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Abstract:   This paper develops a pricing methodology and pricing estimates for the proposed
Federal excess-of- loss (XOL) catastrophe reinsurance contracts. The contracts, proposed by
the Clinton Administration, would provide per-occurrence excess-of-loss reinsurance coverage
to private insurers and reinsurers, where both the coverage layer and the fixed payout of the
contract are based on insurance industry losses, not company losses. In financial terms, the
Federal government would be selling earthquake and hurricane catastrophe call options to the
insurance industry to cover catastrophic losses in a loss layer above that currently available in
the private reinsurance market. The contracts would be sold annually at auction, with a
reservation price designed to avoid a government subsidy and ensure that the program would
be self supporting in expected value. If a loss were to occur that resulted in payouts in excess
of the premiums collected under the policies, the Federal government would use its ability to
borrow at the risk-free rate to fund the losses. During periods when the accumulated
premiums paid into the program exceed the losses paid, the buyers of the contracts implicitly
would be lending money to the Treasury, reducing the costs of government debt. The
expected interest on these "loans" offsets the expected financing (borrowing) costs of the
program as long as the contracts are priced appropriately. By accessing the Federal
government’s superior ability to diversify risk inter-temporally, the contracts could be sold at
a rate lower than would be required in conventional reinsurance markets, which would
potentially require a high cost of capital due to the possibility that a major catastrophe could
bankrupt some reinsurers. By pricing the contacts at least to break even, the program would
provide for eventual private-market “crowding out” through catastrophe derivatives and other
innovative catastrophic risk financing mechanisms.

We develop prices for the contracts using two samples of catastrophe losses: (1)
historical catastrophic loss experience over the period 1949-1994 as reported by Property Claim
Services; and (2) simulated catastrophe losses based on an engineering simulation analysis
conducted by Risk Management Solutions. We used maximum likelihood estimation
techniques to fit frequency and severity probability distributions to the catastrophic loss data,
and then used the distributions to estimate expected losses under the contracts. The
reservation price would be determined by adding an administrative expense charge and a risk
premium to the expected losses for the specified layer of coverage. We estimate the expected
loss component of the government’s reservation price for proposed XOL contracts covering the
entire U.S., California, Florida, and the Southeast. We used a loss layer of $25-50 billion for
illustrative purposes.



PRICING EXCESS-OF-LOSS REINSURANCE CONTRACTS
AGAINST CATASTROPHIC LOSS

By

J. David Cummins, Christopher M. Lewis, and Richard D. Phillips

I. Introduction

With the recent rise in catastrophic disaster losses and the resulting impact on insurance

company solvency, the insurance industry is increasingly calling for some form of Federal assistance

in meeting disaster claims.  Most of these requests, including the industry-sponsored Natural Disaster

Partnership Protection Act of 1995, incorporate some form of all-hazard federal reinsurance program

or backstop.  A recent paper by Lewis and Murdock (1996) argues that the lack of Federal

regulatory authority in the insurance industry; the prevalence of moral hazard, adverse selection, and

other opportunities for risk-shifting; and the well-documented inability of the Federal government to

set adequate premiums to control for these costs make any traditional Federal reinsurance program

problematic.  

Instead, Lewis and Murdock propose an alternative form of Federal reinsurance that provides

targeted protection for the insurance industry against catastrophic events but limits the Federal

government's exposure to additional losses.1  Under this alternative, the Federal government would

sell per-occurrence excess-of-loss contracts to private insurers and reinsurers, where both the

coverage layer and the fixed payout of the contract are based on insurance industry losses, not

company losses.  In financial terms, the Federal government would be selling earthquake and

hurricane catastrophe call options to the insurance industry to cover catastrophic losses in the range

of $25 to $50 billion.  Lewis and Murdock argue that this type of contract would expand capacity

and stability for the insurance industry, while limiting the taxpayer's exposure to the insured event:

namely, a catastrophic disaster.
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The purpose of the present paper is to develop a methodology for pricing the catastrophic

reinsurance contracts proposed in Lewis and Murdock (1996) and to present price estimates based

both on historical catastrophe loss experience and engineering simulations.  After briefly discussing

the need for a Federal role and summarizing the key provisions of the proposed reinsurance contract,

the paper proceeds by developing a statistical model of losses that would be covered under the

contract.  We then discuss how insurers could use the proposed contracts in hedging catastrophic

risk. Finally, we provide estimates of catastrophe frequency, severity, and expected total losses based

on two sources -- the Property Claims Services (1994) data base on insured catastrophe property

losses covering the period 1949-1994 and simulated catastrophe losses obtained from Risk

Management Solutions -- and use these estimates to illustrate prices of the reinsurance contracts.

II. The Proposed Reinsurance Contract

The Need for a Federal Role  

The proposed Federal catastrophe reinsurance contract is needed due to dislocations in insurance

and reinsurance markets resulting from growing catastrophic property losses. Combined, Hurricane

Andrew in 1992 ($16.4 billion) and the Northridge earthquake in 1994 ($12.5 billion) resulted in

nearly $29 billion in insured industry losses and caused the failure of at least 10 insurance companies

(see Scism and Brannigan, 1996).  The magnitude of insurance industry losses associated with these

two recent disasters is unprecedented.  The next largest insured catastrophe loss was the $4.2 billion

in losses associated with Hurricane Hugo.  Over the 1988-1994 period, insured industry losses

exceeded $35 billion in 1992 dollars, more than the cumulative total over the previous 21 years.

More troubling is the fact that Hurricane Andrew and the Northridge earthquake may not
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represent "outlier" events.  Research on the frequency and magnitude of hurricanes and earthquakes,

as measured by the Saffir-Simpson and Richter scales respectively, indicate a strong potential for

increased disaster activity over the next 20 years (Gray, 1990).  In addition, given the 69 percent

increase in insured coastal property values in the U.S. since 1988 (to $3.15 trillion), the losses

associated with hurricanes are likely to be more severe than historical experience.  Thus, the

probability of disasters with losses at least as large Hurricane Andrew and the Northridge earthquake

over the coming years remains significant.

The realization of this increased risk exposure has sent reverberations through the insurance

markets, especially in Florida and California.  Reinsurance companies have raised rates rapidly, in

many cases by as much as 150 percent.  Following suit, primary insurers have submitted requests for

large rate increases to state insurance commissioners.  However, most of these rate increases have

been pared down by states before being approved, allegedly creating a gap between the reinsurance

premium for a given layer of coverage and the amount the insurer can recover from the buyer

through the primary market premium.2  Thus, the recent jump in expected disaster claim severity and

frequency and the resulting recognition of the inadequacy of insurance premiums has prompted the

industry to look to the Federal government for some form of assistance, typically through a

reinsurance mechanism.

Lewis and Murdock (1996) contend that a targeted, risk-specific Federal reinsurance

program could expand the supply of reinsurance without imposing a large liability on the Federal

government, based on the Federal government's superior ability to diversify intertemporally. 

Typically, the cost-of-funds advantage of private reinsurers over a ceding insurer relates to an

improved ability to diversify risk geographically and, for some levels of risk, intertemporally. 
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However, the ability of a reinsurer to diversify catastrophic risk is limited by the reinsurer's access to

capital and the costs associated with the risk of insolvency.  The actuarially-fair premium for a 100-

year disaster is meaningless if the 100-year disaster occurs in year 2 and bankrupts the reinsurer. 

Thus, even if a differential exists between the reinsurer's targeted economic return and the ceding

insurer's required return, the risk premium required by the reinsurer for high risk lines may make

reinsurance unaffordable for the primary insurer.  This is especially true for very high risk exposures

where the uncertainty with respect to the loss is also high. 

The Federal government, on the other hand, carries a near zero default rate.  Therefore, a

Federal reinsurer would not be subject to insolvency risk and the limitations that insolvency risk

places on a private reinsurer's access to capital.  As a result, the risk premia required by a Federal

reinsurer for upper layers of catastrophic risk would be significantly below the premia required by

private reinsurers.  If this cost-of-capital advantage exceeds any efficiency losses associated with the

Federalization of this form of reinsurance, the supply of reinsurance will expand creating additional

capacity in the primary insurance market.  In addition, since catastrophic reinsurance capacity is

almost non-existent for upper layers of loss, inefficiency costs will most likely be small as long as the

Federal reinsurance program is adequately targeted to insuring catastrophic risk.  

The Proposed Contract  

The objective of catastrophic reinsurance is to provide per occurrence protection for losses (L)

that exceed some trigger level (T) based on what the insurer can absorb.  By design, once an event

exceeds this trigger, the reinsurance pays (some fixed proportion of) disaster losses (L) usually up to

some predetermined cap C on the reinsurer's exposure.  Therefore, if losses are less than the trigger,
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P ' Max[0 , Min (L & T ,C )] ' Max[0 , L & T ] & Max[0 , L & C ] (1)

the contract pays nothing.  If losses fall in the range between the trigger and the cap, the contract

pays out L-T.  If losses exceed the cap, the contract pays out the difference between the cap and the

trigger, or C-T.   Using this basic structure, one can specify the payout (P) of the reinsurance as

follows:3 

As the expression following the second equal sign in (1) reveals, the reinsurance contract is simply

the difference between two call options with different strike prices, i.e., a call option spread, written

on the loss exposure of the underlying event.  This specification corresponds directly with

conventional per occurrence reinsurance and with the structure of the catastrophe call options being

traded on the Chicago Board of Trade (CBOT) (see Cummins and Geman, 1995), and thus provides

a financial framework for structuring the Federal reinsurance role.  

Under the proposed reinsurance program, the Federal government would directly write and

sell contingent claims against the upper (capped) layers of catastrophic disaster losses on a per

occurrence basis.  These contingent claims, hereafter referred to as excess-of-loss or XOL contracts,

would be available for qualified insurance companies, pools, and reinsurers and would cover industry

losses from a disaster in the $25-$50 billion layer of coverage -- a layer currently unavailable in the

private market. 

Like private catastrophe covers, these XOL contracts would provide coverage for a single

event, not an aggregation of losses over a fixed period.  However, like the CBOT options, the

reinsurance trigger and cap would be based on insured industry losses to minimize the moral hazard

and adverse selection problems associated with writing company-specific reinsurance.4  The payout
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P ' Max[0 , d(L & T )] & Max[0 , d(L & C )] (2)

function on these XOL contracts would also be a function of industry losses and would be fixed at

the time the contract is issued.  Thus, the expected payout of the contract would be reexpressed as

follows:

where d(.) represents the payout function of the contract which depends on the difference between

the level of total industry losses and the contract trigger or strike price.  

As mentioned above, the XOL contract offered by the Federal government would be

analogous to writing a call option for the insurance industry that pays off when industry disaster

losses exceed $25 billion, along with a "short" call option such that industry losses in excess of $50

billion are retained by the insurance industry (i.e., buyers of the contract would be "long" in the call

option with strike price T and short in a call with strike price C).  

Thus, the payout to insurers of the first (long) call option component of the XOL contract

rises as a fixed proportion of industry losses in excess of $25 billion once the $25 billion threshold is

reached.  However, once industry losses exceed $50 billion, the second (short) component of the

XOL contract provides an equal offset to any additional industry losses above $50 billion.  As a

result, the Federal government's exposure is limited to covering losses in the $25-$50 billion range. 

Based on this payout structure insurance and reinsurance companies could decide on the optimal

number of contracts to purchase in order to hedge their catastrophe loss exposure. 

Other aspects of the XOL contracts include the following:  

# As mentioned above, the contracts would cover insured property losses from hurricanes,

earthquakes, and volcanic activity.  Qualified lines of insurance for earthquake damage would
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include property losses in earthquake shake policies (written separately or as part of a

homeowners policy), commercial multi-peril,  and commercial inland marine coverage associated

with earthquakes.  For hurricane damage, losses covered by homeowners, wind policies (written

separately or as part of a homeowners policy), commercial multi-peril, fire, allied, farmowners,

and commercial inland marine policies would be covered.  For reporting purposes, estimates

reported by the state insurance commissioners office in each affected state would be used as an

index of loss, with validation accomplished through year-end tax filings. 

# The XOL contracts would be sold annually with a maturity of one year.  However, each contract

would include a renewal provision that allows the holder of an exercised contract to purchase an

additional contract to cover losses to the end of the original contract year at a cost of the original

premium pro-rated to the remaining term on the exercised contract.   An alternative form of the

contracts, also under discussion, would cover the insurer for multiple events over a period of one

year.  This form would be equivalent to including an automatic renewability feature in the

contract.

# The trigger level of the contracts would be set at a level above the layers of reinsurance being

provided in the private markets.  Based on evidence provided by private reinsurers and the levels

of coverage available in the CBOT market, the trigger (T) is set initially at $25 billion in industry

losses.  This trigger level of coverage would be adjusted or indexed annually to the rate of

property-value inflation.
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d(.) ' 1
1000

(L & T ) (3)

# The fact that the actual distribution of catastrophic losses is unknown and must be estimated

from imperfect data exposes the Federal government to parameter estimation risk as well as the

risk of the underlying process.  To place a cap on the government's exposure, the upper limit of

the reinsurance contract is initially set at $50 billion.  Again, the level of the cap can be adjusted

annually to reflect property-value inflation.

# The payout function of the XOL contract stipulates how much each individual contract will pay

in the event the contract trigger is reached.  As proposed, d(.) simply represents a scalar function

relating industry losses to the desired denomination of each contract.  That is, d(.) is set so that

each contract pays out $1 million for every $1 billion by which industry losses exceeded the

trigger:

This simple payout function, which by construction includes a contract payout cap equal to $25

million, would provide a total capacity of 1,000 contracts being sold annually.  A more

complicated specification for d(.) is, of course, possible, but we will assume that the contracts

will be based on the simple linear structure given by (3).  

# Only insured losses paid during the 18 month period immediately following the disaster and

reported to the Federal government within 21 months of the event date will be covered to limit

the tail on the contract payout and to prevent the accumulation of losses over a series of events. 

While helping to protect against fraud and abuse, this provision has the additional advantage of
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encouraging insurance companies to expedite the processing of claims in the wake of a disaster --

a social good from a policy standpoint. 

# Private reinsurance firms; primary insurance companies; and state, regional, and national pools

would be eligible to purchase and exercise a Federal XOL contract, as long as they are licensed

to write property and casualty insurance or reinsurance in a state in the United States and are

actively providing insurance/reinsurance for property located in the United States.

To accelerate the development of a private reinsurance market to "crowd out" the Federal

government in the provision of catastrophe reinsurance coverage layers, these XOL contracts could

be priced using a private market cost-of-capital adjustment.  That is, the reservation price established

for the XOL contracts could be based, not on the Federal government's cost of borrowing, but on a

private market discount rate or hurdle rate established by the Federal government.  For additional

details regarding the contracts see Lewis and Murdock (1996).

III. Pricing Methodology

Pricing the contracts involves two steps: (1) estimating the loss distribution and the expected

value of loss, and (2) incorporating a risk premium and expense loading in the contract price.  These

steps are discussed below, following a general discussion of the pricing rationale for the contracts.

Pricing Rationale

Ideally, an insurance risk pool would be able to diversify risk across time as well as across

exposure units in the pool at a given point in time.  Most discussions of risk diversification through

pooling consider only the latter dimension (for a review, see Cummins, 1991).  Adding the time
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dimension can significantly reduce the standard deviation of losses from a pool of risks, reducing the

residual risk faced by pool participants.  As a simple example, consider a pool consisting of N

independent, identically distributed exposure units with expected loss µ and variance of loss s 2.  The

mean of the pool loss is then Nµ and the variance is N s 2, yielding a coefficient of variation (a

standard measure of the "insurer's risk") of s /(µ%N&).  If the pool can also diversify across time, the

coefficient of variation becomes s /(µ%T&N&), where T = the number of time periods.  Therefore, time

diversification has the potential to significantly reduce insurer's risk.  

In a theoretical world, under the assumptions of perfect information, no transactions costs or

contract enforcement costs, and no probability of bankruptcy, time diversification would merely

involve the pool's borrowing at the risk-free rate of interest when losses exceed the expected value of

loss and lending (or repaying loans against the pool) when losses are less than their expected value.  

In principle, mutual insurers operate much like the theoretical risk pool, accumulating retained

earnings when losses are less than expected and drawing down equity or borrowing to pay losses that

are greater than expected.  A stock insurer operates similarly except that the firm can raise funds by

issuing equity as well as through borrowing and retaining earnings.  Thus, at least in theory, both

types of insurers diversify risk across time.

Because the assumptions underlying the pure risk pool hold only as approximations in the

real-world, however, insurance markets do not fully achieve time diversification.  Time

diversification fails most acutely in the case of very large losses such as those resulting from

catastrophes.  Because capital is costly, insurers cannot maintain a sufficient equity cushion to

guarantee the pool against bankruptcy.  The possibility of bankruptcy along with information

imperfections in insurance and capital markets are primarily responsible for the failure of time

diversification for large losses.  
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The existence of these market imperfections implies that the cost of both debt and equity

capital is likely to rise significantly following a large loss or an unusual accumulation of small losses.  

Prospective capital providers are concerned about the long-term viability of insurers that have

suffered major loss shocks, and are also worried that the insurer's reserves are not adequate to fund

the losses from the catastrophe.  The cost of capital reflects these information asymmetries, and

therefore capital costs more following a loss shock than it would if the insurance and capital markets

were frictionless and complete information were available.  Thus, the insurer may not survive long

enough to deliver a fair return on equity or repay loans needed to fund loss payments.   The cost of

capital would reflect these market imperfections, and capital would cost more than if the insurance

and capital markets were frictionless and complete information was available.  In the extreme, capital

may not be available at any price to some insurers following a major loss shock.

The Federal government is better able than the private insurance market to efficiently

diversify large losses across time.  The principal reason is that the riskless borrowing and lending

assumption required for time diversification that does not apply to private insurers applies to the

Federal government, allowing it to borrow at the risk free rate to fund losses arising from a

catastrophe and then to repay the loans out of subsequent premium payments in periods when no

severe catastrophes occur.  Implicitly, premiums paid into a catastrophe reinsurance program in

excess of accumulated losses go to offset Federal debt arising from other programs so the pool is in

effect "lending" at the risk free rate during these periods.  The ability of the Federal government to

time diversify would ensure the availability of reinsurance at a cost of capital that does not include a

margin for information asymmetries and other market imperfections.  Even with a risk premium to

encourage private market crowding-out of the Federal contracts, the cost of capital would be lower

than if the reinsurance were provided privately.  
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The discussion of time diversification suggests the following basic principle for pricing the

Federal XOL contracts:  The contracts should be self-supporting in expected value, i.e., the expected

costs to the government of operating the program should be zero, where the expectation is defined

as including the expected value of losses and other program costs across time.  In principle, the price

also should reflect financing costs.  However, the net financing costs of the program are expected to

be zero if the premiums are retained by the government.  This is the case because the costs of

borrowing to pay catastrophe losses are offset in expectation by the proceeds gained by "lending" the

premium payments to the Federal government during periods when no losses occur.  

As mentioned above, the proposal calls for adding a risk premium to the contracts so that

their prices will approximate the price that would be charged in the private market place in the

absence of severe information imperfections (i.e., a normal risk charge or cost of capital).  The risk

can be viewed as a way to ensure that there would not be any unintended consequences in the private

insurance and reinsurance markets due to the proposed program.  This risk charge also can be

viewed as compensating the government for other unforeseen costs that could arise under the

program.  Thus, the final price will be the expected value of loss plus administrative expenses and a

risk loading. 

The Loss Distribution and Its Moments

We develop the pricing model under two alternative assumptions regarding the design of the

reinsurance contracts: (1) that the contracts cover only one loss, with the option to purchase an

additional contract covering one loss for the balance of the year based on a price equal to the original

price times the proportion of the year remaining after the first loss; and (2) that the contracts cover a

theoretically unlimited number of multiple losses during a period of one year.  

(Renewable) Contracts Covering a Single Loss Event.  Using generalizations of standard
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actuarial formulas, the loss distribution under the proposed contract can be written as follows:

where F(L) = the distribution function of catastrophic losses,

p(N) = the probability that N catastrophes occur during the contract period,

q(L>T*N) = the probability that one catastrophe exceeds the trigger level of losses, conditional
on the occurrence of N catastrophes, and

S(L*L>T) = the distribution function of the severity of catastrophic loss, conditional on losses
from a catastrophe exceeding the trigger.

Thus, payment under the contract requires the occurrence of some number N of catastrophes (an

event with probability p(N)) such that one loss exceeds the trigger level (T) (an event with

probability q(L>T*N)).  Both p(N) and q(L>T*N)) are discrete probability distributions. The severity

of loss (loss amount), given that the loss exceeds the trigger, is assumed to follow the continuous

probability distribution function S(L*L>T).  Even though the contract terminates following the first

catastrophe where losses exceed the trigger, the exposure to a catastrophe of this magnitude

increases with the number of catastrophes that occur.

The summation on the right-hand side of the second line of equation (4) gives the

unconditional (on N) probability of a loss above the trigger point.  We call this probability 

(p* ).  To obtain an expression for the unconditional probability (p* ), we first derive q(L>T*N).  For

any one catastrophe, let Pr(L # T) = P< and Pr(L > T) = P>, and observe that
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Intuitively, catastrophes are assumed to arrive sequentially throughout the year.5  On the arrival of

the first catastrophe, the reinsurance contract pays off if the losses from this catastrophe exceed T, an

event that occurs with probability P>.  If the first catastrophe does not exceed the trigger level (an

event with probability P<), then the contract pays off if the second catastrophic loss exceeds T, so

that the probability the second catastrophe triggers the contract is P<P>, and so on.

The unconditional probability of a loss exceeding the trigger (p* ) is then obtained as the

expected value of q(L>T*N) over N.  The result is:

where Mp(ln(P<)) = the moment generating function of the probability distribution p(N).   

Thus, if claim arrivals are Poisson distributed, 

where ? = the parameter of the Poisson distribution.  And if claims arrive according to a negative

binomial distribution, then

where a and ? are the parameters of the negative binomial distribution, which is 

for k = 0, 1, 2, . . . . 

The moments of F(L) can be derived from the moment generating function:
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where MF(t) = the moment generating function of F(L), and MS|L>T(t) = the moment generating

function of the distribution S(L*L>T).  The mean and variance of F(L) are:

where µi = the ith moment about the mean of the distribution S(L*L>T). 

We next consider the severity distribution: S(L*L>T).   We derive the expected severity

under the assumption that the catastrophic loss distribution is shifted from the origin to point 

0 < d # T.  This allows for the possibility of defining catastrophes as being events of some minimal

size d, so that the support of the distribution is the interval [d, 4] rather than the usual support

interval for loss severity of [0, 4].6  Thus, L is distributed as S(L-d), L $ d; and the expected severity

for a call option on L with strike price T is then given by: 

where µ1T = the expected severity of loss under a call with trigger T.  The second moment about the

origin for the call option severity is:
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where µ2T = the second moment about the origin of the severity of loss under a call with trigger T.7 

The corresponding moments of the severity of loss for the call spread can then be written

conveniently as:

where µ1CT = the first moment about the origin of the severity of loss for a call spread with trigger T

and cap C, and  µ2CT = the second moment about the origin of the severity of loss for a call spread

with trigger T and cap C. The mean and variance of the call spread are then given by:

where p* is given by expression (6) and µ1CT and µ2CT are from (14) and (15).

Contracts Covering Multiple Losses.  If the contracts cover multiple losses during a

specified period, the frequency distribution become:
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EF (L ; T , C) ' Ek(k ) µ1TC

VarF (L ; T , C) ' Ek (k ) (µ2 TC & µ2
1TC ) & Vark (k ) µ2

1TC

(18 a, b)

where pk(k;L>T) = probability that the XOL contracts are triggered k times during the coverage
period, unconditional on the total number of catastrophes,

pk(k;L>T*N) = probability that the XOL contracts are triggered k times during the coverage
period conditional on the occurrence of N total catastrophes.

The distribution  pk(k;L>T*N) is a binomial distribution with parameters P> and N.  If p(N) is Poisson

with parameter ?, then it can be shown that pk(k;L>T) = pk(k) is Poisson with parameter ?P>. 

Similarly, if p(N) is negative binomial with parameters ? and a (see equation (9)), is also negative

binomial with parameters  a and ß =   The mean and variance of the call spread are then
?)P>

1 & P< ?)
.

given by:

where Ek(k) = expected value of frequency based on the distribution pk(k;L>T), and

Vark(k) = variance of frequency based on the distribution pk(k;L>T)

Risk and Expense Loadings

There are two primary approaches to incorporating risk loadings into prices of insurance and

reinsurance contracts -- the actuarial approach and the financial approach.  An extensive literature

exists on actuarial pricing principles (e.g., Goovaerts, de Vylder, and Haezendonck, 1984,

Buhlmann, 1984, Wang, 1995).  The actuarial pricing principles usually imply that prices should have

some desirable mathematical properties such as value additivity or that firms behave as if they were

risk averse so that prices can be derived using utility functions.  Although the lack of theoretical

foundation for most additive risk loading formulae and the assumption of firm utility functions would

seem to rule out the actuarial approach, these approaches may provide some useful information in
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solving the pricing problem, under the interpretation that they provide a way to incorporate

judgmental risk premia in option prices on non-hedgeable stochastic processes.  However, in this

role, they should be considered subordinated to financial pricing approaches.

Financial pricing models are the most appropriate way to price the catastrophe reinsurance

contracts.  Financial pricing models incorporate risk loadings that are based on an asset pricing

model or, minimally, avoid the creation of arbitrage opportunities.  The classic paper on the pricing

of options on jump processes is Merton (1976).  More recent extensions are Naik and Lee (1990),

Heston (1993), Aase (1993), and Chang (1995).  The principal problem in applying option pricing

methodologies to options on catastrophes is that these methodologies are based on arbitrage

arguments that do not apply in general to jump processes.  The problem is one of market

incompleteness when jumps in asset prices are possible.  Market incompleteness implies that jump

risk cannot be hedged so that arbitrage arguments generally do not apply.

Because of the market incompleteness problem, some additional assumptions are needed to

price options on jump processes.  Merton (1976) circumvents the  problem by assuming that assets

are priced according to the capital asset pricing model (CAPM) and that jump risk is nonsystematic,

i.e., not correlated with the market portfolio of securities.  If the risk of catastrophes is unsystematic,

catastrophe risk can be diversified away by investors and thus the return on the catastrophe

reinsurance option is equivalent to the risk-free rate.  Merton derives the formula for option prices on

jump processes under these assumptions, with the magnitude of jump risk assumed to follow a

lognormal distribution8

If the assumption that jump risk is nonsystematic is not viewed as satisfactory, for example

because market prices respond to large catastrophes or because Federal borrowing to fund the

reinsurance contracts increases market interest rates, then other assumptions can be used to price the
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options.  One approach is to assume that jumps can assume only a finite number of constant

magnitudes and that a sufficient number of traded securities exists that are correlated with the jumps

to permit the formation of portfolios to hedge the jump risk (see, for example, Cummins and Geman,

1995).  This is equivalent to breaking up the severity of loss distribution applicable to catastrophes

into a finite sequence of mass points.  Gerber (1982) shows how this can be done while preserving

the moments of the severity distribution.  If only the first few moments (such as the mean and the

variance) of severity are of interest, this approach could prove to be effective.  However, the

moments do not uniquely characterize most probability distributions, including the lognormal

(Johnson and Kotz, 1970).  Thus, if the first two or three moments are not sufficient for pricing the

contracts, this approach may not be satisfactory. 

An alternative approach that does not require constant jump sizes is to make an assumption

about investor preferences.  In a recent paper, Chang (1995) derives pricing formulas for traded and

non-traded options under the following assumptions:  (1) aggregate consumption follows a jump

diffusion process, and (2) preferences can be incorporated using the assumption that there exists a

representative investor whose utility function is of the constant relative risk aversion (CRRA) type. 

Chang presents an option pricing model that is “distribution-free” in the sense that it places no

restrictions on the probability distributions of the magnitudes of jumps in the value of the underlying

asset or the “market portfolio,” which in this case is aggregate consumption.  Chang (1995) gives

formulas for the option price in the case where jump sizes in aggregate consumption and in the strike

price are jointly lognormal.  However, it would also be possible to calculate option prices using other

multivariate distributions that sometimes provide better models of catastrophic losses such as the

multivariate Burr 12 distribution (see Johnson and Kotz, 1972).  The approach could be implemented

through numerical integration, based on Chang’s pricing formulas. 
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We decided not to attempt to parameterize an option pricing model, for two primary reasons:

(1) the option-model adjustment in the expected value price obtained from our pricing model is likely

to be a second order effect, and (2) the data available to parameterize the option pricing model are

likely to be inadequate to yield reliable parameter estimates.  The problem is that the value of the

underlying asset (property subject to insured catastrophe loss) is not available except at the time of

the decennial U.S. Census.  Thus, the calculation of essential quantities such as the instantaneous

volatility parameter would have to rely on data that may be unreliable proxies for the actual value of

insured property.  Since option values are very sensitive to the key parameter estimates this could

introduce potentially serious error into the premium estimates.

Relying on the argument that the risk of loss from hurricanes and earthquakes is likely to be

largely unsystematic, we propose using the expected loss values based on our formulas as the basis

for the price of the XOL options.  This is essentially equivalent to using Merton’s approach except

that we substitute the loss estimates derived below for the lognormal distributions on which the

Merton jump option pricing formula is based.  As in our prices, no explicit market risk premium is

included in Merton’s option pricing formula.  However, his formula does recognize the time value of

money by discounting the anticipated payout under the option at the risk-free rate of interest.  Our

formula could also incorporate a discount factor for the time value of money.  The appropriate

period would be the expected time of the payment under the renewable option.  However, under the

multiple claim option, technically it would be appropriate to discount each expected payment for its

specific expected time of arrival.  This could be done under the Poisson distribution using the duality

between the Poisson process and the exponential distribution of the time of arrival between events. 

However, this too is an adjustment of second-order in importance and probably not worth the extra

effort.  
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G (S , t ) ' F (S , t )
(1 & e )(1 % r )t (19)

Consequently, the final step in pricing is to incorporate expenses into the price of the

contracts using the usual actuarial formula,

where G(L;T,C,d) = the expected loss loaded for expenses and discounted, 

e = the expense ratio (ratio of expenses to the gross premium), 

r = the risk free rate (e.g., the 90 day Treasury bill rate), and 

t = expected time of arrival of the first event that triggers the contracts. 

The price based on (19) should be viewed at the Federal government’s reservation price, i.e., the

minimum price at which the contacts should be sold.  If a higher price results when the contacts are

auctioned, they should be sold at the auction price.  The contracts should not be issued if the

reservation price is not realized because that is likely to expose the government to an expected loss

from issuing the contracts.

 IV.  Hedging Catastrophe Risk With Federal XOL Reinsurance

This section illustrates how the proposed Federal excess-of-loss (XOL) reinsurance

contracts could be used by an insurer to hedge its exposure to the risk of hurricanes, earthquakes,

and volcanic activity.  It is assumed that the insurer's objective is to protect its equity capital and

achieve other business objectives by optimally reducing the variance of its loss ratio.9  This

objective is consistent with the literature on insurance futures and options (e.g., Buhlmann, 1995,

Niehaus and Mann, 1995).  More general discussions of the rationale for managing firm risk are

provided in Froot, et al. (1994), Mayers and Smith (1982), and Shapiro and Titman (1985). 
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Insurers may find it advantageous to manage their net income risk in order to minimize taxes

(Cummins and Grace, 1994), protect franchise values, reduce regulatory costs, and avoid being

penalized in the insurance market for changes in insolvency risk.

To model the insurer's loss ratio and hedging strategy, let LCA = catastrophe losses of

insurer A, LNA = non-catastrophe losses of insurer A, LCI = catastrophe losses of the insurers

included in the catastrophe loss index, PA = premiums of company A in lines affected by

catastrophes, and PI = premiums for insurers reporting data to the catastrophe loss index.  Insurer

A's loss ratio is then defined as:

Assuming that the company buys some number NA of XOL contracts, its loss ratio will be:

It is assumed that LNA is independent of LCA and LCI but that LCA and LCI are not independent.  

As a first example, we assume that the company's objective is to cap its loss ratio due to

catastrophes at the industry-wide loss ratio represented by the trigger point of the XOL contract. 

Assume that industry-wide premiums from policies covering perils included in the XOL contracts

equal $100 billion.10  Then the Federal XOL contracts can be viewed as providing a 25-50 loss ratio

call spread, i.e., as providing protection for loss ratios due to catastrophes ranging from 25 to 50

percent or premiums.  The number of contracts the insurer would purchase to implement this

strategy is given by:
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NA ' ( C & T
PI

)
PA

S (22)

where S = contract size = $25 billion/1,000 = $25 million.

A numerical example based on this hedging strategy is provided in Table 1.  We assume that

company A's share of the market for coverages affected by catastrophes is 1.2 percent so that its

premium volume from policies covering perils included in the XOL pool is $1.2 billion.11  We focus

first on Case A of Table 1.  This case assumes a catastrophic loss of $40 billion, giving an industry

loss ratio from catastrophic losses of 40 percent.  It is also assumed that company A's catastrophic

losses are perfectly correlated with the industry's catastrophic losses so that company A's

catastrophe loss ratio is also 40 percent.  Based on company A's premium volume, this implies that

company A suffers catastrophe losses of $480 million.  Equation (19) implies that the insurer

purchases 12 XOL reinsurance contracts.  The payoff per contract for a $40 billion loss is $15

million, so company A's gain from the reinsurance contracts is $15 million times 12 or $180 million. 

Company A's net loss from the catastrophe is $300 million ($480 million minus $180 million) for a

loss ratio of 25 percent.  Thus, by purchasing the reinsurance contracts, company A has been able

to cap its catastrophe loss ratio at 25 percent.

Cases B and C of Table 1 illustrate the effects of hedging when insurer A's losses are not

perfectly correlated with industry-wide losses.  In Case B, insurer A's loss ratio exceeds the

industry loss ratio, and in Case C, insurer A's ratio is less than the industry ratio.  In these cases, the

hedge is not successful in holding the catastrophe loss ratio to 25 percent, but the loss ratio is still

substantially less than if no XOL contracts had been purchased.  Case D shows the effects of a

catastrophic loss ($55 billion) that exceeds the cap on the XOL contracts ($50 billion).  Assuming
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that insurer A's losses are perfectly correlated with industry losses, insurer A's loss ratio under the

XOL hedge is 30 percent, i.e., the 55 percent unhedged loss ratio minus the layer of XOL

reinsurance coverage (25 percent).

The hedging strategy illustrated in Table 1 is not necessarily optimal.  To derive an optimal

strategy, we consider the variance of the loss ratio.  To simplify the notation, we disregard the

upper limit in the XOL contracts and assume that the insurer can buy a call option with a strike

price of T = $25 billion.  The loss ratio variance is given by:

where s A
2 = variance of insurer A's loss ratio, s NA

2 = variance of insurer A's non-catastrophe losses,

s CA
2 =variance of insurer A's catastrophic losses, s 2

CIT = variance of losses included in the XOL

reinsurance contract pool, and s CA,CIT = covariance of insurer A's catastrophe losses with the losses

included in the XOL pool.  To find the number of contracts that minimizes the loss ratio variance,

we differentiate equation (20) with respect to NA obtaining:

where ?CA,CIT = the correlation coefficient of LCA and MAX[LCI - T, 0]/1,000.   Thus, to estimate

the optimal number of contracts, the insurer would have to estimate the variance of its catastrophe

losses, the variance of the losses in the XOL pool, and the correlation coefficient between its losses

and the pool losses.  The optimal number of contracts is increasing in the insurer's variance and the

correlation coefficient and decreasing in the variance of the pool's losses.

V. Empirical Estimates of Catastrophic Losses and XOL Premiums 
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Two principal methods exist that could be used to develop empirical estimates of catastrophic

losses: (1) fitting probability distributions to historical catastrophe loss experience data and (2)

engineering simulation analysis.  Both methods are utilized in this paper.  Our historical catastrophe

loss experience data are the insured catastrophic property losses reported to Property Claims Services

(PCS), an insurance industry statistical agent, for the period 1949-1994. The engineering simulation

analysis is based on catastrophe loss simulations provided to us by Risk Management Solutions

(RMS), a private firm that conducts research on the economic effects of catastrophes for insurance

companies and other interested parties. The RMS analysis utilizes engineering and statistical

techniques to simulate the probability and severity of catastrophes.  This information is then merged

with the firm’s extensive data base on insured property exposures to estimate insured losses. 

Conducting the estimates based on two sources of data provides a reasonableness check on the results

and should provide the government and industry with a higher degree of confidence in the results than

if only one source of data were used.

Loss Severity Models.  In modeling loss severity, it is important to fit a probability

distribution to the observed data as well as evaluating the observed data directly.  By fitting a

probability distribution to the data, it is possible to model loss expectations in the tail of the loss

distribution for ranges of losses larger than those contained in the data set.  This is especially

important when the sample size is small and/or very large events are possible but have low

probabilities of occurrence.  

Based on prior experience with modeling severity of loss distributions, we utilize four

probability distributions as possible models for loss severity -- the Pareto, the lognormal, the Burr 12,

and the generalized beta of type 2 (GB2) (see Cummins, et al., 1990, and Cummins and McDonald,
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The Pareto: s(L ) ' a d a L &(1 % a ) , L > d (26)

1991).  The density functions for these distributions are given below: Because catastrophic losses are

often defined as losses that exceed some monetary threshold, the probability distributions have been

shifted so that they are defined for losses in excess of some threshold d > 0.

Loss Estimates Based on PCS Data.  PCS defines a property catastrophe as a single event

that gives rise to insured property damages of at least $5 million (the limit was $1 million prior to

1983).  PCS obtains loss estimates by state for each catastrophe from individual insurers.  The

catastrophes reported include hurricanes, tornados, windstorms, hail, fires and explosions, riots, brush

fires, and floods.12  

It is important to be cautious in using historical loss data because systemic changes may have

occurred such that prior catastrophes may not be representative of those that will occur in the future. 

Systemic changes may involve both frequency and severity of loss.  For example, climatological

changes may have occurred which increase either the frequency or severity of various catastrophic
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perils.  Economic and demographic changes also can affect catastrophe losses. 

Fortunately, it is possible to adjust for most of the important systemic changes involving the

frequency and severity of catastrophes.  The two major factors affecting the severity of catastrophes

are price level changes (i.e., changes in construction costs and other factors that affect the prices of

property exposed to loss) and changes in the amount of property exposed to loss.  The latter

adjustment is particularly important because several of the states with the highest exposure to

catastrophe risk (such as California, Florida, and Texas) have been among the fastest growing states

over the past several decades.  

We use two alternative approaches to adjust for changes in price and exposure levels.  The

first approach is to adjust for price level changes affecting property values by using the U.S.

Department of Commerce Census Fixed Weighted Construction Cost Index to restate all catastrophe

loss values in 1994 dollars.13  To adjust for changes in the exposure base, we use data on population

by state obtained from the U.S. Bureau of the Census.  This approach assumes that the amount of

property exposed to loss is highly correlated with population.  Each catastrophe is adjusted to 1994

price and housing value levels using the following formula:

where Lijt
94 = loss from catastrophe I in state j in year t, restated in 1994 dollars and exposure levels,

Lijt = loss from catastrophe I in state j in year t in year t dollars,

c94 = construction cost index for 1994,

ct = construction cost index for year t,

vj,94 = population of state j in 1994, and

vjt = population of state j in year t.
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In the discussion to follow, we refer to loss data based on equation (29) as population-adjusted (PA)

losses.

As a second approach to adjusting for changes in price levels and the amount of property

exposed to loss, we use data on the value of owner-occupied housing obtained from the U.S. Census

of Housing, Series HC80-1-A.  This series provides the value of urban and rural owner-occupied

buildings in each state at ten year intervals based on the U.S. Census.14  The series implicitly

incorporates both changes in the price of housing and changes in the physical stock of  property. 

Thus, no price indices are needed when adjusting catastrophes using the housing value data.   We

refer to the data adjusted for changes in the value of owner-occupied housing as value-adjusted (VA)

losses.  

We consider the VA losses to be the primary data series for the estimation of XOL

reinsurance premiums.  Accordingly, most of the summary tables and graphs given below are based

only on the VA series.  However, the premium and loss layer estimates are reported based on both the

PA and VA series. 

The insured VA catastrophe losses from 1949 through 1994 are shown in Figure 1.  The

largest losses were attributable to hurricane Andrew, which caused $18.4 billion in insured losses in

1992, and the Northridge earthquake, which accounted for $12.5 billion in insured losses in 1994. 

Value-adjustment has a substantial impact on some of the earlier catastrophes.  For example, after

adjusting for property-values, a windstorm loss in 1950 that affected eleven Northeastern and Middle

Atlantic states is the third most severe catastrophe.  This loss ranks much lower in terms of the

unadjusted data.  

Summary statistics on VA catastrophe losses by cause of loss are shown in Table 2.  Based on

the loss experience since 1949, earthquakes and hurricanes have been the most serious type of
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catastrophe, with by far the highest mean and standard deviation of loss.  Earthquakes and hurricanes

also have among the highest coefficients of variation and skewnesses.

In estimating potential catastrophe losses in the $25 to $50 billion range, it is clear that one

should focus on catastrophes that are sufficiently severe so that they could potentially cause damage

in this layer.  Relatively minor catastrophes such as hail storms in the Mid-West, for example, have a

negligible probability of ever generating at loss of $25 billion or more (the largest such loss to date

was $176 million).  Although windstorms other than hurricanes clearly have caused very large losses,

most of the 860 windstorms in the sample were relatively minor storms such as tornadoes that likely

did not have the potential to cause losses in the loss layer covered by the proposed reinsurance

contracts.  

Accordingly, we focus the remainder of the analysis on the catastrophic losses most likely to

be representative of those that would generate covered losses under the reinsurance contracts --

hurricanes and earthquakes.  The number of events in these two categories from 1949-1994 was 71,

57 hurricanes and 14 earthquakes (including the Northridge quake). These hurricane and earthquake

losses are graphed in Figure 2.  Four of the 71 hurricane and earthquake events did not exceed the

PCS definition of a catastrophe ($12.04 million in 1994 dollars) when inflated to 1994. 

Consequently, these four events were dropped from the sample for the purposes of estimating

severity distributions and XOL contract premiums.  The final sample thus consists of 67 events.

The next step is to estimate severity of loss distributions for the hurricane and earthquake

data. As our value of d, the threshold that must be exceeded in order for a loss to be defined as a

catastrophe, we use $12.04 million, which is the PCS lower bound definition of a catastrophe ($5

million) inflated to 1994 price and exposure levels using the value of owner occupied housing (i.e.,

the VA adjustment).  Based on the PA adjustment d = $6.85 million.15 
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We use maximum likelihood estimation techniques to estimate the parameters of the various

probability distributions we employed in this study.  The parameters and log-likelihood function

values are shown in Table 3, along with the RMS parameters, which are discussed later.16  Parameter

estimates are shown for both PA and VA losses. The estimated probability distributions based on the

VA losses are graphed in Figure 3.  Also shown in the graph is the empirical distribution function,

calculated as I/(n+1), where I = 1, 2, . . . , n and n = the number of observations.  Both the lognormal

and Burr 12 distributions provide excellent fits to the observed data.  The GB2 (not shown) also fits

well and is about the same as the Burr 12.  However, the Pareto distribution tends to overestimate the

amount of probability in the tail of the distribution.  This is shown more clearly in Figure 4 which

graphs the tails of the estimated distribution functions, where the tail is defined somewhat arbitrarily

as the largest 1/3 of the observations.  From Figure 4, it is clear that both the lognormal and the Burr

12 provide an adequate fit to the tail of the loss distribution.  The tail of the Pareto is too heavy to

represent the observed data. However, it is important to keep in mind the possibility of sampling error

in a sample of this size, particularly if our adjustments for exposure are not sufficiently precise.  Thus,

we believe that the results based on the Pareto should also be considered when setting the premiums

for the XOL contracts.  In this sense, the Pareto can be viewed as providing a conservative upper

bound for the premiums.  However, on the basis of goodness of fit, we recommend basing the

premiums on the lognormal, the Burr 12, or the GB2.

Analysis of the PA losses reveals that the Burr 12 and GB2 provide the best model for this

data series.  The lognormal underestimates the tail of the PA loss distribution, and the Pareto

overestimates the tail, although not by as much as in the VA analysis.

The annual frequency of earthquakes and hurricanes is graphed in Figure 5.  The graph reveals

a high degree of volatility in the frequency series.  Frequency has been trending upward, as shown by
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the least squares line and ten-year moving average lines in the figure.  The variance of frequency also

increased near the end of the period as shown by the ten-year moving average variance line.  Based

on these apparent trends in the average number and variance of catastrophic events, we estimate the

average number of events at 2.2 and use this estimate as the parameter of the Poisson frequency

distribution in estimating p*.17   

Expected loss severities were calculated for various policy limits based on the estimated

severity distributions.  For the VA loss data, these expected severities represent the expected value of

loss for a policy that covers catastrophes in excess of $12.04 million up to the specified policy limit

(e.g., $10 billion).  For the PA data, the expected severities cover catastrophes in excess of $6.85

million up to the specified policy limits.  Reinsurance layer prices are obtained as differences between

the expected policy limit severities.  The results are presented in Table 4 for both the PA and VA

data. 

The Pareto distribution clearly gives the largest estimate of expected severity in the $25-50

billion layer, $1.806 billion based on the VA data and $1.319 billion based on the PA data. For the

lognormal, the expected severities in the $25-50 billion layer are $170.2 based on the VA data and

$81.0 million based on the PA data. The corresponding expected severities in the $25-50 billion layer

given by the Burr 12 and GB2, respectively, are $162.4 million and $112.9 billion, based on the VA

data, and $211.0 million and $97.1 million, based on the PA data. 

Table 4 also shows the overall expected loss for the four severity distributions, based on

equations (11a) and (16a), and a Poisson frequency parameter of 2.2 events per year.18  Based on the

Pareto distribution, the expected loss is $3.636 billion for the VA data and $2.719 billion based on the

PA data.  The lognormal gives expected losses of $370.0 million and $177.2 million based on the VA

and PA series, respectively.  The corresponding estimates based on the Burr 12 are $353.4 million
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(VA data) and $458.5 million (PA data) and those based on the GB2 are $244.2 million (VA data)

and $212.1 million (PA data).

Overall, considering the goodness of fit to both data series, we recommend using either the

Burr 12 or GB2 models to calculate the XOL premiums.  Taking the average of the Burr 12 estimates

based on the VA and PA data, one obtains an estimate of $405.9 million, or $405,900 for each $25

million contract.  The corresponding estimate based on the GB2 is $228.1 million or $228,100 for

each $25 million contract.  These premiums translate into rates on line for the $25-50 billion layer of

1.62 percent and 0.91 percent, respectively.19  The most conservative estimate of the premium is

provided by the Pareto distribution, which gives a premium estimate of $3.177 billion or a 12.7

percent rate on line based on an average of the VA and PA results.  

Loss Estimates Based On RMS Data.  Risk Management Solutions supplied 10,000

simulated catastrophe losses for each of several geographical areas for use in this study.  The

geographical areas included the entire United States, the Southeastern United States, California, and

Florida.  Preliminary analysis indicated that it is not necessary to work with all 10,000 observations

when estimating the loss severity distributions.  Accordingly, we randomly selected subsamples of

1,000 losses for each geographical area definition to form the primary basis for the following

discussion.20  We use the full samples of 10,000 claims to provide empirical estimates of the premiums

for comparison with the estimates based on the loss severity distributions.

The RMS estimates also differ from the PCS estimates in the choice of the loss frequency

parameter.  For the PCS data, loss frequency was estimated by fitting a trend line to a time series of

observed annual catastrophe frequencies.  However, RMS estimates frequency based on engineering

and meteorological models that are used to predict the probabilities and severities of hurricanes and

earthquakes.  It is important to analyze the RMS frequency estimates because no catastrophe causing
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insured property damage in the $25-50 billion range has been observed during the period covered by

the PCS data (1949-present), but such events are possible and can be simulated using the RMS

approach.

Summary statistics for the PCS sample and the national RMS sample are shown in Table 5. 

The mean severities for the two samples are quite comparable, $1.265 billion for the PCS sample and

$1.048 billion for the RMS sample. However, the coefficient of variation, skewness, and kurtosis

estimates are considerably higher for the RMS sample and the maximum loss in the RMS sample is

about ten times as large as the maximum of the PCS sample.  The simulated RMS frequency of events

larger than $12.04 million is also considerably higher than the corresponding PCS estimate (6.7 vs

1.5).  And the RMS estimate of frequency is about three times as large as our frequency estimate

based on linear time trending (2.2 events per year).  As discussed further below, the primary reason

for the difference in frequencies is that RMS is simulating a larger number of earthquakes per year

than have been observed historically.  

The national loss estimates based on the RMS empirical and fitted probability of loss

distributions are shown in Table 6.  It is noteworthy that the estimated loss severities in the $25-50

billion layer are quite comparable to our PCS estimates presented in Table 4.  The lognormal and

Pareto PCS estimates in Table 4 are actually larger than their RMS counterparts in Table 5.  The

severity estimates based on the Burr 12 and GB2 distributions fitted to the RMS data (Table 5) are

somewhat larger than the corresponding estimates based on the PCS data (Table 4).  For example, the

Burr 12 loss severity estimate for the $25-50 billion layer is $279.2 million, whereas the PCS estimate

is $162.4 million (based on the VA adjustment).  

The comparability of the fitted PCS and RMS loss estimates in the $25-50 billion show that

using probability distributions to model the tails of loss distributions based on relatively small samples
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can yield accurate estimates of expected values of large losses even if no losses in this range have

been observed.  This is also illustrated by Figures 6 and 7, which show, respectively, the empirical

distribution functions for the RMS and PCS data and the tails of the empirical distribution functions

along with GB2 distributions fitted to the PCS and RMS data.  Figure 6 shows that the tail of the

PCS distribution is actually somewhat heavier than that of the RMS distribution for relatively small

losses and is comparable for larger losses.  Figure 7 shows that the GB2 distributions are also quite

comparable, although the RMS distribution has a somewhat heavier tail.

Table 6 also shows the estimates of the total expected loss (i.e., the expected loss component

of the XOL premiums) in the $25-50 billion layer based on the RMS data.  The expected loss

estimates in Table 6 are considerably larger than those based on the PCS data (Table 4), primarily

because of the difference between the RMS and PCS loss frequency estimates.  The RMS-based

estimates of the expected loss range from $453.36 million (or a 1.8 percent rate on line) for the

lognormal distribution to $4.635 billion (or an 18.5 percent rate on line) for the Pareto.  Again,

however, the Pareto does not provide a very good fit to the data.  The best fit is provided by the Burr

12 and GB 2, and the premiums based on those models are $1.758 billion (7 percent rate on line) and

$1.020 billion (4.1 percent rate on line), respectively.  

Expressed per XOL contract, the expected loss estimates from Table 6 imply a price of

$1,758,000 per $25 million national contract based on the Burr 12 and $1,020,000 per contract based

on the GB2.  These are much larger than the $405,900 per contract (Burr 12) and $228,100 per

contract (GB2) based on the PCS data.  Whether the RMS or PCS samples give more reasonable

estimates depends upon the accuracy of the RMS prediction that 6.6 events will occur per year.  A

practical approach to resolving the uncertainty would be to set the reservation price as the average of

the RMS and PCS estimates.  This would give a reservation price of $1.082 million (4.3 percent rate
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on line) based on the Burr 12 and $624,000 (2.5 percent rate on line) based on the GB2.

Based on the RMS data, we also estimated conditional and unconditional loss severities for

California, Florida, and the Southeastern region of the United States.  Tables comparable to Table 6

based on these three samples are presented in the Appendix.  We also had enough PCS data on losses

in the Southeastern region of the U.S. to provide PCS estimates for this region. The results are

summarized in Table 7, which shows the conditional expected severity of losses in the $25-50 billion

layer, the probability of a loss in this layer based on the severity distribution (i.e., P[L > $25 billion*an

event occurs] = P>]), and the unconditional expected severity in the layer (the product of the

conditional severity and P>).  For purposes of comparison, the table also shows the comparable

national statistics based on the PCS and RMS samples.  

The RMS conditional loss severity is highest in California, $16.6 billion (Table 7).  The

comparable conditional loss severities are $15.0 billion for Florida and $13.9 billion for the Southeast. 

However, the unconditional severities are higher in Florida and the Southeast than in California.  The

chance of breaching the $25 billion trigger is larger in Florida and the Southeast, but given that a loss

breaches the trigger, expected severity is higher in California. Graphical analysis (not shown) reveals

that the GB2 is the best model for the RMS California severity data, while the Burr 12 and GB2 are

the best models for Florida and the Southeast.  Comparison of the PCS and RMS data for the

Southeast reveals that the PCS data implies lower conditional severity, a lower probability of a loss

exceeding the trigger, and lower unconditional severity than the RMS data, where these comparisons

are based on the best-fitting GB2 distribution.  This is likely due to the reduced PCS sample size and

the absence of large events, such as the Northridge earthquake, from the Southeastern PCS sample.

The total expected loss components of the PCS reservation price estimates and their

corresponding rate on-line are summarized in Table 8.  The first panel of the table is based on
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historical loss frequency estimates, while the second panel is based on the RMS frequency estimates. 

The differences between the results in the first two panels of the table are primarily attributable to the

loss frequency estimates generated by RMS, which are higher than the historical averages nationally

and for California, Florida, and the Southeast.  For example, the historical average number of events

per year in California is 0.22 events, whereas the RMS estimate is 3.6 events.  To see the effect that

the higher frequency estimates has on the reservation price, consider the best-fitting distributions - the

Burr 12 and the GB2.  Using the PCS VA severity estimates and the historical frequencies for the

national contracts, the estimated reservation rates on-line are 1.41 percent for the Burr 12 and 0.98

for the GB2.  However, using the corresponding RMS provided frequency data increases the

estimates to 4.15 percent and 2.88, respectively.  A similar pattern can be observed for the other

severity estimates reported in Table 8 and across each of the different regions.  

Whether the reservation price should be based on the historical data or the RMS projections

depends upon the degree of credibility that should be assigned to the RMS projections.  This is

difficult to gauge in the absence of a full scale engineering analysis or a few more years of historical

experience.  However, the difference between the two approaches provides a reasonable range that

government officials could use when setting the reservation price.  Also, as indicated above, these

rates should be loaded for the expenses of administering the program and discounted to reflect the

time lag between the premium payment and expected loss payment dates.

VI.  Conclusions

This paper analyzes a proposal for Federal excess of loss (XOL) reinsurance contracts to assist

insurers in hedging the risk of property catastrophes.  Under the proposed reinsurance program, the

Federal government would directly write and sell per occurrence excess of loss reinsurance contracts
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protecting against catastrophe losses.  These excess-of-loss or XOL contracts would be available for

qualified insurance companies, pools, and reinsurers and would cover industry losses from a disaster in

the $25-$50 billion layer of coverage -- a layer currently unavailable in the private market. 

The rationale for government provision of these contracts is that the capacity of the private

insurance and reinsurance markets is presently inadequate to provide coverage for losses of this

magnitude.  The unavailability of capacity for large catastrophes has a number of serious effects on the

viability of insurance markets and the ability of society to respond to a major disaster.  The lack of

capacity has led to shortages in the supply of insurance, with the resulting potential for higher Federal

disaster relief expenditures as a result of a major catastrophe.  The unavailability of high-limits

reinsurance also increases the probability of insolvency for insurers participating in the property

insurance market, thus posing further risk to the stability of insurance markets.  

Private market capacity for large losses is limited because the possibility of bankruptcy along

with informational asymmetries in insurance and capital markets constrain the ability of private

insurers and reinsurers to diversify risk across time.  Time diversification requires that insurers be able

to raise debt and/or equity capital at reasonable rates following a large loss.  However, the cost of

capital to insurers tends to increase following a loss shock and capital may be unavailable at any price

for certain lines of coverage.  Private insurance markets tend to function effectively in diversifying the

risk of relatively small losses, but they are not very efficient in dealing with extremely large losses.

The Federal government, on the other hand, has a superior ability to diversify risk across time

through the exercise of Federal borrowing power.  While it is costly for private insurers to raise

additional capital following a loss shock, Federal debt is viewed as default-risk-free and thus the

Federal government would not find its cost of capital increasing significantly following a catastrophe. 

Thus, the Federal government's superior financing and time-diversification capabilities would permit
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the Federal XOL contract program to bypass the  imperfections in the insurance, reinsurance, and

capital markets that impede the private provision of disaster insurance. 

The proposed XOL contracts would help to solve the problems in insurance markets while

potentially reducing the Federal government's role in providing disaster relief payments to property

owners following a catastrophe.  The contracts do not provide a subsidy to insurers but instead are

designed to be self-supporting in expected value, i.e., the contracts are to be priced so that the

expected cost to the government is zero.  If a loss occurred that exceeded the amount of premiums

that had been paid into the program, the Federal government would use its borrowing power to raise

funds to pay the losses.  During periods when the accumulated premiums paid into the program

exceeded the losses that had been paid, the buyers of the contracts implicitly would be lending money

to the treasury, reducing the costs of government debt.  The expected interest on these "loans" offsets

the expected financing (borrowing) costs of the program as long as the contracts are priced at the

expected value of loss plus program administrative expenses.  

A risk premium could be added to the price of the contracts to provide an incentive for private

market crowding-out of the Federal program.  This could imply that the expected return to the

government from the program would be positive rather than zero, but this would not necessarily be the

case if the risk premium compensates the government for parameter estimation risk or unforeseen

program risk.

A methodology was developed for calculating premiums for the XOL contracts.  The first step

is to estimate the expected value of loss.  This involves fitting severity distributions to catastrophe

losses.  We estimated loss severity distribution based on two samples -- the historical data on

hurricane and earthquake losses maintained by Property Claims Services (PCS) and a sample of

simulated loss based on engineering analysis provided by Risk Management Solutions (RMS).  Four
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severity of loss distributions were used, the lognormal, the Pareto, the Burr 12, and the generalized

beta of type 2 (GB2) distributions.  The Burr 12 and GB2 distributions generally provided the best fit

to the data.  Using our severity distributions, we estimated the expected loss component of the

government’s reservation price for proposed XOL contracts covering the entire U.S., California,

Florida, and the Southeast.  The reservation prices were computed using historical frequency data and

using the frequency projections developed by RMS.  The RMS frequency estimates are considerably

higher than the historical averages.  Thus, we suggest that the reservation price should be set using the

range of PCS and RMS price projections based on the best fitting Burr 12 and GB2 distributions as

the expected loss component of the reservation price as a guide for policymakers.  The expected loss

should be loaded for administrative expenses and discounted to obtain the final reservation price.  The

ultimate price for the contracts would be determined by auction, but the contracts should not be issued

for less than the reservation price.

Future research is needed to explore the full implementation of the option model.  In addition,

the premium estimates could be improved by obtaining more comprehensive estimates of the value of

property by state (e.g., to include rental, commercial, and industrial property) and physical measures of

the severity of catastrophes.  The incorporation of physical projections of the predicted frequency of

major catastrophes also would improve the estimates.  



40

pk(k ; L>T) ' pk(k ) ' S
4

N'k
p (N ) pk (k ; L>T * N ) (A.1)

p(N) ' G(a % N )
G(a)N!

?a (1 & ? )N (A.2)

pk (k ; L > T *N ) ' N!
(N & k )! k!

P k
> (1 & P> )N&k (A.3)

pk(k ; L>T) ' pk(k ) ' S
4

N'k

G(a % N)
(N & k )! k! G(a)

P k
> (1 & P> )N&k ?a (1 & ? )N

pk(k ) '
( ?NP> )k ?a G(a % k )

k! G(a ) (1 & P< ?N))a%k
S
4

h'0

G(a %h%k )
h! G(a%k )

(P< ?N)h (1 & P< ?N)a %k (A.4)

APPENDIX

Derivation of pk(k;L>T) When p(N) Is Negative Binomial

Recall that the unconditional distribution of the number of catastrophes that breach the trigger

T is:

Assume that p(N) is negative binomial, i.e., 

Given N events and P> = S(L>T), pk(k;L>T*N) is binomial:

Substituting (A.2) and (A.3) into (A.1) and collecting terms yields:

Changing the index of summation from N to h = N-k, setting ? 3 = (1-?), and moving terms that do not

involve h outside of the summation sign, we obtain:

The expression to the right of the summation is a negative binomial distribution, so the summation
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equals 1.  Rearranging the expression to the left of the summation yields:

This is a negative binomial distribution with parameters  a and ß = 
?)P>

1 & P< ?)
.
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1.    The operating assumption in this article is that the establishment of a Federal reinsurance

program does not include the provision of a taxpayer subsidy, which is viewed as a political

decision outside realm of this analysis.

2.    Testing the existence of state "rate suppression" or "rate stickiness" with respect to

catastrophe loads is outside the scope of this paper.  However, it should be noted that the

existence of state "rate stickiness" can only account for the failure of insurance rates to adjust to

higher levels in the post-disaster environment in California, since rates in the state were not

approved before 1990.

3.    This specification oversimplifies somewhat the actual contract payoff. For a more detailed

discussion see Lewis and Murdock (1996).

4.    For a review of the problems of adverse selection and moral hazard in insurance markets see

Dionne and Doherty (1992).  For recent discussions involving catastrophe reinsurance and futures

markets see D'Arcy and France (1992), Cummins and Geman, (1994), and Lewis and Murdock

(1996).

5.    Equation (5) is the distribution function of the geometric distribution.  As shown by the right-

most expression in (5), the probability of an event that exceeds the threshold is 1 minus the

probability that none of the N events exceeds the threshold.  

6.    Shifting the distribution enables us to deal with data such as the data on catastrophes

collected by Property Claims Services (PCS), an insurance industry statistical agent.  PCS defines

catastrophes as losses from catastrophic perils that cause insured property damage of $5 million

or more.  This data base is analyzed in detail later in the paper.

Footnotes
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7.    The right-most expressions in (12) and (13) are obtained by integrating by parts.

8.    Chang (1995) shows that Merton's assumption of diversifiable jump risk is consistent with

no-arbitrage only when the aggregate consumption flow is not subject to jumps.  If that

assumption does not hold, Merton's formula underprices hedging assets and overprices cyclical

assets.  Cyclical assets are defined as assets subject to jumps that are negatively correlated with

jumps in aggregate consumption, while hedging assets are defined as assets subject to jumps that

are positively correlated with aggregate consumption jumps.

9.    Because premiums can be treated as non-stochastic, it is not necessary to work with loss

ratios.  Loss ratios are used here because they provide a familiar and convenient framework for

evaluating hedging strategies in insurance.

10.    Actual industry premiums for fire, allied lines, inland marine, farmowners, homeowners,

commercial multiple peril, and auto physical damage, the coverages included in the Federal XOL

contracts, totaled $94.5 billion in 1994 (A.M. Best Co., 1995).

11.    The fifteenth largest property-liability insurer in the U.S. has a market share of 1.3 percent

and the twentieth largest has a market share of 1 percent (A.M. Best Co., 1995).

12.    The catastrophe insurance call spreads traded on the Chicago Board of Trade (CBOT) also

are based on the PCS loss data. 

13.    See U.S. Department of Commerce, Statistical Abstract of the United States (Washington,

D.C.: U.S. government Printing Office, various years).

14.    Values for years in between the Census years were obtained based on the average growth

rate in property values over each ten year period. Comparable data on the value of rental

properties and commercial and industrial buildings were not available.  However, this should not
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cause a problem as long as the values of these types of properties are highly correlated with values

of owner occupied dwellings.

15.    Prior to 1983, PCS defined a catastrophe as any single event which generated insured losses

greater than $1 million.  Therefore, we also investigated an alternative threshold for catastrophic

losses of $1 million inflated to 1994 dollars from the first year in the analysis, 1949.  Using the

housing value index, this would have set the lower bound definition of a catastrophe at $57.7

million.  Reworking the analysis using this definition of a catastrophic event did not substantially

change the results.  Thus, they are not reported here.

16.    The log-likelihood function values for the PCS and RMS samples are not directly

comparable because the sample sizes differ —  the PCS sample has 67 events and the RMS

samples each have 1,000 events

17.    Our frequency estimate is based on a linear least squares trend line fitted to the annual

frequency observations and used to project trend to 1995.

18.    The Poisson parameter is used in conjunction with equation (7) to obtain an estimate of the

loss probability p*.  The negative binomial results are very close to the Poisson results and hence

are not shown.

19.    The rate on line is defined as the premium divided by the width of the layer, $25 billion in

this case.

20.    Estimation of the parameters of the loss distributions was very slow when all 10,000

observations were used.  Preliminary analysis based on 10,000 and several random samples of

1,000 revealed that the parameter estimates are very stable, i.e., not sensitive to the choice of

sample.  Accordingly, the remainder of the analysis was based on 1,000 observation samples.
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                 Table 1
            Hedging Example Using Federal XOL Reinsurance 

CASE A CASE B CASE C CASE D
INDUSTRY DATA:
INDUSTRY PREMIUMS = 100,000,000 100,000,000 100,000,000 100,000,000

COMPANY A DATA:
COMPANY A'S MARKET SHARE = 1.20% 1.20% 1.20% 1.20%

COMPANY A'S PREMIUMS = 1,200,000 1,200,000 1,200,000 1,200,000

FEDERAL XOL CONTRACTS:
TRIGGER EXPRESSED AS LOSS RATIO = 25.00% 25.00% 25.00% 25.00%

CAP EXPRESSED AS LOSS RATIO = 50.00% 50.00% 50.00% 50.00%

CONTRACT SIZE = 25,000 25,000 25,000 25,000

HEDGING STRATEGY:
NUMBER OF CONTRACTS = 12.00 12.00 12.00 12.00

EVALUATING THE HEDGE:
CATASTROPHE SIZE = 40,000,000 40,000,000 40,000,000 55,000,000

INDUSTRY CATASTROPHE LOSS RATIO  = 40.00% 40.00% 40.00% 55.00%

COMPANY A's CATASTROPHE LOSSES = 480,000 504,000 444,000 660,000

RETURN PER CONTRACT = 15,000 15,000 15,000 25,000

COMPANY A's GAIN ON CAT CONTRACT = 180,000 180,000 180,000 300,000

COMPANY A's CATASTROPHE LOSS RATIO:

        WITHOUT XOL REINSURANCE = 40.00% 42.00% 37.00% 55.00%

        WITH XOL REINSURANCE = 25.00% 27.00% 22.00% 30.00%

NOTE: CASE A = company A's and industry loss ratios perfectly correlated, loss less than $50 billion.

CASE B = company A's loss ratio greater than industry ratio, loss less than $50 billion.

CASE C = company A's loss ratio less than industry ratio, loss less than $50 billion.

CASE D = company A's and industry loss ratios perfectly correlated, loss greater than $50 billion.

All dollar figures reported in 000's



         Table 2
          Summary Statistics:  U.S. Property Catastrophes -- 1949-1994

Standard Coeff.
Type of Catastrophe N Mean Deviation of Var. Skewness Minimum Maximum

EARTHQUAKE 14 1,079,919,991 3,313,558,418 3.07 3.64 11,852,852 12,500,000,000
BRUSH FIRE 27 228,427,389 434,833,689 1.90 4.44 3,769,473 2,296,609,302
FLOOD 14 73,110,934 117,528,364 1.61 2.20 7,022,724 356,502,769
HAIL 53 82,098,301 90,209,509 1.10 2.11 7,992,680 443,331,807
HURRICANES 57 1,222,680,792 2,763,012,070 2.26 4.76 5,278,321 18,391,014,407
ICE 1 20,625,310 0 20,625,310 20,625,310
SNOW 11 102,884,340 194,752,240 1.89 3.07 7,167,945 677,636,717
TORNADO 21 74,586,127 116,138,156 1.56 3.67 3,246,349 546,706,772
TROPICAL STORM 8 73,889,334 58,915,748 0.80 1.81 19,991,072 204,946,131
VOLCANIC ERUPTION 1 69,870,633 0 69,870,633 69,870,633
WIND 864 95,987,693 429,832,971 4.48 23.50 2,827,037 11,746,275,284
ALL OTHER 66 108,959,698 191,921,889 1.76 3.25 3,777,433 983,118,263

TOTAL 1,137 166,981,831 849,081,766 5.08 14.85 2,827,037 18,391,014,407
SOURCE:  Property Claims Services, Rahway, NJ.

NOTE: Losses were adjusted to 1994 exposure and price levels using U.S. Census of Housing's Series HC80-1-A.



Table 3
Parameter Estimates Summary

Distribution Parameter

PCS
Housing Value 

Index I

PCS
Population 

Index I
RMS

Nation
RMS 

California
RMS

Florida

RMS
Southeastern
United States

Lognormal µ 5.396 4.586 4.403 3.703 5.654 5.337
σ 2.064 2.168 2.195 2.059 2.259 2.211

-LOG(L) 471.667 426.964 6108.236 5344.295 7388.235 7049.331

Pareto α 0.328 0.343 0.431 0.564 0.296 0.323
c 12.040 6.850 12.040 12.040 12.040 12.040

-LOG(L) 430.041 470.040 6653.261 5834.966 8087.477 7712.696

Burr 12 a 0.659 0.804 0.910 1.099 0.689 0.760
b 874.302 95.780 44.600 18.006 690.888 308.502
q 1.991 0.999 0.737 0.619 1.507 1.215

-LOG(L) 502.537 461.542 6609.184 5813.172 7889.142 7539.407

GB2 a 0.150 0.078 0.405 1.842 0.179 0.491
b 291,488,438.71    0.001 23.515 21.847 1,349,162.97  469.254
p 10.970 121.909 3.816 0.498 7.988 1.886
q 88.975 50.199 2.491 0.335 34.485 2.590

-LOG(L) 501.438 460.476 6604.769 5811.365 7882.308 7537.281

Frequency 2.20 2.20 6.67 3.60 0.83 1.35



                Table 4

EXPECTED LOSS SEVERITIES FOR VARIOUS LAYERS

   TOTAL EXPECTED LOSS FOR $25-50 BILION LAYER

Lognormal Pareto Burr 12 GB2

Losses Inflated By Housing Values:
E(L) 1,869.96M$       undefined 2,209.63M$   1,511.32M$       

St.Dev(L) 15,520.12M$     undefined undefined 55,723,965M$   
E(L;$12.04M,$5B,$12.04M) 864.75M$          1,025.95M$   841.38M$      854.45M$          

E(L;$12.04M,$10B,$12.04M) 1,092.08M$       1,637.97M$   1,043.37M$   1,059.38M$       
E(L;$12.04M,$15B,$12.04M) 1,220.31M$       2,152.84M$   1,156.47M$   1,166.37M$       
E(L;$12.04M,$20B,$12.04M) 1,306.34M$       2,613.28M$   1,233.12M$   1,233.67M$       
E(L;$12.04M,$25B,$12.04M) 1,369.34M$       3,037.06M$   1,290.16M$   1,280.27M$       
E(L;$12.04M,$30B,$12.04M) 1,418.04M$       3,433.75M$   1,335.10M$   1,314.54M$       
E(L;$12.04M,$35B,$12.04M) 1,457.10M$       3,809.24M$   1,371.88M$   1,340.81M$       
E(L;$12.04M,$40B,$12.04M) 1,489.29M$       4,167.49M$   1,402.81M$   1,361.57M$       
E(L;$12.04M,$45B,$12.04M) 1,516.37M$       4,511.31M$   1,429.37M$   1,378.38M$       
E(L;$12.04M,$50B,$12.04M) 1,539.54M$       4,842.81M$   1,452.55M$   1,392.24M$       

E(L;$25B,$50B,$12.04M) 170.20M$          1,805.75M$   162.39M$      111.97M$          

PROB[L>$25|EVENT OCCURS] = P> 1.10% 8.18% 1.00% 0.79%
PROB[L>$25] = p* (Poisson param = 2.2) 0.0238 0.1647 0.0218 0.0172
E(L;$25B,$50B,$12.04M|L>$25B) 15,518.11M$     22,073.58M$ 16,194.72M$ 14,179.08M$     

Total E(L): $25-50B Layer 369.97M$          3,635.69M$   353.35M$      244.21M$          

Losses Inflated By Population:
E(L) 1,036.65M$       undefined undefined 1,150.19M$       

St.Dev(L) 10,733.19M$     undefined undefined 415,863,130M$ 
E(L;$6.85M,$5B,$6.85M) 551.51M$          789.43M$      541.34M$      550.52M$          

E(L;$6.85M,$10B,$6.85M) 670.09M$          1,247.59M$   691.79M$      675.25M$          
E(L;$6.85M,$15B,$6.85M) 734.59M$          1,629.95M$   790.83M$      745.46M$          
E(L;$6.85M,$20B,$6.85M) 776.99M$          1,970.14M$   866.40M$      792.87M$          
E(L;$6.85M,$25B,$6.85M) 807.62M$          2,282.06M$   928.20M$      827.89M$          
E(L;$6.85M,$30B,$6.85M) 831.06M$          2,573.14M$   980.85M$      855.23M$          
E(L;$6.85M,$35B,$6.85M) 849.71M$          2,847.98M$   1,026.92M$   877.37M$          
E(L;$6.85M,$40B,$6.85M) 864.98M$          3,109.64M$   1,068.01M$   895.79M$          
E(L;$6.85M,$45B,$6.85M) 877.76M$          3,360.28M$   1,105.19M$   911.44M$          
E(L;$6.85M,$50B,$6.85M) 888.65M$          3,601.54M$   1,139.21M$   924.95M$          

E(L;$25B,$50B,$6.85M) 81.03M$            1,319.49M$   211.01M$      97.06M$            

PROB[L>$25|EVENT OCCURS] = P> 0.53% 6.01% 1.13% 0.61%
PROB[L>$25] = p* (Poisson param = 2.2) 0.0116 0.1239 0.0246 0.0134
E(L;$25B,$50B,$6.85M|L>$25B) 15,286.12M$     21,950.14M$ 18,617.91M$ 15,839.40M$     

Total E(L): $25-50B Layer 177.20M$          2,719.11M$   458.48M$      212.06M$          

NOTE:  E(L;T,C,d) = expected value of loss severity (L) for a shifted distribution beginning at d for a reinsurance
contract beginning at point of attachment T and having upper limit C.
M=million, B=billion.  The total E(L) is based on the Poisson frequency distribution with mean of 2.2.



 TABLE 5  
Summary Statistics:  Actual Loss Experience Vs. Simulated Loss Experience 

for Hurricanes and Earthquakes

Number of 
Observations Mean

Standard
Deviation

Coefficient
of Variation Skewness Kurtosis Minimum Maximum

Severity of Losses Reported 
by PCS 1949-1994
Losses > 12.04M 67 1,283,998.7$ 2,942,996.6$  2.292 4.198 20.124 12,434.3$   18,391,014.4$     

Severity of Losses Simulated 
by RMS
All Losses 95,182 736,533.4$    3,790,455.6$  5.146 12.126 199.853 5,007.2$    107,546,261.0$   

Severity of Losses Simulated 
by RMS
Losses > $12.04M 66,138 1,047,983.0$ 4,493,486.8$  4.288 10.193 141.061 12,058.2$   107,546,261.0$   

Frequency of Losses Reported 
by PCS 
1949-1994 67 1.543 1.312 0.85 1.477 2.539 0 6

Frequency of Losses 
Simulated by RMS
All Losses 95,182 9.518 3.056 0.321 0.333 0.152 0 23

Frequency of Losses 
Simulated by RMS
Losses > $12.04M 66,138 6.668 2.559 0.384 0.399 0.195 0 19



Table 6
Expected RMS Loss Severities for Various Layers for the United States       

Total Expected Loss for $25-$50 Billion Layer

Emprical Lognormal Pareto Burr 12 GB2

Losses Simulated by RMS
E(L) 987.67M$      922.63M$          undefined 132,471,003.8M$  36,766.2M$   

St.Dev(L) 4,433.98M$   10,082.30M$     undefined undefined undefined
E(L;$12.04M,$5B,$12.04M) 538.44M$      492.68M$          646.72M$      498.66M$              496.29M$      

E(L;$12.04M,$10B,$12.04M) 669.39M$      595.84M$          963.60M$      662.15M$              628.83M$      
E(L;$12.04M,$15B,$12.04M) 736.27M$      651.67M$          1,215.96M$   776.88M$              712.49M$      
E(L;$12.04M,$20B,$12.04M) 780.90M$      688.28M$          1,433.83M$   868.19M$              774.28M$      
E(L;$12.04M,$25B,$12.04M) 820.30M$      714.68M$          1,629.19M$   945.26M$              823.48M$      
E(L;$12.04M,$30B,$12.04M) 850.34M$      734.87M$          1,808.30M$   1,012.61M$           864.44M$      
E(L;$12.04M,$35B,$12.04M) 872.29M$      750.92M$          1,974.94M$   1,072.81M$           899.59M$      
E(L;$12.04M,$40B,$12.04M) 882.29M$      764.06M$          2,131.60M$   1,127.49M$           930.39M$      
E(L;$12.04M,$45B,$12.04M) 892.29M$      775.05M$          2,280.03M$   1,177.78M$           957.82M$      
E(L;$12.04M,$50B,$12.04M) 902.29M$      784.41M$          2,421.50M$   1,224.45M$           982.56M$      

E(L;$25B,$50B,$12.04M) 81.99M$        69.73M$            792.32M$      279.19M$              159.08M$      

PROB[L>$25|EVENT OCCURS] = P> 0.70% 0.46% 3.73% 1.43% 0.89%
PROB[L>$25] = p* (Poisson param = 6.7) 0.0451 0.0297 0.2182 0.0903 0.0571
E(L;$25B,$50B,$12.04M|L>$25B) 11,713.10M$ 15,266.03M$     21,246.44M$ 19,477.90M$         17,847.16M$  

Total E(L): $25-50B Layer 528.84M$      453.36M$          4,635.46M$   1,758.16M$           1,019.66M$   

NOTE:  E(L;T,C,d) = expected value of loss severity (L) for a shifted distribution beginning at d for a reinsurance

contract beginning at point of attachment T and having upper limit C.

M=million, B=billion.  The total E(L) is based on the Poisson frequency distribution with mean of 6.7.



Table 6 - CA
Expected RMS Loss Severities for Various Layers for California

Total Expected Loss for $25-$50 Billion Layer

Empirical Lognormal Pareto Burr 12 GB2

Losses Simulated by RMS
E(L) 682.41M$      351.29M$          undefined undefined undefined

St.Dev(L) 3,889.86M$   2,796.35M$       undefined undefined undefined
E(L;$12.04M,$5B,$12.04M) 322.04M$      255.66M$          367.81M$      288.45M$      299.39M$      

E(L;$12.04M,$10B,$12.04M) 423.61M$      285.60M$          502.45M$      373.19M$      398.19M$      
E(L;$12.04M,$15B,$12.04M) 492.21M$      299.42M$          602.25M$      432.21M$      469.34M$      
E(L;$12.04M,$20B,$12.04M) 536.57M$      307.57M$          684.55M$      478.98M$      526.95M$      
E(L;$12.04M,$25B,$12.04M) 570.97M$      313.01M$          755.88M$      518.34M$      576.22M$      
E(L;$12.04M,$30B,$12.04M) 599.37M$      316.90M$          819.53M$      552.66M$      619.71M$      
E(L;$12.04M,$35B,$12.04M) 619.95M$      319.83M$          877.43M$      583.28M$      658.93M$      
E(L;$12.04M,$40B,$12.04M) 639.95M$      322.12M$          930.83M$      611.05M$      694.83M$      
E(L;$12.04M,$45B,$12.04M) 655.58M$      323.96M$          980.58M$      636.56M$      728.05M$      
E(L;$12.04M,$50B,$12.04M) 670.58M$      325.46M$          1,027.30M$   660.20M$      759.06M$      

E(L;$25B,$50B,$12.04M) 99.61M$        12.46M$            271.42M$      141.86M$      182.84M$      

PROB[L>$25|EVENT OCCURS] = P> 0.60% 0.09% 1.34% 0.73% 0.92%
PROB[L>$25] = p* (Poisson param = 3.6) 0.0213           0.0032 0.0470 0.0259 0.0325
E(L;$25B,$50B,$12.04M|L>$25B) 16,601.38M$ 13,739.22M$     20,229.10M$ 19,402.25M$ 19,844.63M$ 

Total E(L): $25-50B Layer 353.48M$      44.61M$            950.54M$      502.23M$      645.12M$      

NOTE:  E(L;T,C,d) = expected value of loss severity (L) for a shifted distribution beginning at d for a reinsurance

contract beginning at point of attachment T and having upper limit C.

M=million, B=billion.  The total E(L) is based on the Poisson frequency distribution with mean of 3.6.



 Table 6 - FL
Expected RMS Loss Severities for Various Layers for Florida

Total Expected Loss for $25-$50 Billion Layer

Emprical Lognormal Pareto Burr 12 GB2

Losses Simulated by RMS
E(L) $ 987.67M $ 3,675.52M undefined $ 132,471,003.80M $ 2,557.73M

St.Dev(L) $ 4,433.98M $ 46,828.08M undefined undefined $ 234,918,436.58M
E(L;$12.04M,$5B,$12.04M) $ 1,135.33M $ 1,099.92M $ 1,189.12M $ 1,066.08M $ 1,104.32M

E(L;$12.04M,$10B,$12.04M) $ 1,509.92M $ 1,480.25M $ 1,940.19M $ 1,397.98M $ 1,445.22M
E(L;$12.04M,$15B,$12.04M) $ 1,704.34M $ 1,718.89M $ 2,582.86M $ 1,604.34M $ 1,642.39M
E(L;$12.04M,$20B,$12.04M) $ 1,832.49M $ 1,891.23M $ 3,163.90M $ 1,754.58M $ 1,775.82M
E(L;$12.04M,$25B,$12.04M) $ 1,929.21M $ 2,024.88M $ 3,703.04M $ 1,872.77M $ 1,873.74M
E(L;$12.04M,$30B,$12.04M) $ 2,002.29M $ 2,133.18M $ 4,210.97M $ 1,970.17M $ 1,949.35M
E(L;$12.04M,$35B,$12.04M) $ 2,060.75M $ 2,223.63M $ 4,694.35M $ 2,052.98M $ 2,009.83M
E(L;$12.04M,$40B,$12.04M) $ 2,103.77M $ 2,300.85M $ 5,157.65M $ 2,124.98M $ 2,059.48M
E(L;$12.04M,$45B,$12.04M) $ 2,143.77M $ 2,367.91M $ 5,604.09M $ 2,188.66M $ 2,101.07M
E(L;$12.04M,$50B,$12.04M) $ 2,183.77M $ 2,426.94M $ 6,036.06M $ 2,245.72M $ 2,136.47M

E(L;$25B,$50B,$12.04M) $ 254.57M $ 402.06M $ 2,333.02M $ 372.95M $ 262.73M

PROB[L>$25|EVENT OCCURS] = P> 1.70% 2.39% 10.44% 2.13% 1.70%
PROB[L>$25] = p* (Poisson param = .83) 0.0141 0.0197 0.0833 0.0176 0.0141
E(L;$25B,$50B,$12.04M|L>$25B) $ 14,974.47M $ 16,839.55M $ 22,339.15M $ 17,514.89M $ 15,414.08M

Total E(L): $25-50B Layer $ 210.56M $ 331.61M $ 1,861.27M $ 307.93M $ 217.31M

NOTE:  E(L;T,C,d) = expected value of loss severity (L) for a shifted distribution beginning at d for a reinsurance

contract beginning at point of attachment T and having upper limit C.

M=million, B=billion.  The total E(L) is based on the Poisson frequency distribution with mean of 0.83.



Table 6 - SE
Expected RMS Loss Severities for Various Layers for the Southeastern United States       

Total Expected Loss for $25-$50 Billion Layer

Empirical Lognormal Pareto Burr 12 GB2

Losses Simulated by RMS
E(L) 975.63M$      2,408.49M$        undefined undefined 3,032.44M$   

St.Dev(L) 4,433.98M$   27,495.06M$      undefined undefined undefined
E(L;$12.04M,$5B,$12.04M) 900.14M$      901.68M$          1,047.91M$   845.30M$      861.95M$      

E(L;$12.04M,$10B,$12.04M) 1,156.90M$   1,172.45M$        1,678.27M$   1,089.65M$   1,096.86M$   
E(L;$12.04M,$15B,$12.04M) 1,302.95M$   1,334.42M$        2,209.87M$   1,244.13M$   1,236.16M$   
E(L;$12.04M,$20B,$12.04M) 1,390.10M$   1,447.72M$        2,686.02M$   1,358.52M$   1,334.13M$   
E(L;$12.04M,$25B,$12.04M) 1,452.58M$   1,533.46M$        3,124.78M$   1,449.86M$   1,409.07M$   
E(L;$12.04M,$30B,$12.04M) 1,502.66M$   1,601.58M$        3,535.86M$   1,526.15M$   1,469.39M$   
E(L;$12.04M,$35B,$12.04M) 1,538.50M$   1,657.53M$        3,925.29M$   1,591.80M$   1,519.61M$   
E(L;$12.04M,$40B,$12.04M) 1,568.99M$   1,704.61M$        4,297.07M$   1,649.49M$   1,562.49M$   
E(L;$12.04M,$45B,$12.04M) 1,593.99M$   1,744.97M$        4,654.10M$   1,701.02M$   1,599.78M$   
E(L;$12.04M,$50B,$12.04M) 1,618.99M$   1,780.10M$        4,998.50M$   1,747.62M$   1,632.70M$   

E(L;$25B,$50B,$12.04M) 166.42M$      246.64M$          1,873.72M$   297.76M$      223.63M$      

PROB[L>$25|EVENT OCCURS] = P> 1.20% 1.52% 8.47% 1.66% 1.33%
PROB[L>$25] = p* (Poisson param = 1.35) 0.0161           0.0203 0.1083 0.0222 0.0179
E(L;$25B,$50B,$12.04M|L>$25B) 13,867.94M$  16,276.46M$      22,111.64M$ 17,963.53M$ 16,776.73M$  

Total E(L): $25-50B Layer 223.34M$      330.30M$          2,395.22M$   398.38M$      299.86M$      

NOTE:  E(L;T,C,d) = expected value of loss severity (L) for a shifted distribution beginning at d for a reinsurance

contract beginning at point of attachment T and having upper limit C.

M=million, B=billion.  The total E(L) is based on the Poisson frequency distribution with mean of 1.35.



Table 7
Summary:  Expected Loss Severities and Expected Losses ($25B-$50B Layer)

E(L;$25B,$50B,$12.04M|L>$25B)
Region Empirical Lognormal Pareto Burr12 GB2
PCS Housing Value Index I - $ 15,518.11M $ 22,073.58M $ 16,194.72M $ 14,179.08M
PCS Population Index I - $ 15,286.12M $ 21,950.14M $ 18,617.91M $ 15,839.40M
RMS - Unted Staes 11,713.10M$  $ 15,266.03M $ 21,246.44M $ 19,477.90M $ 17,847.16M
RMS - California 16,601.38M$  $ 13,739.22M $ 20,229.10M $ 19,402.25M $ 19,844.63M
RMS - Florida $ 14,974.47M $ 16,839.55M $ 22,339.15M $ 17,514.89M $ 15,414.08M
PCS - SE United States HV I - $ 16,677.02M $ 21,966.54M $ 15,853.33M $ 14,356.77M
RMS - SE United States 13,867.94M$  $ 16,276.46M $ 22,111.64M $ 17,963.53M $ 16,776.73M

PROB[L>$25B|EVENT OCCURS] = P>
Region Empirical Lognormal Pareto Burr12 GB2
PCS Housing Value Index I - 1.10% 8.18% 1.00% 0.79%
PCS Population Index I - 0.53% 6.01% 1.13% 0.61%
RMS - Unted Staes 0.70% 0.46% 3.73% 1.43% 0.89%
RMS - California 0.60% 0.09% 1.34% 0.73% 0.92%
RMS - Florida 1.70% 2.39% 10.44% 2.13% 1.70%
PCS - SE United States HV I - 1.57% 7.41% 0.77% 0.59%
RMS - SE United States 1.20% 1.52% 8.47% 1.66% 1.33%

E(L;$25B,$50B,$12.04M)
Region Empirical Lognormal Pareto Burr12 GB2
PCS Housing Value Index I - $ 170.20M $ 1,805.75M $ 162.39M $ 111.97M
PCS Population Index I - $ 81.03M $ 1,319.49M $ 211.01M $ 97.06M
RMS - Unted Staes $ 81.99M $ 69.73M $ 792.32M $ 279.19M $ 159.08M
RMS - California $ 99.61M $ 12.46M $ 271.42M $ 141.86M $ 182.84M
RMS - Florida $ 254.57M $ 402.06M $ 2,333.02M $ 372.95M $ 262.73M
PCS - SE United States HV I - $ 261.57M $ 1,626.79M $ 122.47M $ 84.17M
RMS - SE United States $ 166.42M $ 246.64M $ 1,873.72M $ 297.76M $ 223.63M



Table 8
Reservation Price Estimates of Federal XOL Contracts

                      Severity Distribution Assumption

Region

Historical 
Frequency 
Estimates Lognormal Pareto Burr12 GB2

PCS Housing Value Index I 2.2 $ 369.97M $ 3,635.69M $ 353.35M $ 244.21M
(1.48%) (14.54%) (1.41%) (0.98%)

PCS Population Index I 2.2 $ 177.20M $ 2,719.11M $ 458.48M $ 212.06M
(0.71%) (10.88%) (1.83%) (0.85%)

RMS - Unted Staes 2.2 $ 152.64M $ 1,673.51M $ 604.63M $ 346.57M
(0.61%) (6.69%) (2.42%) (1.39%)

RMS - California 0.217 $ 87.02M $ 500.57M $ 80.74M $ 56.91M
(0.35%) (2.00%) (0.32%) (0.23%)

RMS - Florida 0.378 $ 4.71M $ 102.34M $ 53.55M $ 68.99M
(0.02%) (0.41%) (0.21%) (0.28%)

PCS - SE United States 0.844 $ 219.31M $ 1,330.98M $ 103.03M $ 70.86M
(0.88%) (5.32%) (0.41%) (0.28%)

RMS - SE United States 0.844 $ 206.84M $ 1,526.20M $ 249.56M $ 187.68M
(0.83%) (6.10%) (1.00%) (0.75%)

RMS Frequency 
Estimates Lognormal Pareto Burr12 GB2

PCS Housing Value Index I 6.7 $ 1,083.66M $ 9,209.22M $ 1,037.08M $ 720.08M
(4.33%) (36.84%) (4.15%) (2.88%)

PCS Population Index I 6.7 $ 525.46M $ 7,188.55M $ 1,341.85M $ 627.69M
(2.10%) (28.75%) (5.37%) (2.51%)

RMS - Unted Staes 6.7 $ 453.36M $ 4,635.46M $ 1,758.16M $ 1,019.66M
(1.81%) (18.54%) (7.03%) (4.08%)

RMS - California 3.6 $ 44.61M $ 950.54M $ 502.23M $ 645.12M
(0.18%) (3.80%) (2.01%) (2.58%)

RMS - Florida 0.83 $ 331.61M $ 1,861.27M $ 307.93M $ 217.31M
(1.33%) (7.45%) (1.23%) (0.87%)

PCS - SE United States 1.35 $ 349.41M $ 2,089.95M $ 164.48M $ 113.18M
(1.40%) (8.36%) (0.66%) (0.45%)

RMS - SE United States 1.35 $ 330.30M $ 2,395.22M $ 398.38M $ 299.86M
(1.32%) (9.58%) (1.59%) (1.20%)

*The rates on-line, shown in parentheses, are obtained by dividing the reservation prices by $25,000M.



Figure 1 U.S. Property Catastrophes: 1949-1994
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Figure 2 U.S. Hurricane and Earthquakes: 1949-1994
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Figure 3: Severity of Loss Distribution Functions:  
Earthquakes and Hurricanes
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Figure 4: Severity of Loss Distribution Function Tails:
Earthquakes and Hurricanes
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Figure 5: Earthquake and Hurricane Frequency: 
1949-1994
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Figure 6: Fitting Severity Loss Distribution Functions:  
GB2 Hurricane and Earthquakes  

PCS Reported Actual Losses Vs. RMS Simulated Losses
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Figure 7: Fitting Severity Loss Distribution Function Tails:  
GB2 Hurricane and Earthquakes  

PCS Reported Actual Losses Vs. RMS Simulated Losses
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