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Many manufacturing industries, including the computer industry, have seen large increases in
productivity growth rates and have experienced a reduction in average establishment size and
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1. Introduction

The relationship between the scale of production and the rate of innovation is a classic issue in

the study of the organization of industry. A large body of research (Scherer (1980), Acs and

Audretsch (1990), and others) has approached the problem from the standpoint of how the

size of an enterprise affects innovation. Less attention has been focused on the other channel,

that is, that the rate of arrival of new technologies might affect the scale of production across

producers.

In this paper, a theory is introduced where an exogenous increase in the rate of tech-

nological progress leads to smaller plants and a more concentrated size distribution. The

increase in technological change can be thought of as a technological revolution. In man-

ufacturing industries from 1977 to 1994, as well as in the particular case of the computer

industry (SIC 3573), that pattern emerges in the data: industries which go from low to high

growth tend to have the mean and variance of their establishment size distribution shrink.

Technological revolutions lower the scale of production and reduce the variability of plant

size.

In order to capture this, a model is introduced which has two important ingredients: a

vintage structure to technology and gradual learning at the plant level about a given vintage.

Increased total factor productivity (TFP) growth comes from improvements in technology.

Each establishment has a given vintage of technology and a level of experience on that vintage.

The crucial feature is the differing incentive to adopt faced by incumbents of various ages.

Evidence of significant plant and machine turnover and replacement suggests that retooling

is a very important part of plant evolution. There is substantial evidence of investment spikes

at experienced plants (Doms and Dunne (1998)), and these spikes are often thought of as



instances of retooling. The rate of technological progress clearly affects when technologies

are adopted when progress is embodied in capital, since the opportunity cost of using an old

technology is high when progress is fast.

To counteract the incentive to constantly upgrade technology, it is assumed that pro-

ducers accumulate knowledge about a given vintage of technology as they use it. A long

tradition of studies suggests that learning by doing is an important element of production

(see Argote and Epple (1990) for a review). The learning on any given vintage is bounded,

up to some maximum productivity possible under that technology. Eventually, plants must

adopt a new technology in order to compete with plants near the frontier.

The model is used to predict how the size distribution of plants is related to the rate

of technological progress. For a fixed distribution of vintages, rapid change increases the

variability of size, since the difference between a frontier technology and a backward technol-

ogy is magnified. However, when change is rapid, new technologies bring large increases in

productivity, causing establishments to adopt more frequently. The result is that the tech-

nologies chosen are bunched near the technological frontier, a force toward less variability

in establishment size. In terms of average size of plants, the effects are more subtle. It is

shown, in fact, that when the future is not discounted, there is no effect, and when agents

are myopic, there are two countervailing effects. In the numerical results, though, where the

discount factor is between zero and one, the force toward smaller plants is dominant.

An interesting case of a change in the rate of technological progress is that of the com-

puter industry. Semiconductor main memory was introduced in 1971 and greatly increased

the speed of computers (Dulberger (1989)). The change translated into an increased rate of

technological progress. Figure 1 displays the yearly TFP growth rate, calculated as a Solow
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residual in a multifactor production function, for the computer industry, SIC 3573 (Electronic

Computing Equipment), in the United States.1 There is a marked rise in the growth rate of

TFP in the early 1970s, when this revolution began.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
61 65 69 73 77 81 85 89 93

TFP Growth, SIC 3573

The scale of production, as measured by employees per plant, also changed. Computer

establishments tended to be smaller, and the variability of the sizes of establishments was

reduced as time passed following the revolution. These changes for 3573 are summarized

1The data are from the NBER TFP database, which is discussed in Bartelsman and Gray (1996).
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below.2

Year Mean Plant Size St.Dev. of Plant Size

72 290 641

77 261 602

82 228 558

87 197 526

92 127 399

The data are for census years. The size distribution of plants has, in fact, nearly monotoni-

cally declined (in the sense of first-order dominance of the distribution) in each census year,

suggesting a pervasive change in the mean.3 The decline in the standard deviation of the

distribution of sizes has also been dramatic.

One way to reconcile the relationship between average size and productivity is if capital

is simply substituting for labor. The substitute theory is problematic, however. One problem

is that, if TFP growth rises due to embodied technological change and plants respond by

substituting capital for labor, output per worker should increase dramatically, faster than

TFP. In fact, output per worker has, in the case of 3573, risen much less sharply than TFP.4

Complementarity between capital and labor is a common feature of the many technologies

which have been used, and it will be maintained in this paper.

There is evidence of the same relationship between the rate of technological progress

and the size distribution beyond the computer industry example. The following section doc-

2Since only plant count by employment class is disclosed, it is impossible to measure the variance exactly.
These calculations assume that each plant within a size category is at the average size across manufacturing
industries for that category.

3That fact cannot, of course, be determined from the statistics reported.
4This is similar to the picture of the macroeconomy, where labor productivity growth has slowed, while

embodied technological change has, if anything, increased (Greenwood and Yorukoglu 1997).
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uments several facts for U.S. manufacturing establishments over the time period of 1977

to 1994. Industries which experience dramatic increases in the rate of growth of TFP, like

the computer industry, are compared to the rest of the sample, which had no such “revo-

lution.” The industries which experienced a revolution saw average establishment size fall

dramatically. These same industries also saw significant reduction in the variability of their

establishment size distribution. The set of industries undergoing the change include many

high-technology industries, one of which seem a very plausible candidate for the view that

there has been a fundamental change in the rate of technological progress.

The theory promoted here can account for both the size and the variance change in

the distribution. This suggests that not only might size be an important determinant of

innovative activity, as many papers have focused on, but also it may be the case that the rate

of change affects the scale of operation.

Several recent papers (for instance, Greenwood and Yorukoglu (1997) and Greenwood

and Jovanovic (1999)) suggest that the entire U.S. economy is going through a technological

revolution. To be sure, the mean and variance of manufacturing plant sizes have been falling

(Baily et al. (1996)). This paper does not take a stand on the issue of an economywide

revolution, but it is suggestive, in the sense that the overall changes in the establishment

size distribution coincide with the dates that authors have suggested as the dawn of this

economywide revolution.

Section 3 introduces the model, which combines vintage capital into an aggregate

model of many competitive industries, each with entry and exit. The main tenet of the

model is that the plant stores information about how to efficiently operate a technology.

Plants act as Bayesian decision makers who have information which is retained from period
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to period. Changing vintages involves the loss of some of the useful information. The vintage-

specificity of knowledge serves as a cost of changing vintages. As opposed to a pure fixed

cost, however, the loss of information lowers marginal product during the accumulation of

new knowledge. It is shown that a fixed cost will have the inverse prediction for the size

distribution compared to the theory presented here.

When a plant first enters, it has limited information about how to produce. It adopts a

technology and undertakes production. As it produces, it generates information which makes

it more efficient. If it chooses to adopt a new technology, it gains productivity because new

technologies are more productive, but it loses productivity due to lost knowledge. In order

to capture these effects and their effect on plant behavior, a model with many successive

technologies is introduced. Information’s role in production is formalized with a Bayesian

learning structure along the lines of Jovanovic and Nyarko (1996). Each plant has a vintage-

specific parameter which reflects the best way to produce. Each period, the producer chooses

a method of production and, from the outcome of the production process, learns a bit more

about the best way to operate the technology.

Unlike Jovanovic and Nyarko’s work, the technologies will be operated by a contin-

uum of forward-looking agents in a competitive environment. In order to keep the analysis

tractable, however, the parameters and forms used will be significantly less rich. Jovanovic

and Nyarko (1996) analyze a single, myopic agent, but compare across a wide variety of pa-

rameters. Here, comparative statics on a single parameter, the rate of technological progress,

holding others fixed, is the focus. Section 4 calibrates the model to learning curve data

and shows that an increase in the rate of technological progress makes small establishments

relatively more prevalent, while decreasing the total variance of plant sizes.
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2. Industry Productivity Growth and the Size of Establishments:
Evidence from U.S. Manufacturing

The computer industry is just one example of the relationship between technological

change and the size distribution. A more complete picture can be attained by studying size

distributions from the U.S. Census’ County Business Patterns, combined with productivity

data from the NBER TFP Database for each manufacturing SIC and each year from 1977 to

1994.5

Two important features of the recent evolution of the manufacturing size distribution

are the decreases in both the mean size and size variability for U.S. manufacturing establish-

ments (see Baily et al. (1996)). The forces behind these changes are an important issue for

understanding the organization of industry and are studied in detail in Gowrisankaran and

Mitchell (2000). Here, the focus is not on the overall trend. Instead, I look to see if industries

that underwent large increases in the rate of technological change (what might be termed a

technological revolution) also had predictable changes in the size distribution.

In order to determine which industries had the biggest changes in the rate of techno-

logical progress, a trend line is fitted to the growth rate of TFP, denoted Tt, for each industry.

This estimated trend for industry i is denoted βTi :

Ti,t = αTi + βTi t+ ε.

The industries are ranked according to this parameter. Extreme values in terms of βTi are

the industries which are thought of as having undergone a revolution.

5The choice of dates reflects years for which size distributions are readily available in an electronic format
from the U.S. Census’ County Business Patterns.
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In order to measure change in the mean and variability of the size distribution, trend

lines are fitted for each industry for the logarithm of mean establishment size (with resulting

parameter βSi ) and the logarithm of the standard deviation of the size distribution (β
V
i ). Mean

size is calculated simply using total employees divided by total establishments. Calculating

the standard deviation requires the entire distribution, which is not reported for every size

category and every year. Therefore the following strategy is adopted. For each industry, for

each year, for each size category, total establishments are reported, but total employment may

not be.6 A measure of employment is constructed using the figures for total establishment and

the average employment in the overall sample for each size class. Consistent with much of the

literature, the standard deviation is calculated weighting each size class by its employment.

This ensures that the changes are not coming about due to changes of a few establishments

in very small employment categories.

An attempt was made to estimate a lognormal distribution (using maximum likeli-

hood) to each of the industries’ size distributions in each year. Unfortunately, while the

lognormal does fit the overall size distribution and some large industries rather well, it was

very inappropriate (for instance, its predictions for the mean were dramatically inaccurate)

for a large fraction of the industries. As a result, the more simple-minded approach outlined

above was followed.

According to the theory, we focus on the comparison between the industries increasing

rapidly in technological change (the top quartile of the estimate βTi ) and the rest of the

industries. The results are presented below.

6This is done to ensure anonymity of the employment level of individual plants when there are only a few
plants in a given size category.
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Average of: Top quartile Other industries

βSi −0.029 −0.017

βVi −0.100 −0.048

βTi 0.014 0.000

All of the differences are significant at the 95% level. Industries which experienced

a speed-up in technological progress saw faster than normal declines in both the size of

establishments and the concentration of establishment size. Both are economically important,

as well. Whereas the size of the industries in the top quartile is falling at about three percent

per year, it is falling at less than two percent for other industries. More strikingly, the

reduction in variance is more than double — the industries with fast change are reducing

variance by ten percent per year.

When the top group is taken to be the top 5% or 10% of βTi , the differences are even

larger, as one would expect. If one focuses on the bottom-ranked industries in terms of βTi ,

the relationship also holds: the industries whose technological change has slowed significantly

have significantly less reduction in average size and variability than do the rest. The result

is less striking, though, because while the top of the βTi distribution is substantially different

from the rest, the bottom is not nearly so far from the average increase in technological

progress. It happens that, in the sample, we see more industries undergoing “technological

revolutions” in terms of TFP than we do industries where the revolution seems to be ending.

One way to summarize the relationships is through correlations between the trend

coefficients. Since technological change is related to the size of establishments, it might be

that the level of technology is also relevant. Denote by T̄i the average rate of technological
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progress in industry i. The following table reports correlations between variables (* denotes

significant at the 95% level):

σxy βTi T̄i

βSi −0.15∗ −0.05

βVi −0.24∗ −0.09

Notice that the level of productivity growth is not significantly correlated with changes

in either size or variability, but the change in TFP growth is negatively correlated with both.7

The model will have the feature that the size distribution is constant over time for a constant

rate of technological progress. Changes to the size distribution will come about exclusively

as a result of shocks to the rate of growth of technological progress as, for instance, was

experienced in the early 1970s by SIC 3573, since it is those changes that are connected to

the changes in the size distribution for U.S. manufacturing industries.

Note that even the industries with βTi around zero, i.e., which have no change in

their growth rate of TFP, had falling mean and variance for size. The model will not be

able to capture that fact; evidently, there is another force lowering plant size and variability.

However, it is clear that the top group is substantially different from the rest, and that is

what the model seeks to explain.

3. The Model
A. Production at the Plant
The Production Function

Consider a plant in a discrete time, infinite horizon industry populated by a contin-

uum of competitive establishments and facing a sequence of prices pt, where p is the output

7Moreover, partial correlations confirm that the contribution of T̄ is not significant for either βSi or β
V
i .
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price of the homogeneous product the industry produces and the interest rate is r. Produc-

tion occurs at individual plants. Consumers, other industries, and the resulting equilibrium

determination of price will be studied in the following subsections.

Each period a new technology for producing the product arrives. Along the lines of

recent work by Greenwood et al. (1997), new vintages of technology cannot be combined, but

rather the adoption of a new technology involves the scrapping of the old.8 The technological

vintage v denotes the time period in which it first becomes available. The plant’s efficiency at

using its technology is summarized by λt ≤ 1. The level of λ can be thought of as the amount

of organizational capital the plant has. When λt = 1, the plant is operating the capital at

maximum efficiency. The output of an establishment with efficiency level λt, which employs

lt units of labor, is

fv(lt;λt) = λtγ
vlt

α. (1)

The plant has decreasing returns (α < 1) to hiring the single factor, labor l. Labor

is variable in each period. Creating a new establishment requires the payment of a fixed

entry cost, E. The fixed cost paid for entry can be thought of as the cost of capital. It

is straightforward to explicitly add capital to the analysis and have the growth effect come

through increased efficiency of new vintages of capital. It adds substantially to the notation,

though, without affecting the results of interest.

8The model can easily accommodate the firms’ operating more than one technology simultaneously, so
long as there is a cost to operating multiple technologies. Without such a cost, firms will operate all of the
technologies simultaneously.
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Information and the Evolution of Organizational Capital

To formalize the role of information in production, a plant will be assumed to draw

its own technology-specific unknown parameter θv. The plant’s efficiency λt is given by

λt = [λ̄− (θvt + εt − qt)2]

where λ̄ is a normalizing constant. As in Jovanovic and Nyarko (1996),9 the plant chooses

qt. It makes this choice given beliefs µt about θ, and then a normally distributed, mean

zero, independent shock εt strikes the plant. The choice of qt will be termed a “production

technique,” since this choice affects the productivity of the plant, but will otherwise be costless

to implement. The full-information optimal production technique is precisely the unknown

parameter θ.

As in Jovanovic and Nyarko (1996), the plant will be assumed to observe θ+ε costlessly

each period.10 Suppose that the unconditional distribution of θ from which each plant draws

is a normal distribution with variance σ20. Denote the variance of ε by σ2ε. Bayes’ Rule

will imply beliefs µ that are normally distributed and therefore can be summarized by the

mean µ̄ and variance σ2µ. Because the information generated in each period is independent

of the establishment’s decisions, optimality dictates that plants set q = µ̄. Expected capital

efficiency, then, is h
λ̄− (σ2µv + σ2ε)

i
.

By way of normalization, let λ̄ = 1 + σ2ε. Since the establishment is risk neutral, henceforth

9See also earlier work by Prescott (1972) and Wilson (1975).
10This is with only a slight loss of generality, as |θ + ²| can be inferred from observing the firm’s output.
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define λt to be expected efficiency

λt = 1− σ2µ. (2)

Notice that expected efficiency is independent of the plant’s expected θ given by µ̄, and

therefore we can focus only on the variance of the beliefs in formulating the plant’s problem.

Experience will affect the plant’s variance σ2µv for technology v. In particular, the

variance evolves according to the updating rule σ2µv,t+1 = h(σ
2
µv,t
,σ2ε), where

h(σ2µv) =
σ2µvσ

2
ε

σ2µv + σ2ε
. (3)

New vintages produce more output (γ > 1). When a new vintage is used, a new θv0 is drawn

from a distribution with variance σ20, which is then the variance of the plant’s beliefs. Since

this is identical across vintages, a plant will always upgrade to the frontier vintage.

The Plant’s Problem

To sum up the previous analysis, static profits as a function of vintage and uncertainty

about θ can be reduced to

πt(v, σ
2
µ) = max

l≥0

n
ptγ

v
h
1− σ2µv

i
lα − l

o
. (4)

Labor is chosen according to a static first order condition, since labor input does not affect

the amount of information produced. Letting the wage rate be the numeraire in the spot

market at time t, the optimal choice of labor l∗(σ2µv ; p) is

l∗(v, σ2µv ; p) =
³
αptγ

v
h
1− σ2µv

i´1/(1−α)
. (5)
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Note that µ̄v does not affect the plant’s expected output or labor choice in the reduced form

in (4) or (5) and need not be discussed from this point forward.

The dynamic program of the plant which discounts the future by 1
1+r

is given by

Vt(v,σ
2
µ) = πt(v, σ

2
µ) +

1

1 + rt
max

n
Vt+1(t+ 1, σ

2
0), Vt+1(v, h(σ

2
µ))
o
. (6)

The plant can choose to upgrade to the vintage t+ 1 technology and have uncertainty σ20 or

stay with vintage v and have variance updated according to h.

Industry Growth

First consider one industry in isolation, as if it faced a given set of prices. The industry

faces a fixed wage w, a constant interest rate r, and a series of prices pt = γ−tp0 for the plant’s

output. This will allow for a very simple sort of “balanced growth”: constant size distribution

of establishments (relative to the frontier and measured by employment), rising output per

establishment, Q rising at rate γ, and p falling at rate γ. In addition, it turns out that such

a price and output sequence will be consistent with general equilibrium for the economy to

be outlined below.

Along this path, ptγt is the constant p0, and we can write a stationary dynamic program

in place of (6). Let b = t−v, the number of vintages behind the frontier the plant finds itself.

Denote by hn(σ2µ) the composition of the function h applied n times to σ2µ. Then profits can

be described by

π̂(b) = max
l≥0

n
p0γ

−b h1− hb(σ20)i lα − lo . (7)

We have the following transformed problem:
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W (b) = π̂(b) +
1

1 + r
max {W (0),W (b+ 1)} . (8)

The transformed problem is stationary. A plant uses a vintage up to some critical b∗, at

which point it upgrades to the frontier. We consider a stationary distribution of plants across

vintages, i.e., an identical measure of plants across each vintage up to b∗. If there are M

establishments of each vintage in operation, aggregate quantity produced by the industry at

time t is

Qit(b
∗,M) =M

b∗X
b=1

γt−b
h
1− σ2µv

i ³
l∗(t− b, hb(σ2µ))

´α
.

Since any plant can enter at any time, free entry requires that W (0) = E, the cost of

entry.

B. The Aggregate Economy
The Household

A representative household consumes output and supplies labor. The household has

preferences over a large number of consumption commodities, each produced by a separate

industry. The household has time separable preferences with discount factor δ and instanta-

neous utility

u(c) =
Z 1

0
log ci di (9)

where c = {ci} is the profile of consumption across goods. Leisure does not enter; a time en-

dowment of one unit is suppled inelastically. The number (measure) of products is normalized

to one.11

11If one wished to add an elastic labor supply, the important restriction to maintain balanced growth would
be that a constant labor supply is achieved for a constant wage and interest rate and an output price falling
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The consumer’s budget constraint is

∞X
t=0

Rt

µZ 1

0
pitcitdi

¶
=

∞X
t=0

Rt(wt +Πt). (10)

The final part of the consumer’s budget constraint is profits Πt from the plants, which will

be zero in equilibrium. The term Rt is cumulative, discounting to t,
Q∞
i=0

1
1+ri

.

Balanced Growth Equilibrium

Equilibrium requires that agents optimize and markets clear. Formally,

(1) Agents Optimize: {cit}∞t=0 maximizes (9) subject to (10).

(2) Optimal Choice of Vintage: b∗ solves the production problem in (8).

(3) Free Entry: W (0) = E.

(4) Markets Clear: Qit(b∗,M) = cit ∀i, t.

Suppose that output from each industry grows at the rate γi. Consider the following

candidate balanced growth steady state. Wages are constant. The output price for industry

i in the spot market at time t, pit, falls at the rate γi. The one period interest rate 1 + rt is

constant and equal to 1
δ
.

In this case, the Euler equation for the consumer, in terms of good 0, can be solved

for a consumption sequence that grows at rate γ0. That first order condition is

1

p0tc0t
=

δ( 1
1+rt

)

p0,t+1c0,t+1
.

at a constant rate.
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The left hand side is the marginal value, in terms of good 0, of one unit of the numeraire

(labor) at time t, and the right side is that marginal value at time t+1. Replacing 1
1+rt

with

1
δ
, p0,t+1 = γ−10 p0,t, and c0,t+1 = γ0c0t satisfies the equation.

The first order condition for consumption of good i, given that ct and pt are the con-

sumption and prices of the other goods, is

citpit = c0tp0t.

In the steady state equilibrium described, ctpt is a constant c0p0. As a result, one can view

industry i as facing a constant reduced demand

pit =
c0p0
cit
.

For market clearing in industry i, Qit = cit. Since Qit rises at rate γi when pit falls at the same

rate, the condition can be satisfied for the sort of growth path described in the last section.

Relative to industry 0, prices fall and quantities rise at rate γi/γ0. The size distribution is

constant, as the plant’s problem can be rewritten in the stationary form above. The constant

size distribution leads to output per industry growing at rate γk, since output is labor input

times γvk. Output and consumption grow at the same rate, verifying that such an equilibrium

path is possible.

The return to building a plant exactly equals the cost of the unit of capital it takes

to create it. The equilibrium p0 is calculated so that the free entry condition is satisfied;

i.e., W (0) = 1. The equilibrium for industry i can be solved by guessing a p0, solving the
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plant’s problem, and then raising or lowering pi, depending on whether profits are too low or

too high, respectively. The results of some computations for a parameterized version are the

subject of the following section.

4. Increasing Growth and the Size Distribution

The purpose of this model is to see how the size distribution differs across different rates

of growth of embodied technological change. In the model, each industry is in a steady state

growing at rate γi in output terms. In this section, I compare steady state size distributions for

different growth rates γi. A technological revolution is interpreted as a one time, permanent

change in γi for a single industry, leaving average growth unchanged, and therefore not

affecting the general equilibrium except for industry i. The data suggest that technological

revolutions lower average size and make the size distribution less variable. Here I ask whether

the long run steady state for various γ has this feature: Does higher γ lead to a smaller average

plant size and less variable plant size in the stationary distribution of plants?

In terms of variance, γ has two effects. On the one hand, high γ increases the disparity

between plants with different vintages. On the other hand, increases in γ tend to lead to

plants choosing to update sooner, therefore being bunched closer to each other in terms of

vintage, and hence less varied in terms of their labor choice. The effects at work on average

size are taken up next.

A. Average Size and Increasing Growth: Myopia and No Discounting

Two extreme cases, r = 0 and r = ∞, help explain the forces at work in the model.

First, consider a case where r = 0, which will occur if δ = 1. Of course, with an infinite

horizon, this is not a well defined optimization problem. Therefore consider a T period case.
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Define λb = 1− hn(σ20). If p is falling at a constant rate γ, for any age b I have that

l∗(b; p) =

Ã
pαλb
γb

! 1
1−α

where p is the initial price. Profits are

π(b; p) = κ

Ã
pλb
γb

! 1
1−α

where κ = α
α

1−α − α
1

1−α .

The free entry condition is12

b∗X
t=0

T

b∗ + 1
π(t; p) = E. (11)

The plant spends a fraction 1
b∗+1 of its T period life in a given state. Rearranging (11), we

have
b∗X
t=0

1

b∗ + 1

Ã
λt
γt

! 1
1−α

=
E

κTp
1

1−α
. (12)

Average size in this industry is

b∗X
t=0

1

b∗ + 1
l∗(t; p) = α

1
1−αp

1
1−α

b∗X
t=0

1

b∗ + 1

Ã
λt
γt

! 1
1−α

=
αE

(1− α)T
.

The last equality comes from (12) and combining κ with α
1

1−α . When r = 0, there is no effect

on average size from changing γ; it is just a constant that depends on α, E, and T .

12I am implicitly assuming T is divisible by b∗ + 1. This approximation is fine if T is large.
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On the other hand, consider the case where δ = 0. In that case, p is independent of

γ. For a fixed b∗ > 0, the average size falls, since every vintage other than the frontier is less

productive, and therefore marginal revenue product is lower. On the other hand, higher γ

tends to lower b∗, which can have the effect of raising average size by moving plants closer to

the technological frontier. The dominant effect is uncertain and, it turns out, can be either.

In the case where δ is between zero and one, these forces show up in the equilibrium

effects of γ. The detrended price in the industry with high growth, p0i, is larger than that

in the low growth industry. This can be seen by looking at the detrended problem in (8).

For all industries, entrants’ profits are zero. When γ is high, for any p0, profits are lower.

Therefore p0 must be higher in the case of higher γ if zero profits are to be attained. This

force is tending to make establishments larger as γ increases, since it increases the marginal

revenue product of labor. This general equilibrium effect is an important complication that

keeps the model from being able to be solved analytically. In order to explore the effect of a

technological revolution, the quantitative implications of the model are explored for a set of

parameters chosen to reasonably replicate some features of the U.S. data.

B. Benchmark Parameterization

The time period is taken to be a year. The discount factor is chosen so that the

interest rate is 4 percent. The curvature parameter α is chosen so that labor’s share is .66.

Choosing E is purely a normalization; increasing E simply scales up all the plant sizes. Here

E is taken to be one; only relative changes in average size and size variability are considered

in the simulations.

The final parameters to choose are σ2ε and σ20. To determine σ
2
0 (entrants’ variance),
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consider the ratio of productivity at the end of the learning process to that at the beginning.

Learning studies (as summarized, for instance, in Jovanovic and Nyarko (1996)) indicate that

productivity roughly doubles over the learning curve:

1

1− σ20
= 2

so σ20 = .5.

For σ2ε, a value of 2 is used. This has two features which are empirically plausible.

First is that such a value implies significant learning for the first 5 to 6 years of a new plant’s

operation, consistent with data in Bahk and Gort (1993). Furthermore, the ratio of second

year productivity to first,

1− h1(σ20)
1− σ20

is in line with learning studies of manufacturing such as those summarized in Auerswald et

al. (1998). These learning studies suggest that the rate of learning is about 20% per doubling

of cumulative output. The ratio above can be thought of as the productivity of the last unit

in the first year compared to a unit in the second year; since plants grow in this formulation,

cumulative output doubles sometime during the second year. Therefore, the statistic above

should be set to 1.2, implying that σ2ε = 2.

Since the results are not ones which can be proven, but rather depend on parameters,

the following section reports not only the outcome for the benchmark parameterization, but

also for a variety of other parameters.
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C. Simulation Results

The following results are for the steady state size distribution for industries growing at

various rates, given the benchmark parameterization. Everything is reported as a percentage

of the statistic for an industry with γ = 1.01, since the level of the variables is simply

a normalization. The rate 1.01 reflects the average rate of progress for the industries not

experiencing a significant increase in their growth rate, i.e., the industries that were not in

the top quartile for βTi .

γ Mean Plant Size St.Dev. of Plant Size

1.01 1 1

1.04 .96 .81

1.10 .96 .62

1.15 .96 .48

The model predicts a very sharp decline in variance as a result of the higher rate of

technological progress. Going from one percent growth to 15 percent growth more than halves

the standard deviation of plant size. The reason is that the number of vintages in operation,

b∗, falls dramatically. When γ = 1.01, the plant upgrades every 15 years; when γ = 1.15, it

upgrades every other year. Of course, vintage choice is the only source of variation here. In a

model with another source of variation unrelated to γ, the effect would be less in percentage

terms. For instance, a shock to the plant’s productivity along the lines of the one studied

in Hopenhayn (1992) would provide another source of size variability. The important point

here is that technology adoption can be a strong force toward uniformity in plant size as the
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growth rate rises, since it is difficult to be both experienced and “high-tech.”

In terms of size, the effect is smaller. If every hundredth for γ is examined from 1.01

to 1.15, some small non-monotonicities emerge in the average size; that is, sometimes a one

percent increase in γ actually slightly increases the size of plants. However, the clear trend

is downward. These non-monotonicities, though, point to some of the complicated nonlinear

effects that are were discussed above.

Since there are a variety of effects at work, it is useful to check some other parameter

values to ensure that the results presented are not too dependent on the exact parameteriza-

tion. I take up each parameter in turn.

One important parameter in the model is σ20, since it determines the relative efficiency

of new and old vintages due to learning. The benchmark was that productivity doubled from

the start to the end of the learning curve. I consider two possibilities: even more learning,

where productivity triples over the learning curve (σ20 = .66), and a smaller learning curve,

where initial variance is cut in half (σ20 = .25). Again, only relative levels are considered,

so the statistics are all percentages of the value that occurs for that parameter value when

γ = 1.01.

σ20 = .66 σ20 = .25

γ

1.01

1.04

1.10

1.15

Mean St.Dev.

1 1

.98 .81

.95 .73

.97 .71

Mean St.Dev.

1 1

.98 0

.98 0

.98 0

When the learning problem is trivial (σ20 = 0), of course every plant is at the frontier
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every period, and so it is easy to see that γ has no effect on the mean or variance of plant

sizes; the variance is zero. When σ20 is lowered to .25, this incentive becomes stronger: for

growth rates 1.04 and above, plants upgrade every period, forfeiting any learning possibilities.

The size distribution remains unchanged in this range. Otherwise, the results are qualita-

tively similar to the results of the benchmark parameterization. The higher is σ20, the more

important is the learning, and plants hold onto a given technology longer. The effect of γ on

the variance is felt more strongly for low γ when σ20 is small.

Empirically, the speed of learning varies across tasks, so it is useful to consider a

variety of values of σ2ε. The model is computed for values of σ
2
ε fifty percent higher and lower

than the benchmark. When σ2ε = 3, the noise in the plant’s problem is greater, and therefore

learning is slower, since each observation on θ + ε is less informative. When σ2ε = 1, on the

other hand, the signal is more informative, and learning is faster.

σ2ε = 3 σ2ε = 1

γ

1.01

1.04

1.10

1.15

Mean St.Dev.

1 1

.97 .52

.98 .17

.95 0

Mean St.Dev.

1 1

.97 .93

.95 .82

.95 .67

The speed of learning has very little effect on the results for average size. In terms

of variance, faster learning (lower σ2ε) makes the effect of γ on size variability smaller. The

results suggest, then, that a vintage model with learning can generate a downward relationship
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between the growth rate and both the mean and variance of plant size.13

D. Learning vs. Fixed Cost of Upgrading

The key to the model’s ability to generate the appropriate direction of change in

average size and variability in response to a growth rate increase is due to the vintage flavor

of the model as well as the learning. Without the learning component, the model would not

generate any change in the variability of sizes, since all plants would be right at the frontier.

The fact that there is a cost of upgrading is essential, and the fact that the cost is paid in

terms of temporarily lowered productivity is also important.

Suppose, for instance, that the cost of upgrading were simply some fixed cost F of

upgrading, so that the maximum productivity, and hence size, was attained by plants that

just upgraded. The problem is otherwise the same as above, but with λt = 1 always. With

this sort of cost of upgrading, faster technological progress leads to an extra force that makes

establishments larger. The industry economizes on the increased need to pay the cost of

upgrading by paying it for fewer establishments.

To see that effect, consider again the case where r = 0, as was done previously. The

free entry condition becomes

b∗X
t=0

T

b∗ + 1
π(t; p) = E +

T

b∗ + 1
F.

If b∗ is constant, the earlier analysis holds, and γ does not affect average size. However, any

time that b∗ decreases, i.e., any time that updates are more frequent, it is as if the fixed cost

13In addition, the model was simulated with other values for α (returns to scale) and β (the discount
factor). Neither proved crucial to the results, and both are available upon request.
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of entry is higher. This has the effect, as can be seen from the algebra above, of increasing

plant size. As γ increases, it is easy to see that b∗ falls. This tends to make plants larger, so

that this increased cost of retooling is paid at fewer plants. When the cost is paid in terms

of productivity, though, the cost does not depend on the number of plants that upgrade, but

on the output of those plants, and this effect is no longer present.

5. Summary

There is evidence that technological revolutions are associated with decreasing estab-

lishment size and reduced variability of the size distribution. Many theories concerning the

linkage between size and growth have focused on the innovative “efficiency” of small estab-

lishments compared to big ones. Here the causality is reversed, i.e., from the growth rate

to the optimal size. The link between the size and variance of the U.S. manufacturing size

distributions brings to light an additional fact to which models of size and growth might

strive.

The model has two key ingredients. The first is a vintage structure, where the age of

capital is an important determinant of plant size. The second is learning. Learning by doing

counteracts the incentive to upgrade every period. It is clear that in a model where adoption

is important, increased growth leads to a lower average age of technology, a bunching near the

technological frontier. This is a strong force reducing the variance of sizes. On the other hand,

when new technologies take time to learn, this bunching changes the average organizational

capital of the plants and can lower the average size of plants.

There are several ways to compare the results to the literature. One is as a contri-

bution to the substantial literature on the relationship between innovation and the scale of
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production. Here, the amount of “innovative activity,” measured by productivity growth,

affects the scale of plants. This is a complementary view to the idea that size may affect

innovation; the relationship is likely generated by forces in both directions.

Given the fact that there has been dramatic downsizing of U.S. manufacturing plants,

this paper provides an explanation for a portion of this change. Clearly there are many

forces behind the fall in plant size, but one could be the fact that some industries have

experienced changes that have left them with smaller and less variable sizes. Moreover, the

data show that while a substantial number of revolutions have occurred, few industries have

had precipitous falls in their rates of productivity growth. It seems that more industries have

entered revolutions than have ended revolutions.

Understanding the changes in the U.S. manufacturing size distribution appears to be

an important part of understanding the organization of production and should be a topic

for future research. Some authors (for instance, Greenwood and Yorukoglu (1997)) have

suggested that the early 1970s marked the start of an economy-wide technological revolution

resulting from information technology. In the aggregate data, a clear downward movement in

both size and variance can be seen right around the time that this technological revolution is

suggested to have happened. Understanding the size distribution can help uncover whether

there is a link between these facts.
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