
Financial
Institutions
Center

Intertemporal Insurance

by
Bryan Ellickson
José Penalva-Zuasti

96-19



THE WHARTON FINANCIAL INSTITUTIONS CENTER

The Wharton Financial Institutions Center provides a multi-disciplinary research approach to
the problems and opportunities facing the financial services industry in its search for
competitive excellence.  The Center's research focuses on the issues related to managing risk
at the firm level as well as ways to improve productivity and performance.

The Center fosters the development of a community of faculty, visiting scholars and Ph.D.
candidates whose research interests complement and support the mission of the Center.  The
Center works closely with industry executives and practitioners to ensure that its research is
informed by the operating realities and competitive demands facing industry participants as
they pursue competitive excellence.

Copies of the working papers summarized here are available from the Center.  If you would
like to learn more about the Center or become a member of our research community, please
let us know of your interest.

Anthony M. Santomero
Director

The Working Paper Series is made possible by a generous
grant from the Alfred P. Sloan Foundation



Bryan Ellickson and José Penalva Zuasti are at the Department of Economics, UCLA.1

This paper was presented at the Wharton Financial Institutions Center's Conference on Risk Management in
Insurance Firms, May 15-17, 1996.  The research was supported by a grant from the UCLA Academic Senate.  We
would like to thank David Levine, Joseph Ostroy and William Zame as well as participants at the UCLA
Economics Department Theory Workshop and the 22nd Seminar of the European Group of Risk and Insurance
Economists for helpful comments on earlier versions of this paper.

Intertemporal Insurance 1
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Abstract :  This paper develops a discrete-time general equilibrium model of insurance
using standard techniques of intertemporal finance.  The underlying source of uncertainty
is modeled as a marked point process.  The paper begins by characterizing  Walrasian
equilibrium on the event tree generated by the accident process. The corresponding
Arrow-Debreu-Radner contingent-commodity prices allow the pricing of insurance
contracts.  A transformation of the underlying probability measure gives an alternative
characterization of insurance contract prices plus accumulated payouts as martingales. A
direct application of the usual dynamic spanning argument demonstrates that one insurance
contract for each type of accident suffices, at least generically, to achieve market
completeness.  The theory is illustrated by a simple example in which consumers have
Cobb-Douglas preferences and experience accidents at a rate which varies across
individuals but remains constant over time, the traditional setting for much of insurance
theory.



1 Introduction

Insurance and finance share common intellectual roots in the Arrow-Debreu
theory of contingent commodities. It seems curious, therefore, that in ad-
dressing the question “How do markets deal with risk?” the general equi-
librium theories of insurance and finance have gone such separate ways.

From the pioneering efforts of Malinvaud [1972, 1973] through the recent
work of Cass, Chichilnisky, and Wu [1996], the general equilibrium theory
of insurance has remained an essentially static theory, preoccupied with un-
derstanding how the law of large numbers might serve to alleviate problems
of market incompleteness. On the surface, this concern with market in-
completeness does not seem misplaced. Accidents are intrinsically personal
affairs, and insurance contracts reflect the personalized nature of the under-
lying events: when an accident happens to someone, the insurance contract
compensates the individual for the injury to his person or property. As Ma-
linvaud pointed out, because accidents happen to individuals, the size of the
state space, and hence the required number of contingent contracts, grows
exponentially with the number of agents, straining our willingness to believe
in the efficacy of Arrow-Debreu contingent contracts. Appeal to the law of
large numbers offers a way out. When pricing identically and independently
distributed risks in a large population, simple insurance contracts serve as
at least a partial substitute for a much larger number of Arrow-Debreu con-
tingent contracts, and in the limit insurance will be provided at actuarially
fair rates. Cass, Chichilnisky, and Wu [1996] generalize this argument sub-
stantially.

This paper abandons the traditional approach to insurance, adopting in-
stead the perspective of modern finance. Specifically, insurance contracts are
treated as nothing more than a particular type of financial security, person-
alized but otherwise no different from any other. In contrast to traditional
insurance theory, our approach is intrinsically intertemporal, regarding an
insurance contract as a payment today for the promise of compensation if
and when an accident happens sometime in the future. We use this in-
tertemporal characterization of accident processes to justify a claim of mar-
ket completeness through dynamic spanning in the fashion of Kreps [1982].
Insurance pricing in our view might be nearly actuarially fair, but it need not
be. Instead, insurance contracts are priced just as in Harrison and Kreps’
[1979] synthesis of financial asset pricing theory with asset prices plus ac-
cumulated dividends evolving as a martingale and asset returns satisfying a
modified version of CAPM.
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Although our theory of intertemporal insurance generalizes easily to con-
tinuous time, in this paper time is discrete. Section 2 applies “standard fi-
nance,” as represented by Dothan [1990], Duffie [1988], or Huang and Litzen-
berger [1988], to insurance markets. We begin with a formal description of a
discrete time marked point process, a class of stochastic process particularly
well suited to accidents. Using a marked point process as the basic source of
uncertainty, we define an intertemporal exchange economy on the event tree
generated by the accident process and characterize the Walrasian equilib-
rium involving trade in Arrow-Debreu-Radner (ADR) time-event contingent
commodities on this tree. The corresponding ADR time-event contingent
prices allow us to price insurance contracts, which are typically not standard
ADR contracts, as redundant securities. A transformation of the underly-
ing probability measure gives an alternative characterization of insurance
contract prices plus accumulated payouts as martingales in the fashion of
Harrison-Kreps [1979]. With this standard Walrasian equilibrium in place,
we then “remove” the ADR contingent commodities, leaving only the insur-
ance contracts to deal with risks. A direct application of the usual dynamic
spanning argument (as presented, for example, in Huang and Litzenberger
[1988]) demonstrates that one insurance contract for each type of accident
suffices, at least generically, to achieve market completeness. Section 3 illus-
trates the theory in a simple setting in which consumers have Cobb-Douglas
preferences and experience accidents at a rate which varies across individuals
but remains constant over time, the traditional setting for much of insurance
theory. Section 4 offers some conclusions and directions for future research.

2 The model

The key to dynamic spanning in the finance literature, as formulated by
Kreps [1982], is that uncertainty resolves “nicely.” Uncertainty resolves
nicely for a Weiner process because of path continuity. Uncertainty also
resolves nicely for accident processes, but for a different reason: measured
on a sufficiently fine time scale, accidents are relatively rare events and,
as a consequence, economic agents have time to react to the news of their
occurrence.

In our framework, the length of a time interval should be viewed as
very short, perhaps a nanosecond. Consequently, at most dates nothing
happens. Occasionally, there is an accident, but never more than one. The
representation we choose for such an accident process is a discrete time,
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marked point process.

Figure 1: The sample space.

To simplify the discussion, we confine attention to a
model of pure
at each date.

exchange wit h a single commodity available for consumption

2.1 Characterizing the accident process

an accident happens at date t, it is assumed to occur and be known to all
agents in the economy prior to trade or consumption at date t.

We assume that any accident occurring at date t can be classified into

k = 0 signifying “no accident.” All uncertainty in the economy is captured

Throughout this paper, we assume

Figure 1 illustrates for the case T = K = 2 which contains nine sample

the infinite horizon case.
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Figure 2: A realization of the accident process.

there is an accident of type 2 at date 1 and no accident at date 2. For k > 0,

of accidents of type k: i.e.,

is called a discrete time, K-variate counting process or, equivalently, a
marked point process.2 Figure 2, which imitates a similar figure for a con-
tinuous time counting process in Brémaud [1981, p. 20], illustrates a typical
realization for an economy with two accident types: (i) accidents of type 1
occur at dates 1 and 4; (ii) accidents of type 2 occur at dates 3 and 5; and
(iii) there is no accident at date 2. Note that there is never more than one
accident of any type at any given date.

In the usual way, the stochastic process N generates a filtration, a non-
2The standard context for these processes is continuous time as in Brémaud [1981] or

Last and Brandt [1995]. Here we have simply transcribed the concepts to discrete time.
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decreasing sequence of a-algebras

information at date t = 0 and complete information at date T. In Figure 1,

representing the events (i) no accident at date 1; (ii) accident of type 1 at
date 1; and (iii) accident of type 2 at date 2 respectively.

2.2 Describing the economy

filtration generated by the accident process N. Let L denote this vector

Contingent commodities provide a convenient way to represent these
consumption or
representing one
by the indicator

endowment processes.
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and an endowment process the representation

Similarly, consumption at date t can be written

and endowment at date t as

Letting

tion

and demand set

if

A Walrasian equilibrium for this exchange economy consists of a feasible

4The notation adopted here is that of Ellickson [1993]
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2.3 The pricing of insurance

The Walrasian equilibrium described above requires a large number of con-
tingent commodities, one such commodity for each date-event (t, at). They
are, of course, purely theoretical constructs with little resemblance to actual
insurance contracts. However, since markets are complete when these ADR
contingent contracts are present, any additional contracts which we choose
to introduce are redundant assets and, consequently, they can be priced.
Suppose, therefore, we introduce a collection of redundant assets which re-

payout of insurance policy j at date-event (t, at), measured in units of the

for ADR prices and consumption processes, each dividend process d j can
be viewed as a stochastic process adapted to the accident filtration, reflect-
ing the fact that payouts on an insurance contract must be based only on
accidents which have already happened and not on those which are yet to
come. In addition to these insurance policies, we also assume there exists
a riskfree asset available at each date-event (t, at) which costs one unit of

refer to r (t, at) as the riskfree rate.

Walrasian price functional has the representation

(1)

5Because the initial and terminal information partitions have a special structure,
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Assuming that prices of all insurance assets are ex dividend, we define for
each t < T the price process Sj for asset j according to the relation

the Arrow-Debreu valuation of the dividend stream following the date-event

prices can also be viewed as nonnegative stochastic processes adapted to the
accident filtration. As with payouts, the security price Sj(t, at) is measured
in units of the (t, at) - consumption good.

As a simple consequence of the tree structure of the filtration,

(2)

tained in at. In the special case of the riskfree asset, which costs one unit of
the consumption good at (t, at) and pays 1+ r(t, at) at each of the immediate
successor nodes, the above condition specializes to

or, equivalently,

(3)

for all t < T. Using the definitions of the martingale conditional probability
and the riskfree rate, equation (2) can now be written

Letting

denote the interest rate at date t and
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the price of the jth asset at date t, we have

(4)

Using the riskfree rate to discount insurance asset prices and their pay-
outs, define

and

Define the cumulative discounted dividend process for security j as

with respect to the measure Q.

PROOF: From equation (4) it follows that

The rate of return of the j th insurance contract at date t + 1 can be
decomposed into a predictable and an innovation component,
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is the predictable component,

likelihood ratio process z by

for the economy, expressing the excess return of the jth insurance contract
in terms of the conditional covariances between the innovation component of
the return and the aggregate risk factor.6

6We follow closely the discussion leading up to Theorem 6.4 of Dothan [1990].
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Figure 3:

where in the last step we use
and using the fact that both

2.4 Dynamic spanning

In the preceding section, insurance contracts were introduced as assets which
are redundant in the presence of the ADR contingent contracts. We claim
that, as a consequence of dynamic spanning in the sense of Kreps [1982],
the ADR contingent contracts are dispensable: all that is required, at least
generically, are the insurance contracts we have introduced.

Although the machinery is rather elaborate, the basic idea behind dy-
namic spanning is quite simple. In an event tree context, the key to dynamic
spanning is the index of the filtration, the maximum number of branches
leaving any node of the event tree: the number of accident types plus one in
our model. As shown by Kreps [1982], the number of securities required for
dynamic spanning is no greater than the index of the filtration. What this
means for us is that, in addition to the riskfree asset, all that is required for
dynamic spanning is one insurance contract covering each type of accident.

unit of the consumption good at date t if and only if an accident of type k
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the collection of its immediate successors (see Figure 3). Let

represent the port folio of securities purchased by consumer i at date-event

restriction that a consumer must buy insurance prior to acquiring knowledge
whether the insured event will occur. Finally, let

which, letting

can be written

(7)

7In the terminology of Kreps [1982], these insurance contracts are long-lived securities.
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and

(8)

where
T

An ADR equilibrium allocation is said to be dynamically spanned by the

a set of dynamically spanning portfolio trades is straightforward. Using
equation (8), we solve first for the portfolios purchased at date T – 1 and
then work back recursively to the initial holdings at date 0. Assuming that
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(9)

which requires the initial purchase of assets at date 0 to offset the net trade
at date 0.

invertible at each step which, according to Kreps [1982], will hold generically
in models of this sort. Since we have nothing to add to that discussion, we
instead use an explicit example to illustrate how the argument applies within
the context of insurance markets.

3 An example

This section illustrates our model of intertemporal insurance with a simple
example close in spirit to traditional models of insurance markets: consumers
face hazard rates which are independent of the past history of the accident
process and constant over time. We begin by deriving the Arrow-Debreu-
Radner prices and the equilibrium net trades in contingent commodities.
Within this setting two insurance regimes are then considered, one providing
short-term insurance on next period’s events and the other providing long-
term contracts paying a unit of the consumption good every time an accident
occurs in the future.

In our model an accident can be any event — a flood, a car wreck,
or an earthquake for example — which affects either the endowment or
the preferences of a consumer. However, as Malinvaud [1972, 1973] and
others have emphasized, what seems to set insurance markets apart from
other markets for risk is that insurance typically deals with individual risk.
Using the terminology of general equilibrium theory, what this means is
that contingent commodities or securities which deal with such risks must
be personalized. Fortunately, this is easily handled within our model.

To demonstrate the marketing of insurance contracts tailored to individ-
ual risk, consider an example in which the identity of the insured is the only
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dent happening to no one.
Morgenstern utility

denote the aggregate endowment of the (t, at) - contingent commodity and

the aggregate endowment at date 0.
market clearing prices are given by

Using the normalization n(0)  = 1, ADR

(11)

conditional probability

To simplify computations, assume that

where Y > 0 is the same for all consumers. Aggregate endowment is then

8At each date t an accident can happen to anyone, but — as a consequence of our point
process assumptions — an accident never happens to more than one person at any given
date. Our framework allows for accidents which affect many consumers at the same time,
as with a flood or an earthquake, but only when explicitly coded into the set of accident
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Thus, the hazard rate for an accident happening to consumer i remains
constant over time and, when an accident happens to i, it destroys her
entire endowment at the date on which the accident occurs.

Under these assumptions, equation (1) yields the following expressions
for the martingale conditional probabilities:

Thus, provided that the number of consumers is greater than one, risk ad-
justment lowers the “risk neutral” probability of no accident and increases
the “risk neutral” probability of each accident.

The riskfree rate r(t) varies depending on whether an accident has oc-
curred at date t or not. Evaluating equation (3):

From equation (11), ADR prices are
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number of consumers is even, and the population is split into two equal size

case), then

sumer), then

risk consumer), then

As n, the number of consumers, approaches infinity, the martingale probabil-
ity of no accident approaches one-fourth and the martingale probabilities of
an accident to either a high or a low risk consumer approach zero. In each
of these cases,

so that, consistent with the treatment in Malinvaud [1972, 1973], with a
large number of consumers there is little difference between actuarial and
martingale insurance pricing in this setting.
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Table 1: Equilibrium trades and net trades

Y = 390, and T = cm. The riskfree rate becomes

The martingale conditional probabilities are

as her equilibrium allocation of the (t, at) - contingent commodity. Table 1
shows the equilibrium trades and net trades of the (t, at) - contingent com-
modity for a high-risk consumer (consumer 1) and a low-risk consumer (con-
sumer 2) under three conditions: (a) there is no accident at date t (the
accident type or “mark” k(t) = 0), (b) there is an accident to consumer i

Note that gross trades depend only on the “macro risk” in the economy,

depend on who has the accident.

Although we allow at most one accident per “nanosecond,” Malinvaud’s
concern with the impact of individualized risk on the required number of
Arrow-Debreu contingent commodities manifests itself dramatically in this



intertemporal context: each node of the event tree is followed by 11 branches
so that there are 11 contingent commodities at date 1, 112 at date 2, 113 at
date 3 and so forth. We now consider how these Arrow-Debreu equilibria are
implemented under two insurance regimes, one offering short-term insurance
to consumers and the other offering long-term contracts. Either regime cuts
the number of securities needed for spanning dramatically: 10 short-term
insurance contracts per date with the first regime or simply 10 insurance
cotracts of infinite duration under the second regime, plus a riskfree asset.

3.1 Short-term insurance

We know that to achieve dynamic spanning, it is necessary to offer a separate
insurance contract for each type of accident. In the first regime we consider,
insurance contracts are short-term: one unit of insurance issued at date t
on accidents of type k at date t + 1 returns a payout at t + 1 of

Because security prices are ex dividend and this contract is short-term, it

equation (4) of asset pricing, the price of this asset depends both on the

the immediate successor event in which an accident of type k occurs. For a

As the proof of Theorem 2 indicates, the CAPM equation (6) can be
written in the form

Table 2 presents the relevant data for an insurance contract on a high-
risk consumer, the first three columns under the assumption there was no
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Table 2: Short-term insurance for a high-risk consumer

accident at date t and the last three assuming there was an accident at
date t. Each of these two groups is in turn divided into three columns

predictable return on an insurance contract for a high-risk consumer exceeds
the riskless rate by – 1/40. Using the information provided in the last three
rows, the right hand side of equation (6) evaluates to

as claimed. A similar computation using the final three columns shows that
equation (6) also holds when there is an accident at date t.

Table 3 presents the corresponding data for a low-risk consumer. It is
straightforward once again to verify that the CAPM relation (6) holds for
these contracts as well. Note that the only difference between these tables
is in the rows reporting the increment to the innovation component of the

of the events. In particular, the predictable rate of return is the same for
both risk classes.

Turning now to the issue of dynamic spanning, equation (7) must be
modified slightly to account for

9There are eleven distinct successor

three types.

the fact that the insurance securities we

events at date t + 1, but all fall into one of these
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Table 3: Short-term insurance for a low-risk consumer

are considering are short-term. At date t there are two securities of type

and the “new” contracts issued at t and paying off at t + 1. Since contracts
issued yesterday are worthless today (i.e., their ex dividend price is zero),

(7) becomes

Because we have assumed an infinite horizon in this example, we cannot
solve for the trading portfolios by backward recursion. However, we might
suspect that the portfolios are stationary, and that turns out to be the case.
In equilibrium, neither the high-risk nor the low-risk consumer holds any

3.2 Long-term insurance

The short-term insurance contracts of the preceding section are, of course,
simply Radner’s variation on Arrow-Debreu contingent commodities: i.e.,
contingent commodities traded at dates t > 0 rather than at the beginning
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of time. Although they do reduce dramatically the number of contingent
contracts or securities required for spanning, in the present context they
seem only slightly more realistic than their ADR counterparts: issuing a
new insurance contract every nanosecond puts a heavy burden on our tacit
assumption of no transactions costs! Taking a step closer to reality, we now
consider long-term insurance contracts. Specifically, an insurance policy on
an accident of type k is a long-term obligation which, at a price Sk (t, at) at
date-event (t, at), returns one unit of the consumption good at each subse-
quent date-event at which an accident of type k occurs.

For the sake of symmetry, we also replace the riskfree asset with a bond
which pays one unit of the consumption good at every date-event (t, at) from

in which an accident of type k occurs. From equation (4), the price of the
bond at (t, at) is

(13)

Of the eleven successor events which could occur at t + 1, only two are
distinct macro states in this simple economy: either an accident occurs or

equations,

Assuming bond prices are stationary, so that
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Table 4: Long-term insurance for a high-risk consumer

The prices of the insurance contracts are found in essentially the same

Exploiting the fact there are only two distinct macro states at any date and
the hypothesis that the insurance contract price should be stationary, we

insurance
contracts. Table 4 presents the relevant data for an insurance contract on
a high-risk consumer, organized just as in Tables 2 or 3: the first three
columns assume there was no accident at date t while the last three assume
there was an accident at date t, and each of these two groups is in turn
divided into three columns corresponding to what happens at date t + 1.

Table 5 gives the corresponding data for a low-risk consumer.
our earlier calculation for the short-term insurance contracts, it
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Table 5: Long-term insurance for a low-risk consumer

verify that the equation (6) holds for these long-term contracts as well. Once
again the predictable rates of return are the same for both risk classes.

Turning finally to the issue of dynamic spanning, equation (7) becomes

(15)

tionary portfolios can achieve dynamic spanning turns out to be correct, but
now, in contrast to the short-term insurance regime, low- and high-risk con-

Our example follows Malinvaud in assuming that an accident never af-
fects more than one individual. What happens if, as in the case of an earth-
quake or a flood, many consumers are affected simultaneously? Malinvaud’s
framework leaves no scope for such a possibility, while the finance-based
approach to insurance offered here covers such cases with no change in the
theory. Suppose, for example, there are n consumers but only two types
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imagine a world consisting of two regions, either of which can experience an
earthquake at date t. To apply the theory developed in this paper, we must
assume there is never more than one earthquake at a given date, and there

assume preferences are once again represented by the utility function (10)

In other words, if an earthquake strikes at date t and consumer i resides in
the region in which it strikes, the consumer loses her entire endowment at
that date; otherwise, she is unaffected. It is easy to see that in this case our
results remain essentially unchanged: in particular, ADR prices, equilibrium
net trades, and security prices are those we would obtain by setting n = 2 in

consumers reside in each region, the results in the earthquake case remain
invariant as n increases: insurance can be priced “competitively” using the
methodology of finance despite the irrelevance of an appeal to the law of
large numbers.

4 Conclusion

As will be apparent to those familiar with the finance literature, the research
reported here only begins to tap the potential for applying the tools of in-
tertemporal finance to insurance markets. Insurance contracts are clearly
more complex than the simple instruments described in this paper, typically
insuring a variety of types of accident over varying periods of time with op-
tions to renew and the like. All such contracts are “redundant assets” in
this setting and, as such, can be priced using martingale measure. Insur-
ance contracts also typically pay out in real rather than nominal terms, a
distinction we have not addressed in our single-commodity version of the
model but which clearly can be addressed in an extension of the model. De-
velopment of some version of a mutual fund theorem, in which consumers
buy insurance on themselves and invest in a market portfolio of insurance
contracts on others, is another obvious possibility.

As the theoretical discussion clearly shows, there is no reason to assume
hazard rates are independent of the past history of the process and constant
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or that the effect of an accident is confined to the date at which it occurs.
When one medical problem strikes, it may announce the increased chance
of other problems arising. And an accident today may put a worker out of
commission for months or years to come.

Finally, and undoubtedly most obvious to those schooled in finance the-
ory, the results extend naturally to continuous time. Our key hypothesis,
that at most one accident happens at any date, is only an approximation
in discrete time. As our earthquake example illustrates, a suitable interpre-
tation of accident type takes much of the sting out of this assumption: an
earthquake can affect a large number of people, but earthquakes are isolated
events. Nevertheless, the clearest justification for our hypothesis comes in
continuous time. Much of the formalism of this paper is aimed at making
the transition from discrete to continuous time as effortless as possible.
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