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Abstract

We study the employee staffing problem in a service organization that uses employee service
capacities to meet random, non-stationary service requirements. The employees experience
learning and turnover on the job, and we develop a Markov Decision Process (MDP) model that
explicitly represents the stochastic nature of these effects. Theoretical results are developed
that show the optimal hiring policy is of a state-dependent “hire-up-to” type, similar to the
inventory “order-up-to” policy. This holds for discounted-cost MDP’s under both finite and
infinite planning horizons.

We also develop structural properties of the optimal policy to facilitate computation of
the optimal hiring numbers. For two important special cases of the general model, we prove
the optimality of a myopic policy under both stationary and stochastically increasing service
requirements. Moreover, we show that in these two cases, when service requirements are k-
periodic, it is sufficient to solve a k-period MDP problem with appropriate end-of-horizon cost
function. When general, non-stationary service requirements are present, we prove the existence
of a one-sided “smoothing effect” of the optimal hire-up-to levels.

Numerical results show that the use of state-dependent hire-up-to policies may offer signifi-
cant cost savings over simpler hiring policies. In particular, our results show that when employee
capacity increase due to learning is substantial and flexible incremental capacity (overtime) is
tight, a fully state-dependent policy out-performs a policy that hires only on the basis of the
total number of employees in the system.

Our problem formulation and results suggest natural connections to the classic results in

inventory literature. We also discuss many of the connections and distinctions in the paper.



1 Introduction

We consider the employee staffing problem at a service organization. Suppose there are service
requirements the organization must meet, and a forecast of these requirements is available for
several periods of time in the future. The forecast may be based on historical data and a projection
of the organization’s business path. The organization’s objective is to use the capacity provided by
its employees to meet the service requirements in a least cost fashion.

The essential factor in the problem that differentiates it from more traditional capacity planning
problems is that the people providing these services are not homogeneous. Different employees will
have different service capacities (or skill levels), and these service capacities change over time.
When people learn on the job, their service capacities increase; when they turn over their service
capacities are lost. Learning can take place because of either initial training or on-the-job training.

Turnover can happen because of a mismatch with the job or a better career opportunity elsewhere.

Learning and turnover are typically random elements. Therefore the numbers of employees
in the organization — and the need to hire additional workers — can be difficult to predict. In
addition, the initial training period may be long. These factors make hiring to meet future service

requirements a difficult problem to solve effectively.

1.1 Our Approach

We take a hierarchical approach to this problem that mirrors the hierarchical planning strate-
gies used in a manufacturing environment. A long-term, high-level staffing problem corresponds
to long-term factory capacity planning. A medium-term, mid-level work-force scheduling problem
corresponds to the mid-level planning for which many companies use Materials Requirements Plan-
ning (MRP). Finally there exists a moment-by-moment, low-level work-assignment problem that is

the analogue of real-time shop-floor control in a manufacturing firm.

Example: a Telephone Call Center Figure 1 is a hypothetical example of a telephone call
center call volume forecast. We have about six months’ data. The service standards in these call
centers are something like: “on average a phone call is put on hold for 20 scconds or less” or “85%
of the time a phone call is put on hold for 20 seconds or less.”

Typically, the problem is disaggregated into short-term, medium-term, and long-term planning
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Figure 1: Call Center Example

components. In the short run, the call center must solve a real-time control problem, assigning
incoming calls to available Customer Service Representatives (CSR’s). The medium-term problem,
staff scheduling, is typically solved on a weekly basis. In any given week, the numbers of employees
of different types is fixed, and a schedule is developed for those employees that minimizes overtime
and outsourcing costs, subject to the call center’s service level requirements. (“Outsourcing” refers
to a common practice in which one call center diverts incoming calls to another on a contract basis.
In addition to paying a long-term retainer, the diverting call center typically pays a per-call fee for
this service.) The long-term component seeks to hire the right numbers of people and train them
the right way so that, when the sequence of weekly scheduling problems is solved, they produce a

low-cost — if not least-cost — solution to the global problem.

In this paper, we will focus on the long-range hiring problem. It is formulated as a discrete-time,
continuous-state-space Markov Decision Process (MDP), where the state variable vector represents
the numbers of people at different levels on the learning curve. This approach allows us to model

naturally the randomness in the system and to prove the existence of desirable structural properties



of the optimal hiring policy.

To suppress the other two lower-level problems, we will assume that there exists an “operating
cost” function, O(+), which, given the numbers of employees at different skill levels and a forecast
for service requirements, will tell us how much the total operating costs will be. This operating
cost function should be based on an efficient, if not optimal, solution to the scheduling problem.

For example, in call centers, managers usually use commercial software to do workforce schedul-
ing each week. This software typically solves a large-scale mixed integer program, and it returns
a schedule which shows the amount of overtime and outsourcing used for the week. With this

software, it is not difficult to generate O(-) as a response function.

1.2 Overview of Results

We show that under a discounted-cost criterion, convexity of the operating cost function (along
with certain other costs, such as hiring and wages) is propagated through MDP value iteration.
Therefore, when O(-) is convex, the optimal hiring policy can be characterized as a state-dependent
“hire-up-to” policy. That is, there exist state-dependent critical numbers for each period. If at the
beginning of a period the number of entry-level employees exceeds the critical number then no
hiring will be done. Otherwise, new employees will be hired to bring the number of entry-level
employees back to the critical number. This holds in both finite and infinite horizon cases, with
general, non-stationary service requirements.

We also develop results that offer a more detailed characterization of the optimal policy in
important special cases. In particular, we show that, when service requirements are stationary or

increasing, and when there is

e 10 learning, no training leadtime, and stochastic turnover, or

e 10 learning, positive training leadtime, and deterministic turnover,

then a “myopic” policy is optimal. A “myopic” policy is a policy under which we optimize a
one-period static problem for each period, rather than the dynamic multi-period problem of the

MDP.

In the second special case — with no learning, positive leadtime, and deterministic turnover —

we also show that the optimal policy is a “hire-up-to staffing position” policy that is analogous



to classic results concerning “inventory position” in the inventory literature. While the inventory
position is the sum of all goods on hand and on order, the staffing position in our model is a
weighted sum of all employees working and in training. In our model, the presence of turnover

makes the weights less than or equal to one.

In both special cases, when demands are k-periodic, then a k-period analogue of a myopic policy
is optimal. That is, it is sufficient to solve a k-period MDP with appropriate end-of-horizon cost
functions. When service requirements are non-stationary, we also prove there exists a one-sided
“smoothing effect”. Karlin [20] and Zipkin [29] have similar results in the inventory setting.

When there is learning, however, the results developed for our special cases no longer hold.
Numerical results in §8 show that, when the problem data are periodic, there appears to be a
two-sided smoothing effect. This is different from the one-sided smoothing effect demonstrated by
Karlin [20] and Zipkin [29]. A similar two-sided smoothing effect is observed in the production-
inventory setting by Kapuscinski and Tayur [17].

Using numerical examples, we also study the benefit obtained through the use of our model.
More specifically, we compare the cost performance of the optimal hiring policy, which depends on
the number of employees at each capacity level, to a simpler policy, which bases hiring decisions
only upon a single number, the total number of current employees across all types. In many cases,
such as when the capacity increase that comes with learning is small or the cost of being under-
staffed is small, the simpler, “single-number” policy performs quite well. When there is significant
learning and the costs of being under-staffed are high, however, the optimal policy may provide a

significant cost advantage.

As is clear from our MDP formulation and the structure of the optimal hiring policy, there exist
intimate connections between our results and those of inventory theory. The “inventory” in our
system is the population of employees, and “demand” corresponds to turnover. Conversely, our
results may be seen as extensions of classic results from inventory theory, and from an inventory-
theoretic viewpoint, our model may be viewed in two ways: as a single location model with multiple
types of inventories and as a multi-echelon inventory system. We will discuss the similarities and

differences in more detail after we present our general result, Theorem 1.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.
Then, in §3 and §4 we develop our model and main results. We then return in §5 to discuss further

modeling considerations, in particular the structure of the operating cost function, O(-), and the



representation of leadtimes induced by hiring and training. Section 6 develops the optimality of
myopic policies, and related structural results, for the special cases discussed above, and §7 develops
analogous structural results when the data are periodic. Numerical analysis and insights are given
in §8. Finally, in §9 we discuss our results and offer directions for future research. Connections to

inventory theory are remarked in §4, §6 and §7, as the results are developed.

2 Literature Review

Holt, Modigliani, Muth, and Simon’s seminal manpower planning model and its linear hiring
rules [14] have inspired a long stream of research papers. For example, see Orrebeck, Schuette,
and Thompson [23], Ebert [6], Gaimon and Thompson [7], and Khoshnevis and Wolfe [22], all of
which use some mathematical programming approach. Using a partial differential equation model,
Gerchak, Parlar, and Sengupta [8] solve the recruitment rate required to maintain a fixed capacity
in an organization. Grinold and Stanford [10] develop a dynamic programming model based on
linear costs, linear capacity (or budget) constraints and deterministic, fractional flow of employees.

In all of the above papers, the flow of employees among different types, including learning and
turnover, is modeled as deterministic. In the model we propose, however, we allow learning and
turnover to be stochastic and use a distinct MDP approach. This approach allows us to more

carefully model the dynamics of learning and turnover among employees.

There is a separate stream of research that develops Markov-Chain models for human resource
planning problems. Bartholomew, Forbes and McClean [3] provides an excellent summary of re-
search in this area. In this paper we adopt a model closely related to the “mixed-exponential”
model found in the human resource literature. Little work in this area has been devoted to the
control aspect of the recruitment process, however, while control of the hiring process is the central

question for us.

Two recent exceptions which consider aspects of control are papers by Bordoloi and Matsuo [5]
and Pinker and Shumsky [25]. The first paper derives steady-state performance measures for
(heuristic) linear control rules that are applied in a manufacturing environment that is similar to
ours. It does not, however, consider the nature of optimal control policies. The second paper
considers the improvement in quality which comes with worker experience. This focus on quality

is complementary to the capacity analysis of this paper.



As is noted in the Introduction, there also exists a close connection between our results and
those of classic inventory theory. In addition to papers by Karlin [19, 20] and Zipkin [29], our work
is most closely related to work on inventory systems with spoilage by Iglehart and Jaquette [15],
as well as other work on inventory-level dependent demand by Gerchak and Wang [9]. There is
also a close connection between our results and those in the production-inventory literature. For

example, see Aviv and Federgruen [2] and Kapusciniski and Tayur [17] (and the references therein).

3 Model

In our discrete-time, continuous-state-space MDP, the number of planning periods under consid-
eration is assumed to be T' (T' = oo in the infinite planning horizon case). Time periods will be
indexed by t, t =0,1,...,T. The length of time included in one period may be a week, a month,

a quarter, or a year, depending on the application.

3.1 State Space and Control

In any period an employee may have attained one of m discrete skill levels, ¢ = 1,2,...,m. In
applications these skill levels may correspond to service speeds or acquired skills. In the former
case, all employees do the same job but their service speeds increase with 7. In the latter case, there
are many job types. Employees start at level 1, with the most basic job skills, and progressively
acquire more skills to become capable of handling more types of jobs. A combination of both cases
is also possible: employees not only acquire new skills as they progress, they also become faster at
these skills. In this paper we will use terms “service capacity” and “skill level” interchangeably,
but the reader should keep in mind that they imply service speed and /or skill sets.

We also assume turnover may occur at any level 7, 1 < ¢ < m, but hiring is made only at
the entry level, level 1. So when new employees are hired they start at level 1 and progressively
go through the levels until they turn over. We use a vector (ni4,...,Mi¢, ..., Mmyt) to denote the
numbers of employees at all levels i = 1,..., m before hiring at the beginning of period ¢. Since
only type-1 employees will be hired, the vector becomes (yz, noy¢, . .., M t) after z; people are hired,
where y; = nq ¢+ x4 We treat n;; as real variables. This relaxation of integrality makes our proofs,
which rely on convexity properties, less burdensome. For large operations with many employees,

the continuous approximation should be reasonable.



3.2 Learning, Turnover, and System Dynamics

Learning and turnover are accounted for only at the end of each time period. We assume that,
of the n;; level-i employees in period ¢, (ji,t(ni,t) will quit and l}-,t(ni,t) will learn and move to skill
level i 4 1 in period ¢ + 1. Here ¢~ 7 is used to denote random numbers, indicating the fact that
learning and turnover occur randomly. Note that the ¢ and ¢ subscripts mean that learning and

turnover can have different patterns at different levels in different periods.

Typically, the rates at which learning and turnover occur have particular functional forms. The
log-linear “learning curve” has been widely used in manufacturing (see Yelle [28]), and there is
empirical evidence that it also exists in service operations. An example with directory assistance
operators can be found in Gustafson [11]. Turnover typically decreases with job tenure: employees
whose “job fit” is poor tend to leave after a short time; employees with longer tenure are self-
selected to have better job fit (for example, see Jovanovic [16] and Parsons [24]). In our experience
working with telephone call centers, we have found that the turnover rate can decline by more than

50% after an initial training and adjustment period.

Structurally, however, our model and its results do not depend on the rates at which learning
and turnover take place. The “typical” learning-curve and turnover behaviors described above

affect only the problem data used in the model.

Nevertheless, our model formulation does implicitly make some assumptions concerning learning
and turnover. More specifically, it assumes that an employee’s probability of learning or turning
over in any period is independent of that person’s learning and turnover probability in other periods.

That is, the processes are Markovian.

Because individual employees typically learn and turn over independently of each other, a
natural distribution to use for modeling learning and turnover in each period is the multinomial
distribution. It implies that a person’s length of stay at any level is geometrically distributed with
different parameters for different levels. This “mixed geometric” distribution is a discrete version
of the “mixed exponential” tenure length distribution in Bartholomew, Forbes and McClean [3],

which has been widely used in the human resources literature.

When the number of type 7 employees turnover is binomially distributed — in which case em-
ployees turn over but do not learn — then we can use well-known results showing that binomial

distributions are “totally positive of order 3" (T'P3) to show that the value function is convex in



the number of employees. This result relies heavily on both the T'P3 property and the fact that, in
this case, the value function is one-dimensional.

As Karlin [21] states, however, generalization of the T'Ps property to higher dimensional cases
and multinomial distributions is very difficult, and to the best of our knowledge no such results
exist in the literature. This analytical difficulty with multinomial distributions prompts us to
approximate them with stochastic proportions.

More specifically, we assume that L}t and ¢; ¢ are independently distributed random variables
with support on [0, 1] that represent the “stochastic proportion” of people who learn and turn over

(I/Nmyt = 0). Therefore, in period ¢,

3 que-ye ifi=1 - oo (L) ifi=1
Qi) =9 . and  lig(-) =9 . i _
Gip-mig ifi>1 Lig- (L—aGig) -miy ifi>1
Given the numbers of employees in the system at time ¢, (n14,...,7m ), and the fractions of em-

ployees turning over and learning, G;; and L"t, the numbers of employees at t+ 1 are straightforward

to calculate. The following equations represent the system evolution:

Yo = N1+ T, 7 >0 (1)
nipr = (1-— Zl,t)(l — q1.t)Yt, (2)
notr1 = (1— l~2,t)<1 —Got)not + l~1,t<1 — q1.t) Yt (3)
nigrr = (1—1ig)(L—Gie)niz + li1e(1 — Gimrt)niz1e, 2<i<m. (4)

Remark 1 The analytical difficulties with multinomial distributions to which we refer have long
been recognized in the production and inventory literature. For an inventory model with spoilage,
Iglehart and Jaquette [15] use the T'Ps property to prove that an “order-up-to” policy is optimal,
but this result holds only for a single product, one-stage deterioration, and zero leadtime. To
obtain results for more general models, other researchers who have investigated inventory spoilage
and random production yields have also resorted to stochastic proportion models. For example,

see Henig and Gerchak [12] and the references therein.

Note that the nature of the error introduced by using stochastic proportions is of second order.
The means of the stochastic proportions can be set to equal the multinomial probabilities that
an individual turns over or learns. When the distribution is multinomial, however, the relative
dispersion of the fraction of employees quitting or advancing changes with the number of employees,

but it does not change with stochastic proportions.



To the extent that, in steady state, the number of employees of one type remains large and
relatively stable, these second-order differences should not induce undue bias. In our experience
developing numerical examples that use stochastic proportions we have not found these errors to

be significant (see §8).

3.3 Service Requirements

The employee staffing problem is defined in discrete time with time periods that are long enough
to capture the effects of learning and turnover: weeks, months, quarters. Demand for service,
along with the quality standards with which demand must be met, are typically defined on a much
smaller time scale, however. This prompts us to define the service requirements as a vector, 17;
Elements of the vector may represent the service requirements for different sub-intervals within the
larger, discrete time period.

For example, in a telephone call center, hiring may take place on a weekly or monthly basis,
while call volume forecasts and service standards are specified in 15-minute intervals. Therefore,
when the planning period is one week and there is only one job type, the service requirement vector
172 may have a dimension of 672, corresponding to the call volume forecasts for every 15-minute
interval of a week. When there are J job types, the service requirement vector 17; would have a

dimension of J x 672.

Thus, the definition of 172 allows us to model service requirements that are non-stationary over
time and include multiple types of service. Furthermore, the elements of 17; need not be scalars
at all. For example, by letting the elements of 17; be probability distributions we may explicitly

model the uncertainty inherent in demand forecasts.

3.4 Costs and the Objective Function

In any period t, three types of costs will be incurred. First, a fixed cost of h will be incurred to
hire a new employee. This cost typically includes advertising for, interviewing, and testing of job
applicants, when appropriate. It may also include one-time training costs that are independent of

wages.

Second, we let W; be the wage cost of a type-i employee. This is the “fully loaded” compensation

cost for one period and typically includes wages, benefits, and other direct personnel costs. Note



that these costs may vary with the skill level attained by the employee.

All other costs that arise when the (y¢, na¢, ..., 7m,¢) employees serve demand, 17; , are captured
in the operating cost function, O¢(ys, no¢, . .., Nt 17;) These are “variable” costs that change with
the level of the service requirements. They typically include employee overtime and the variable

cost of outsourcing.

Note that we intentionally let the definition of O:(-) remain a bit vague at this point. In the
context of our hierarchical approach, it reflects the (often difficult) work assignment and personnel
scheduling problems that must be solved in period ¢. It must also incorporate service-level con-
straints that ensure that “adequate” capacity is obtained to “reasonably” serve demand. Because
the nature of the work assignment and personnel scheduling problems — and the resulting form of
O¢(-) — may vary substantially from one setting to another, we leave the function undefined. Our
only technical requirement is that O (y, noy, ..., N t; 17;) be jointly convex in (yz,no¢,. .., Nm,t).

In §5.1 we offer simple, general examples of O(+) in which this convexity property holds.

Finally, we use a to denote the one-period discount factor in the MDP and minimize the

expected total discounted cost. Therefore the objective is to minimize the function

T m
min E {Z [ozt <h:l:t + Wiy + Z Wini i + Or(y, nayg, - . . ,nmjt))] } , (5)

Z0,Y0,---»LT,YT =0 i—2

subject to the system dynamics (1), (2), (3), and (4).

Note that for simplicity we only consider costs incurred during the planning horizon in (5),
therefore the “end-of-horizon” cost function is zero. Other types of “end-of-horizon” cost functions

can also be incorporated.

4 Optimality of the Hire-up-to Policies

We will not solve the mathematical program (5) directly. Instead we solve the following equivalent

Markov Decision Process (MDP) problem. (See §4.2 and §5.1 in Puterman [26] for this equivalence.)

Let Vi(nit,...,nm¢|T) denote the total discounted future cost at the beginning of period t
when the numbers of employees on hand are (ni4,...,7m¢) and the planning horizon is T" time

periods. Then we have the following recursive expression:

m
Vitnigs oo snme|T) = glg(l) {hl't + Wi(nis +a) + Z Winit + Or(nig + T4, M2t -0, N t)
= i=2
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+(1E{q17t7m7l”17t7m} {%+1(TI/171§+1, ey Tl,m7t+1‘T)}}

m
= min {J(ye, 20, nme|T)} — hnyy + Z Winiy, (6)
Yt>ni ¢ i—
where
def
Jt(yta Nty .- ,nm7t|T) = Ht(yta N2t ... ,’n/m7t) + aE{dl,t,---Jl,m---} {‘/t—kl(nl,t—&-la o 7nm,t+1|T)} )

def
Hi(ye,nat, - - t) = (h+Wi)ys + Ot(yt,n2t, ..., Nm ),

and (2), (3), and (4) hold.

Remark 2 Note that O¢(y,...,nm¢), and therefore Ji(ys, ..., nm|T), is not defined for y; < 0.
Later we will show the convexity of these functions, but for now, suppose convexity holds for J;.
When g—;’;(o, ooyt T) < 0, the minimum of J;(yt, . . ., nn | T) is achieved at yj (nayz, . . ., M| T) >
0, and there is no need for this definition. However, when g—itﬁ(o,...7n/m7t|T) > 0, it is op-
timal to not hire: y;(nogt,...,nmeT) = 0. In this case, we extend the definition of J; so

thatJy (ye, . . ., | T) = J(0, ..., np | T') for y; < 0. This extension makes the first-order-condition,
that lim

aJt , _ . .
Yyt (n2.tseetim 2| T) 8—%(yt(n27t, coosmt|T),no g, ..o, | T) = 0, valid, and it preserves the

convexity of J;.

In this section, our main result shows that the optimal control is a state-dependent hire-up-to

policy:

Definition 1 A policy is of the state-dependent “hire-up-to” type if, for any (ni¢,no4, ..., Nmt),

there exists y; (nayg, ..., Mm,t) such that the optimal hiring number xf is

k : k
o yi(mog, ..o, me) —nag i iy <yi(nog, ..o Nmgt)
Ky t _—

0 otherwise.

For the finite-horizon problem, this result holds with no additional assumptions. For the infinite-
horizon case, however, we need to make the following two technical assumptions about the state

space and cost. In particular, we assume that for any planning horizon T there exists large con-

stants, M and K, such that:

Assumption 1 yf +> " oni; <M Vi, t.

Assumption 2 Hi(ys, not, ..., nmt) < K, Vt and ¥ (ys, no¢, ..., Nunt) where ye + > 1o nip < M.

11



Assumption 1 states that at any time the total number of employees after hiring does not
exceed M. Because learning and turnover will not increase the total number of employees in the
organization, this ensures that if we start with fewer than M people in total, then we will never
exceed that number. For example, M could be the total population on earth. As a result, the state

space can be reduced to a bounded and closed, and therefore compact, subset of R™.

Assumption 2 states that whenever we have finite number of people in the organization, the
total one-period cost is bounded. This is straightforward for hiring and wage costs. It also holds
for the operating costs. While we have not explicitly defined Oy(-), we know that as long as there
exist finite bounds on all service requirements and cost parameters, the total operating cost in any

time period is bounded.

Now we are ready to state our main result:
Theorem 1

(i) For T < oo, Ji(yt, nat,...nme|T) is jointly convex in (ys, nog, ..hm i) and Vi(ni g, ..., N t|T)

is jointly convex in (nig,...,nme) for allt.

(i1) ForT = oo, under Assumptions 1 and 2, Ji(y, nat, ...nm ¢|00) is jointly convex in (ys, nat, ...0m t)

and Vi(ni g, ..., nmt|00) is jointly convex in (nig,...,nm¢) for all t.
Therefore, for both cases, in any time period the optimal policy is of the “hire-up-to” type.

Sketch of Proof The proof of part (i) is similar to classic proofs of convexity results in the
inventory literature and will be presented in Appendix A. It differs from that for more traditional
inventory models, however, because of the dynamics in which “inventory” changes type. In partic-
ular, we use the following lemmas to show that convexity of the MDP value function is preserved
in the presence of learning and turnover and that convexity is propagated through the minimiza-

tion that is central to MDP recursion. They follow from Theorems 5.7 and 5.3 in Rockafellar [27]

respectively.

Lemma 1 If g(y1,...,yn) is jointly convex in (y1,...,yn) and fi(x1,...,2m), i =1,...,n, are lin-
ear functions, then h(x1,x2, ..., 2m) = g(f1(x1,. .., Tm), -+, fu(T1,...,2m)) is also jointly convex
in (r1,..., Tm)-

Lemma 2 Let f(ni,ng,...,nm) = infy>n, {h(y,no,....,0m)} . If h(y,no, ..., nm) is jointly convex
in (y,no,...,m), then f(ny,noe, ..., ny) is jointly convexr in (ni,na, ..., Npy).

12



Standard MDP results provide that with stationary E) , the infinite horizon cost functions are the
limits of finite horizon cost functions. That is, imp oo Vi(n14, .., nmt|T) = Vi(nig, ..., N t|00)
and imy oo Je(Yts - - N t|T) = Vi(yt, - - . ;N t|00). As a result, convexity of cost function is pre-
served and the optimal policy is again of hire-up-to type. For non-stationary 172 (or, non-stationary
costs in the inventory models), Karlin [18] states that similar results can be shown by using limit
results but does not provide a proof. Our proof of part (i7), also presented in Appendix A, confirms

this claim.

A

Remark 3 There are two ways to view our system as an inventory system. First, our model
may be viewed as a single location model with multiple types of inventories. Here turnover corre-
sponds to “spoilage” or some other special type of inventory-level-dependent demand, and learning

corresponds to the change of type among different types of inventories.

Second, our model may be viewed as a multi-echelon inventory system. Here, different levels
on the learning curve correspond to different system echelons. In turn, learning is the analogue of
transfer between echelons, and turnover represents the echelons’ inventory-level dependent demand.
The fact that learning and turnover are random and that costs are not separable makes these

inventory models difficult to solve.

Note also that the optimality of “up-to” type of policy has also been established for other
capacitated production systems with stationary or periodic demand. See Aviv and Federgruen [2]

and Kapusciriski and Tayur [17] for recent results, as well as references to other work.

5 Modeling Considerations

5.1 Operating Cost Function

Now we will discuss in detail the operating cost function O¢(y:,n2y, ..., Nm i 17;)7 and describe
how it can be modeled to address the uncertainty in the service requirement forecast, as well as to

capture the essence of the assignment and work-force scheduling problems.

We will start with a simple example. Suppose there is only one job type. For the work-force

scheduling problem within any time period ¢, we assume that there are in total S sub-intervals in

13



the period, indexed by s = 1,2,...,S5. Within this time period, there may exist W5 feasible work
schedules, indexed by w = 1,2,...,W5. These work schedules may or may not include overtime,

but all of them satisfy workplace rules and regulations regarding breaks, overtime, and so on.

Each type-i employee is assumed to have a processing capacity of ;. For now, we will assume
that service requirements are specified as requirements for total processing capacities. We use
D; = {D;},_; ¢ to denote these requirements for each sub-interval s of period ¢.

Let

I(w.5) 1 if work schedule w requires working in sub-interval s
w,s) = )
0 otherwise
and let x;, denote the number of type-i employees on work schedule w. For simplicity, we will

assume that a fixed cost of Cj, is incurred to assign a type-i employee to work schedule w.

When the service requirements cannot be met with available regular time and overtime of all
employees, outsourcing will be used to satisfy the residual service requirements. More specifically,
we let variables z; denote the amount of work to be outsourced in sub-interval s. It will again be

assumed that a fixed cost of OS5 is incurred for each unit of outsourced work in sub-interval s.

Therefore, the operating cost function is the minimum cost obtained by solving the following

Linear Program (LP) for each (v, 24, ..., Nm¢):
_ m WS S
Ot(yt,m2t, .., nmyp; Dt) = Jmin SN Ciwwiw + > OSszs
s i=1w=1 s=1
m
s.t. Z Z WiTiw +2s > Dj Vs (7)

=1 w:I(w,s)=1

Wws
Zl‘lw < oy
w=1

W5

inw < g Vi<i<m
w=1

Tiw, Zs = 0 Vi, w, s

Note that this LP is a continuous approximation to the real scheduling problem in which all x;,,
assume integer values. Even though this LP may give fractional optimal solutions of x;,, that are
not directly implementable, for large organizations with many employees, the minimum objective
function obtained from this LP, Oy(-), is likely to be close to the real operating cost function.
Berman, Larson, and Pinker [4] use a similar LP formulation to solve the workforce and workflow

scheduling problem at high volume factories such as USPS Mail Processing Centers.
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Proposition 1 For any fized Dy, O(yi, n2t, - - -, Nny; D) is jointly convex in (yp, nag, ..., Mmt)-

Proof  Suppose for (ys,n24,...,%mt), {%iw, 25} achieves the minimum in O¢(ys, nag, ..., Nme),
and for (y;,nb,,...,n, ), {¥,, 2} achieves the minimum. Then for A(y:, nos, ..., Nme) + (1 —
M) (Yt My g5 - - - s ¢), the combination A {@iw, 25} + (1 — A) {7, 25} is feasible. Moreover,

— —
)‘Ot(ytv N2ty Mimt; Dt) + (1 - )‘)Ot(yév nl2,ta s 7n;n,t; Dt)

A Z Ciw:Eiw + Z OSSZS + (1 - >\) Z Ciwl';w + Z OSSZ;

—
*
~

> ZC“U (AZTi + (1 = N)aty,) + Z OSs (Azs + (1 — \)zl)
2 Ot(A(yta nat,--- 777/m,t> + (1 - A)(yéa n/27t7 teey n'/rn7t>; -Et) (8)

Note that for the linear cost functions, as is the case in this example, (*) is actually an equality.
But in general > is sufficient. When the cost functions are convex, > clearly holds. Therefore,

Proposition 1 holds for general convex cost functions Cjy,(-) and OSs(-) as well (see Proposition 2
below).
A

Indeed, in more general cases the scheduling problem is more difficult. For example, both the
demand forecast and the set of employee skills may include multiple types of service. Nevertheless,

we can adapt the original LP to take these into account.

Suppose that there are J types of jobs, indexed by j = 1,...,J, and that each employee type, 7,
specifies a group of employees that are capable of processing the same types of jobs and work at the
same speed. The service requirement forecast 17; now includes forecasts for each job type as well :
D; = {Dtsj }‘:?J These service requirements may be modeled as distributions to account for the
forecast uncert:;iulylty. The cost of assigning x;,, type-i employees to work schedule w is Cjy(Tiy),

and the cost of outsourcing z,; type-j work in sub-interval s is OSg;(zs;). Both cost functions can

be general convex functions. This includes the previous linear costs as special cases.

The following mathematical program therefore generalizes the original LP:

m WS S J
Ot(Yts M2t -+ imy; Dy) = min SN Ciwlziw) + )Y 08s;(24)

Tiw,%sj
T i1 w=1 s=1j=1
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w=1
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Ut

ws
Z Tiw < MGy Vi<i<m
w=1

LTiw, <sj > 0 Vz,w,&j

Here, (9) is a service-level constraint that generalizes (7). Because forecasts can be uncertain, the
service constraints may also be specified in distributional form. For example, it may say “the choice
of (%11,..., Tmns, 211, - - 25s) should be such that the probability of meeting a certain service
standard is more than a certain percentage, a%”. Clearly the evaluation of equation (9) is not
transparent. Indeed, it includes the low-level work assignment aspect of the problem. Nevertheless,

by imposing a mild restriction on (9), we can guarantee the convexity of the function Ox(-).
Proposition 2 For a fized Dy, if

. = .
(i) the set {(x11, ..., Tmws, 211, ---52587) : [(T11y -+ TmWs, 211, - - -, 2575 Dt) > 0} is conver,

(ii) the cost functions Ciw,(-), and OSs;(-) are convex,

J=1yd

g Ot(yt,n2¢, . .., t; Dy) is jointly conver.

then given the distributions oflj = {ij}

Proof  The proof is similar to that of Proposition 1. We only need to note that condition (7)
is used to ensure the convexity of the feasible region, and condition (ii) guarantees (*) in (8) still
holds.

A

Conditions (i) and (ii) appear to be reasonable. For example, for condition (7), if two solutions
to the math program, (x11,..., Tmns, 211, - - - » 257 ), provide acceptable service more than a% of the
time, it is reasonable to assume that a linear combination of them will also do so. This assumption
is true, for example, when service requirements, 17;7 are specified only as requirements for total
processing capacity. Since the marginal cost of each extra unit of outsourced work is typically

increasing, it is also reasonable to assume OSg;(-) to be convex. Ciy,(+) is usually linear.
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5.2 Training/Hiring Leadtime

In organizations in which employees need to acquire a certain level of service proficiency before
they are put “on-line”, training is an important component of the hiring process. For example, in
some call centers, initial training for a CSR may take more than 2 months to complete. In this
case, hiring leadtime (of which training is a major component) becomes very important in capacity

planning for future periods.

Because our model already includes multiple employee types, it is straightforward to incorporate
this leadtime. If the hiring/training leadtime is A periods, then we add A more employee types (thus
m > A) and use employee types 1 to A to denote the trainees. For organizations in which training
mainly takes place on the job, p; > 0,¥i = 1,..., A denotes the service output these trainees may
generate. For other organizations, in which employees must receive a minimum amount of initial
training before working, u; = 0,Vi = 1,...,A. Note that W, for 1 < i < X are the trainee wage
and benefit rates. If the hiring process itself takes some time, then the first few W;’s may be 0.
It is clear that our formulation offers flexibility in modeling all kinds of hiring leadtimes and their

associated costs.

6 Stationary or Increasing Service Requirements: Cases in Which

Myopic Policies are Optimal

Even though we have characterized the optimal hiring policy, it may be difficult to implement.
The high dimensionality of the state space makes the computational task required formidable,

particularly in organizations with many employees.

When the service requirements are stationary or (stochastically) increasing, however, myopic
policies may be optimal. Under myopic policies we optimize one-period static problems for each
period, rather than the MDP’s dynamic, multi-period problem, thus greatly reducing the compu-

tational requirement.

Definition 2 A policy is myopic if, in each period t, an action 1’?(”1,& .y Nupnt) 15 taken where
.T/tG(nlyt, <oy M t) 18 the minimizer of some one-period cost function G¢(ni s+ ¢, ..., Nt 30 A
myopic policy is optimal if v (n14, ..., Nnt) also minimizes Vy(nig, ..., na; Bt, ﬁt+1, ...) for any
(M1t s it
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In this section we examine two cases for which myopic policies are optimal. While myopic
policies are not optimal in general, they may also prove to be effective, computationally practical

heuristics for a broader class of problem instances than the special cases in which they are optimal.

6.1 No Learning, No Hiring Leadtime

In some organizations very little initial training is used, and learning on the job is so fast or so
little that we can model all the employees as one type. The prototypical example of this type of
operation is a “fast-food” restaurant. Even though learning is not a factor in these organizations,

turnover remains an important problem.

Since there is only one employee type, when hiring leadtime is zero, the state space becomes
one-dimensional. We will drop the subscript ¢ and keep the meaning of variables and parameters

such as n, z, y and W. If we let 7, = 1 — ¢ and

Gi(ye: D) < Bgy {(1 = af)h + W)y + Or(y: D) b = (1—aB {7} h+ W)y + On(ys: D), (10)

then given any hiring policy, 7,

V(ng|m; 17;) = {”}gg } {Za { yr —ne) + Wy + Oe(ye; Dt)] }
= {{Tt}t o} {Za { h+ W)y + O (ys; Dt)} } — E{{ft}toio} {Z athnt} — hng

(E) —hng + E{{”}t o} {Z « h + W)yt + Ot(yt; E)} } E{{T‘t}t o} {Z o +1h?”tyt}
t=0

= —hno+ E{{,Ft}oo } ol 1 — ()ﬂt)h + W)y + Ot(yt)}}
0

t—

= —hno+ B 4 {Za Gi( yt,Dt)} (11)

8

where y; > ny and ngp1 = Fye.

Equality (**) holds because 7,1 is independent of {7}, and y, is independent of {7},

which implies that for any 7,

Efiyeoy e} = Bggra_ gy (nria} = By {yr} = B,y {ur )

Note that the above transformation, (11), also holds in the finite horizon case, if we assume an

“end-of-horizon” cost function of Vpii(npi1) = —ahnpy.
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Thus (10) defines the one-period cost function G(-) that is the basis of a myopic policy. When
the demand distribution {17; } is stationary it is not difficult to show that repeatedly optimizing G(-)
minimizes V'(-) as well. Furthermore, when the sequences of demands is “stochastically increasing”,

myopic policies continue to be optimal, given the following assumption.

Assumption 3 For two forecast distributions, zflT{ = 172), then dOy (ys; ﬁ)/dyt > dO¢(ys; E)/dyt

for allt and y;.

Recall that a random variable X is said to be stochastically less than or equal to another
random variable Y, X <Y if their corresponding cumulative distribution functions Fx and Fy
satisfy F'x(x) > Fy(x) for all z. Then Assumption 3 states that the marginal value of an extra
employee in reducing the operating cost is higher when the service requirement is stochastically

higher.

Theorem 2 Suppose system parameters, except the service requirements, are stationary. Let th =
al‘gmintht(yt). Choose the smallest when multiple minimizers exist. Then, given Assumption 3,

when there is no learning and no hiring leadtime,

(7) for both the infinite-horizon case and the finite-horizon case with end-of-horizon cost function
Vrii1(nry1) = —ahnpyy, if the service requirements are stationary or stochastically increas-

ing, y¢' < yfy for all t;

(i1) if y& < th+1 for all t, then the myopic policy of minimizing Gt(y:) in each period t is optimal.

That is, the “hire-up-to” numbers in the optimal policy are (yi,vyi,...) = (v5,y¥,...).

Therefore, when service requirements are stationary or stochastically increasing, the myopic pol-
icy is optimal. In steady-state, with stationary requirements, xy,; = (jtth, and with increasing

; o — (G G L G
requirements, xf = (Yt — Yi') + Gy

Proof Part (i). When service requirements are stationary, G¢(y:) is the same for all ¢, therefore

th = th+1 for all t. When service requirements are stochastically increasing, E) = 1_7)15+1, then, by

Assumption 3, O;(yi; 17;) > Op 1 (ye; 3t+1) and Gy(y) > Gi,(y). First order conditions state that

lim, e Gi(y) =1lim,_ 6 Giii(y) = 0. Hence the convexity of both Gy(-) and Gy1(-) implies
t 41

.G e
Y < Yy

19



Part(ii). We note that even though the costs underlying G¢(-) in the staffing problem differ
from the costs underlying one-period costs in inventory problems, the convexity and separability
of the Gy(+)’s, along with the fact that the sequence of solutions, {y}, is increasing, are sufficient
to ensure that classic arguments from inventory theory hold. For example, see Proposition 3-2 and

Theorem 3-1 in Heyman and Sobel [13].

As a result, in steady state, when service requirements are stationary, y; = y; = th , then
nep1 = Ty = 7y, and i =Y — eyl = (L= Ty = GryS. When the service requirements
are increasing, so are yf'. And 2}, =y — 1 = (Yo — y&) + Gyl

A

The implication here is that if service requirements are stationary, we are simply hiring to
replace those who have just left (“az-for-2”). If the service requirements are increasing, we hire to
replace the turnover, as well as to expand to meet increasing demand. Therefore, not only is the
optimal policy myopic, the optimal hiring action in steady state is also very easy to understand

and simple to exercise.

Remark 4 Iglehart and Jaquette [15] have shown that, for an inventory model with inventory-level-
dependent deterioration, an order-up-to policy is optimal. While the nature of the cost function
in their model is different from that in our staffing model, adaptation of their proof to a discrete-
state-space version of our problem shows that, in this special case, a myopic hire-up-to policy is
optimal even when turnover is binomially distributed. The proof hinges on the T'P; property of

binomial distributions. (See Proposition 3.2 in Karlin [21].)

6.2 Positive Hiring Leadtime, Deterministic Turnover, and No Learning

In this section we consider positive hiring leadtime cases and let A be the leadtime. As before, we
will assume no learning on the job so there are (A + 1) types of employees. The first A types are in
the process of being hired or trained, and only type (A + 1) has productive capacity, py+1 > 0. We
will also assume that the turnover rates are deterministic and stationary. That is, ¢;; = ¢;, 7+ =

r; = 1 — g; with probability one for constants ¢;,i = 1,..., A+ 1.
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Definition 3 The staffing position in period t before hiring is

A—1 A
SP,” = ntr/)\‘H + Z [mt+TA < "”s) (""AH)/\T] (12)

=1 s=1

and after hiring is SP;” = SP; + x Hi\zl Ts.

Remark 5 Staffing position follows in spirit the “inventory position” concept in the inventory
literature (e.g. see Arrow, Karlin and Scarf [1]). Because turnover reduces the number of people in
each period, however, the staffing position in our setting is a weighted sum of all the people in the
pipeline. For example, suppose ;41 trainees are hired at the beginning of period t+1— A. Then,
due to trainee turnover, xyy1 ) (H;‘Zl rs) will be available to work at the beginning of period ¢+ 1,
but out of these people, only x;41_» (Hi‘zl 7'5) (7'>\+1))‘71 will remain at the beginning of period
t 4+ A, due to on-the-job turnover. Trainees at different levels will start working in different periods

so the proportions of them that will “survive” until period ¢ + A are different.

Just as SP;" = gy, we can transform hiring costs and numbers hired over one leadtime to
develop results that are analogous to Theorem 2. Specifically, if we are in period ¢ — A then the
future cost of hiring now for one person in period ¢ becomes
a M (h+Wy) + Zf‘;ll {044“” ( - 7‘8) Wi+1i|

Hi\:1 s ‘

Here {W7,..., W)} represent wages that may be paid to employees in different stages of hiring

h=

(13)

and training. That is, if the leadtime includes an initial training period, then wages paid during

training may be included here. Otherwise, they may be set to zero.

Then using {SP;"} and h in place of {3} and h, we may myopically solve the hiring problem,
as in Theorem 2, to generate the optimal hiring numbers {i;}. Note, however, that #; corresponds
to the net number of new hires remaining in period ¢. The actual number hired in period £ — A is

* N Tt
Tt = ox

(14)

s=1Ts

Thus, we have the following analogue to Theorem 2:

Corollary 1 If there is no learning, turnover is deterministic and stationary, the hiring leadtime
is A and service requirements are stationary or stochastically increasing, then a myopic policy is
optimal. Furthermore, the policy uses (12) as the system state and (18) as hiring cost, and it
determines net hiring numbers {i;} using the algorithm of Theorem 2. It then calculates optimal

hiring numbers {x;_,} from {&:} using (14).
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7 Non-stationary Requirements: Periodicity and Smoothing

In many service organizations, customer demand for service is highly non-stationary. For example,
retail stores and catalog vendors experience holiday-season spikes in demand. Similarly, for call
centers in retail financial services, tax season means high call volumes. In this section, we will
derive structural properties of the optimal hiring policy when the service requirements are non-
stationary. First, in §7.1 and §7.2, we will study structural properties of the optimal policy when
service requirements are non-stationary. Then in §7.3 we will study more general non-stationary

service requirements. In all three sections, we focus on the special cases of §6.

7.1 No Learning, No Hiring Leadtime

We assume that service requirements are periodic with a fixed cycle length. Similarly we assume
that other model parameters, such as costs and turnover rates, are also either stationary or periodic,
though not necessarily of the same cycle lengths. This allows us to treat the whole process as
periodic with a cycle length that is the least common multiplier of the lengths of all the cycles

embedded in the system. We will denote this system cycle length by k.

We only consider the infinite planning horizon case. Note that the optimality of hire-up-to
policy is shown in Theorem 1. As the optimal decision depends only on the current state and cost
data and service requirements that are k-periodic, the optimal hire-up-to levels are also k-periodic.

We denote them by y5, y7,. .., yjp_;-

Theorem 3 Suppose Assumptions 1 and 2 hold. When there is no learning, no hiring leadtime,

and the service requirements are k-periodic,

(1) there always exist periods t (mod k) in which a myopic policy is optimal;

(7i) the optimal policy is “almost” myopic: the optimal hire-up-to levels can be found through
solution of a k-period MDP with t as the last period and —ahngy1 as the end-of-horizon cost

function.

Proof For part (i), we first prove that if y; </ ;, then the myopic policy is optimal in period
t,ie., yr = y¢ = argmin,, G¢(y;). Then if we let y; be the smallest hire-up-to number among

Yo-Y1»---»Yi_1, the myopic policy is optimal in period 2.
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To prove this, we note that since y& is the smallest minimizer of Gy(y;), it is also the smallest
value such that its left derivative lim, _ c- G}(yt) = 0. Similarly, y; is the smallest value such that
Y
lim, .- Ji(yt) = 0.
Because y; < yiiq, when gy < yi, Ji(y) = (b + W)y + Oc(ye) + a(Je1(yi51) — briye) =
Gi(yt) + aJip1(yf). Therefore, when v < yf, Gi(y:) = J{(y:). Hence lim, . Giy:) =
li

m, . Ji(y) =0, and y;~ is the smallest such number. Therefore Y& =yt
yt—y;

Part (ii) then follows directly.

Remark 6 Note that Theorem 3 only establishes the existence of #, a procedure still has to be
developed to find ¢. In the inventory literature, Karlin [19, 20] and Zipkin [29] have analyzed
inventory systems with seasonal demands. [20] has similar results to Theorem 3, and both [20]
and [29] give k-stage algorithms to find ¢ and calculate the optimal order-up-to levels. Interested

readers are referred to [20] and [29].

7.2 Positive Hiring Leadtime, Deterministic Turnover, and No Learning

Now turnover is deterministic and there is a positive hiring leadtime, A. In this case, we can use
versions of the staffing position, {SP, }, and hiring cost, h, of §6.2 to transform the staffing problem
into an analogous zero leadtime system. In this periodic setting, however, the data need not be

stationary, and we may modify the transformations (12) and (13) to include additional time indices.

With these transformations, the arguments that lead to Theorem 3 can be used directly to

prove the following analogue:

Corollary 2 Suppose Assumptions 1 and 2 hold. When there is no learning, turnover is determin-

istic, the hiring leadtime is A\, and service requirements are k-periodic, then the results of Theorem

3 hold.

Again, the optimal “net” staffing numbers obtained in the zero leadtime analogue, {;}, must

be transformed using a modified version of (14) to obtain the optimal hiring numbers {z;}.
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7.3 Monotonicity Properties and Smoothing Effect

In this part, we will study the effect of non-stationary demand on the optimal “hire-up-to” numbers.
The service requirements can be any sequence of non-stationary distributions. While the ideas and
proofs presented here are similar to those in Karlin’s inventory model in [19] (Zipkin [29] has similar
results), our setting is different. In inventory models demand affects the system dynamics, but in
our model demand for service affects only the costs. The “demand” that drives the system dynamics

in our model is, in fact, the learning and turnover of employees.

In both special cases in which a myopic policy is optimal, the state space can be collapsed into
one dimension — either the actual staffing level or the weighted staffing position. The optimal hire-
up-to staffing position numbers (which reduce to the actual staffing level numbers when A = 0) have

the following structural properties. (Proof of the following theorem can be found in the Appendix.)

To stress the dependence of hire-up-to numbers on the service requirement forecast, we will use
Y5 (Diyn, Digatis---) to denote the optimal staffing position in period ¢ when the demand stream

from period t + A on is Dy x, Diyast,-- -

Theorem 4 Suppose there is no learning, no hiring leadtime, and Assumption 8 holds. For any

sequence of service requirements Dyyx, Diias1, - .-,

(1) if Dy = Deyata, then yi (Digx, Divat, - ) = yipa (Digas 1, Devas2, - - 2)s

(ii) if Dipx = Digagr but 57 (Digx, Digas1s---) > Ui (Digasts Digagos - - ), then

Vi1 (Deaag1, Degagas - -) > Yoo (Digago, Digass, ).

This theorem shows a one-sided smoothing effect. Part (i) show that when the service requirement
decreases, so does the hire-up-to number. Part (i7) shows, however, that but when the service
requirement increases, the hire-up-to number may go down instead. This happens if the optimal
hire-up-to number after that period also decreases. The one-sided nature of the smoothing effect

is driven by the fact that we are free to hire, but are not free to fire.

In our general model, however, this one-sided effect may not hold. In particular, the presence of
learning guarantees that there is a positive probability that, even without hiring, service capacity
will grow to exceed what is needed in future periods. In turn, the optimality of myopic policies,
which is based on the impossibility of future over-capacity, no longer exists. The approach we take

here to prove the one-sided smoothing effect does not hold in the general case precisely because it
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relies heavily on the optimality of myopic policies in some periods. The numerical analysis presented

in the next section suggests that there exist a two-sided, rather than one-sided, smoothing effect.

8 Numerical Analysis

In this section, we perform two sets of numerical experiments. The first identifies conditions under
which hiring policies that account for employee learning may significantly out-perform those that
do not. The second indicates that the presence of learning may induce a “two-sided smoothing
effect” into periodic problems which differs from the one-sided effect demonstrated in the inventory

literature. These numerical analyses are based on average-cost models.

8.1 Average Cost as the Method of Comparison

When the planning horizon is finite, the average-cost problem is a special case of the discounted-cost
problem (with & = 1). When planning horizon is infinite, the optimal average-cost policy generates
a constant average one-period cost (for all the states that are in the same chain of the MDP), rather
than the discounted costs that may depend on the system’s starting state. The state-independent

nature of the average cost makes the comparison of alternative policies and MDP systems clearer.

To use average costs, we must first develop a set of properties for the optimal hiring policy
under the average-cost criterion. The proposition below assumes that there exist an average-cost

optimal policy and its corresponding value function.

Proposition 3 Let Vi§*(+) be the a-discounted cost function, and suppose the average-cost function,

lim7_ oo Z?;OI [hae + Whye + D010 Wingy + Oc(ye, 2ty - - ., t)] /T exists. Then

(i) lima—1(1 —a)V§*(n1,0, ..., nmo) exists, and
T-1 1 m
li — |hx 1 Yty M2ty e vy N = lim (1— F(N1.0s -+ s M 0);
Tgfgo ;) T vy + Wiy + 1:22 Wini s + Or(ye, n2t, - - s i ) alilll( a) Vg (n1,0, - - - s Mm,0);

(73) the average-cost function is convex and the optimal hiring policy is of the hire-up-to type.

Proof Part (i) of the proposition follows from Proposition 4-7 in Heyman & Sobel [13]. Part
(1) follows naturally from (i) since the convexity of discounted-cost functions has already been

established in Theorem 1.
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Part (i) of the proposition establishes the relationship between the discounted-cost and average-
cost criteria: when « is close to 1, the average cost function divided by (1 — «) can be used to
approximate the discounted cost function. Therefore comparisons based on average-cost criterion

can be used to infer comparisons based on discounted-cost as well.

Note that we do not prove the existence of an average-cost optimal policy for our system,
so technically we should regard our numerical results with some caution. Nevertheless, in all of
our numerical examples, MDP value iteration has converged without problems. Furthermore, we
find the clarity of the numerical comparisons afforded by the average-cost model to outweigh this

technical limitation.

8.2 Learning Effect

We have established the optimality of state-dependent hire-up-to policies. In large organizations
with many employees, the MDP state space grows quickly, and for these policies, MDP value
iteration becomes computationally intensive. From §6 and §7 we see, however, that when learn-
ing is ignored, there exist specially-structured policies that are easy to analyze, understand, and

implement. So what do we gain by explicitly modeling the learning effect?

To answer this question we perform numerical tests in which we compare the performance of
hiring policies that account for learning with those which do not. Results presented below suggest
that, in certain cases, a more careful modeling of learning may help to significantly reduce operating
costs. In particular, when the learning curve is steep and the cost of buying incremental, flexible

capacity is high, then more sophisticated policies can provide significant cost savings.

In the following numerical example, each time period corresponds to a three-month quarter,
and service requirements are assumed to be stationary and specified as total capacity requirements

(e.g. number of calls per quarter).

We assume that there are two types of employees, slow and fast. A state (S, F') then means
that there are S slow and F fast employees available. The more experienced, fast employees have a
fixed capacity increase over newer, slow employees. In our numerical experiments we systematically

vary the percentage increase in capacity that comes with learning from 20% to 80%.

26



Other parameters related to system dynamics are as follows. New (slow) employees have a 48%
annual turnover rate (15% quarterly), and experienced (fast) employees turn over at 34% annually
(10% per quarter). In all examples 100% of the new employees that do not quit become fast. Thus,
after an initial three-month break-in period, learning is deterministic. In the examples, we also

restrict employee numbers — hired, learning, and turning over — to be integral.

The example’s cost parameters are constructed to be consistent with data from actual call center
operations. On average the fully loaded annual wage is $25,978.48 for an employee with annual
processing capacity of 20,000. Employees with other capacities are paid proportionally. Overtime
is paid at a 50% premium, and outsourcing cost is set to be extremely high so that it will not be a

viable option. There is also a $1000 fixed cost for each employee hired.

In our numerical experiments, we also systematically vary the maximum amount of overtime
available to the organization as percentage of the total regular time available. Typically work
rules nominally allow this limit to be 50%. If, for example, an employee normally works a 40-hour
week, then the maximum overtime available would be 20 additional hours. In practice, however,
the actual percentage of overtime available is limited by other constraints imposed by the weekly
scheduling problem. In particular, daily or weekly peaks in demand for service often make the use
of overtime, which is available at off-peak times, an ineffective means of adding marginal capacity.

In our examples, we run three scenarios for the maximum available overtime: 10%, 30% and 50%.

We consider two alternative hiring policies. In one learning is explicitly considered, and the
optimal hiring number is a function of the number of each of the two types of employees. In the
other learning is ignored, and the optimal hiring number depends only on the total number of
employees. We call this a “single-number” policy. Note that for both policies the actual system
dynamics remain the same: different types of employees still turn over differently and provide
capacities accordingly. The difference is that the information about different employee numbers is

tracked in one policy, while it is ignored in the other policy.

We develop MDP solution procedures for both of these policies and compare their optimal costs,
varying systematically the percentage of capacity increase from slow to fast, and the maximum

overtime percentage. A cost comparison is shown in Figure 2.

It is clear from Figure 2 that when there is plenty of overtime (30% or 50%), no matter how
much the capacity increase is from slow to fast, the single-number hiring policy, which treats all

different types of employees as the same, performs almost as well as the optimal policy. When
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Figure 2: Difference in Average Cost between Optimal and Single-Number Policies

overtime availability is tight (10%), however, the difference becomes significant as the capacity

increase gets larger.

Figure 3 shows that, for the case of 80% capacity increase (with learning) and a 10% overtime
maximum, the bulk of the cost increase is due to increased staff levels under the single-number
hiring policy. Indeed, the single-number policy systematically over-staffs relative to the staffing

levels of the optimal plan.

Because outsourcing costs are prohibitively high, both the optimal and the single-number policy
seek to ensure, with probability close to one, that there exist enough people so that the service
requirement can be met from regular capacity and overtime. While the optimal policy can recognize
differences between fast and slow employees, the single-number policy does not. To ensure that
there exists enough capacity on hand, the single-number policy must hire as if (nearly) all of the

workers on hand were slow.

Figures 4 and 5 detail the equilibrium distribution of capacity for both policies under two
scenarios, 80% capacity increase and 50% overtime maximum and 80% capacity increase and 10%

overtime maximum. Both figures show that the left tails of both policies’ capacity distributions
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trail off at the maximum overtime percentage allowed.

Figure 4 also shows that, in the 50% overtime case, both the optimum policy and the single-
number policy consistently use overtime. Here, the probability that the single-number policy has
excess capacity is low, and the relatively flat tradeoff between hiring more workers and using more

overtime evidently allows the single-number policy to perform well.

In Figure 5, however, the single-number policy consistently maintains costly excess capacity.
Here the optimal policy is able to maintain it’s staffing level roughly at the service requirement,

where the operating cost function appears to be flat.

In conclusion, our numerical studies imply that the cost increase incurred by using a single-
number policy instead of the optimal, state-dependent policy increases with the percentage increase
in service capacity from slow to fast. But more importantly, the availability of flexible capacity (in
the form of overtime or part-time labor) in the organization is the best indicator of how well the

single-number policy will perform.

Remark 7 We have performed all of the analyses in this section twice. First we have used multi-

nomial learning and turnover probabilities (see §3.2 for discussion). Then we have developed
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a stochastic proportion approximation, which samples from beta distributions to determine the
turnover proportions. In each simulation, the parameters of the beta distribution were chosen to
match the mean and variance of the aggregate turnover rate (across all states in steady-state)
obtained using multinomial distribution. In all the cases we have considered, the cost difference
between using the multinomial distribution and its stochastic proportion approximation has been
within 0.5%. All the numerical results presented in this paper were generated using stochastic

proportions.

8.3 Two-sided Smoothing Effect

In §7, we prove that in two special cases, when the state space can be collapsed into one dimension
and the service requirements are periodic, there exists a one-sided smoothing effect. In these cases,
when the optimal myopic hire-up-to number goes down from one time period to the next, so does
the true optimal number. But when the myopic number goes up, the true optimal number may
still go down if the myopic number further goes down in the following period. In the presence of

learning, however, this one-sided (“upside”) smoothing need not hold.

In Figure 6 we give an example in which there exists a “downside” smoothing effect. In this
example, capacity improvement from slow to fast is 40% and maximum overtime is 10%. The
periodic service requirements are {20,000, 30,000, 20,000, 120,000}, and the figure compares the
myopic hire-up-to number for state (0,5) to the optimal hire-up-to number for the same state. We
see that from period 2 to period 3, even though the myopic hire-up-to levels goes down (reflecting
the decrease in service requirement), the true optimal number goes up, in anticipation of a further
increase of service requirement in the following period. Kapusciniski and Tayur [17] observe a
similar two-sided smoothing effect in a capacitated production-inventory system. In our system,
the downside smoothing effect is mostly caused by employee learning and consequent capacity

increase, while in their setting, it is caused by the limit on production capacity.

9 Conclusion

The MDP approach to the employee staffing problem allows for direct modeling of the stochastic
nature of learning and turnover, and it yields structural results that provide insight into system

dynamics and control. Our numerical results show that, when the learning curve is steep and
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capacity flexibility is limited, the more careful control afforded by this approach may provide

significant cost benefits.

The optimal hiring policy does not yield to easy or fast computation, however. The MDP’s state
space explodes with the size of the work force and the number of employee types (speeds, skills).
A natural extension of our current work would be to identify and evaluate effective heuristics that
are more computationally efficient. For example, when learning is not dramatic, variants of the

myopic policies of §6 may work well.

Another approach would be to search for optimal hire-up-to numbers using simulation-based
optimization techniques. For example, Kapusciriski and Tayur [17] have shown these techniques to
be effective for finding optimal “up-to” levels in capacitated, multi-echelon production problems.
Additional work must be done in our case, however, to validate and evaluate the effectiveness of

the technique.
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A  Proof of Theorem 1

Proof of part (i)  First, let T be finite and fixed. We use induction.

For t = T 4 1, formulation (5) implies Vi1 (n1 741, .., 2ma41|T) = 0. Then Vg (-|T) is
(trivially) jointly convex in (ni7q1,...,%m ry1). Next, suppose Vii1(n1,i41, 72,41, - - - > n,e+1|T)
is jointly convex in (71 ¢41,M2,¢4+1,---,Mm,t+1). Then in two steps we prove that Ji(y, ..., nm¢|T)

and Vi(ni¢, ..., nm¢|T) are, in turn, jointly convex in (y, ..., 7m¢) and (nig, ..., Ny t) respectively.

Step 1. We first prove that J;(ys, nog, ...nme|T) is jointly convex in (y¢, nay, ...0m,). Due to the
assumption that O (ys, N, - ., N t) is jointly convex in (yi, o, - -, Nnt), Hi(Ye, nag, - .o Mmye) s
also jointly convex in (y¢, oy, ..., 7m,¢). Because the integral of a convex function is again convex,
we only need to prove that Viii(ni 41,1241, ..., m+1|T) is jointly convex in (y, n2y, ..., "m,t)
for any realization of (G4, ..., Gm.t. l~17t, ...im,17t). This is true due to Lemma 1 and the fact — from
(2), (3), and (4) — that for fixed (Gi ¢, .., Gm.t, ljlyt, e Zm—l,t)y N1t4+15 N2, 0415 - - - » N t4+1 are all linear
in (ye,n2t, ... Nnyt)-

Step 2. Now, given that Ji(yi, N, -..nme|T') is jointly convex in (y¢, nay, ...7m,¢), We prove that
Vi(nig, ... ,mme|T) is jointly convex in (n14,...,7m¢). This follows from a direct application of

Lemma 2. Note that —hni; + > iy Win,; is jointly convex in (nq, ..., %mz)-

Therefore, by repeating steps 1 and 2, we know that Ji(y¢, n2¢,...7m,|T) is jointly convex in

(yt,n2t, ...nm ) and Vi(nig, ..., nm|T) is jointly convex in (nig,...,nm¢) for all t.

As a result of Ji(nit,...,nm|T) being jointly convex in (nig,...,nms) for all t we know
that there exists y;(noy, ..., nmy|T) such that yf(nay, ..., nmy|T) minimizes Jy(ye, nag, ...nme|T)
without the constraint y > ni¢. When there are multiple minimizers to Ji(yt, Nty ..M t|T), we
will take the smallest. Furthermore, given any (n1¢,n24¢,...,7mz), because Ji(y, 12, ...00m ¢|T)
is convex, the optimal hiring policy with the constraint will be to hire up to yi(nas, ..., nm|T)
if n1s < yf(nag,...,nme|T), and not hire (and thus remain n; ;) otherwise. This is exactly the
“hire-up-to” policy of Definition 1.

A

Proof of part (i)  We will need the following lemma.

Lemma 3 Vi(:|T) is increasing in T.
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Proof of Lemma 3  Pick any two cost functions V;!; (-) and V2 () such that V;1; (n1,441, . . ., 41 |T) <
V2 (n141, .oy |[T) for any (na441, - ., Num,t+1). Moreover, let the minima of V;!(-) and V;(+)
be achieved at ;! and y;2 respectively. Then

Vzl(nl,t, ooyt T)

m
#1 1 1 1
= Hi(y; . nog, .., Nmy) + B {%+1(”1,t+17 e ,nm7t+1|T)} —hnig + Z Wing ¢

i—2
m
%2 1 /.2 2
< O H(yi“ mog, .o nung) + B Tt {Vt+1("1,t+1a e 7nm,t+1|T)} —hnyg + Z Win 4
i—2
m
%2 2 .2 2
< O H(yi“mog, .oy nung) + B Tl {Vt+1("1,t+1a e 7nm,t+1|T)} —hnyg + Z Win 4
i=2

= Vf(nl,t, e | T).

Therefore, the MDP value iteration is an increasing mapping. When 7' is increased to T + 1,
the values of V;(-|T) change as if the end-of-horizon cost function had been increased from 0 to a
positive function. Therefore, by applying the monotonicity of the mapping repeatedly, we find that

the function V;(+|T") also increases.

A

It is not difficult to see that, because total one-period cost is bounded by K (due to Assumption
2), Vi(-|T) < % for any T and t < T.

Thus {V;(-|T) : T = 0,1,...} is a monotone, bounded sequence. Because monotone bounded

sequences always converge, if we let T'— oo, then
Tlingo Vi, oo snmdlT) = Us(nag, ..., imyt) (15)

for some finite function Uy(niy,...,nm¢). Moreover, from Theorem 10.8 in Rockafellar [27],
Vi(nit, ..., nmt|T) converges to Ug(ni g, . .., nm¢) uniformly, and Us(nig, ..., nm ) is jointly convex

in its arguments. By applying Lebesgue’s Dominated Convergence Theorem, we obtain

Us(nigs .- Namyt)

m
= min {Ht(yt, N2ty Nmt) + ozE{q1 odii} {Utr1(n1, 441, - - - ,nm7t+1)}} —hnis + Z Wing ¢
=2

Yt=>na ¢

Hence these Uy(-)’s satisfies the MDP optimality equation. As a result, they are the infinite-

horizon cost functions. That is,
Vitnig, ... nmiloo) = Ue(nig, ., nmyg) = Hm Vi(nag, ..., nmg|T).
T—oo
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Therefore, the infinite-horizon cost functions V;(-|co) are jointly convex, and the “hire-order-to”
policy is, again, optimal in the infinite-horizon case.

A

B Proof of Theorem 4

In the following proof we will assume A = 0. When A > 0, we need to modify the hiring cost to be

a~*h, but the proof is similar.

Let Vi(n¢; Dt, Dig1, .. .) denote the total discounted cost if the current staffing level is n; and

the demand stream from now on is Dy, Dyyq, ... Then
Vi(nt; Dt, Diga,...) = ym>1?rll {(h + W)yt + Ot(yt; Dt) + aByiy { Vi1 (Feye; Dig1, Diga, .. )} — hing
it Tt

= min {Ji(ys; D¢, Dyy1,...)} — hng.

Yt =>ng

To prove parts (i) and (ii), we need the following lemmas. Lemma 4 shows that when the
service requirements are higher, the hire-up-to levels are higher. Lemma 5 shows that the myopic
policies always hire at least as many employees as the optimal policy. This is natural because the
myopic policy assumes a higher end-of-period “salvage value”: it assumes that every employee that
stays will be needed in the next period. Lemma 6 shows that if the optimal hiring number goes up

in the next period, then the myopic policy is optimal in this period.

Lemma 4 Let ¢, ¢,... and x, X, ... be two sequences of stationary service requirements. If ¢ < x,

then yi (¢, ¢, ...) <yi(X, X .. .) ViE;

Proof For stationary service requirements, Theorem 2 states that the myopic policy of minimizing
G(-) in each period is optimal. As a result, hmyt—)y:_(qb,qﬁ,...) Gi(y; @) = 0 and hmytey;‘_(x,x,...) Gy x) =
0. According to Assumption 3, ¢ < x implies O;(-; ) > O;(-;x), and hence G,(-;¢) > Gy(-; x).
The convexity of G(-) then immediately implies y; (¢, ¢,...) < yf(x, X, - -.) V.

A

Lemma 5 For any {Dy¢, Dit1, ...}, yi (D¢, Dig1,...) < yf(Dy, Dy, ...);
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Proof We first note that

—h if ny¢ é y:(Dt, Dt+1, .. )
—h+ Jt’(nt; Dy, Dt+1, .. ) if ng > y;(Dt, Dt+1, .. )

Y/t’(nt;Dt,Dt+1,...) =

Therefore VY (ny; Dy, Dyy1,...) > —h for all t,ny, and {Dy, Dyyq,...}.

We know that y;(Dy, Dy, . ..) satisfies
(h+ W)+ Oy(y; (Dt, Dy, . ..); Dy) + aEgzy {—hit} = 0, (16)
and y; (D¢, Dyy1, . ..) satisfies
0 = (h+ W)+ Oi(y;(Dy, Di+1,...); Dy)
+aE 7,y {‘4;1(7359?(@7 Diy1,...); Diy1, Diya, - -)f't}

> (h+ W)+ O,(y; (Dy, Dis1,...); Dy) + aByzyy {—hi}, (17)

because V;/H(nt; Dii1, Diga,...) > —h for all ng.

Now it is obvious from (16) and (17) that O, (y; (Dy, Di11, . ..); Di)<
O, (yf(Dy, Dy, . ..); Dy). Hence yi(Dy, Diy1,...) < yi (D, Dy,...).

Lemma 6 If yt*(Dh Dt+17 . ) < y;+1<Dt+17 Dt+27 .. ')7 then yt*(DtJ Dt+17 . ) = yt*(DtJ Dt7 . )
Proof  We know that .J; (y;(Ds, Diy1,...); Dy, Dyyq,...) = 0, which is

(h—i—W)—FO;(yzk(Dt, Dt+1, . ), Dt)"‘aE{Ft} {‘/;q_l(?zty:(Dt, Dt+1, .. .); Dt+1, Dt+2, . )’Ft} =0. (18)

Since y; (D¢, Diy1,---) < yip1(Dig1, Diga, . ..), Tuyi (Di, Diya, .. .) < yf 1 (Dig1, Diga, .. .) with
probability 1. Moreover, we know Vi (x;Diy1,Dito,...) = —h if @ < gy ((Diy1, Digo, .. .),
therefore (h + W) + O;(y;(Dy, Dyy1,...); Dy) + B,y {—h7t} = 0. Similarly, we also know that
(h + W) + Oy(yi (D, Dy, ...); D) + aEzy {—hit} = 0. So i (Dy, Diy1,...) = 4 (Dy, Dy, ...), be-
cause O(-) is convex. (If there are multiple roots we choose the smallest one so these two should

still be equal).
A
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Proof of Theorem 4 Now suppose, by contradiction, that part (i) is false, i.e., Dy >= Dy
and y; (D¢, Diy1,...) < yip1(Dey1, Digo,...), then by Lemmas 6, 4, and 5, 4/ (D¢, Diy1,...) =
Y (D¢, Dy, . ..) 2 yf1(Dig1s Degas - .) 2 931 (Dig1, Digo, - . .). A contradiction. Similarly, suppose,
by contradiction, that part (ii) is false, i.e. Dy < Dyy1, yf (Ds, Dig1s--.) > yip1(Deg1, Digo, .- .),

and ¥, 1 (Dig1, Diyo, . . .) < yfio(Diy2, Dig3,...). Then, again by Lemma 6, y;, (D41, Diyo,...) =

Yiv1(Dip1, Dig1, .. .), and by Lemmas 5 and 4, y; (D¢, Dit1,...) <y (Dy, Dy, . ..) < yiv1(Dig1, Digas - -

yt"+1(Dt+1, Diio,...). A contradiction.
A
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