53 2.19

lnF̄'&2.50
QML (Log Abs. Return) -2.49 0.14 -2.81 -2.72 -2.59 -2.49 -2.40 -2.27 -2.18 
QML (Log Range) -2.53 0.13 -2.82 -2.74 -2.61 -2.53 -2.44 -2.32 -2.24 
Exact ML -2.51 0.13 -2.80 -2.71 -2.59 -2.50 -2.41 -2.29 -2.20

E[lnF̂t& lnFt]
QML (Log Abs. Return) 0.00 0.13 -0.30 -0.21 -0.08 0.00 0.09 0.21 0.29 
QML (Log Range) 0.00 0.13 -0.29 -0.21 -0.08 0.00 0.09 0.21 0.28 
Exact ML 0.00 0.13 -0.29 -0.20 -0.08 0.00 0.10 0.22 0.30

E[lnF̂t& lnFt]
2

QML (Log Abs. Return) 0.05 0.03 0.02 0.03 0.04 0.05 0.06 0.11 0.16 
QML (Log Range) 0.03 0.02 0.01 0.01 0.01 0.02 0.03 0.07 0.11 
Exact ML 0.04 0.03 0.01 0.01 0.02 0.03 0.04 0.08 0.13



st ' st&)t % Ft&)t ,st )t

lnFt ' ln F̄ % D)t( lnFt&)t & lnF̄ ) % $,<t )t,

Table 7
Monte Carlo Analysis of Alternative Estimators

Stochastic Intraday Volatility, T = 5000

We report statistics summarizing the sampling distribution of several estimators of the parameters and the latent
volatilities in the stochastic volatility model:

where  and  are independent N[0,1] random variables.  The discrete time increment , a fraction of the,st ,<t )t
discrete sampling interval , approximates the continuous time .  We set and , whichH dt H'1/257 )t'H/1000
corresponds to using daily data generated by 1000 trades per day.  We set ,  and ,"'3.855 lnF̄'&2.5 $'0.75
which implies a volatility process with daily autocorrelation of  and an annualized average volatility ofDH'0.985
8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum likelihood estimator with the log
absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian quasi-maximum likelihood
estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator that maximizes the exact
likelihood of log absolute returns, evaluated by simulation methods.  All results are based on 5000 Monte Carlo
replications.

Estimator Mean Std. Dev. 1% 5% 25% 50% 75% 95% 99%

D'0.985
QML (Log Abs. Return) 0.98 0.01 0.96 0.97 0.98 0.98 0.99 0.99 0.99 
QML (Log Range) 0.98 0.00 0.98 0.98 0.98 0.98 0.99 0.99 0.99 
Exact ML  0.98 0.00 0.97 0.98 0.98 0.98 0.99 0.99 0.00

$'0.750
QML (Log Abs. Return) 0.77 0.15 0.46 0.54 0.67 0.76 0.86 1.03 1.17 
QML (Log Range) 0.77 0.05 0.67 0.70 0.74 0.77 0.80 0.85 0.88 
Exact ML 0.74 0.09 0.56 0.61 0.68 0.74 0.80 0.89 0.94

lnF̄'&2.50
QML (Log Abs. Return) -2.50 0.05 -2.60 -2.57 -2.53 -2.50 -2.46 -2.42 -2.39 
QML (Log Range) -2.53 0.04 -2.63 -2.61 -2.56 -2.53 -2.50 -2.46 -2.43 
Exact ML -2.50 0.04 -2.61 -2.57 -2.53 -2.50 -2.47 -2.43 -2.41

E[lnF̂t& lnFt]
QML (Log Abs. Return) -0.00 0.04 -0.10 -0.08 -0.03 -0.00 0.03 0.07 0.10 
QML (Log Range) avg  -0.00 0.04 -0.10 -0.08 -0.03 -0.00 0.03 0.07 0.10 
Exact ML -0.00 0.04 -0.10 -0.07 -0.02 -0.00 0.04 0.07 0.10

E[lnF̂t& lnFt]
2

QML (Log Abs. Return) 0.04 0.00 0.03 0.03 0.03 0.04 0.04 0.05 0.05 
QML (Log Range) 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 
Exact ML 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.03



Table 8
Distributions and Dynamics of Volatility Proxies

Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of two
volatility proxies for five dollar exchange rates, measured daily from 1 January 1978 through 31
December 1998.  The underlying data used to compute the log absolute return and the log range are
daily high, low, and settlement prices of front-month futures contracts traded on the International
Monetary Market.

                 Unconditional Moments                                        Autocorrelations               
Volatility Proxy Mean Std.     Skew. Kurt. 1st 2nd 5th 10th 20th

                                                                                                                                       
                                                        British Pound                                                          

Log Absolute Return -5.82 1.19 -0.86 3.64 0.09 0.06 0.10 0.07 0.05
Log Range -4.87 0.53  0.09 3.10 0.39 0.33 0.30 0.27 0.22

                                                                                                                                       
                                                       Canadian Dollar                                                       

Log Absolute Return -6.67 1.10 -0.62 2.89 0.11 0.09 0.12 0.08 0.05
Log Range -5.70 0.53 -0.02 3.39 0.49 0.46 0.41 0.35 0.31

                                                                                                                                       
                                                       Deutsche Mark                                                         

Log Absolute Return -5.77 1.17 -0.88 3.62 0.06 0.06 0.09 0.07 0.05
Log Range -4.83 0.52 -0.07 3.12 0.40 0.37 0.35 0.30 0.23

                                                                                                                                       
                                                        Japanese Yen                                                          

Log Absolute Return -5.77 1.17 -0.88 3.62 0.10 0.05 0.08 0.07 0.07
Log Range -4.88 0.58  0.03 3.19 0.41 0.34 0.32 0.26 0.20

                                                                                                                                       
                                                          Swiss Franc                                                           

Log Absolute Return -5.60 1.16 -0.95 3.77 0.05 0.02 0.06 0.05 0.04
Log Range -4.67 0.48  0.04 3.13 0.32 0.29 0.30 0.25 0.19



Table 9
Quasi-Maximum Likelihood Estimates

One-Factor and Two-Factor Stochastic Volatility Models
Five Dollar Exchange Rates

We report estimates of one-factor and two-factor stochastic volatility models fit to five dollar exchange
rates, using daily data from 1 January 1978 through 31 December 1998. Asymptotic standard errors are
in parentheses. See text for model descriptions.

                One-Factor Model                                                   Two-Factor Model            
Volatility Proxy lnF̄ D $ lnF̄ D1 $1 D2 $2

                                                                                                                                         
                                                   British Pound                                                                 

Log Absolute Return -2.42 0.99 0.91 -2.42 0.99 0.60 0.06 7.44
(0.06) (0.01) (0.18) (0.08) (0.00) (0.12) (0.07) (0.51)

Log Range -2.51 0.65 5.33 -2.50 0.98 0.94 0.19 5.14
(0.01) (0.02) (0.12) (0.04) (0.00) (0.09) (0.03) (0.10)

                                                                                                                                         
                                                 Canadian Dollar                                                               

Log Absolute Return -3.29 0.98 1.12 -3.29 0.98 1.03 0.24 3.26
(0.06) (0.01) (0.16) (0.06) (0.00) (0.15) (0.39) (0.93)

Log Range -3.34 0.85 3.69 -3.34 0.98 1.20 0.16 4.26
(0.02) (0.01) (0.14) (0.05) (0.00) (0.10) (0.04) (0.11)

                                                                                                                                         
                                                  Deutsche Mark                                                                

Log Absolute Return -2.38 0.97 1.37 -2.38 0.98 1.07 -0.11 6.57
(0.04) (0.01) (0.25) (0.05) (0.01) (0.21) (0.16) (0.61)

Log Range -2.47 0.72 4.77 -2.47 0.97 1.23  0.05 4.64
(0.02) (0.02) (0.14) (0.04) (0.01) (0.09) (0.04) (0.11)

                                                                                                                                         
                                                   Japanese Yen                                                                 

Log Absolute Return -2.37 0.97 1.47 -2.38 0.98 0.94 0.17 7.31
(0.04) (0.01) (0.28) (0.05) (0.01) (0.21) (0.10) (0.53)

Log Range -2.53 0.62 6.20 -2.53 0.97 1.43 0.15 5.68
(0.02) (0.02) (0.12) (0.04) (0.01) (0.13) (0.03) (0.12)

                                                                                                                                         
                                                    Swiss Franc                                                                   

Log Absolute Return -2.22 0.98 0.74 -2.22 0.99 0.59 0.02 6.29
(0.04) (0.10) (0.15) (0.05) (0.00) (0.13) (0.02) (0.58)

Log Range -2.32 0.63 4.78 -2.32 0.97 1.05 0.03 4.50
(0.01) (0.02) (0.13) (0.03) (0.01) (0.08) (0.03) (0.11)



Table 10
Residual Diagnostics

One-Factor Stochastic Volatility Models
Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
measurement equation residuals from one-factor stochastic volatility models fit to five dollar exchange
rates, using daily data from 1 January 1978 through 31 December 1998.

          Unconditional Moments                          Autocorrelations                  
Volatility Proxy Std. Skew. Kurt. 1st 2nd 5th 10th 20th

                                                                                                                             
                                             British Pound                                                           

Log Absolute Return 1.17 -1.29 5.87 -0.00 -0.02 0.02 -0.00 -0.02
Log Range 0.30  0.15 3.06  0.18  0.20 0.22  0.20  0.16

                                                                                                                             
                                           Canadian Dollar                                                         

Log Absolute Return 1.10 -1.19 5.46  0.10 -0.01 0.02 -0.02 -0.03
Log Range 0.26  0.17 3.25 -0.02  0.07 0.12  0.10  0.09

                                                                                                                             
                                           Deutsche Mark                                                          

Log Absolute Return 1.16 -1.46 7.53 -0.03 -0.02 0.02 0.004 0.00
Log Range 0.28  0.06 3.07  0.10  0.16 0.21 0.18 0.15

                                                                                                                             
                                             Japanese Yen                                                           

Log Absolute Return 1.14 -1.08 4.67 0.02 -0.03 0.01 0.12 0.03
Log Range 0.32  0.09 3.15 0.23  0.23 0.25 0.20 0.16

                                                                                                                             
                                              Swiss Franc                                                             

Log Absolute Return 1.15 -1.25 5.59 -0.00 -0.04 0.01 0.01 -0.00
Log Range 0.29  0.12 3.08  0.12  0.16 0.21 0.18  0.15



Table 11
Residual Diagnostics

Two-Factor Stochastic Volatility Models
Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
measurement equation residuals from two-factor stochastic volatility models fit to five dollar exchange
rates, using daily data from 1 January 1978 through 31 December 1998.

          Unconditional Moments                          Autocorrelations                  
Volatility Proxy Std. Skew. Kurt. 1st 2nd 5th 10th 20th

                                                                                                                             
                                             British Pound                                                           

Log Absolute Return 1.18 -1.26 5.72 0.01 -0.01 0.03 0.00 -0.01
Log Range 0.37  0.24 3.17 0.11  0.03 0.02 0.02  0.01

                                                                                                                             
                                           Canadian Dollar                                                         

Log Absolute Return 1.09 -1.17 5.39 0.01 -0.01 0.02 -0.01 -0.03
Log Range 0.33   0.23 3.38 0.07  0.05 0.01 -0.01  0.01

                                                                                                                             
                                           Deutsche Mark                                                          

Log Absolute Return 1.17 -1.28 5.88 -0.02 -0.01 0.03 0.01 0.00
Log Range 0.37  0.19 3.09  0.04  0.00 0.02 0.02 0.02

                                                                                                                             
                                             Japanese Yen                                                           

Log Absolute Return 1.16 -1.34 6.72 0.03 -0.01 0.02 0.02 0.02
Log Range 0.39  0.26 3.27 0.09  0.01 0.03 0.01 0.02

                                                                                                                             
                                              Swiss Franc                                                             

Log Absolute Return 1.16 -1.30 5.91 0.01 -0.03 0.02 0.01 0.00
Log Range 0.37  0.27 3.17 0.02 -0.01 0.03 0.02 0.03



Figure 1a
Distribution of Log Absolute Return

We consider a driftless Brownian motion, with zero origin and unit
diffusion coefficient, over an interval of unit length.  We plot the
distribution of the log absolute return, with the best-fitting normal
distribution superimposed for visual reference.

Figure 1b
Distribution of Log Range

We consider a driftless Brownian motion, with zero origin and unit
diffusion coefficient, over an interval of unit length.  We plot the
distribution of the log range, with the best-fitting normal distribution
superimposed for visual reference.
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Figure 2
Monte Carlo Distributions of Parameter Estimates

We show estimates of the sampling distributions of several estimators of the parameters and the latent volatilities 
in the stochastic volatility model:

where  and  are independent N[0,1] random variables.  The discrete time increment , aiH < t # (i%1)H , ,st ,<i )t
fraction of the discrete sampling interval , approximates the continuous time .  We set andH dt H'1/257

, which corresponds to using daily data generated by 1000 trades per day.  We set ,)t'H/1000 "'3.855
 and , which implies a volatility process with daily autocorrelation of  and anlnF̄'&2.5 F<'0.75 DH'0.985

annualized average volatility of 8.51 percent.  “QML (Log Abs. Return)” denotes the Gaussian quasi-maximum
likelihood estimator with the log absolute return as volatility proxy.  “QML (Log Range)” denotes the Gaussian
quasi-maximum likelihood estimator with the log range as volatility proxy.  “Exact ML” denotes the estimator
that maximizes the exact likelihood of log absolute returns, evaluated by simulation methods.  All results are
based on 5000 Monte Carlo replications, sample size T=1000, and constant intraday volatility.  Reading across
the rows, we show the sampling distributions of the estimators of , , , and    The twoD $ logF̄ E[lnF̂t&lnFt]

2.
vertical lines in the second plot of the first row mark the range of the same plots in the second and third row.

QML (Log Abs. Return)

QML (Log Range)

Exact ML



Figure 3
Measurement Equation Residual Distributions

One-Factor Stochastic Volatility Models, Five Dollar Exchange Rates

We show histograms of the measurement equation residuals for stochastic volatility models estimated using either
log absolute returns or the log range as volatility proxy with the best-fitting normal imposed for visual reference, and
the corresponding quantile-quantile (QQ) plot, which is a graph of the quantiles of the standardized residual
distribution against the corresponding quantiles of a N[0,1] distribution.  If the residual  is normally distributed, its
Gaussian QQ plot is a straight line with a unit slope.  The rows correspond to the five currencies examined:  the
British pound, Canadian dollar, Deutsche Mark, Japanese yen, and Swiss franc. 

        Log Absolute Returns Residuals        Log Range Residuals
               Histogram                QQ Plot                  Histogram   QQ Plot



Figure 4
Measurement Equation Residual Distributions

Two-Factor Stochastic Volatility Models, Five Dollar Exchange Rates

We show histograms of the measurement equation residuals for stochastic volatility models estimated using either
log absolute returns or the log range as volatility proxy with the best-fitting normal imposed for visual reference, and
the corresponding QQ plot, which is a graph of the quantiles of the standardized residual distribution against the
corresponding quantiles of a N[0,1] distribution.  If the residual  is normally distributed, its Gaussian QQ plot is a
straight line with a unit slope.  The rows correspond to the five currencies examined:  the British pound, Canadian
dollar, Deutsche Mark, Japanese yen, and Swiss franc. 

      Log Absolute Returns Residuals              Log Range Residuals
             Histogram          QQ Plot                          Histogram           QQ Plot


