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Customer Learning and Loyalty When Quality is Uncertain

Noah Gans *f

January 1999

Abstract

A consumer has repeated contacts with a set of product or service providers. Each visit
to a supplier yields the consumer some randomly distributed utility. The suppliers’ utility
distributions are unknown to the consumer, and to decide which supplier to visit, she uses a
myopic variant of the decision rule used by a classical, utility-maximizing Bayesian. This rule
is designed to be roughly consistent with empirical findings regarding individual choice under
uncertainty.

For this model, we develop closed-form expressions that characterize both short-term and
long-term measures of customer loyalty to a supplier. These results offer a rich picture of how
consumer discrimination and prior beliefs interact with the level of quality actually offered by

suppliers to determine customer loyalty.
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1 Introduction

What is the cost of a backorder or stockout? Of making a customer wait longer in queue? Of a plane
missing an on-time arrival? Of lowering quality standards just a bit? These costs are embedded
in the heart of a wide range of models in operations management. Typically they are described as
factors exogenous to the operational models being developed; given the stockout cost or the waiting
cost, we seek to maximize profit. Often, they are also assumed to be linear: a stockout costs p per
unit; waiting costs are ¢ per job per unit of time.

Sometimes these assumptions are reasonable. If stockouts are expedited — the missing items
being immediately procured from an alternative source at a premium — then the linear penalty,
p per unit, may apply. If the waiting jobs in a queueing system are WIP — with holding costs
dominated by the cost of capital invested - then the linear waiting costs, ¢ per unit per unit of
time, may be valid.

In systems in which consumers are directly affected by poor service, however, it is not clear
that the costs are linear — or that even the basic framework of a stationary stockout cost per unit
or holding cost per unit of time — applies. While standard texts that cover inventory management,
such as Silver, Pyke, and Peterson [48] and Nahmias [39], mention the costs of lost customer “good
will” they note that it is often difficult for managers to assign these costs to stockouts. Traditional
operational models, which take these good will costs as exogenously given, are of no help.

In fact, current practice is to directly set service levels. In inventory systems line-item fill rate,
the probability that an arriving order can be satisfied from on-hand inventory, is an often-used
measure of service quality. In queueing environments such as telephone call centers, the expected
delay of an incoming call and the probability that an incoming call will be delayed more than z
seconds are analogous service-level targets that managers often set.

It is not surprising, though, that managers are often unsure that they have set the “right” quality

level. While they can estimate the marginal change in operating cost that a change in performance



will require, they cannot readily quantify the marginal change revenue that the change in quality
will obtain. That is, to develop effective operating strategies, a company must first characterize
consumer response to aspects of quality, such as product availability or on-time performance, which
it only partially controls and are inherently uncertain.

How does one characterize customer response? This question falls within the domain of mar-
keting and appears to be of current interest to marketing researchers. For example, the Marketing
Science Institute’s 1998-2000 research priorities [35] include the following topics (among others)
as “being sufficiently significant and timely that they deserve intensive research attention: ...1)
[understanding the] value of [a] customer — value of loyalty, lifetime value of customer ...; 2) un-
derstanding and driving customer satisfaction; 3) [understanding the] relationship between actual
company performance and measures of customer satisfaction.”

Thus, the question of how producers should account for consumer response to uncertain quality
appears to be open. Nevertheless, over the past 25 years related streams of research in psychology,
experimental economics, and marketing have begun to elucidate a picture of human decision-making
upon which we can build a reasonable model of this response.

First, it appears that people systematically categorize as they make sense of their experiences.
That is, people maintain mental examples of how entities in the world behave, and they interpret an
experience with an entity by comparing their perceptions with the typical or exemplary character-
istics of their mental picture of how that category behaves. This structure shows up in Kahneman
and Tversky’s [28, 53] well-known “representativeness heuristic,” and it forms the basis of category
and exemplar theory in cognitive psychology. (For a review and interpretation, see Henderson and
Peterson [24].)

In addition, there are empirical studies of customer satisfaction with product and service quality
that offer a picture of a consumer’s utility or affect that reflects this categorization. In these models,

a consumers’ utility is based on a comparison she makes between the quality she receives and some



prior expectation. For example, Boulding et al. [9] model the consumer as basing her satisfaction
with service received on a comparison to two exemplars or standards: the level of service she believes
the service provider will offer, and the level of service she believes the service provider should offer.

Finally, early work studying peoples’ heuristic responses to uncertainty, such as that of Kahne-
man and Tversky [28, 53], has led to experimental work — by Horowitz [27], Grether [11, 21, 22],
Camerer [10], Meyer and Shi [38], and Banks et al. [7] — that show that, in the context of controlled
experiments, people appear to behave in a roughly Bayesian fashion, with some biases, such as a
tendency to behave more myopically than is optimal.

These empirically-driven theories of individual perception and decision-making to have prompted
us to develop a representation of consumer response to uncertain quality that is a myopic version
of a the classical, utility-maximizing Bayesian. In our model, an individual consumer has repeated
contacts with a supplier of a product or service. In each contact, she obtains utility that is driven by
the quality of the encounter. She categorizes suppliers as being potentially either “bad” or “good,”
and for each supplier she maintains a primitive prior belief: it may be bad or good with a simple
probability. After every encounter with a supplier, the consumer updates her belief concerning the
supplier’s quality in accordance with her experience. If the posterior probability that a current
supplier’s quality is good drops below that of a competitor’s, then the consumer “defects” to the
competitor.

This model of decision-making is similar to the cognitive theory of Gigerenzer and Murray [16].
It also has an intimate connection with the sequential probability ratio test (SPRT), developed by
Wald [54] in the 1940’s, as well as with the “Cumulative Utility Consumer Theory” of Gilboa and
Schmeidler [18] and Gilboa and Pazgal [17]. Indeed, our representation of consumer choice may be
thought of as a composition of these models, and our results are analogues of those developed in
[54] and [17].

Our results offer closed-form expressions that characterize the duration of customer loyalty in



the short term, as well as relative frequency of purchase in the long run. Theorem 2 shows that,
for a current customer, the expected duration of loyalty is roughly convex and increasing in the
overall level of quality provided by a supplier. Theorem 4 shows that, in the long run, the relative
frequency with which a consumer patronizes a supplier is characterized in similar terms; relative
“customer share” is convex and increasing in the overall level of quality. The expression for long-
term frequency is a clear composition of the competing suppliers’ short-term expected loyalties, and
its form also bears a striking resemblance that of the multinomial logit (MNL) models of traditional
discrete choice theory (for example, see Anderson et al. [3]).

These results appear to be quite robust. Our main results do not require the distribution of
utility offered by a supplier to follow a particular functional form. Furthermore, we demonstrate
that alternative representations of myopic consumers obtain analogous results.

Though stylized, our model and results are also rich enough to admit explicit representation
of phenomena such as differences in consumer discrimination and in prior beliefs. In a companion
paper [15] we demonstrate how changes in these parameters affect customer loyalty, and we use the
expressions developed in this paper as the basis for normative models intended to help suppliers to
develop effective marketing and operating strategies.

The remainder of the paper is organized as follows. Section 2 reviews related research, and §3
provides some relevant background on exponential families of distributions. After these prelimi-
naries, we develop our model in §4 and §5. In §6, we characterize the duration of customer loyalty
in the short run, and in §7 we characterize relative choice frequencies in the long run. Finally, §8

discusses the robustness of our model, as well as further research and results.

2 Literature Review

Over the years, there have been attempts to explicitly model the effect of poor quality on the

distribution of demand. An early example is Schwartz [43, 44, 45] who develops an inventory model



in which a stockout causes a short-term reduction in demand, due to customer dissatisfaction, and
this effect gradually recedes as customers “forget” the stockout and drift back to their regular order
size. This model of dissatisfaction and forgetting does not agree with the learning process that we
believe underlies consumer reactions to uncertain quality.

Other inventory models have modeled the effect of stockouts on the aggregate distribution of
demand facing an individual supplier. Balcer [4, 5], Fergani [14], and Robinson [42] develop models
in which current stockouts negatively affect the next period’s demand distribution. In all of these
models the analysis begins with the postulation of the behavior of aggregate demand, however.
They do not include detailed consideration of individual consumers’ behavior.

There is also a stream of game-theoretic analyses of queueing systems that addresses the fact
that customers may adapt to system congestion, often by balking or by abandoning the queue before
they are provided service. Earlier examples of this work, such as that by Mendelson and Whang
[36] and Stidham [51] analyze the case of a monopolist service provider. Later work, such as that of
Kalai et al. [29], Li and Lee [33], Lederer and Li [32] and Ho and Zheng [26], perform analyses that
capture well the competitive externalities that affect a firm’s choice of service level. All of these
works assume that consumers are well-informed about the (expected) waits at supplier’ queues
and that, at each arrival to the market, the consumer simply chooses the queue that maximizes
her expected utility. In our model, however, there is an important information asymmetry: the
consumer is not well-informed about the utility to be obtained. Rather, she must choose among
suppliers on the basis of her subjective beliefs regarding the distribution of utility that they offer.

Two more general models do attempt to more explicitly treat the effect of information asym-
metries between supplier and consumer. Smallwood and Conlisk [50] develop a model in which
consumers react to a product failure by switching to a competitor, and they characterize equilib-
rium market shares for competitors that are based on both the competitors’ breakdown probabilities

and the consumers’ switching rules. More recently, Hall and Porteus [23] develop a similar model



in which inventory and queueing systems compete on the basis of service quality. They show that,
when one firm has an advantage of more loyal customer’s — with lower probabilities of switching
upon a service failure — then it is optimal for the firm to offer a lower level of quality. While both of
these models are close in spirit to ours, they differ in that they model customer switching behavior
— loyalty — as exogenously driven. We wish to understand what drives loyalty in the first place,
and our model attempts to show how loyalty is mediated by customer learning.

There is also research in the economics literature that more directly models the effect of learning
on consumer choice. Papers by Hey and McKenna [25], Allen and Faulhaber [1, 2|, and Thoman
[52], model customer learning as taking place in one trial. As a result, they do not provide insight
that we seek into the effect of the distribution of quality on the duration of customer loyalty. In
contrast, Bergemann and Valiméki [8] develop an infinite horizon model. Here, however, both
suppliers and the consumer share the same prior distributions concerning quality. In our model of
consumer learning, in contrast, information asymmetries between a supplier and its customers are
the foundation for quality competition.

Finally, there are brand-switching models in the marketing literature that explicitly account
for both consumer learning and uncertainty in product quality. The work of Gilboa and Pazgal
[17] falls into this category. In addition, papers by Roberts and Urban [41] and Erdem and Keane
[12] develop models in which Bayesian learning about product attributes is embedded within MNL
representations of consumer choice. While the Bayesian learning described in these papers is
analogous to the learning developed in our model, their use of MNL-based choice is not appropriate
in our setting. Neither of the two possible sources of (Gumbel-distributed) noise in utility that
motivate the MNL model is present in our case (see Anderson et al. [3]). First, randomness in
realized utilities is already explictly represented in a quite general fashion in our model; for the
consumer, there are no utility “externalities” that would generate additional noise. Second, we are

not interested in empirically estimating utilities or the choice probabilities of any one selection, so



we do not need to account for noise that arises due measurement error.

3 Exponential Families of Distributions

While our fundamental results hold without regard to distributional form, we will sometime extend
them by assuming that certain distributions are members of an exponential family. A distribution

that comes from an exponential family, indexed by 6 € ©, may be defined as
dF(z|0) 2 b=V Ogp(z), (1)

where ¢(0) 2 log [ €*dF (z) is the cumulant generating function of some nondegenerate distribution
function, F'. Most commonly used distributional forms are exponential families. Examples of one-
dimensional families include the following: Bernoulli, exponential, Poisson, normal with mean 6
and fixed variance, and normal with fixed mean and variance 6.

A random variable, X, whose distribution comes from a one-dimensional exponential family,
indexed by parameter 6 € © C R, has mean Ey[X]| = ¢/(0) and variance varg(X) = ¢"(0). Thus,
whenever the underlying family of distributions is not degenerate, 1(+) is strictly convex, and the
mean, ¥/'(+), is a monotonically increasing function of 6.

Recall that the likelihood ratio of distribution F with respect to distribution Fy, dFi(z)/dF>(x),
describes the conditional odds, given the observation x, that X is defined by Fj rather than F5.
Furthermore, the likelihood ratio is monotone if it is nonincreasing or nondecreasing in x. It is a
fact that, for two distributions that are members of the same, one-dimensional exponential family,

the likelihood ratio is monotone:

Lemma 1
If F(x]0") and F(z|0%) are members of the same, one-dimensional exponential family, then 0" < 6°
implies

dP(@|0)  _ 0'-0%)a-(s(0")-5(0%)) 2)
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4 A Model of a Bayesian Consumer

We begin by developing a model of a Bayesian consumer’s response to uncertain quality. While we
will not directly analyze this Bayesian model, it provides an important first step in the develop-
ment of our model of a more myopic, “simple” customer. Furthermore, having clearly defined the
Bayesian consumer’s response, we will be able to offer a rich contrast between it and our model of

consumer behavior.

4.1 The Suppliers and Their Choices of Quality Level

A consumer has a periodic need for a product or service, and at regular time intervals t = 1,2, ...
she acquires the good from one of m possible suppliers, indexed i € {1,...,m}. Because there
is inherent uncertainty in the process of delivering the product or service, the utility of the good
supplied to the consumer at a time, ¢, is a random variable, U,.

While the quality of each item or service encounter is uncertain, a supplier can control the
overall level of the utility it provides, and for each supplier this choice of a “quality level” manifests
itself in the choice of a distribution for U;. Let ® C R be the set of distributions from which each
of the suppliers chooses. The set may be finite or countable, or it may represent a continuum of
choices.

We assume that each provider’s choice of quality level is a strategic decision. That is, supplier
i must choose its particular level of quality, #® € ©, independently of its competitors, before
consumers enter the market. We let 7(¢) denote the supplier chosen by the consumer at time ¢ and
assume that, given a fixed ?, the utilities obtained from supplier 4, {U; : 7(t) = i}, are i.i.d.with
distribution Fj: 2 F(u|6"). We also assume that the distributions parameterized by 6 € © are

ordered so that 6° > 67 implies that the E[Uy|7(t) = i] > E[U|n(t) = j].



4.2 The Consumer’s Response to Uncertain Quality

The consumer is aware of the nature of the supply process described above, though she does not
know what 8’s the suppliers have chosen. Each time she returns to the marketplace, she uses the
information she has acquired through past samples of the providers’ performance to decide anew
her choice of firm.

More formally, the consumer views each 6 as a random variable, and for each provider she
maintains a probability distribution of 67, P}(6), that represents her understanding at time ¢ of the
utility distribution under which she believes the supplier to be operating. Let {Pqi,..., P} be the
“prior” information the consumer has as she enters the market for the first time.

After each contact she uses the new sample of utility, U;, and Bayes rule to update this belief.
Thus, if the consumer uses provider ¢ at time ¢ and receives utility u, then her new belief distribution
will be

AP}, (0)dF (u]9)

PO = IR @aF W)

If 7w(t) # i then dPf(0) = dP}_,(0).

Let a policy m = {m(1),7(2) ...} be a sequence of choices of suppliers, and let II be the class
of policies that is nonanticipating with respect to future rewards. Then the consumer seeks a
policy, m € 1I, that will maximize the expected discounted value of the future stream of utilities,

sup.er Ex [3202, ! U], where a € (0,1) is the one-period discount rate.

4.3 The Consumer’s Problem as a Multi-Armed Bandit

It is well known that for any fixed set of service levels, {6',...,0™}, and priors, {P},..., PJ"}, the
consumer’s problem can be represented as a Multi-Armed Bandit. Here, each supplier represents
an arm and P/ the arm’s state at time . Arm i’s state evolves only at epochs, 7(t) = 4, at which
the arm is played, and, from (3) we see that when the arm is played, its evolution is Markov.

Gittins and Jones [20] showed that 1) for each supplier, 7, the consumer may construct an index,



commonly called the Gittins index, which is calculated independently of the information concerning
the other suppliers; 2) at any time t it is optimal for the consumer to use the supplier with the
highest Gittins index.

Gittins [19] further characterized the index of supplier ¢ as the result of maximizing expected
discounted utility per unit of expected discounted time,

{E E[Xih o UPL)|F]] }
E|E S5 as P |

G(P}) = sup

Ti>1

(4)

where 7; is a stopping time with respect to the history of the process through time ¢t — 1, and
the notation, U(P!_,), emphasizes the fact that the marginal (subjective) distribution of utility at
(s — 1) is a function of the distribution on the consumer’s belief at the time.

Observe that the characterization of the Gittins index is that of an optimal stopping problem
for the consumer’s use of supplier 7. Furthermore, the value of the Gittins index explicitly accounts
for the fact that the consumer has the option to stop sampling from ¢ and switch to another supplier

if the sample information is unfavorable. Because of this,

a(pl) » =@ "BV _ gy pyy )
Zs:t+1 of t

and the inequality is likely to be strict.

To maximize her expected discounted utility, the consumer can, in theory, follow this simple
algorithm. First, calculate the Gittins indices of all m suppliers. Second, choose the supplier, 1,
with the largest G(P}) and sample from i until the stopping time, 7;, is reached. Then using the
new sample information, recalculate the Gittins index for ¢ and go back to step two.

In practice, the calculation of the Gittins index is a formidable task. In particular, the state
space of a general Bayesian bandit, as it evolves, covers the set of all possible sequences of posterior
distributions generated by sample paths of the reward process. From a prescriptive standpoint, this
poses a computational problem for rational decision makers who are faced with Bandit problems,

and over the years effort has been invested in developing effective, simple (computable) approxi-
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mations to the Gittins index (for example, see Lai and Chang [31]).

5 A Model of a “Simple” Consumer

For our purposes, difficulty calculating the Gittins index also poses a descriptive problem. That is,
if the Gittins index is so difficult to calculate, can we believe that consumers behave “as if” they
are calculating them?

In fact, the empirical work described in the introduction suggests that people display systematic
biases away from purely Bayesian behavior. Our approach to modeling the problem is to simplify
the consumer’s decision making process in a way that results in an analytically tractable structure
that is consistent with these biases.

We refer to this model as one of a simple consumer because, as we shall see, it is analogous to
the case of a one-sided test of a simple hypothesis in sequential analysis. Keener [30] has previously
called a special case of this problem the multi-armed bandit with “simple arms.”

The model for simple consumers works as follows. As in the original model, each of the m sup-
pliers chooses a quality level, #* € ©. Rather than maintaining a complex set of beliefs concerning
suppliers, however, the customer partitions the possible quality levels into two categories — good
and bad — with respective utility distributions Fz and Fg. For each supplier, the consumer main-
tains, in turn, a belief distribution that is solely the probability that the supplier is good or bad.
Thus, rather than judging how good or bad a supplier is, the consumer’s problem is more simply
to decide whether a supplier is good or bad. At any time, ¢, the consumer myopically chooses the
supplier that has the highest probability of being good.

Let the p! be the consumer’s subjective probability at time ¢ that supplier 7 is good, and consider

a sequence of visits to supplier i in which utilities {U;,Us,...} are obtained. Then from a direct

1



application of Bayes’ rule (3) we find the posterior probability that i is good is

. . -1
pi _ Db ng(Ul) o4 1 —'pf) dFp(Uy)
LT phdFa(Un) + (1 — ph) dFp(Uy) py ) dFa(th)|

where p, denotes the consumer’s prior belief concerning the quality of i. In turn, ¢ visits yield

o, 1
1+ (1__,1’0) H—jigggz;] _ (6)

2
pO s=1

(]

b =

5.1 Relationship Between Bayesian and Simple Consumers

When the suppliers’ choices of quality levels are, themselves, simple — © = {0p,0s} — then the
binary nature of alternatives also leads to a fundamental simplification of the calculation of the

Gittins index, and the simple consumer’s myopic policy s optimal:

Theorem 1 (Keener [30] and Banks and Sundaram [6])
Suppose © = {0p,0q}. Then the Gittins index of supplier i, G%, is monotonically increasing with

the probability that i is good, pt.

Even when © is more complex than {0p,0¢}, if the consumer only believes © = {0p,0:} or
can only perceptually discriminate on the basis of ©® = {0p,0g} then it is optimal for her to act
myopically. Thus, for a simple consumer, myopic choice behavior represents the rational response
to an inability to distinguish among many different quality distributions, rather than an inherent

inability to weigh the future consequences of current choices.

5.2 Modeling F; and Fp

The distributions Fz and Fg need not be two members of the same class of distributions. Mathe-
matically, they need only be mutually absolutely continuous; otherwise they may differ arbitrarily
from each other. Psychologically, they represent the consumer’s “exemplars” of good and bad qual-
ity distributions, and these exemplars need not have a direct relationship to ©. For example, the

consumer’s expectations for one set of suppliers, who choose among quality levels in ©, may have

12



been developed through her experience with another set of suppliers, whose quality choices may
have been different than ©. Nevertheless, there are two methods that a consumer might intuitively
use O to construct Fi and Fpg, both of which originated with Wald [54] in the 1940’s.

Method 1. An elementary method of constructing the distributions would be to pick two ele-
ments of ©, 6 and O that represent thresholds for judging whether or not supplier ¢’s performance
is acceptable. If the consumer were to know with certainty that #* > 6 then she would be satisfied
with i’s level of quality and she would remain loyal for all time. Conversely, if she were to know
that @* < 0p, then the consumer would be dissatisfied and, if given a favorable alternative, would
defect immediately.

Method 2. A more elaborate method would use the prior, P, of the Bayesian model of §4.2 to
construct the two marginal distributions, Fig and Fz. Here 6* might represent a threshold above

which the consumer is satisfied and below which she is dissatisfied, so that

A Jyso- AF (u|0)dP5(0) A Jyegr AF(u|0)dP5(0)
dF, 2 L . d dFy 2 . . 7
G 1= Pi(6") e ars P(0%) "

In either case, if the underlying family of distributions parameterized by 6 have monotone

likelihood ratios, then Fg and Fg will as well. That is,

Lemma 2
Suppose the consumer constructs Fg and Fp using either Method 1 or Method 2. If 8" < 67 implies
dF (u|0%)/dF(u|09) is nonincreasing in u for all 6°,07 € ©, then dFp(u)/dFg(u) is nonincreasing

mu.

Proof
For Method 1, monotonicity holds directly by assumption. For Method 2, see Theorem 1.C.11 of

Shaked and Shanthikumar [49]. O

Together, Lemmas 1 and 2 show that, whenever Fp and Fg are members of the same one-

13



dimensional exponential family of distributions, then dFp(u)/dFg(u) is monotonically decreasing
in u. For a consumer attempting to discern between good and bad quality, this monotonicity is both
a natural and appealing property for the likelihood ratio to have. When the ratio, dFp(u)/dFg(u)
is nonincreasing in u, then a better experience at a supplier will consistently lead the consumer to
believe that the service provider is more likely to be “good.”

We note that this likelihood ratio representation of consumer response is consistent with the
elements (though not the mathematical structure) of the satisfaction model developed by Boulding
et al. [9]. More specifically, the probability, pi_,, represents the consumer’s belief, before the
tth trial, concerning the level of quality that supplier i will offer. At the t*" service encounter
the consumer updates her judgment of her satisfaction, p, directly through the likelihood ratio,
dFp(Uy)/dFa(Uy), which compares the actual quality received to her conception of what a supplier
should offer: a realization of dFp(U;)/dFq(Uy) that is greater than one is evidence that the supplier
is bad, rather than good, and causes a decrease in her posterior judgment of satisfaction, p; a
realization of dFg(Uy)/dF¢(U) that is less than one is evidence that the supplier is good, rather

than bad, and causes an increase in her posterior judgment of satisfaction.

6 The Duration of Customer Loyalty

Keener [30] exploits the fact that Bandit problems are one-sided SPRT’s to develop an explicit,
closed-form expression for the Gittins index that is monotonically increasing in p{. In the case of
a simple consumer, the probability may be used as a satisfaction (or Gittins) index, and it is not
difficult to show that consumer’s choice problem is essentially a one-sided sequential test.

In this section, we develop the SPRT and its associated random walk. We then use classic
results from the theory of sequential testing and of random walks to derive simple bounds on both
the expected duration of customer loyalty and on the probability that a customer defects. The

form of the bounds implies that the expected duration of customer loyalty is convex and increasing
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in Eyi[U]. Finally we present examples — for the exponential, Bernoulli, and normal distributions
— in which we refine the bounds and show that the rough characterization provided by the original

bounds appears to be robust.

6.1 The Embedded SPRT and Random Walk

Let j = argmax{k : pf < pj}. Then a simple consumer will buy from i as long as p} > p{. By (6)

this is equivalent to

t ; j
dFp(Us R 1—
=1 dFa(Us) Po 1 =pg
a one-sided sequential probability ratio test with upper bound (p/pj) ((1 —p)/(1 - pf))) > 1.

By taking logs on both sides of (8), we equivalently have a random walk, S; = 22:1 X, with

1.1.d.increments

X, 2 log(dFp(Uy)/dFa(Us)) (9)

i A pi 1_Z7j
enf(g)- ()

Here, the expectation of X, Eg:[X], is evaluated with respect to the utility distribution actually

and stopping boundary

offered by supplier 1.

Let

r £ inf{t: pi <p)} = inf{t: S, > b’} (11)

be the time at which the customer first perceives that the quality at i is inferior to the quality at j.
This, the time at which the consumer “defects” to the competition, is our primary object of study.

There is a vast body of literature, beginning with Wald [54], that characterizes the behavior
of 7. We next present some basic results concerning Ey:i[7] and Pyi{r < oo}, which hold in great

generality.
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6.2 The Expected Duration of Customer Loyalty

Our characterization of the expected time to defection follows classic results of Wald [54] and

Lorden [34]:

Theorem 2
If 0 < Eyi[X] < o0, then

E[S;] b + EplS, — b

Bl = Ex = X

(12)

In addition,

b b Epi[(X*)?] b Eyi[X?]
xS B S Ex T TREXE S B ' EXE

(13)
the upper bounds holding whenever (respectively) Eyi[(X1)?] < oo and Eyi[X?] < co.

Proof

Since T is a stopping time with respect to Sy, when Egi[X] is finite Wald’s identity can be applied
to derive (12). The lower bound in (13) directly follows from (12). The term Eg[S; — b%] on
the right hand side of the second equation in (12) is commonly called the excess over the bound-
ary, and Theorem 1 of Lorden [34] demonstrates that if Ey[X] > 0 and Ep[(XT)?] < oo, then
Epi[Sr — b'] < Egi[(X1)?]/Epi[X]. The first upper bound in (13) then follows, and the fact that

E[(X1)?] < E[X?] provides the second. O

When are Ey:i[X] and Ey:i[X?] finite? For F and Fg that are members of the same exponential
family of distributions, the answer is straightforward to determine. From (1) and (9) we have

el0BU—¥(0B)} g
X = log <e{9GU_w(9G)}dF> = ¢(9G) - ¢(93) - (GG - OB) U. (14)

In turn, we have

Eg:[X] Y(0c) —v(0B) — (0c —0B)Egy: (U] (15)
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and

Ep:[X?] = (¥(0c) —¥(0B)* — 2(¥(0c) —¥(08))(0c — 0B) EglU] + (0 — 0p)°Eg[U?]. (16)

Thus, if ¥(0g) and ¥(0p) are well defined, then Egi[X] and Ey:i[X?] are finite whenever Ey:[U] and
Ep:[U?] (respectively) are.

If we define

(1>

*

iz (v(0c) —¢(0B)) / (0c — 0B) (17)

then we also see Ey:[X]| € (0,00) is equivalent to Eg:[U] € (—oo, u*). Furthermore, by substituting

(15) into the lower bound of (13) and rearranging terms we obtain the following:

Corollary 1

When Fg and Fg are members of the same exponential family of distributions, then

b/ (6 — 05)

ol = TR

(18)

Differentiating the right hand side of (18) shows that, when Fg and Fp are members of the
same exponential family of distributions, the lower bound of Theorem 2 is convex and increasing in
Eg:[U?]. In this case, it appears that the bound’s behavior offers a good characterization of Eg:|[7]

itself, and in §6.4 and in §6.5 we offer evidence to that effect.

6.3 The Probability of Defection

To determine the probability of defection, Pyi{r < oo} requires a bit more work. A concise

presentation of the analysis, based on Wald [54], can be found in Siegmund [47].

Theorem 3
If Epi[X] # 0 and E[e¥™] < oo for all real o then there exists a unique ©(6°) # 0 and a probability

distribution Fg:y(u) such that

©(0)
dF ,gny(u) = (jﬁj—gzi) dFyi(u) ; (19)
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Ppi{rT < o0} = e PO Eo 00 [e“"(m)(ST_b) ; and (20)

A

m\
s
S
=

Pyi{r < oo} (21)

Proof

For a proof of the existence and uniqueness of (19), see Lemma A.1 and equation (A:17) in Wald [54].
Note that the statement of Wald’s lemma in [54] requires Pyi{X > 0} > 0 and P;{X <0} > 0.
In our case, Eg:i[X] # 0 implies that Fg # Fi and that the inequalities are satisfied.

The form of (20) follows from Wald’s likelihood ratio identity, and a special case used for the
testing of the simple hypothesis, Fp versus Fg, can be found in (8.3) of Siegmund [47]. A change
of measure, based on (19), generalizes the identity to (20) when Fy: # Fp.

The upper bound (21) also follows from Wald’s likelihood ratio identity. It is succinctly demon-

strated in (2.9) of Siegmund [47]. O

Again, we would like to know when Eg[X] # 0 and when E[e¥X] < oo for all real . For Fp
and Fg that are members of the same exponential family of distributions, (15) and (17) show that
the first condition holds whenever Eyi[U] # u*. By substituting (14) into E[e¥¥], we see that the

second condition holds whenever Eyi[e?V] < oo for all real .

6.4 Examples and Further Approximations

The bounds of Theorems 2 and 3 offer simple limits on the behavior or 7 and will be useful in the
sensitivity analysis performed in [15]. They need not, however, be particularly tight. Therefore,
we would like to verify that the characterization of the lower bound offered in Corollary 1 holds for
Egi[7] itself.

The following three examples — for the exponential, Bernoulli, and normal distributions — show
that, for an important and varied set of distributional forms, the characterization of Corollary 1

appears to hold. In all three cases, when ¢ and 0p are fixed and 6’ is bounded above by a constant
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(for example, by 0g), then the “excess” term, S, — b, which is neglected in the corollary can be
bounded above by a constant that is independent of b’. Thus, in these cases, we can construct an
upper bound whose form mimics that of the lower bound of (18), and we may infer that the same
behavior (roughly) holds for Egi[7], itself. For these distributions, the examples also show how one

may compute the quantities presented in Theorems 2 and 3.

6.4.1 Exponential Distribution

One important case in which we may compute the excess exactly is when Fjp: is exponentially
distributed. For example, suppose that the supplier operates a queue and that the quality of its
service is the delay in queue experienced by customers. Then longer waits have lower utility, and
we might model a customer that is risk-neutral with regard to delay in queue as realizing utilities
that are exponentially distributed on (—o0, 0], rather than [0, co).

In this case, we have © = (—o00,0], dFyi(u) = — %6_% for u € (—00,0], and Ey:[U] = 6 < 0.

When Fp and Fg are members of the same exponential family of distributions (possibly distinct

from Fy:) with support on (—oo, 0] we can use (14) to show that for z > 0

Py{X —y>z2IX >y} = Pu{X>y+z2X>y} (22)
/ —q —y— — _
_ p, {U c¥lc) —v(0p) —y —= U< ¥(0c) — ¥ (9B) y} (23)
0 — 0B 0 — 0B
z
= sz‘ {U < - m} (24)
— ¢ TOg-0p)] , (25)

where (24) follows from the memoryless property of exponentially distributed U. Thus for any X
and y, the excess X; — y, is exponentially distributed, with mean | (6g — 05)6%|. This, of course,

applies when ¢t = 7 and y = b¢, so Egi[S; — b'] = | (8¢ — 05)0" |, and (12) becomes

B (000
A Y 7 S 0 ey Ty (26)
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For (20), the definition of X remains (14), but now U ~ F, . From (19) we have:

| _ (dFg(u) ©(6°) |
dF‘P(GZ)(u) - (ng(u)) dFyi(u) (27)
= (elV0e)~v(6p)-(a—0m)ule(@") <——9]ie_% d,u) (28)
1 ; (O iy L
— | c@(0c)—(0B))e(0°) [(0c—0B)p(0")+ 55 1u
— (91 e\w\ve B ) (e 0 ) du . (29)

Observe that the term in the first set of parentheses of (29) does not depend on u, while that

in the second, e_[(aG_eB)‘p(aiHﬁ]“, is the (un-normalized) density of an exponentially distributed
random variable of mean [(6g — 0p)p(0") + %]*1 < 0. Note that LOOO dF,i(u) = 1, in turn,

requires that

1 i 1
_ (E ((0G) 1 (08))p(0 )> - {(9(; = 0B)e(0) + o5 | (30)

so that ¢(#?) is the unique solution to

e(W(0c)— ¥ (0p))e(0") _ q

0 = : 31
©(6") (0 — 0p)0 (31)
Furthermore, using the same argument as that for (25) we can show that
21(0G—0pB)e(0")+-] o= 10(e 1
Poo{X —y>z2[X >y} = e Tom . = e ( bt )+<0c—63>0’]) ) (32)
: —1
Thus X; — y is exponentially distributed with mean — [(p(@’) + m} , so that
i 1 . .
Lo {eso(m)(sr*b)} _ —‘[ﬁp( ‘) + —(gc,oB)e‘z‘] _ (Oc —93)9’.@(9’)' + 1 7 (33)
v ~[(0") + Ge=gmm] — #(0") 2(0c —0B) 6" 0(6") + 1

and for (20) we have

_ o (O —08)0"0(0) + 1
Ppi{T < oo} e 200 —05) 0 p(0) £ 1° (34)

6.4.2 Bernoulli Distribution

The Bernoulli distribution can be used to model products and services for which each encounter

can be categorically labeled acceptable or unacceptable. This clearly applies to stockouts and

20



product breakdowns, and it may also be used as a rough approximation for more complex quality
distributions whenever the outcomes may be comfortably partitioned into these two categories.
Observe that when the utility obtained in each encounter follows a Bernoulli distribution, the
distributions of Fg and Fz must, themselves, be Bernoulli. Therefore, let 65, 8, and 6 respectively
represent the probabilities that an individual encounter is acceptable, given the quality level offered

is bad, good, and that actually offered by supplier i. Thus,

(%E) when encounter t is acceptable
X; = (35)
ln< z ), otherwise,
and
4 1—86 0
EgulX] = (1—92)111(1_93) + 6" In (93> (36)
G G

It is immediate from (11) that X; > 0 and that this occurs only upon an unacceptable encounter,

so it must be the case that S; — b < In (1 zg) We have, therefore, the following simple bounds:

b 5 _ b + In (%g)
(1—0) In ($=52) + 0 n (42) olrl = (1-0)In ($=52) + o' (82)

(37)

We can also apply the fact that S, — b¢ < ln( 9@) to the expectation in (20) to develop a

lower bound for Py:{r < oo}, which gives us
0o In | —£& i
e ) (1 GG) < Ppu{r < oo} < e #0, (38)

Wald [54] develops analogous bounds for two-sided versions of Bernoulli SPRT’s which are
asymptotically equal to those shown here, as one of the stopping boundaries bound grows without

bound. In addition, he shows that (6%) is the unique solution to

. | — (%B_)w(ei)
o (82)™ (Lﬁ)wwi)‘ (39)
e T 0

Wald [54] also develops a method, using difference equations, for exactly calculating Egi[7] and

Pyi{T < o0}. (See also Chapter XIV of Feller [13].)
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6.4.3 Normal Distribution with Unknown Mean and Fixed Variance

Suppose quality is normally distributed, and consider the case in which the mean level of quality
varies from one supplier to the next, but the variability of quality is roughly the same for all
suppliers. Then, without loss of generality, me may assume that supplier i’s quality is normally

distributed with mean ¢ and a variance of one, so that
V() = (0)°/2. (40)

If Fg and F are also normally distributed with unit variance — that is, the consumer discriminates

among distributions using Method 1 of §5.2 — then substituting (40) into (15) we have

EylX] = (0 — ) (‘QB;‘)G —9i) .

(41)
For Epi[X] > 0 (0" < (05 + 0g)), we substitute (41) into (12) and can apply the bounds

developed by Wald [54] for normally distributed two-sided SPRT’s to show
b Cp < b+ (0 — 0n) ($55G5 + A@0))
4 ks 4
(0 — Op)A(0)) — U = (6 — 0B) A(67)

(42)

where ¢(-) and ®(-) respectively represent the density and cumulative distribution functions of the

A

standard normal distribution and \(6?) %(93 +0g) — 6.

Note that the upper bound in (42) may be written
i )
b + (s — 98) (Gt
(0c — 0B) A(0")

Furthermore, for 8° < 6g, A(6") is bounded below by —%(9@ — 0p), and (%) is, in turn,

+1. (43)

bounded above by a constant.

Wald [54] also shows that for normally distributed random variables

0 + 0 — 26"
b — 0

p(0") = (44)
and we can use Wald’s results for two-sided SPRT’s of normally distributed random variables to

show

O(=AO)) o (0
Wc P00 < Pp{r < oo} < e @O, (45)



Finally, we note that as b — oo, the distribution of the excess over the boundary, S, — b,
approaches that of the equilibrium distribution of the “ladder height” distribution of the underlying
random walk. Siegmund [46, 47] uses the expectation of the equilibrium distribution to develop an

approximation for Eyi[S, — b?], which as 6* — 0 is
Epi[S, —b'] ~ 0.583 (46)

for a normal distribution. Without loss of generality, the means of the relevant distributions — 65,
g, and @° — may then be translated so that 6 = 0, and (46) can be substituted into (12) as an
approximation. (The techniques developed in [47] can be applied more generally, and the interested

reader may consult the book.)

6.5 Relationship to Other Myopic Models

Our model of the simple consumer is, in large measure, motivated by the assumption that the
consumer uses the likelihood ratio, dFp(u)/dFg(u), as method of discrimination. Nevertheless, the
resulting behavior, which takes the form of a random walk, {S;}, is consistent with other myopic
models of Bayesian consumers.

More specifically, consider a consumer that is capable of maintaining complex priors and of
performing complex Bayesian posterior updates, yet exhibits myopic behavior. At the ¢! trial she
chooses the supplier, i, whose prior distribution, P} ;, maximizes the expected utility of her next
trial, E[U(P}_,)] (see the right hand side of (5)). When the form of the prior is conjugate, it is
possible to show that the time until customer defection takes the form of a random walk.

For example, suppose the distributions of utilities provided by suppliers are normally distributed
with unknown means and fixed standard deviations, . If the consumer’s initial prior for the mean
of supplier i’s distribution, P¢ is normally distributed with mean uj and standard deviation o},

then her posterior distribution for the mean, P}, is also normally distributed with mean

i /(gt)2 LUty /2
1o/ ( 10;(02)2( +st/lg;)/c (47)
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For puf, > ué we define the time at which she will “defect” from ¢ to j to be

i /(gi)2 LUy /2 ) t . . . ) .
g2 inf{t o R S u%} - inf{t DICERTERNTE ua>/(aa>2} 48)

Then using the approach of Theorem 2, we can derive the following lower bound on the expected

stopping time:

(1 — 1)/ (0h)?
El(] < 23— BT (49)

whenever E[U?] < ,u% /2. This bound has same form as that of Corollary 1.

Our representation of consumer decision making is also intimately connected with a special
case of the Cumulative Utility Consumer Theory (CUCT) proposed by Gilboa and Schmeidler
[18]. As we shall demonstrate in the following section, our model begins with a more detailed
characterization of consumer response to quality variation and may be seen as an enrichment of

the theory in the context of quality uncertainty.

7 Long Run Choice Frequencies

Theorems 2 and 3 offer a short-term characterization of customer loyalty. That is, they describe the
duration of loyalty of a current customer. In some competitive environments, this characterization
may be sufficient; a customer that is lost is gone forever, and there is little chance that she will
return. In other markets, however, the short-term characterization in clearly incomplete. In the
long run, consumers that defect to the competition may return.

In this section we develop a characterization for the long-run case that is analogous to the results
developed for the short run. The results show that long-run frequency with which a consumer
patronizes supplier i is described by a simple ratio among the various supplier’s Egji[X]’s. The
results also closely parallel those developed by Gilboa and Pazgal [17]. We make this connection

explicit and apply their results to develop our own.
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7.1 Relationship to Cumulative Utility Consumer Theory

We consider the cardinal version of the Cumulative Utility model presented in Gilboa and Pazgal
[17]. Here, the consumer maintains cumulative balances of the utilities obtained from each of the
suppliers. When she enters the market, she may have an initial utility balance for supplier 7, b)), that
represents her prior impression of i. Each encounter with supplier ¢ yields a randomly distributed
instantaneous utility, Y, which is added to i’s balance. Letting S! = 2:1 Y/, we see that t trips
to i yield a balance b)) + Si.

The consumer behaves myopically; in each period she visits the supplier with the highest cu-
mulative balance. Thus, for b} > bé, the stopping time at which the consumer defects from ¢ to j

is
r S infltby+ S < B} = inf{t: —s] > b)) (50)

If we let b = b} — bg and let —Y? = X? where X? is defined as in (9), then we recover our original
model for the simple consumer.

Note that the intention of the Cumulative Utility models somewhat different from ours. In
Gilboa and Pazgal’s [17] formulation, a consumer makes repeated choices among a number of
competing brands, and switching behavior is induced is due to “variety seeking,” rather than
inherent defect of the product: the more negative E[Y?], the more easily bored the consumer
becomes on average with choice i; randomness in the realizations of Y correspond to unpredictable
differences in the consumers response to i, rather than any (measurable) uncertainty in the actual

performance of 1.

7.2 Basic Results

Consider a competitive market in which there are m suppliers competing for the patronage of a

consumer. Then
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Theorem 4 (Gilboa and Pazgal [17])

Let f; 2 limy—.o0 T 34—y 1{m(s) = i} denote the limiting relative frequency with which the consumer
chooses supplier i. If Egi[Y] < 0 and varg:(Y) < oo for i =1,...,m, then with probability one f;
exists fori=1,...,m, and

S Hj;éi Egi[Y]
i = Sk Ijer EoilY] (51

If we multiply both numerator and denominator by — J]jZ; Eg;[Y] and note that X = Y,

then we recover

Corollary 2
If Ei[X] > 0 and vary (X ) < oo fori = 1,...,m, then with probability one f; exists fori=1,...,m,
and

_ Epi X]"
b SRR )

Furthermore, if Fg and Fg are members of the same family of exponential distributions, then
Epi[X] >0 <= EulU] < p*, vargi(X) < oo <= vary(U) < oo, and

B
= S e B o)) (53)

Observe that (53) describes the long-run frequencies solely in terms of the expected satisfaction
with an individual service encounter, pu* — Egi[U]. It is not surprising that the consumer’s priors
beliefs, {b',...,b™}, do not have a long-term effect. What is more interesting, however, is the fact
that the excess, S, — b, does not contribute to the long-run frequencies.

It is also interesting to note that, if we let z; = 1/E4:[X], then

fi = — (54)

ZT:l Zj
bears a striking resemblance to the choice probability derived from classic MNL models of discrete
choice. While the form of the expression is the same, the model of consumer behavior which

generates it is quite different (see Andersen et al. [3]).
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8 Conclusion

What is the cost of a stockout or of making a customer wait a bit long in queue? To answer
this question, we have formulated a model of consumer response and developed expressions that
characterize short and long term loyalty.

In [15] we use the results developed here to provide a fuller answer. We offer a rich character-
ization of how the expected duration of customer loyalty changes with the overall level of service,
with the customer’s discrimination function, and with the consumer’s prior beliefs. For the long-
term frequency of purchase, we present analogous results for the overall level of service and for the
customer’s discrimination function. We also use the expressions as the basis of simple optimization
models and games that are of normative value for suppliers.

Of course, the value of all of these results rests on the underlying adequacy of our model of
consumer behavior. In particular, even if one accepts the assumption that people behave in roughly
Bayesian fashion, but that they are “more” myopic than is optimal, she one might wonder if our
model is “too” myopic, that people are more foresighted than our representation permits.

A natural analysis to perform would be to compare the behavior of 7 in our model to that
predicted for a rational Bayesian. Then, if the behavior of the fully Bayesian bound on behavior is
similar to that shown in our model, then we might conclude that we have adequately characterized
the behavior itself. Difficulty in calculating the Gittins index requires us to make the comparison
using numerical methods, and this work is beyond the scope of this paper. Nevertheless, for our
characterization of the expected time to defection, we note two pieces of evidence that point to just
such a result.

First, Erdem and Keane [12] develop two models in which Bayesian learning is embedded in
MNL representations of choice: in the first, the consumer is a myopic Bayesian, and in the second,
more farsighted. In empirical tests in which they fit both models to the same panel data, the authors

report small (but statistically significant) differences in the parameter estimates generated by the
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two models. Thus, for a family of models which are similar to ours — but for which the investigators’
estimates of switching behavior are mediated by MNL-inducing noise — the bias induced by using
a too-myopic model of consumer behavior appears to be small.

Second, Lai and Chang [31] develop an approximation to the Gittins index which, for quality
distributions that are members of the same exponential family, they demonstrate is asymptotically
Bayes as the discount rate approaches one. Furthermore, for a customer using the approximate

index, as a — 1 the expected time to defection converges to

log ((9cr —6")*) +log ((1 —a)™)
V(0ck) —¥(0") — (Oce — 0 (0")

lim1 Eg: [T] (55)

where 0c g denotes the quality level of the certainty equivalent to the (approximation to) the Gittins
index of the best alternative to supplier i, and the convergence is uniform in |fcg — 6| over some
relevant range. (See (4.2) in [31].)

The statement of the result does not include the rate (in a) at which the convergence takes
place. Nevertheless, as a “back of the envelope” analysis, we might divide both sides of (55) by

log ((1 — a)™!) to derive an alternative form of the limit

lim Epi[7] 2 1
I (1 —) ) Blon) 9 — (Gor 000

(56)

which is precisely the form of the denominator of the lower bound of (13) when U ~ Fy and
X =log(dFyi(U)/dFop(U)).

Thus, when Fy: and Fog are members of the same exponential family of distributions, then the
behavior of (56) with respect to 6 is the same as that of the simple consumer. As a — 1, the rate
at which the expected duration of customer loyalty is growing is convex and increasing in 6°.

One may also ask how our characterization of long-term relative purchase frequencies compares
with that of the fully Bayesian consumer. If Eg[U] < p* for all of the suppliers, then the simple
consumer will switch among all suppliers indefinitely and will never converge upon a preferred

supplier (or a subset of suppliers). This is due to the fact that neither the form of her discrimination
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function, dFp(u)/dFg(u), nor the dispersion of her posterior distributions, pi, is changing with
experience. With experience, however, the posterior distributions of a true Bayesian would become
less dispersed, and her choices would converge. In the case of long run frequencies, then, we may
expect find consumers’ actual behavior fall somewhere in between the pictures offered by the simple
and Bayesian models.

Indeed, empirical findings, such as those of Camerer [10], do imply just such a difference between
short and long-term behavior. While people may act myopically in the short run, their long-run
patterns of choice appear to become more fully Bayesian. Thus, our model of consumer behavior
may not be wholly adequate for the long run; it may be profitably modified or extended.

More broadly, one may note that the model presented in this paper considers the myopic
behavior associated with categorical thinking but does not address other well-documented biases
associated with individual decision-making under uncertainty. (For example, see Payne et al. [40]
or Meyer and Hutchinson [37].) Nevertheless, we believe that the learning associated with repeated
trials is a fundamental determinant of customer loyalty in the context of quality uncertainty. In this
sense the model of a simple consumer provides an advance over more traditional models in which
loyalty is exogenously defined. How much of an advance may be determined through empirical

validation.

Acknowledgments

Thanks to David Croson, Rachel Croson, Pat Harker, Teck-Hua Ho, Eric Johnson, Ziv Katalan,
Howard Kunreuther, Robert Meyer, Garrett van Ryzin, and Yu-Sheng Zheng, as well as to seminar

participants at Northwestern, for valuable comments and references.

29



References

[

[10]

Allen, F., and G. R. Faulhaber (1988), “Optimism Invites Deception,” The Quarterly Journal

of Economics 103, 397 — 407.

Allen, F., and G. R. Faulhaber (1991), “Quality Control in the Service Firm and Consumer
Learning,” in Service Quality (S. W. Brown, E. Gummelson, B. Edvardsson, and B. Gustavs-

son, eds.), Lexington, Massachusetts: Lexington Books, 289 — 302.

Anderson, S. P., A. de Palma, and J-F. Thisse (1992), Discrete Choice Theory of Product

Differentiation, Cambridge: MIT Press.

Balcer, Y. (1980), “Partially Controlled Demand and Inventory Control: an additive model,”

Naval Research Logistics Quarterly 27, 273 — 288.

Balcer, Y. (1983), “Optimal Advertising and Inventory Control of Perishable Goods,” Naval

Research Logistics Quarterly 30, 609 — 625.

Banks, J. S., and R. K. Sundaram (1992), “A Class of Bandit Problems Yielding Myopic

Optimal Strategies,” Journal of Applied Probability, 29, 625 — 632.

Banks, J. S., M. Olson, and D. Porter (1997), “An Experimental Analysis of the Bandit

Problem,” Economic Theory 10, 55 — 77.

Bergemann, D. and J. Valiméki (1996), “Learning and Strategic Pricing,” Econometrica 64,

1125 — 1149.

Boulding, W., A. Kalra, R. Staelin, and V. A. Zeithaml (1993), “A Dynamic Process Model of
Service Quality: from expectations to behavioral intentions,” Journal of Marketing Research

30, 7 - 27.

Camerer, C. F. (1987), Do Biases in Probability Judgment Matter in Markets? Experimental

Evidence,” American Economic Review 77, 981 — 997.

30



[11]

[12]

[13]

[14]

[15]

[17]

[18]

[20]

[21]

El-Gamal, M. A., and D. Grether (1995), “Are People Bayesian? Uncovering Behavioral

Strategies,” Journal of the American Statistical Association 90, 1137 — 1145.

Erdem, T., and M. P. Keane, “Decision-making Under Uncertainty: Capturing Dynamic Brand

Choice in Turbulent Consumer Goods Markets,” Marketing Science 15, 1 — 20.

Feller, W. (1968), An Introduction to Probability Theory and Its Applications, Vol. 1, 37 ed.,

New York: John Wiley & Sons.

Fergani, Y. (1976), A Market Oriented Stochastic Inventory Model, unpublished Ph.D. disser-

tation, Stanford University.

Gans, N. (1999), “Customer Loyalty and Supplier Strategies for Quality Competition,” Work-

ing Paper, OPIM Department, The Wharton School, University of Pennsylvania.

Gegerenzer, G. and D. J. Murray (1987), Cognition as Intuitive Statistics, Hillsdale, New York:

Lawrence Erlbaum Associates.

Gilboa, 1., and A. Pazgal (1995), “History Dependent Brand Switching: theory and evidence,”

Working Paper, KGSM-MEDS, Northwestern University.

Gilboa, I. and D. Schmeidler (1997), “Cumulative Utility Consumer Theory,” International

Economic Review 38, 737 — 761.

Gittins, J. C. (1979), “Bandit Processes and Dynamic Allocation Indices,” Journal of the Royal

Statistical Society B 41, 148 — 177.

Gittins, J. C., and D. M. Jones (1974), “A Dynamic Allocation Index for the Sequential Design
of Experiments,” In Progress in Statistics, ed. J. Gani et al., Amsterdam: North Holland, 241

— 266.

Grether, D. (1980), “Bayes Rule as a Descriptive Model: the representativeness heuristic,”

The Quarterly Journal of Economics 95, 537 — 557.

31



[22]

[23]

[24]

[25]

[27]

[28]

[30]

32]

Grether, D. (1992), “Testing Bayes Rule and the Representativeness Heuristic: some experi-

mental evidence,” Journal of Economic Behavior and Organization 17, 31 — 57.

Hall, J. M., and E. Porteus (1998), “Dynamic Customer Service Competition,” INFORMS Fall

1998 Conference, Seattle.

Henderson, P. W.; and R. A. Peterson (1992), “Mental Accounting and Categorization,” Or-

ganizational Behavior and Human Decision Processes 51, 92 — 117.

Hey, J. D., and C. J. McKenna (1981), “Customer Search with Uncertain Product Quality,”

Journal of Political Economy 89, 54 — 66.

Ho, T-H., and Y-S. Zheng (1996), “Setting Customer Expectation in Service Delivery,” Work-

ing Paper, Marketing Department, The Wharton School, University of Pennsylvania.

Horowitz, A .D. (1973), Experimental Study of the Two-Armed Bandit Problem, unpublished

Ph.D. dissertation, University of North Carolina at Chapel Hill,

Kahneman, D., and A. Tversky, (1973), “On the Psychology of Prediction,” Psychological

Review 80, 237 — 251.

Kalai, E., M. I. Kamien, and M. Rubinovitch (1992), “Optimal Service Speeds in a Competitive

Environment,” Management Science 38, 1154 — 1163.

Keener, R. (1986), “Multi-Armed Bandits with Simple Arms,” Advances in Applied Mathe-

matics 7, 199 — 204.

Lai, T. L. and F. Chang (1987), “Optimal Stopping and Dynamic Allocation,” Advances in

Applied Probability 19, 829 — 853.

Lederer, P. J., and L. Li (1997), “Pricing, Production, Scheduling, and Delivery-Time Com-

petition,” Operations Research 45, 407 — 420.

32



[33]

[34]

[35]

[36]

[41]

[43]

Li, L., and Y. S. Lee (1994), “Pricing and Delivery-Time Performance in a Competitive Envi-

ronment,” Management Science 40, 633 — 646.

Lorden, G. (1970), “On Excess over the Boundary,” The Annals of Mathematical Statistics

41, 520 - 527.

Marketing Science Institute (1998), Research Priorities: a guide to MSI research programs and

procedures, Cambridge, Massachusetts: Marketing Science Institute.

Mendelson, H. and S. Whang (1990), “Optimal Incentive-Compatible Priority Pricing for the

M/M/1 Queue,” Operations Research 38, 870 — 883.

Meyer, R. J., and J. W. Hutchinson (1994), “Intuitive Dynamic Decision Making: an analysis
of normative theory as a descriptive model,” Working Paper 94-011, Wharton Marketing

Department, University of Pennsylvania.

Meyer, R. J., and Y. Shi (1995), “Sequential Choice Under Ambiguity: intuitive solutions to

the armed-bandit problem,” Management Science 41, 817 — 834.
Nahmias, S. (1997), Production and Operations Analysis, 3" ed., Chicago: Irwin.

Payne, J. W., J. R. Bettman, and E. J. Johnson (1993), The Adaptive Decision Maker, Cam-

bridge: Cambridge University Press.

Roberts, J. H., and G. L. Urban (1988), “Modeling Multiattribute Utility, Risk, and Belief

Dynamics for New Consumer Durable Brand Choice,” Management Science 34, 167 — 185.

Robinson, L. W. (1990), “Appropriate Inventory Policies When Service Affects Future De-

mands,” Working Paper 88-08, Johnson Graduate School of Management, Cornell University.

Schwartz, B. L. (1965), Inventory Models in which Stockouts Influence Subsequent Demand,

unpublished Ph.D. dissertation, Stanford University.

33



[44]

[45]

[46]

[47]

[48]

[52]

[54]

Schwartz, B. L. (1966), “A New Approach to Stockout Penalties,” Management Science 12,

B-538 — B-544.

Schwartz, B. L. (1970), “Optimal Inventory Policies in Perturbed Demand Models,” Manage-

ment Science 16, B-509 — B-518.

Siegmund, D. (1979), “Corrected Diffusion Approximations in Certain Random Walk Prob-

lems,” Advances in Applied Probability 11, 701 — 719.

Siegmund, D. (1985), Sequential Analysis: tests and confidence intervals, New York, Springer

Verlag.

Silver, E. A., D. F. Pyke, and R. Peterson (1998), Inventory Management and Production

Planning and Scheduling, 3" ed., New York: John Wiley & Sons.

Shaked, M., and J. G. Shanthikumar (1994), Stochastic Orders and Their Applications, Boston:

Academic Press.

Smallwood, D. E., and J. Conlisk (1979), “Product Quality in Markets where Consumers are

Imperfectly Informed,” Quarterly Journal of Economics XCIII, 1 — 23.

Stidham, S. Jr. (1992), “Pricing and Capacity for a Service Facility: stability and multiple

local optima,” Management Science 38, 1121 — 1139.

Thoman, L. (1994), “Repeat Purchases Under Quality Uncertainty,” Economics Letters 46,

33 — 40.

Tversky, A., and D. Kahneman, (1974), “Judgment under Uncertainty: heuristics and biases,”

Science 185, 1124 — 1131.

Wald, A. (1947), Sequential Analysis, New York: John Wiley & Sons.

34



