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On Measuring Skewness and Kurtosis in Short Rate 
Distributions:  The Case of the US Dollar London 

Inter Bank Offer Rates 
 

Kabir K. Dutta♠ 

David F. Babbel♦ 
 

Abstract 
 

 It has been observed that return distributions in general and interest rates in particular 
exhibit skewness and kurtosis that are inadequately modeled by the lognormal distribution. 

 We have modeled the skewness and kurtosis of the short rate using the g-and-h distri-
bution and Generalized Beta Distribution of the Second Kind (GB2) and compare their per-
formance.  The g-and-h distribution is a functional transformation of the standard normal dis-
tribution and spans a much wider area in the skewness-kurtosis plane than many well-known 
skewed and leptokurtic distributions including GB2.  Researchers have used these distribu-
tions in modeling many different asset price and return distributions.  However, none of these 
works have dealt with interest rates of any kind, nor did they compare the fit of their proposed 
distributions to those of others. 

 GB2 and g-and-h are both four-parameter distributions and many well-known distri-
butions can be derived as special cases of parameter values from each of these distributions.  
We observed that the g-and-h distribution exhibited a very high degree of accuracy in model-
ing the US Dollar 1- and 3-month historical LIBOR rates, and much more than exhibited by 
GB2. 
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Introduction 
 Demmel (1999), Babbs and Webber (1998), El-Jahel, Lindberg and Perraudin (1998), 
and Becker (1991) observed that daily short term interest rates exhibit more skewness and 
kurtosis than permitted under the assumptions of lognormality.  Many different distributions 
have been proposed to model the skewness and kurtosis often observed in the asset return data.  
Notable among them are the g-and-h distribution, stable Paretian (e.g., Burr III), generalized beta 
distribution of second kind (GB2), and extreme value distributions (e.g., Weibull). 

 We analyze here empirically the shape of the distribution of US dollar 1- and 3-month-
LIBOR (London Inter Bank Offer Rate) rates often used to proxy for the short-rate.  Knowledge 
of the distribution of LIBOR of various tenors is an important step for pricing assets contingent 
on this them, such as US dollar interest rate caps/floors, swaps, and swaptions. 

 Badrinath and Chatterjee (1988 and 1991), Bookstaber and McDonald (1987), Mills 
(1995), and McDonald (1997) are some examples where the objectives were to empirically 
observe the behavior of one particular type of asset return and fit it with an appropriate statistical 
distribution.  However none of these works dealt with interest rates of any kind, nor did they 
compare the fit of their proposed distributions to that of others. 

 We study here the skewness and kurtosis of LIBOR rates using the g-and-h distribution 
and GB2.  The g-and-h distribution was introduced by Tukey in 1977 to study asymmetry in 
income distribution.  This distribution, which is a functional transformation of the standard 
normal, spans a much wider area in the skewness-kurtosis plane than that spanned by many other 
well-known leptokurtic distributions. 

 The GB2 was popularized by Richard Bookstaber and James McDonald (1987) and 
applied to model various asset returns (see also McDonald and Xu, 1995 and McDonald, 1996).  
Both g-and-h and GB2 are four parameter distributions that capture well skewness and kurtosis.  
Both perform significantly better than simpler distributions such as lognormal, Burr III, Weibull, 
and most members of the Pearsonian family of distributions, so our comparison in this paper is 
restricted to comparing g-and-h with GB2.  We will evaluate their accuracy in modeling the 
skewness and kurtosis of the LIBOR rates by using the goodness of fit test.  In a separate paper, 
we test the efficacy of various assumed underlying distributions, including g-and-h and GB2, in 
the pricing of interest rate options (see Dutta and Babbel, 2002). 

Short Rate Data 
 We obtained US Dollar 1- and 3-month LIBOR data from Bridge CRB.  These rates are 
the most heavily traded interest rates.  Our analysis period ranged from January 2, 1987 to 
September 19, 2001.  Taking 21 trading days in each month, we analyzed the data in three 
different (long, medium, and short) lengths of time series:  5 years (1260 days), 1 year (252 
days), and 3 months (63 days).  On each day we computed volatility, skewness, and kurtosis of 
LIBOR.  These computations are plotted in Figures 1, 2, and 3.  We observed frequent and 
substantial changes in skewness and kurtosis in both rates and across all three estimation dura-
tions.1 

                                                 

1 In an extended version of this paper, we also examined 6-month LIBOR, and examined all three LIBOR rate series 
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 Taking the natural logarithm of the rates, we computed the Jerque-Bera (JB) statistic for 
each of the rates and estimation durations.  Under the null hypothesis of normality, the JB 
statistic has an asymptotic  χ2

2 distribution.  The critical value at the 99% significance level is 
9.21.  Table 1 gives the LIBOR Jerque-Bera statistics.  The much higher JB statistic values in all 
cases indicate that the rates in our sample period did not follow (at a 99% confidence level) a 
lognormal distribution. 

 Based on this empirical observation, we anticipated that a leptokurtic distribution with 
wide coverage in the skewness-kurtosis plane would be a good candidate to model the short 
rates.  The g-and-h distribution has such properties, and so does GB2, albeit to a lesser degree.  
In the following sections we analyze some of the properties of the g-and-h distribution before we 
fit it to our data.  This is followed by a discussion of GB2 properties, and a fit to our data. 

g-and-h Distribution 
 The g-and-h distribution was introduced by Tukey (1977).  Martinez and Iglewicz (1984), 
Hoaglin (1985), Badrinath and Chatterjee (1988 and 1991), and Mills (1995) also studied the 
properties of this distribution.  Badrinath and Chatterjee, and Mills used the g-and-h distribution 
to model returns on various equity market indices. 

 Tukey introduced a family of distributions by transforming the standard normal variable 
Z to 

Yg,h Z( ) = egZ −1( )exp hZ 2 /2( )
g

, 

where g and h are any real numbers.  By introducing location (A) and scale (B) parameters, the g-
and-h distribution has four parameters in the following form: 

  Xg,h Z( )= A + B egZ −1( )
exp hZ 2 /2( )

g
= A + BYg,h  (1) 

When h•0, the g-and-h distribution reduces to Xg,0 Z( ) = A + B
egZ −1( )

g
, which is also known as 

the g-distribution.  The g parameter is responsible for the skewness of the g-and-h distribution.  
The g-distribution exhibits skewness but no kurtosis. 

 Similarly when g=0, the g-and-h distribution reduces to 

  X0,h Z( ) = A + BZ exp hZ 2 /2( )= A + BY0,h ,  (1a) 

which is also known as the h-distribution.  The h parameter in g-and-h distribution is responsible 
for its kurtosis.  The h-distribution has fat tails (kurtosis) but no skewness. 

 Before we use the g-and-h distribution to model LIBOR, let us study some of the useful 
structural properties of the g-and-h distribution, the g-distribution, and the h-distribution. 

                                                                                                                                                             

using seven different durations:  3 months, 6 months, 1 year, 18 months, 2 years, 3 years, 4 years, and 5 years.  Our 
results were qualitatively similar to those shown here. 
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Property 1 Xg,h Z( ) is a strictly increasing function of Z 

 Thus the transformation of a standard normal to g-and-h is one to one. 

Property 2 If A = 0,  then X−g,h Z( )= −Xg,h −Z( ) 

 Property 2 implies that changing the sign of g changes the direction but not the value of 
skewness of the g-and-h distribution. 

Property 3 For h=0 and g → 0 , the g-and-h distribution converges to a normal distribution. 

Property 4 The g-distribution is a shifted log-normal distribution 

 In what follows, unless we need to state the parameters explicitly, we will omit the 
subscripts representing the parameters g and h in the X and Y variables. 

 Next, we will derive Property 5.  If   X p  and Z p  are the pth  percentile of the g-distribution 

and standard normal distribution respectively, then X p − A =
B

g
exp gZ p( )−1( ) (2) 

Changing p to 1•p  we have X1− p − A =
B

g
exp gZ1− p( )−1( ) (3) 

Observing that Z p = −Z1− p  and taking the logarithm of the division of (2) by (3) we have 

  gp = −
1

Z p

 

 
  

 

 
  ln

X1− p − A

A − X p

 

 
  

 

 
   (4) 

We also note that Z0.5 = 0 .  Substituting in (1) we have A = X0.5 .  Substituting the value of A in 
(4) we have proved: 

Property 5 Location parameter A of the g-and-h distribution is the median of the data set and 

the pth  percentile of the parameter value g is given by gp = −
1

Z p

 

 
  

 

 
  ln

X1− p − X0.5

X0.5 − X p

 

 
  

 

 
  . 

 Property 5 implies that by choosing different values of p one can obtain different esti-
mates of the parameter g.  These estimates of g for different values of p reflect the changes in the 
skewness of the data.  The question is:  which of these gp ’s  is a good estimate for g?  Some 
authors have suggested the use of the median of the gp ’s.  We will develop an estimation proce-
dure for g later in this chapter using the values of gp . 

 Using equation (1) we have 

  X p = A + B egZ p −1( )exp(hZ p
2 /2)

g
 (5) 

  X1− p = A + B egZ1−p −1( )exp(hZ1− p
2 /2)

g
 (6) 

Using  Z p = −Z1− p  and subtracting (6) from (5) we obtain: 
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Property 6 For a given value of g, the value of h in the g-and-h distribution is given by  

  
g X p − X1− p( )
egZ p −e−gZ p( )= Bexp hZ p

2 /2( ) (7) 

Or,   ln
g X p − X1− p( )
egZ p − e−gZ p( )= ln B( )+ h Z p

2 /2( ) (8) 

Thus we can obtain the value of h from the linear regression of ln
g X p − X1− p( )
egZ p − e−gZ p( ) on Z p

2 /2 .  The 

coefficient of the regression gives the value of h and the exp(intercept) gives the value of B.  We 
thus obtain the values of h and B conditional on the value of g.  The left hand side of equation (7) 
is also known as the corrected full spread (CFS).  Here we have a single estimate for h, the 
parameter responsible for the kurtosis of the g-and-h distribution.  Later we will explore other 
ways of estimating the value of h conditional on g.  If we use two halves of the data separately, 
then we can obtain two different estimates for h and thus two different estimates of the kurtosis 
for two tails of the distribution.  The upper and lower half spreads (UHS and LHS) are given by 
the following two equations: 

  
  
UHS=

g X1− p − X0.5( )
e− gZp −1( )  (9) 

  
  
LHS=

g X0.5 − X p( )
1−egZ p( )  (10) 

Replacing CFS in equation (7) by UHS and LHS we obtain h for the upper and lower half of the 
data. 

 Martinez and Iglewicz (1984) have shown that the g-and-h distribution covers most of the 
Pearsonian family of distributions up to an adequate approximation and can also generate a 
variety of other types of distributions.  They show how more than more than twelve distributions 
can be generated from the g-and-h distribution by choosing the values of A, B, g, and h.2  We 
saw earlier that normal and lognormal distributions are two very important special cases of the g-
and-h distribution.  This property of the g-and-h distribution makes it a very general leptokurtic 
distribution for modeling asset returns. 

 In order to study the skewness and kurtosis of a distribution we need to evaluate its 
moments.  Martinez and Iglewicz (1984), and Hoaglin (1985) have shown that calculations for 
the moments of the g-and-h distribution are straightforward, although it becomes tedious as the 
order of the moment increases. 

                                                 

2 In addition to normal and lognormal distributions, they showed how to generate uniform, student-t, exponential, 
double exponential, cauchy, beta, gamma, Weibull, Chi-square, and logistic distributions.  We can also get Burr III 
as a combination of the beta and gamma distributions. 
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Estimation of Moments 
 To compute the moments of the g-and-h distribution, we first compute the moments of 
the g-distribution (when h = 0) and h-distribution (when g = 0).  In Property 4 we noted that the 
g-distribution is a horizontally shifted lognormal distribution.  Therefore, the moments of the g-
distribution are similar to those of the lognormal distribution with adjustment for the shift.  The 
h-distribution is a symmetric distribution (because g = 0).  As a result, all odd-order moments of 
an h-distribution are zero. 

 From equation (1) we have X n = (A + BY )n =
n

i

 

 
  

 

 
  

i= 0

n

∑ An− iBiY i .  Therefore,  

  E X n[ ]=
n

i

 

 
  

 

 
  

i= 0

n

∑ An− iBiE Y i( ) (11) 

When g is not equal to zero 

Y i =
exp(ihZ 2 /2) (−1) r

i

r

 

 
  

 

 
  exp (i − r)gZ( )

r= 0

i

∑
gi , where Z is a standard normal variable.  Therefore, 

  E Y i( )=
(−1)r

i

r

 

 
  

 

 
  exp −1

2
(1− ih)Z 2 + (i − r)gZ

 
 
 

 
 
 dz

−∞

∞

∫
r= 0

i

∑
2π gi

 (12) 

Completing the squares and rearranging the terms we have 

  E Y i( )=
(−1)r

i

r

 

 
  

 

 
  

r= 0

i

∑ exp (i − r)2 g2 2(1− ih)[ ]
1− ih( )

1
2 gi

 (13) 

Substituting (13) in (11), we have  

  E X n( )=
n

i

 

 
  

 

 
  

i= 0

n

∑ An− iBi

(−1) r i

r

 

 
  

 

 
  exp (i − r)2 g2 2(1− ih)[ ]

r= 0

i

∑
1− ih( )

1
2 gi

 (14) 

 

When g = 0, then Y = Zexp hZ 2 /2( ) and Y i = Z i exp ihZ 2 /2( ).  Therefore,  

E Y i( )=
Zi exp

−1

2
(1− ih)Z 2 

 
 

 
 
 dz

−∞

∞∫
2π

.  Again completing the squares and rearranging the terms 

we have E Y i( )=
i!(1− ih)

−( i+1)
2

2 i
2(i /2)!

 when i is even.  We have noted earlier that E Y i( )= 0  when i is 

odd.  Substituting in (11) we get 
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  E X n( )=
n

i

 

 
  

 

 
  

i= 0

n

∑ An− iBi f i( ) i! 1− ih( )
− (i+1)

2

2 i 2 (i /2)!
 (15) 

where f i( )= 0  when i is odd and equal to 1 when i is even. 

 Using the moments we can compute the skewness and kurtosis of the g-and-h distribu-
tion, the computation of which can sometimes be algebraically tedious.  Without making the 
actual computation for skewness and kurtosis we can make some observations about them with 
the help of the moments calculated in steps (14) and (15). 

 The g-and-h distribution can have a wide variety of tail behavior.  This gives great 
flexibility in fitting the actual data.  Martinez and Iglewicz (1984), and Hoaglin (1985) compare 
the skewness and kurtosis of the g-and-h distribution with the distributions belonging to the 
Pearsonian family.  The Pearsonian family of distributions can be broadly classified into seven 
different categories and all have finite first four moments.  Martinez and Iglewicz (1984) ob-
served that the g-and-h distribution covered a much wider area in the skewness-kurtosis plane 
than do the distributions in the Pearsonian family. 

Modeling the LIBORs with g-and-h distribution 
 We observed earlier that LIBOR rates exhibit skewness and kurtosis beyond that permit-
ted under the assumption of lognormality.  The Jerque-Bera statistic indicated that LIBOR rates 
are not even closely approximated by a lognormal distribution.  In this section we fit the g-and-h 
distribution to LIBOR rates and perform the goodness-of-fit tests.  In earlier sections we noted 
the flexibility of the g-and-h distribution and how it covers a wide range in the skewness-kurtosis 
plane.  Therefore, it is natural to expect that whatever distribution LIBOR rates follow, it can be 
approximated by a distribution from the g-and-h family.  The estimation we will follow here is 
the method of quantiles introduced by Hoaglin (1985).  Alternative methods that could be used 
are the maximum likelihood and method of moments.  Both of these alternative methods will 
limit the use of the structural richness of the g-and-h distribution.  Also these methods can be 
computationally tedious.  The method based on quantiles uses the structural simplicity of the g-
and-h distribution and hence is computationally easy.  Furthermore, as Hoaglin (1985) noted, the 
method of quantile uses the tail behavior of the data and not just the centralized summary infor-
mation of the data used by the method of moments or the maximum likelihood method. 

 On any day and for either 1-month or 3-month LIBOR rates, our estimation periods each 
have 63, 252, or 1260 data points.  We chose the percentiles from 0.5 to .00007 at a geometric 
progression with a total of 16 points.  Using Property 5 we estimated gp  for different values of p 
(percentile).  We plotted gp  against Z p

2  and looked for the curvature in the plot.  We observed a 
nonlinear relationship in most of the cases.  Therefore, we used the following polynomial to 
estimate g: 

  g Z( ) = k0 + k1Z
2 + k2Z

4 + k3Z
6  (16) 

Increasing the term beyond Z 6  in (16) did not change the value of g significantly.  If the 
R2value of the regression in (16) was at least 95%, we estimated the g using (16); otherwise, we 
took the median of the values of gp . 

 Using these values of g, equation (8), UHS from (9) and LHS from (10), h was estimated.  
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When there is a significant difference between the two values for h, we take the average of the 
two; otherwise we take the value from UHS.  Had we instead used two different values of h it 
would have entailed fitting two g-and-h distributions – one for the lower half and the other for 
the upper half.  However, this runs the risk of data over fitting.  In order to avoid this and to fit 
only one g-and-h distribution on any given day, we chose to take the average of the two.  In most 
cases, we observed a very insignificant difference.  Some authors have proposed the use of a 
functional relationship similar to equation (16) for estimating h.  We did not observe any signifi-
cant difference in estimating values of h between the two approaches.  Using Property 5 and 
equation (8) we also obtain an estimation for A and B.  Thus we have fitted the g-and-h distribu-
tion to short rates on each day for the previous 63, 252, or 1260 days from 1987 to 2001. 

 In order to test the goodness of fit, we used equation (1) to compute the percentile values 
based on the g-and-h distribution and called it E p .  We compared it with the observed value Op  
using the following equation: 

     χα
2 =

Oi − Ei( )2

Eii=1

16

∑ , where χα
2  is a chi-square distribution with α (equal to 11) degrees of 

freedom.  For each trading day between January 2, 1987 and September 19, 2001 and using three 
different lengths of time series we observed an extremely good fit for the 3-month and 1-year 
estimation periods (at a 99% confidence level with 24.75 as the critical point), and a good fit for 
the 5-year estimation period, even in the tails of the distribution.  Table 1 gives the summary 
statistics of the percentage error in each case. 

Generalized Beta Distribution of Second Kind (GB2) 
 Generalized Beta Distribution of the Second Kind (GB2), like the g-and-h distribution, 
can accommodate a wide variety of tail-thickness and permits skewness as well.  Bookstaber and 
McDonald (1987), McDonald (1991 and 1996), and McDonald and Xu (1995) have analyzed the 
properties and applications of the GB2 distribution in detail.  Bookstaber and McDonald (1987), 
and McDonald (1996) have explored the possibility of  modeling asset returns using GB2.  The 
GB2 distribution is defined as: 

    

GB2 y;a,b, p,q( )= | a | y ap−1

bapB( p,q)[1+ (y /b)a ]p +q
 when y >  0,

= 0 otherwise
 (17) 

Here, B(p,q) is a Beta function.  Like the g-and-h, GB2 is a four parameter distribution.  Some of 
the useful properties of GB2 are summarized below. 

 The cumulative distribution function of  GB2 is given by3 

  X y;a,b, p,q( ) = z p
1 F2[p,1− q,1+ p;z]/ pB(p,q)  (17a) 

where  z = y /b( )a / 1+ (y /b)a( ) and 1F2[a,b,c,d]  is a hypergeometric function.4 

                                                 

3 For derivation see McDonald and Xu (1995) and McDonald (1996). 
4Hypergeometric is a special function.  Reference for such functions will be Abramowitz and Stegun (1972). 
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Property 7 Parameter a is the location parameter and determines how quickly the tails of the 
distribution approach the X-axis. 

 Therefore, a large value of parameter a implies a sharp peakedness in the distribution.  
The mean of the GB2 distribution which we will derive in the next section along with other 
moments, is bB( p + 1/ a,q −1/a) /B(p,q) .  Parameter b is the scale parameter.  By inspection of 
the mean we observe 

Property 8 For large values of parameter a, parameter b → mean.  Also, doubling of b will 
move the mean 100% to the right. 

 Parameter b affects the height of the density as well.  Parameter q determines the kurtosis 
of the distribution.  The product aq directly affects the kurtosis of the distribution.  We will see 
later in this section that moments of GB2 ≥  aq do not exist.  Parameters p and q together deter-
mine the skewness of the distribution. 

 Like g-and-h, GB2 is very flexible and can be shown to include many well-known 
distributions as a special and or a limiting case.  Among the distributions that can be derived as a 
special case of GB2 are the lognormal ( a → 0,q → ∞ ), the chi-square ( a = 1,q → ∞ ), and the 
exponential ( a = 1, p = 1,q → ∞ ).  Bookstaber and McDonald (1987) give a list of other distri-
butions that can be derived from GB2 as a special case of the parameter values.  McDonald 
(1996) derived the following differential equation for the density function f (y)  of GB2: 

  
ψ y( )=

dln f y( )
dy

=
ap −1− aq +1( ) y /b( )a

y 1+ (y /b)a( )
 (18) 

and has shown that GB2 neither includes nor is included as a special case in the Pearsonian 
family whose density is given as a solution to the following differential equation: 

  ψ s( )=
d ln f s( )

ds
=

s − a

b + cs + es2  where a, b, c, and e are real constants.  (19) 

This is a very important difference between GB2 and the g-and-h distribution.  As we noted 
earlier, the g-and-h distribution does include many distributions of the Pearsonian family. 

 Since we have not expressed the GB2 distribution as a simple functional transformation 
of a known distribution (like normal in the case of g-and-h), it would be very difficult to use the 
method of quantiles to fit the GB2 distribution to LIBOR rates.  Therefore, economists and 
statisticians have used the method of moments to fit this distribution, and we do the same here. 

Estimation of Moments 
 Since McDonald and Xu (1995) have shown the derivation of the moments for GB2, we 
will not derive them here again.  Instead we will make some observations concerning the mo-
ments of GB2 that will be useful for our application.  First we state omitting the proof5 that 

Property 10 The hth-order moment (about the origin) of GB2 distribution is given by 

                                                 

5 For proof see McDonald and Xu (1995). 
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E Y h( )=

bh B( p + h / a,q − h /a)
B(p,q)

 (20) 

When h is equal to 1 we get the mean :  E Y( )=
bB(p +1/a,q −1/ a)

B(p,q)
 (21) 

From (20) we make the following important observation: 

Property 11   No moments of order ≥ aq  will exist. 

 This property explains our earlier observation that aq has a direct effect on the kurtosis 
of the distribution.  Also, from the functional form of the second parameter of the Beta function 
in the numerator of (20) we conclude the following: 

Property 12   For the GB2 distribution to be of finite variance, aq must be strictly greater than 2 
and to be of finite kurtosis aq must be strictly greater than 4. 

 The above property implies that if aq > 4 then we have a finite mean, variance, skewness 
and kurtosis.  The variance of any distribution (when it exists) is given by E(Y 2 ) − E (Y )2 .  From 
(20) and (21) we can see that when a → ∞  the variance of the distribution tends toward zero.  
Earlier we observed that when a → ∞  the mean of the distribution tends toward b.  With these 
two observations together we have the following: 

Property 13   For large values of a the probability mass of the GB2 density concentrates near b. 

 Having observed some of the important properties of the GB2 distribution and its mo-
ments, we now proceed to model LIBOR rates using the GB2 distribution. 

Modeling the 3-month-LIBOR with GB2 distribution 
 Since the GB2 distribution is a leptokurtic distribution with wide range of skewness and 
kurtosis, we would like to test how effectively it can model the LIBOR rates.  We have seen 
earlier that we could model effectively the LIBOR rates with the g-and-h distribution. 

 The estimation we will follow here is the method of moments.  Since there are four 
parameters to be estimated we need moments up to order four.  The moments we used were 
moments about the origin and equated with the moments computed using the data of the previous 
63, 252, or 1260 trading days on each day of our analysis period.  The four simultaneous equa-
tions that were solved to estimate parameters on each day are: 

  

bhB( p + h / a,q − h /a)

B(p,q)
= mh ,  where h varies from 1 to 4. (22) 

The   mh ’s are the first four moments (about the origin) computed with the data.  The system of 
equations had a solution with accuracy of the order 0.0001 in all cases. 

 In order to test the goodness-of-fit, we use equation (17a) to compute the percentile 
values based on the parameters estimated in step (22).  We kept the same 16 percentile points we 
used for the g-and-h distribution.  As before, we call the estimated value E p  and then compare it 
with the observed value Op  using the following equation: 
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χα
2 =

Oi − Ei( )2

Eii=1

16

∑ , where χα
2  is a chi-square distribution with α  (equal to 11) degrees of free-

dom.  For some of the trading days between January 2, 1987, and September 19, 2001 we did not 
observe a good fit.  The test statistics in general were higher than the test statistics we observed 
in the case of the g-and-h distribution.  We also observed that the fit in the tail of the distribution 
was not as good as it was with the g-and-h distribution.  One possible reason for this could be 
that the GB2 distribution does not cover as wide an area in the skewness-kurtosis plane as does 
the g-and-h distribution.  Also, as noted earlier under several properties, the GB2 distribution is 
very sensitive to the value of its parameters.  Unlike the g-and-h distribution, the skewness and 
kurtosis in the GB2 distribution is determined by a combination of parameters.  Therefore a good 
fit with respect to one moment may not necessarily mean a good fit with respect to the other 
moments.  In this regard the g-and-h distribution is more flexible than GB2.  Table 1 gives the 
summary statistics of the percentage error in each case. 
Conclusion 
 From our empirical analysis of the short rates it is quite obvious that LIBOR did not 
conform to a lognormal distribution.  In addition, we observed a great amount of volatility and 
changes (both in terms of direction and quantity) in the skewness and kurtosis of the data.  We 
explored the properties of g-and-h here, which has a great deal of flexibility with respect to 
skewness and kurtosis.  Based on our analysis we modeled LIBOR rates with the g-and-h and 
GB2 distributions.  We observed a very high accuracy in modeling the distribution of the LI-
BORs.  The structural simplicity of g-and-h made it computationally much easier to estimate its 
parameters than those of GB2. 

 There may be other distributions useful in modeling the historical LIBORs.  The GB2 
distribution is extremely sensitive to its parameters, so much so that a very small change in the 
parameter value can drastically alter the value of the skewness and kurtosis.  Therefore, compu-
tationally if we cannot obtain a very high accuracy in estimating the parameters of GB2, we may 
be fitting a completely different GB2 than the data actually implied.  On the other hand, the g-
and-h distribution lends itself to the quantile method of estimation.  One distinct advantage of 
this method is that we could model the tail behavior of the data easily.  On the other hand, the 
quantile method when applied to GB2 distribution can be computationally intractable. Table 1 
shows g-and-h is probably a better choice over GB2 in modeling LIBOR data.  In our worst 
measuring intervals, which were 5 years, we found there were about 7% of the cases that did not 
fall in the 99% confidence interval in the case of g-and-h, but it was about 45% for GB2. 

 The accuracy we obtained here in modeling the LIBOR rates using the g-and-h distribu-
tion is significant enough to conclude that we can effectively use the g-and-h distribution to 
model the skewness and kurtosis of short rates in general and LIBOR rates in particular.  How-
ever, we are unable to determine the extent to which the superiority of g-and-h to GB2 is because 
we used different methods for estimations. Based on the structure of the g-and-h distribution, the 
quantile method of estimation was the best choice, whereas for GB2 the quantile method is 
computationally cumbersome and unstable. Therefore, the method of moments was used for 
GB2. As we can see from the expression of the moments for g-and-h, the method of moments 
would have been very tedious for estimating the parameters of g-and-h. Therefore, when viewed 
as a package of a distribution joined with an estimation method, we can say that g-and-h is better 
than GB2 in this application. 
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(a)                                             (b) 
 

 

                                                               (c) 

Figure 1 – (a) 3-month, (b) 1-year, and (c) 5-year volatility of the 1 and 3-month USD LIBOR 
from January 2, 1987 to September 19, 2001 
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                           (a)                                                                                       (b)                                                         

                                                            (c) 

 

Figure 2 – (a) 3-month, (b) 1-yr, and (c) 5-yr skewness of 1 and 3-month USD LIBOR from 
January 2, 1987 to September 19, 2001 
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                               (a)                                                                                 (b) 

  

                                                               (c)  

 
Figure 3 – (a) 3-month, (b) 1-yr, and (c) 5-yr kurtosis of the 3-month USD LIBOR from Sep-
tember 27, 2000 to September 19, 2001 
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Table 1 
The following presents the summary statistics for the goodness of fit of the g-and-h and GB2 
distributions to 1-month and 3-month-LIBOR data.  The estimates were made for 63, 252, and 
1260 days of the LIBOR data on from January 2, 1987 to September 19, 2001.  The table also 
presents the summary of the Jerque-Bera statistic for the LIBOR data.  The critical points of 
Jerque-Bera statistic and goodness of fit are 9.21 and 24.75 respectively. 

 

g-and-h GB2
Jerque-Bera Statistics Distribution Distribution

3M 1Yr 5Yr 3M 1Yr 5Yr 3M 1Yr 5Yr

Mean 258.76 612.67 827.90 4.24 1.45 36.78 6.31 17.07 60.02
Median 42.14 177.58 934.22 0.01 0.16 1.54 6.51 11.48 21.91

1MLIBOR 25 Percentile 32.91 146.12 554.05 0.00 0.02 0.18 1.18 4.26 10.54
75 Percentile 52.02 212.94 1104.77 0.16 0.85 7.50 16.87 23.93 40.65
95 Percentile 257.28 537.83 1134.90 4.23 4.78 31.60 41.55 53.13 96.00
% above 9.21
(for Jerque Bera) 100% 100% 100%
% above 24.75
(for g-and-h and 1.72% 1.09% 7.23% 19.31% 25.73% 45.53%
GB2)

Mean 214.59 2143.46 826.57 1.23 2.05 6.15 8.58 20.06 30.40
Median 39.72 163.43 954.13 0.01 0.17 0.68 6.19 13.50 21.83

3MLIBOR 25 Percentile 31.46 127.33 540.40 0.00 0.02 0.13 1.18 5.50 10.05
75 Percentile 48.55 195.57 1092.89 0.10 0.77 6.89 14.81 27.30 42.14
95 Percentile 62.03 242.53 1125.10 1.28 7.87 41.21 34.89 60.52 107.95
% above 9.21
(for Jerque Bera) 100% 100% 100%
% above 24.75
(for g-and-h and 0.40% 1.40% 6.94% 13.37% 29.39% 45.69%
GB2)



 16 

Bibliography 
Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions. Washington D.C., 
National Bureau of Standards, 1972. 

Babbs S. H., and N. J. Webber, “Term Structure Modeling Under Alternative Official Regime.”  
in Mathematics of Derivative Securities.  Eds. Dempster and Pliska.  Cambridge, UK:  Cam-
bridge University Press, 1998. 

Badrinath, S. G. and S. Chatterjee, “ On Measuring Skewness and Elongation in Common Stock 
Return Distributions:  The Case of the Market Index.”  Journal of Business, Vol. 61, No. 4, 1988. 

Badrinath, S. G. and S.  Chatterjee, “A Data-Analytic Look at Skewness and Elongation in 
Common-Stock-Return Distributions.”  Journal of Business & Economic Statistics, Vol. 9, No. 
2, 1991. 

Becker, D. N., Statistical Tests of The Lognormal Distribution As A Basis For Interest Rate 
Changes.  Schaumburg, IL:  Society of Actuaries, 1991. 

Bookstaber R. M. and J. B. McDonald, “A General Distribution For Describing  Security Price 
Returns.”  Journal of Business, Vol. 60, No. 3, 1987. 

Chen, L., Interest Rate Dynamics, Derivative Pricing, and Risk Management.  New York, NY:  
Springer-Verlag, 1996. 

Demmel, R., Fiscal Policy, Public Debt and the Term Structure of Interest Rates.  Berlin:  
Springer-Verlag, 1999. 

Dutta, K. K., Leptokurtic Distributions and Tests of Distributional Assumptions in Extracting 
Probabbilistic Information from Interest Rate Options.  Philadelphia, PA, USA:  Ph.D.  Disser-
tation, University of Pennsylvania, 2002. 

Dutta, K. K. and D. F. Babbel, “Extracting Probabilistic Information from the Prices of Interest 
Rate Options:  Tests of Distributional Assumptions.”  Working Paper, National Economic 
Research Associates (NERA), May 2002. 

El-Jahel, L., H. Lindberg and W. Perraudin, “Interest Rate Distribution, Yield curve Modeling, 
and  Monetary Policy.”  In Mathematics of Derivative Securities.  Eds. Dempster and Pliska.  
Cambridge, UK:  Cambridge University Press, 1998. 

Hoaglin, D. C., “Using Quantiles to Study Shape.” Chapter 10 in Exploring Data Tables Trends, 
and Shapes.  Ed.  Hoaglin, Mosteller, and Tukey.  New York, NY:  John Willey, 1985. 

Hoaglin, D. C., “Summarizing Shape Numerically:  The g-and-h Distributions.” Chapter 11 in 
Exploring Data Tables Trends, and Shapes.  Eds. Hoaglin, Mosteller, and Tukey.  New York, 
NY:  John Willey, 1985. 

Martinez, J. and B. Iglewicz, “Some Properties of the Tukey g and h Family  Distibutions.” 
Communications in Statistics - Theory Meth., 1984. 

McDonald, J. B.  “Probability Distributions for Financial Models.”  Statistical Methods in 
Finance, Vol. 14 of Handbook of Statistics, Eds. Madalla and Rao.  Amsterrdam: Elsevier, 1996. 

McDonald, J. B.  and Y. J. Xu, “A Generalization of the Beta Distribution with Applications.”  
Journal of Econometrics, Vol. 66, 1995. 



 17 

Mills, T. C., “Modelling Skewness and Kurtosis in the London Stock Exhange FT-SE Index 
Return Distributions.”  The Statistician, Vol. 44, No. 3, 1995. 

Tukey, J. W., Exploratory Data Analysis.  Reading, MA:  Addison-Wesley, 1977. 




