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Abstract:   Value-at-risk (VaR) models have been accepted by banking regulators as tools
for setting capital requirements for market risk exposure. Three statistical methodologies
for evaluating the accuracy of such models are examined; specifically, evaluation based on
the binomial distribution, interval forecast evaluation as proposed by Christoffersen (1995),
and distribution forecast evaluation as proposed by Crnkovic and Drachman (1995). These
methodologies test whether the VaR forecasts in question exhibit properties characteristic
of accurate VaR forecasts. However, the statistical tests used often have low power against
alternative models. A new evaluation methodology, based on the probability forecasting
framework discussed by Lopez (1995), is proposed. This methodology gauges the accuracy
of VaR models using forecast evaluation techniques. It is argued that this methodology
provides users, such as regulatory agencies, with greater flexibility to tailor the evaluations
to their particular interests by defining the appropriate loss function. Simulation results
indicate that this methodology is clearly capable of differentiating among accurate and
alternative VaR models.



My discussion of risk measurement issues suggests that disclosure of quantitative
measures of market risk, such as value-at-risk, is enlightening only when
accompanied by a thorough discussion of how the risk measures were calculated
and how they related to actual performance. (Greenspan, 1996)

I. Introduction

The econometric modeling of financial time series is of obvious interest to financial

institutions, whose profits are directly or indirectly tied to their behavior. Over the past decade,

financial institutions have significantly increased their use of such time series models in response

to their increased trading activities, their increased emphasis on risk-adjusted returns on capital

and advances in both the theoretical and empirical finance literature. Given such activity, financial

regulators have also begun to focus their attention on the use of such models by regulated

institutions. The main example of such regulatory concern is the “market risk” supplement to the

1988 Basle Capital Adequacy Accord, which proposes that institutions with significant trading

activities be assessed a capital charge for their market risk exposure. Under the proposed

“internal models” approach, such regulatory capital requirements would be based on the value-at-

risk (VaR) estimates generated by banks’ internal VaR models. VaR estimates are forecasts of

the maximum portfolio value that could be lost over a given holding period with a specified

confidence level.

Given the importance of VaR forecasts to banks and their regulators, evaluating the

accuracy of the models underlying them is a necessary exercise. Three statistical evaluation

methodologies based on hypothesis testing have been proposed in the literature. In each of these

statistical tests, the null hypothesis is that the VaR forecasts in question exhibit a specified

property characteristic of accurate VaR forecasts. Specifically, the evaluation method based on

the binomial distribution, currently the basis of the regulatory supplement and extensively

discussed by Kupiec (1995), examines whether VaR estimates exhibit correct unconditional

coverage; the interval forecast method proposed by Christoffersen (1995) examines whether they



exhibit correct conditional coverage; and the distribution forecast method proposed by Crnkovic

and Drachman (1995) examines whether observed empirical percentiles are independent and

uniformly distributed. In these tests, if the null hypothesis is rejected, the underlying VaR model

is said to be inaccurate, and if not rejected, then the model can be said to be accurate.

However, for these evaluation methods, as with any statistical test, a key issue is their

power; i.e., their ability to reject the null hypothesis when it is incorrect. If a statistical test

exhibits poor power properties, then the probability of misclassifying an inaccurate model as

accurate will be high. This paper examines this issue within the context of a Monte Carlo

simulation exercise using several data generating processes.

In addition, this paper also proposes an alternative evaluation methodology based on the

probability forecasting framework presented by Lopez (1995). In contrast to those listed above,

this methodology is not based on a statistical testing framework, but instead attempts to gauge the

accuracy of VaR models using standard forecast evaluation techniques. That is, a regulatory loss

function is specified, and the accuracy of VaR forecasts (and their underlying model) is gauged by

how well they minimize this loss function. The VaR forecasts used in this methodology are

probability forecasts of a specified regulatory event, and the loss function used is the quadratic

probability score (QPS). Although statistical power is not relevant within this framework, the

issues of misclassification and comparative accuracy of VaR models under the specified loss

function are examined within the context of a Monte Carlo simulation exercise.

The simulation results presented indicate that the three statistical methodologies can have

relatively low power against several alternative hypotheses based on inaccurate VaR models, thus

implying that the chances of misclassifying inaccurate models as accurate can be quite high. With

respect to the fourth methodology, the simulation results indicate that the chosen forecast

evaluation techniques are capable of distinguishing between accurate and alternative models. This

ability, as well as its flexibility with respect to the specification of the regulatory loss function,
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make a reasonable case for the use of probability forecast evaluation techniques in the regulatory

evaluation of VaR models.

The paper is organized as follows. Section II describes both the current regulatory

framework for evaluating VaR estimates as well as the four evaluation methodologies examined.

Sections III and IV outline the simulation experiment and present the results, respectively.

Section V summarizes and discusses directions for future research.

II. The Evaluation of VaR Models

Currently, the most commonly used type of VaR forecasts is VaR estimates. As defined

above, VaR estimates correspond to a specified percentile of a portfolio’s potential loss

distribution over a given holding period. To fix notation, let y t represent portfolio value, which is

Given their roles as internal risk management tools and regulatory capital measures, the

evaluation of the models generating VaR estimates is of interest to banks and their regulators.

Note, however, the regulatory evaluation of such models differs from institutional evaluations in

three important ways. First, the regulatory evaluation has in mind the goal of assuring adequate

capital to prevent significant losses, a goal that may not be shared by an institutional evaluation.

Second, regulators, although potentially privy to the details of an institution’s VaR model,

generally cannot evaluate the basic components of the model as well as the originating institution
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can. Third, regulators have the responsibility of constructing evaluations applicable across many

institutions.

In this section, the current regulatory framework, commonly known as the “internal

models” approach, as well as three statistical evaluation methodologies are discussed. 1 These

methodologies test the null hypothesis that the VaR forecasts in question exhibit specified

properties characteristic of accurate VaR forecasts. In addition, an alternative methodology based

on comparing probability forecasts of regulatory events of interest with the occurrence of these

events is proposed. This methodology gauges the accuracy of VaR models using a loss function

tailored to the interests of the regulatory agencies.

A. Current Regulatory Framework

The current regulatory framework for market risk is based on the general principles set

forth in the 1988 Basle Capital Adequacy Accord, which proposed minimum capital requirements

for banks’ credit risk exposure. In August 1996, American bank regulatory agencies adopted a

supplement to the Accord that proposed minimum capital requirements for banks’ market risk

exposure. The supplement consists of two alternative approaches for setting such capital

standards for bank trading accounts, which are bank assets carried at their current market value.2

The first approach, known as the “standardized” approach, consists of regulatory rules

that assign capital charges to specific assets and roughly account for selected portfolio effects on

banks’ risk exposures. However, as reviewed by Kupiec and O’Brien (1995a), this approach has a

number of shortcomings with respect to standard risk management procedures. Under the

1 Another evaluation methodology, known as “historical simulation”, has been proposed and is based on
However, as noted by Kupiec (1995), this procedure is

highly dependent on the assumption of stationary processes and is subject to the large sampling error associated with
quantile estimation, especially in the lower tail of the distribution.

2 A third approach known as the “precommitment” approach has been proposed by the Federal Reserve Board of
Governors; see Kupiec and O’Brien (1995b) for a detailed description.
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alternative “internal models” approach, capital requirements are based on the VaR estimates

generated by banks’ internal risk measurement models using the standardizing regulatory

market risk capital is set according to its estimate of the potential loss that would not be exceeded

with one percent certainty over the subsequent two week period.

A bank’s market risk capital requirement at time t, MRCmt, is based on a multiple of the

. .

where Smt and SRmt are a regulatory multiplication factor and an additional capital charge for the

portfolio’s specific risk, respectively. The Smt multiplier links the accuracy of the VaR model to

the capital charge by varying over time as a function of the accuracy of the VaR estimates. In the

current evaluation framework, Smt is set according to the accuracy of the VaR estimates for a one-

one-day VaR estimate with the following day’s trading outcome.3 The value of Smt depends on

the number of times that daily trading losses exceed the corresponding VaR estimates over the

last 250 trading days. Recognizing that even accurate models may perform poorly on occasion

and to address the low power of the underlying binomial statistical test, the number of such

exceptions is divided into three zones. Within the green zone (four or fewer exceptions), a VaR

model is deemed acceptably accurate, and Smt remains at 3, the level specified by the Basle

Committee. Within the yellow zone (five through nine exceptions), Smt increases incrementally

with the number of exceptions. Within the red zone (ten or more exceptions), the VaR model is

3 An important question that requires further attention is whether trading outcomes should be defined as the
changes in portfolio value that would occur if end-of-day positions remained unchanged (with no intraday trading or
fee income) or as actual trading profits.
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deemed to be inaccurate, and Smt increases to four. The institution must also explicitly improve its

risk measurement and management system.

B. Alternative Evaluation Methodologies

In this section, four evaluation methodologies for gauging VaR model accuracy are

discussed. For the purposes of this paper and in accordance with the current regulatory

framework, the holding period k is set to one. Thus, given a set of one-step-ahead VaR forecasts

generated by model m, regulators must determine whether the underlying model is “accurate”.

Three statistical evaluation methodologies using different types of VaR forecasts are available;

specifically, evaluation based on the binomial distribution, interval forecast evaluation as proposed

by Christoffersen (1995) and distribution forecast evaluation as proposed by Crnkovic and

Drachman (1995). The underlying premise of these evaluation methodologies is to determine

whether the VaR forecasts exhibit a specified property of accurate VaR forecasts using a

hypothesis testing framework.

However, as noted by Diebold and Lopez (1996), most forecast evaluations are conducted

on forecasts that are generally known to be less than optimal, in which case a hypothesis testing

framework may not provide much useful information. In this paper, an alternative evaluation

methodology for VaR models, based on the probability forecasting framework presented by

Lopez (1995), is proposed. Within this methodology, the accuracy of VaR models is evaluated

using standard forecast evaluation techniques; i.e., by how well they minimize a loss function that

reflects the interests of regulators.

B. 1. Evaluation of VaR estimates based on the binomial distribution

Under the “internal models” approach, banks will report their VaR estimates to the

regulators, who observe whether the trading losses are less than or greater than the estimates.
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Under the assumption that the VaR estimates are independent across time, such observations can

be modeled as draws from an independent binomial random variable with a probability of

As discussed by Kupiec (1995), a variety of tests are available to test the null hypothesis

sample of size T is

x
Accurate VaR estimates should exhibit the property that their unconditional coverage, measured

the appropriate likelihood ratio statistic is

Note that the LRuc test of this null hypothesis is uniformly most powerful for a given T and that

However, the finite sample size and power characteristics of this test are of interest. With

the asymptotic one in order to establish the size of the test. As for power, Kupiec (1995)

describes how this test has little ability to distinguish among alternative hypotheses, even in

moderately large samples.

4 Kupiec (1995) describes several hypothesis tests that are available and depend on how the bank is monitored.
However, this paper focusses on daily reporting and evaluation after a fixed number of days.
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B. 2. Evaluation of VaR interval forecasts (Christoffersen, 1995)

VaR estimates can clearly be viewed as interval forecasts; that is, forecasts of the lower

interpretation, the interval forecast evaluation techniques proposed by Christoffersen (1995) can

be applied.5 The interval forecasts can be evaluated conditionally or unconditionally; that is,

forecast performance can be examined over the entire sample period with or without reference to

information available at each point in time. The LRuc test is an unconditional test of interval

forecasts since it ignores this type of information.

However, as argued by Christoffersen (1995), in the presence of the time-dependent,

variance dynamics often found in financial time series, testing the conditional accuracy of interval

forecasts becomes important. The main reason for this is that interval forecasts that ignore such

have incorrect conditional coverage; see Figure 1 for an illustration. Thus, the LRuc test does not

have power against the alternative hypothesis that the exceptions are clustered in a time-

dependent fashion. The LRcc test proposed by Christoffersen (1995) addresses this shortcoming.

variable Imt is constructed as

Accurate VaR interval forecasts should exhibit the property of correct conditional coverage,

independent. Christoffersen (1995) shows that the test for correct conditional coverage is formed

5 Interval forecast evaluation techniques are also proposed by Granger, White and Kamstra (1989).
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by combining the tests for correct unconditional coverage and independence as the test statistic

hypothesis of serial independence against the alternative of first-order Markov dependence.6 The

likelihood function under this alternative hypothesis is LA =

Note that the Tij notation denotes the

number of observations in state j after having been in state I the period before. Under the null

                                                                                                                                                                                                                                      

Thus, the proposed LRind test statistic is LRind =

B. 3. Evaluation of VaR distribution forecasts (Crnkovic and Drachman, 1995)

Crnkovic and Drachman (1995) state that much of market risk measurement is forecasting

ft, the probability distribution function of the innovation to portfolio value. Thus, they propose to

evaluate VaR models based on their forecasted fmt distributions. Their methodology is based on

testing whether observed quantiles derived from           exhibit the properties of observed

percentiles from accurate distribution forecasts. The observed percentiles are the quantiles under

in which the observed innovations actually fall; i.e., given fmt(x) and the observed       the

corresponding observed percentile is                                      Since the percentiles of random draws

from a distribution are uniformly distributed over-the unit interval, the null hypothesis of VaR

model accuracy can be tested by determining whether              is independent and uniformly

distributed. Note that this testing framework allows for the aggregate evaluation of the fmt

forecasts, even though they may be time-varying.

Crnkovic and Drachman (1995) suggest that these two properties be examined separately

and thus propose two separate hypothesis testing procedures. As in the interval forecast method,

6 Note that higher-order dependence could be specified. Christoffersen (1995) also presents an alternative test of
this null hypothesis based on David (1947).
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the independence of the observed percentiles indicates whether the VaR model captures the

higher-order dynamics of the innovation, and the authors suggest the use of the BDS statistic to

test this hypothesis. However, in this paper, the focus is on their proposed test of the second

property.7 The test of the uniform distribution of                  is based on the Kupier statistic, which

measures the deviation between two cumulative distribution functions.8 Let Dm(x) denote the

cumulative distribution function of the observed percentiles, and the Kupier statistic for the

deviation of Dm(x) from the uniform distribution is

The distribution of Km is

For the purposes of this

paper, the finite sample distribution of Km is determined by setting Dm(x) to the true data-

generating process in the simulation exercise. In general, this testing procedure is relatively data-

intensive, and the authors note that test results begin to seriously deteriorate with fewer than 500

observations.

B. 4. Evaluation of VaR probability forecasts

The evaluation methodology proposed in this paper is based on the probability forecasting

framework presented in Lopez (1995). As opposed to the hypothesis testing methodologies

7 Note that this emphasis on the second property should understate the power of the overall methodology since
misclassification by this second test might be correctly indicated by the BDS test.

8 Crnkovic and Drachman (1995) indicate that an advantage of the Kupier statistic is that it is equally sensitive
for all values of x, as opposed to the Kolmogorov-Smirnov statistic that is most sensitive around the median. See
Press et al. (1992) for further discussion.
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discussed previously, this methodology is based on standard forecast evaluation tools. That is,

the accuracy of VaR models is gauged by how well their generated probability forecasts of

specified regulatory events minimize the relevant loss function. The loss functions of interest are

drawn from the set of probability scoring rules, which can be tailored to the interests of the

forecast evaluator. Although statistical power is not relevant within this framework, the degree of

model misclassification that characterizes this methodology is examined within the context of a

Monte Carlo simulation exercise.

The proposed evaluation method can be tailored to the interests of the forecast evaluator

(in this case, regulatory agencies) in two ways.9 First, the event of interest must be specified

Thus, instead of focussing exclusively on a fixed percentile of the forecasted distributions or on

the entire distributions themselves, this methodology allows for the evaluation of the VaR models

based upon the particular regions of the distributions of interest.

In this paper, two types of regulatory events are considered. The first type of event is

the purposes of this proposed evaluation methodology, however, this type of event is defined

is determined, and probability forecasts of whether the subsequent innovations will be less than it

are generated. In mathematical notation, the generated probability forecasts are

As currently defined, regulators are interested in the lower 1% tail, but of course, other  

percentages might be of interest. The second type of event, instead of focussing on a fixed

forecast evaluator by introducing the appropriate weighting function.
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percentile region of fmt, focusses on a fixed magnitude of portfolio loss. That is, regulators may

be interested in determining how well a VaR model can forecast a portfolio loss of q% of y t over a

one-day period. The corresponding probability forecast generated from model m is

The second way of tailoring the forecast evaluation to the interests of the regulators is the

selection of the loss function or scoring rule used to evaluate the forecasts. Scoring rules measure

the “goodness” of the forecasted probabilities, as defined by the forecast user. Thus, a regulator’s

economic loss function should be used to select the scoring rule with which to evaluate the

generated probability forecasts. The quadratic probability score (QPS), developed by Brier

(1950), specifically measures the accuracy of probability forecasts over time and will be used in

this simulation exercise. The QPS is the analog of mean squared error for probability forecasts

and thus implies a quadratic loss function.10 The QPS for model m over a sample of size T is

where Rt is an indicator variable that equals one if the specified event occurs and zero otherwise.

and has a negative orientation (i. e., smaller values indicate more accurate

forecasts). A key property of the QPS is that it is a proper scoring rule, which means that

forecasters must report their actual forecasts to minimize their expected QPS score. Thus,

accurate VaR models are expected to generate lower QPS scores than inaccurate models.

In addition to being intuitively simple, QPS is a useful scoring rule because it highlights

10 Other scoring rules, such as the logarithmic score. with different implied loss functions are available; see
Murphy and Daan (1985) for further discussion.

12



the three main attributes of probability forecasts: accuracy, calibration and resolution. The QPS

equal to the observed frequency of occurrence for all t. Accuracy refers to the closeness, on

average, of the predicted probabilities to the observed realizations and is directly measured by

QPS. Calibration refers to the degree of equivalence between the forecasted and observed

frequencies of occurrence and is measured by LSB. Resolution is the degree of correspondence

between the average of subsets of the probability forecasts with the average of all the forecasts

and is measured by RES.

The QPS measure is used here because it reflects the regulators’ loss function with respect

to VaR model evaluation. As outlined in the market-risk regulatory supplement, the goal of

reporting VaR estimates is to evaluate the quality and accuracy of a bank’s risk management

system. Since model accuracy is an input into the deterministic capital requirement MRCt, the

regulator should specify a loss function, such as QPS, that measures accuracy.

III. Simulation Experiment

The simulation experiment conducted in this paper has as its goal an analysis of the ability

of the four VaR evaluation methodologies to gauge the accuracy of alternative VaR models and

avoid model misclassification. For the three statistical methods, this amounts to analyzing the

power of the statistical tests; i.e., determining the probability with which the tests reject the

specified null hypothesis when in fact it is incorrect. With respect to the probability forecasting

methodology, its ability to correctly classify VaR models is gauged by how frequently the QPS

value for the true data generating process is lower than that of the alternative models.

VaR models are designed to be used with typically complicated portfolios of financial

assets that can include currencies, equities, interest-sensitive instruments and financial derivatives.

For the purposes of this simulation exercise however, the portfolio in question has been simplified.
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The simulated portfolio yt will be a simple integrated process of order one; that is,

The simulation experiment is conducted in four distinct, yet interrelated, segments. In the

first two segments, the emphasis is on the shape of the ft distribution. To examine how well the

various evaluation methodologies perform in the face of different distributional assumptions, the

experiments are conducted by setting ft to the standard normal distribution and a t-distribution

with six degrees of freedom, which induces fatter tails than the normal. The second two segments

examine the performance of the evaluation methodologies in the presence of variance dynamics in

fourth segment uses innovations from a GARCH(l,1)-t(6) model.

In each segment, the true data generating process is one of seven VaR models evaluated

and is designated as the “true” model or model 1. Traditional power analysis of a statistical test is

conducted by varying a particular parameter and determining whether the incorrect null

hypothesis is rejected; such changes in parameters generate what are usually termed local

alternatives. However, in this analysis, we examine alternative VaR models that are not all nested,

but are commonly used in practice. For example, a popular type of VaR model specifies its

variance hmt as an exponentially weighted moving average of squared innovation; that is,

This VaR model, as used in the well-known Riskmetrics calculations (see Guldimann, 1994), is

each segment of the simulation exercise follows.

distribution. The six alternative models examined are normal distributions with variances of 0.5,

0.75, 1.25 and 1.5 as well as the two calibrated VaR models with normal distributions. For the
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second segment, the true data generating process is a t(6) distribution. The six alternative models

are two normal distributions with variances of 1 and 1.5 (the same variance as the true model), the

two calibrated models with normal distributions as well as with t(6) distributions. For the latter

two segments of the exercise, variance dynamics are introduced by using conditional

heteroskedasticity of the GARCH form. In both segments, the true data generating process is a

an unconditional variance of 1.5. The only difference between the data generating processes of

these two segments is the chosen ft; i.e., standard normal or t(6) distribution. The seven models

examined in these two segments are the true model; the homoskedastic models of the standard

normal, the normal distribution with variance 1.5 and the t-distribution; and the heteroskedastic

models of the two calibrated volatility models with normal innovations and the GARCH model

with the other distributional form.

In all of the segments, the simulation runs are structured similarly. For each run, the

simulated yt series is generated using the chosen data generating process. The chosen length of

the in-sample series (after 1000 start-up observations) is 2500 observations, which roughly

corresponds to ten years of daily observations. The seven alternative VaR models are then used

to generate the necessary one-step-ahead VaR forecasts for the next 500 observations of y t. In

the current regulatory framework, the out-of-sample evaluation period is set at 250 observations

or roughly one year of daily data, but 500 observations are used in this exercise since the

distribution forecast and probability forecast evaluation methods are data-intensive.

The forecasts from the various VaR models are then evaluated using the appropriate

evaluation methodology. For the binomial and interval forecast methodologies, the four coverage

null hypothesis can be specified. For the probability forecast methodology, two types of
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sample observations, the desired empirical quantile loss is determined, and probability forecasts of

whether the observed innovations in the out-of-sample period will be less than it are generated.11

In mathematical notation, the generated probability forecasts are

Second, a fixed l% loss of portfolio value is set as the one-day decline of interest, and probability

forecasts of whether the observed innovations exceed that percentage loss are generated. Thus,

IV. Simulation Results

The simulation results are organized below with respect to the four segments of the

simulation exercise; that is, the results for the four evaluation methodologies are presented for

each data generating process and its alternative VaR models. The results are based on a minimum

of 1000 simulations.

Three general points can be made regarding the simulation results. First, the power of the

three statistical methodologies varies considerably; i.e., in some cases, the power of the tests is

high (greater than 75%), but in the majority of the cases examined, the power is poor (less than

50%) to moderate (between 50% and 75%). These results indicate that these evaluation

methodologies are likely to misclassify inaccurate models as accurate.

Second, the probability forecasting methodology seems well capable of distinguishing

accuracy of VaR models. That is, in pairwise comparisons between the true model and an

the

11 The determination of this empirical quantile of interest is related to, but distinct from, the “historical simulation”
approach to VaR model evaluation.
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alternative model, the loss function score for the true model is lower than that of the alternative

model in the majority of the cases examined. Thus, the chances of model misclassification when

using this evaluation methodology seem to be low. Given this ability to gauge model accuracy as

well as the flexibility introduced by the specification of regulatory loss functions, a reasonable

case can be made for the use of probability forecast evaluation techniques in the regulatory

evaluation of VaR models.

Third, for the cases examined, all four evaluation methodologies seem to be more sensitive

to misspecifications of the distributional shape of ft than to misspecifications of the variance

dynamics. Further simulation work must be conducted to determine the robustness of this result.

As previously mentioned, an important issue in examining the simulation results for the

statistical evaluation methods is the finite-sample size of the underlying test statistics. Table 1

presents the finite-sample critical values for the three statistics examined in this paper. For the

two LR tests, the corresponding critical values from their asymptotic distributions are also

presented. These finite-sample critical values are based on 10,000 simulations of sample size T =

significant. However, the finite-sample critical values in Table 1 are used in the power analysis

that follows. The critical values for the Kupier statistic are based on 1000 simulations of sample

size T = 500.

A. Simulation results for the homoskedastic standard normal data generating process

Table 2, Panel A presents the power analysis of the three statistical evaluation

methodologies for a fixed test size of 5%

- Even though the power results are generally good for the N(0, 0.5) and N(0, 1. 5) models, overall

the statistical tests have only low to moderate power against the chosen alternative models.

- For the LRuc and LRcc test, a distinct asymmetry arises across the homoskedastic normal
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alternatives; that is, the tests have relatively more power against the alternatives with

lower variances (models 2 and 3) than against those with higher variances (models 4 and

5). The reason for this seems to be that the relative concentration of the low variance

alternatives about the median undermines their tail estimation.

- Both LR tests have no power against the calibrated heteroskedastic alternatives. This result is

probably due to the fact that, even though heteroskedasticity is introduced, these

alternative models are not very different from the standard normal in the lower tail.

However, the low power of the K test against these alternatives may undermine this

conjecture.

- The K statistic seems to have good power against the homoskedastic models, but low power

against the two heteroskedastic models. This result may be largely due to the fact that

even though incorrect, these alternative models and their associated empirical quantiles are

quite similar to the true model and not just in the tail.

Table 2, Panel B contains the five sets of comparative accuracy results for the probability

forecast evaluation methodology. The table presents for each defined regulatory event the

frequency with which the true model’s QPS score is lower than the alternative model’s score.

Clearly, in most cases, this method indicates that the QPS score for the true model is lower than

that of the alternative model a high percentage of the time (over 75%). Specifically, the

homoskedastic alternatives are clearly found to be inaccurate with respect to the true model, and

the heteroskedastic alternatives only slightly less so. Thus, this methodology is clearly capable of

avoiding the misclassification of inaccurate models.

B. Simulation results for the homoskedastic t(6) data generating process

Table 3, Panel A presents the power analysis of the three statistical evaluation

methodologies for the specified test size of 5%.
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- Overall, the power results are low for the LR tests; that is, in the majority of cases, the chosen

alternative models are classified as accurate a large percentage of the time.

- However, the K statistic shows significantly higher power against the chosen alternative models.

This result seems mainly due to the important differences in the shapes of the alternative

models’ assumed distributions with respect to the true model.

- With respect to the homoskedastic models, both LR tests exhibit good to moderate results for

the N(0, 1) model, but poor results for the N(0, 1.5) model. With respect to the

heteroskedastic models, power against these alternatives is generally low with only small

differences between the sets of normal and t(6) alternatives.

Table 3, Panel B contains the five sets of comparative accuracy results for the probability

forecast evaluation methodology. Overall, the results indicate that this methodology can correctly

gauge the accuracy of the alternative models examined; that is, a moderate to high percentage of

the simulations indicate that the loss incurred by the alternative models is greater than that of the

true model.

- With respect to the homoskedastic models, this method more clearly classifies the N(0, 1) model

as inaccurate than the N(0, 1. 5) model, which has the same unconditional variance as the

true model. With respect to the heteroskedastic models, the two models based on the t(6)

distribution are more clearly classified as inaccurate than the two normal models. The

reason for this difference is probably that the incorrect form of the variance dynamics

more directly affects fmt for the t(6) alternatives (models 6 and 7) more than for the normal

alternatives (models 4 and 5).

- With respect to the empirical quantile events, the general pattern is that the distinction between

outcomes, which improves model distinction, and movement toward the median, which
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obscures model distinction. A similar result should be present in the fixed percentage

event as a function of q.

C. Simulation results for the GARCH(1, 1)-normal data generating process

Table 4, Panel A presents the power analysis of the statistical evaluation methodologies

for the specified test size of 5%. The power results seem to be closely tied to the differences

between the distributional shapes of true model and the alternative models.

- With respect to the three homoskedastic VaR models, these statistical methodologies were able

to differentiate between the N(0, 1) and t(6) models given the differences between their fmt

forecasts and the actual ft distributions. However, the tests have little power against the

N(0, 1.5) model, which matches the true model’s unconditional variance.

- With respect to the heteroskedastic models, these methodologies have low power against the

calibrated VaR models based on the normal distribution. The result is mainly due to the

fact that these smoothed variances are quite similar to the actual variances from the true

data-generating process. However, the results for the GARCH-t model vary according to

statistical tests, the tests have low to moderate power. This result seems to indicate that

these statistical tests have little power against close approximations of the variance

dynamics but much better power with respect to the distributional assumption of fmt.

Table 4, Panel B presents the five sets of comparative accuracy results for the probability

forecast evaluation methodology. Overall, the results indicate that this methodology is capable of

differentiating between the true model and alternative models.

- With respect to the homoskedastic models, the loss function is minimized for the true model a

normal models. In relative terms, the t(6) model is classified as inaccurate more
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frequently, followed by the N(0, 1) model and then the N(0, 1.5) model.

- With respect to the heteroskedastic models, the method most clearly distinguishes the GARCH-t

D.

model, even though it has the correct dynamics. The two calibrated normal models are

only moderately classified as inaccurate. These results seem to indicate that deviations

from the true ft have a greater impact than misspecification of the variance dynamics,

especially in the tail.

Simulation results for the GARCH(1, 1)-t(6) data-generating process

Table 5, Panel A presents the power analysis of the three statistical methodologies for the

specified test size of 5%. The power results seem to be closely tied to the distributional

differences between the true model and the alternative models.

- With respect to the homoskedastic models, all three tests have high power; i.e., misclassification

is not likely. Specifically, the N(0, 1) model that mispecifies both the variance dynamics

and ft is easily seen to be inaccurate, although the t(6) model and the N(0, 1.5) model are

also easily identified as inaccurate.

power against these alternative models. As in the previous segment, these results seem to

indicate that the statistical tests have most power against models with inaccurate

distributional forecasts and less so with respect to model with in accurate variance

dynamics.

Table 5, Panel B presents the comparative accuracy results for the probability forecast

evaluation methodology. Once again, the results indicate that the methodology is capable of

differentiating between the true model and the alternative models.
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result is more due to the high volatility and thick tails exhibited by the data-generating

process than to the method’s ability to differentiate between models. That is, the empirical

critical values CV(1,F) were generally so negative as to cause very few observations of the

event; so few as to diminish the methods’ ability to differentiate between the models.

- With respect to the homoskedastic alternatives, the method is able to classify the alternative

models a very high percentage of the time; thus, indicating that incorrect modeling of the

variance dynamics is well accounted for in this methodology.

- With respect to the heteroskedastic alternatives, the method is able to correctly classify the

alternative models a moderate to high percentage of the time. Specifically, the calibrated

normal models are found to generate losses higher than the true model a high percentage

of the time, certainly higher than the GARCH-normal model that captures the dynamics

correctly. These results indicate that although approximating or exactly capturing the

variance dynamics can lead to a reduction in misclassification, the differences in ft are still

the dominant factor in differentiating between models.

V. Summary

This paper addresses the question of how regulators should evaluate the accuracy of VaR

models. The evaluation methodologies proposed to date are based on statistical hypothesis

testing; that is, if the VaR model is accurate, its VaR forecasts should exhibit properties

characteristic of accurate VaR forecasts. If these properties are not present, then we can reject

the null hypothesis of model accuracy at the specified significance level. Although such a

framework can provide useful insight, it hinges on the tests’ statistical power;

to reject the null hypothesis of model accuracy when the model is inaccurate.

that is, their ability

As discussed by
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Kupiec (1995) and as shown in the results contained in this paper, these tests seem to have low

power against many reasonable alternatives and thus could lead to a high degree of model

misclassification.

An alternative evaluation methodology, based on the probability forecast framework

discussed by Lopez (1995), was proposed and examined. By avoiding hypothesis testing and

instead relying on standard forecast evaluation tools, this methodology attempts to gauge the

accuracy of VaR models by determining how well they minimize the loss function chosen by the

regulators. The simulation results indicate that this methodology can distinguish between VaR

models; that is, the probability forecasting methodology seems to be less prone to model

misclassification. Given this ability to gauge model accuracy as well as the flexibility introduced

by the specification of regulatory loss functions, a reasonable case can be made for the use of

probability forecast evaluation techniques in the regulatory evaluation of VaR models.
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Figure 1
GARCH(l, 1) Realization with One-Step-Ahead

90% Conditional and Unconditional Confidence Intervals

This figure graphs a realization of length 500 of a GARCH(l, 1)-normal process along
with two sets of 90% confidence intervals. The straight lines are unconditional confidence
intervals, and the jagged lines are conditional confidence intervals based on the true data-

GARCH confidence intervals exhibit correct conditional coverage.
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Table 1. Finite-Sample Critical Values of LRuc, LRcc and K Statistics

The finite-sample critical values are based on a minimum of 1000 simulations. The percentages in
parentheses in the panels for the LR tests are the percentiles that correspond to the asymptotic critical values under
the finite-sample distributions.
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Table 2. Simulation Results for Exercise Segment 1 (Units: percent)

a The size of the tests is set at 5 %.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS score than the
true model: i.e.. the percentage of the simulations for which the alternative model was correctly classified.

The results are based on a minimum of 1000 simulations. Model 1 is the true data generating process,
N(0, 1). Models 2-5 are normal distributions with variances of 0.5, 0.75, 1.25 and 1.5, respectively. Models 6 and 7
are normal distributions whose variances are exponentially weighted averages of the squared innovations calibrated
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Table 3. Simulation Results for Exercise Segment 2 (Units: percent)

a The size of the tests is set at 5 %.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS score than the
true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on a minimum of 1000 simulations. Model 1 is the true data generating process, t(6).
Models 2 and 3 are the homoskedastic models with normal distributions of variance of 1.5 and 1, respectively.
Models 4 and 5 are the calibrated heteroskedastic models with the normal distribution, and models 6 and 7 are the
calibrated heteroskedastic models with the t(6) distribution.
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Table 4. Simulation Results for Exercise Segment 3 (Units: percent)

a The size of the tests is set at 5%.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS score than the
true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on a minimum of 1000 simulations. Model 1 is the true data generating process,
GARCH(l, 1)-normal. Models 2, 3 and 4 are the homoskedastic models N(0, 1.5), N(0, 1) and t(6), respectively.
Models 5 and 6 are the two calibrated heteroskedastic models with the normal distribution, and model 7 is a
GARCH(l, 1)-t(6) model with the same parameter values as Model 1.
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Table 5. Simulation Results for Exercise Segment 4 (Units: percent)

a The size of the tests is set at 5%.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS score than the
true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on a minimum of 1000 simulations. Model 1 is the true data generating process,
GARCH(l, 1)-t(6). Models 2, 3 and 4 are the homoskedastic models N(0, 1.5), N(0, 1) and t(6), respectively. Models
5 and 6 are the two calibrated heteroskedastic models with the normal distribution, and model 7 is a GARCH(l, l)-
normal model with the same parameter values as Model 1.
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