
FEDERAL RESERVE BANK OF SAN FRANCISCO 

WORKING PAPER SERIES 

Working Paper 2007-19 
http://www.frbsf.org/publications/economics/papers/2007/wp07-19bk.pdf 

The views in this paper are solely the responsibility of the authors and should not be 
interpreted as reflecting the views of the Federal Reserve Bank of San Francisco or the 
Board of Governors of the Federal Reserve System.  
 

Learning and Optimal Monetary Policy 
 
 

Richard Dennis 
Federal Reserve Bank of San Francisco 

 
 

Federico Ravenna 
University of California, Santa Cruz 

 
 
 
 

July 2007 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Learning and Optimal Monetary Policy�

Richard Dennis
Federal Reserve Bank of San Francisco

Federico Ravennay

University of California, Santa Cruz

July 2007

Abstract

To conduct policy e¢ ciently, central banks must use available data to infer, or learn,
the relevant structural relationships in the economy. However, because a central bank�s
policy a¤ects economic outcomes, the chosen policy may help or hinder its e¤orts to learn.
This paper examines whether real-time learning allows a central bank to learn the econ-
omy�s underlying structure and studies the impact that learning has on the performance
of optimal policies under a variety of learning environments. Our main results are as
follows. First, when monetary policy is formulated as an optimal discretionary target-
ing rule, we �nd that the rational expectations equilibrium and the optimal policy are
real-time learnable. This result is robust to a range of assumptions concerning private
sector learning behavior. Second, when policy is set with discretion, learning can lead to
outcomes that are better than if the model parameters are known. Finally, if the private
sector is learning, then unannounced changes to the policy regime, particularly changes to
the in�ation target, can raise policy loss considerably.
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1. Introduction

We study an economy in which households and �rms must learn an equilibrium law of motion

to form expectations and the central bank must learn structural parameters, such as those

governing the short-run trade-o¤ between in�ation and output, to conduct policy. Using a

stylized New Keynesian business cycle model as a laboratory, we investigate whether a central

bank can learn to set policy optimally while updating its knowledge of the economy�s structural

parameters in real time, and we examine whether the need for households and �rms to learn

materially a¤ects the central bank�s ability to learn to set policy optimally. Focusing on real-

time learning, we assess how central-bank learning a¤ects policy loss and optimal policymaking

over time and how optimal monetary policies bear on the learning process, and we examine

the speed of learning.

We apply simulation methods to study real-time learning dynamics in an economy in

which private agents employ variants of least-squares learning (as in Tetlow and von zur

Muehlen, 2001, Orphanides and Williams, 2005 and 2006, Aoki and Nikolov, 2004, and Cogley

and Sargent, 2005). The real-time learning approach refrains from assuming a stationary

environment where beliefs are never updated. Further, in contrast to the E-stability literature,

which focuses on asymptotic results, real-time learning allows us to study the transition path

to the rational expectations equilibrium. Unlike previous studies, which have concentrated

on the impact of private agents�learning on monetary policy assuming the central bank has

full information,1 we consider an economy in which both private agents and the central bank

must learn. In our model, although a full understanding of the economy eludes private

agents and the central bank, a realistic assumption in our view, their learning focuses on

di¤erent aspects of the economy. Private agents, knowing their own preference/technology

parameters but needing to forecast future outcomes, must learn the economy�s equilibrium

law of motion, which takes the form of a vector autoregression. In contrast, the central bank,

knowing its policy objectives but needing to set monetary policy, must learn the parameters

in the equations that constrain its policy decision. Since both the central bank and private

agents are learning, we can assess the extent to which the two learning problems interact,

study the role of central-bank and private-sector learning on the policy performance, and

1For a partial overview of this literature, see Bullard and Mitra (2002) and Evans and Honkapohja (2001,
2003a, 2003b, 2006). Levin, Onatski, Williams, and Williams (2006), Levin and Williams (2003), and Levin,
Wieland, and Williams (2003) study the performance of monetary policy rules when the central bank employs
competing reference models. Walsh (2005) examines the welfare impact of misspeci�ed parameters in the
model the central bank uses to compute the optimal policy.
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examine whether private sector learning helps or hinders central-bank learning. Importantly,

because the central bank endeavors to implement an optimal policy, and must learn structural

parameters to do so, our analysis departs from least-squares learning and formulates central-

bank learning in terms of a decreasing gain (generalized) instrumental variables estimator,

similar to Evans and Honkapohja (2003a, 2003b).

A key feature of the learning process is that the central bank�s parameter estimates, through

their e¤ect on monetary policy, a¤ect economic outcomes and feed back into subsequent para-

meter estimates. Through this feedback, it is possible that the central bank may be unable to

learn the model and that the real-time learnable equilibrium may correspond to a suboptimal

policy, or simply not exist. Similarly, central-bank learning and private-agent learning may

interact, with private-agent learning slowing or preventing the central bank from learning the

rational expectations equilibrium. In these respects, although we do not analyze E-stability in

any formal sense, we recognize that real-time learning behavior/outcomes need not converge

to rational expectations (Evans and Honkapohja, 2001), and our simulations speak to this

issue. Our results, however, indicate that the rational expectations equilibrium is real-time

learnable, implying that the central bank can learn to set policy optimally. Moreover, the real-

time learnability of the rational expectations equilibrium is robust to whether private agents

are also learning, and to whether private agents employ a constant-gain or a decreasing-gain

learning algorithm.2

This is not to say that private-sector learning is unimportant for policymaking. On the

contrary, economic outcomes and the policy loss associated with the central bank�s policy are

both sensitive to learning, and in an unexpected way. Learning is slow, yet, when monetary

policy is conducted under discretion, learning can distort monetary policy in ways that improve

policy loss. Three important mechanisms appear to underlie this interesting result. First,

when the central bank�s estimate of the slope of the Phillips curve overstates the extent

to which prices are rigid, then the central bank intervenes more aggressively. This more

aggressive policy overstabilizes in�ation and understabilizes the output gap relative to the

full-information policy, thereby mitigating the magnitude of the discretionary stabilization

bias (Dennis and Söderström, 2006).3 Second, the central bank will also tend to intervene

more aggressively if it underestimates the elasticity of intertemporal substitution. Third,

2A caveat to this �nding is that real-time learnability of the rational expectations equilibrium can require a
large number of initial observations.

3Stabilization bias refers to the fact that discretionary policies overstabilize the output gap and understabilize
in�ation relative to fully optimal commitment policies in New Keynesian models.
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private-sector learning, by changing the persistence of in�ation and the output gap, can assist

stabilization. When only the central bank is learning, our simulations suggest that learning

is detrimental more often than bene�cial. However, when both the central bank and private

agents are learning, with a non-negligible probability, the resulting policy loss can improve on

the one obtained under discretion in the full-information economy. Of course, when agents

employ decreasing-gain learning algorithms, this improvement in policy loss only occurs until

the rational expectations equilibrium is learned.

Interestingly, private-sector and central-bank learning generally a¤ect policy loss in oppo-

site directions� worsening loss in the case of the central bank, and improving loss in the case

of the private sector. This latter result does not extend to unannounced changes in the policy

regime. If private agents learn using a constant-gain algorithm, then a change in the level

of the natural rate is relatively innocuous in terms of its e¤ect on policy loss. In contrast, a

change in the relative weight the central bank assigns to output stabilization is less innocuous

and a change in the in�ation target is importantly detrimental to policy loss. In the case of

an unannounced one percentage point change in the in�ation target, policy loss can be raised

by as much as 10 percent while the new in�ation target is being learned. Finally, the degree

of interest rate smoothing in the policy loss function plays an important role in many of our

results.

Our paper is related to the work of Evans and Honkapohja (2003a, 2003b) who also consider

an economy in which both the central bank and private agents must learn. However, where

Evans and Honkapohja focus on E-stability of the rational expectations equilibrium using a

model simpler than ours, we consider the real-time learnability of the optimal discretionary

policy and focus on the impact of learning on policy loss, issues that cannot be fully addressed

by establishing E-stability of the rational expectations equilibrium. An interesting line of

research examines the importance of real-time learning dynamics when only private agents are

learning. Tetlow and von zur Muehlen (2001) examine the cost of private agents having to

learn a new monetary policy rule. They focus on an environment in which only private agents

must learn and in which monetary policy is conducted using simple instrument rules. Aoki

and Nikolov (2004) analyze how alternative rules for implementing the optimal policy a¤ect

policy loss. They consider a stylized real-time learning environment in which expectations are

observable and where private agents and the central bank share the same model and solve the

same estimation problem. In contrast, we use a more realistic learning environment, and can

examine the impact of private-sector and central-bank learning on the policy performance.

3



Orphanides and Williams (2006) study a model with adaptive learning by households and

�rms and show that monetary policies designed to be e¢ cient under rational expectations

can perform poorly when knowledge is imperfect. They �nd that the costs of learning can

be mitigated if the central bank adopts an explicit numerical in�ation target, consistent with

our �ndings. Finally, Ferrero (2007) uses a simple forward-looking New Keynesian model to

analyze the speed of learning. Unlike our study, Ferrero (2007) assumes that the central bank

conducts policy using a simple instrument rule and that only private agents must learn.

The remainder of the paper is structured as follows. Section 2 introduces the New Key-

nesian business cycle model that we employ, presents the central bank�s loss function, and

describes how monetary policy would be implemented if all agents had full information and

formed expectations rationally. Section 3 describes how agents learn and investigates real-

time learnability of the rational expectations equilibrium, and hence of the optimal monetary

policy, when the central bank and private agents are both learning. Section 3 also shows

that the central bank can achieve a smaller policy loss when learning than if the model is

known, a striking result that is possible because policy is set with discretion. The importance

of private-agent learning is emphasized in Sections 4 and 5. In Section 4 we show that the

improvements in policy loss found in Section 3 stem largely from the fact that private agents

are learning. Section 6 investigates the e¤ect on policy loss of private agents having to relearn

following changes to the natural rate, the in�ation target, and the relative weight the central

bank attaches to output stabilization. Section 7 concludes.

2. The model

We study a New Keynesian business cycle model of the form widely used in the monetary

policy literature. In addition to a central bank, the economy is populated by households and

�rms, whose behavior is summarized by

xt = �xt�1 + (1� �)Etxt+1 + � [it � Et (�t+1 � �)� r] + gt; (1)

�t � � = � (�t�1 � �) + (1� �)�Et (�t+1 � �) + �xt + ut; (2)

where xt, �t; and it are the output gap, in�ation, and the nominal interest rate, respectively,

gt is a demand shock, ut is a supply shock, � is the in�ation target, and r is the natural rate

of interest. The lagged output gap term in equation (1) is motivated by (external) habit

formation while the lag of in�ation in equation (2) can be derived as the outcome of in�ation

indexation, as in Smets and Wouters (2003) or Galí and Gertler (1999). Formal derivations
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of the output gap equation can be found in McCallum and Nelson (1999) and Amato and

Laubach (2004). With regard to the in�ation equation, the environment that gives rise to

this Phillips curve is one in which �rms are monopolistically competitive and in which price

rigidities and in�ation indexation by non-optimizing �rms lead to relative price distortions.

While the underlying theory implies that real marginal costs should be the driving variable in

the Phillips curve, we take the approach of Clarida, Galí, and Gertler (1999) and proxy real

marginal costs with the output gap. The economy�s resource constraint equates consumption

to output. We assume that the supply shock and the demand shock are independent, white

noise processes, with �nite absolute moments. We further assume that the model parameters

satisfy f�; �; �g 2 (0; 1), � 2 (�1; 0), and � 2 (0;1).
Equations (1) and (2) are intended to serve only as a stylized description of an economy,

yet they encompass several widely studied New Keynesian models. When � = 0, equation (1)

collapses to the standard (log-linearized) time-separable consumption Euler equation. When

� = 1, equation (2) corresponds to a backward-looking accelerationist Phillips curve (Ball,

1999), and when � = 0, equation (2) simpli�es to the traditional Calvo-pricing speci�cation

(Calvo, 1983). Further, if � = 0 and � = 1, then equation (2) is equivalent to the costly price-

adjustment speci�cation of Rotemberg (1982). Intermediate values of � closely approximate

Phillips curves with full in�ation indexation (Christiano, Eichenbaum, and Evans, 2005) and

partial in�ation indexation (Smets and Wouters, 2003).

The central bank is assumed to choose the nominal interest rate, it, to minimize the loss

function:

Et
1X
j=0

�j
h
(�t+j � �)2 + �x2t+j + � (�it+j)

2
i
; (3)

subject to the behavior of households and �rms, as given by equations (1) and (2). This

loss function describes a central bank that aims to stabilize in�ation and the output gap

without making large changes in the nominal interest rate. With the weight on in�ation

stabilization normalized to one, the relative weight on output stabilization is �, � 2 [0;1),
and the relative weight on interest rate smoothing is �, � 2 (0;1). Equation (3) is widely

used to summarize central bank objectives as it broadly re�ects the goals associated with

in�ation targeting (Svensson, 1997). Although the weights � and v in the loss function can

be derived from explicit microfoundations in a number of models (Woodford, 2003), we take

them as parameters describing the central bank�s objectives and study the implications of

alternative parameterizations.
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To parameterize the model, we set � equal to 0:50 and � equal to 0:30. With these values,

output and in�ation are persistent but consumption smoothing and the forward-looking aspect

of price-setting remain prominent. The discount factor, �, is set to 0:99, while the in�ation

target, �, and the natural rate of interest, r, are set to zero. Two parameters that are central

in our analysis are � and �. In our simulations we set � equal to �0:60 and � equal to 0:40.
For the policy parameters � and �, we consider a range of possibilities to assess whether the

policy implemented by the central bank has any appreciable e¤ect on learning dynamics. For

the benchmark parameterization, however, we set � to 1:00 and � to 0:50. Finally, we set the

standard deviations of the demand and supply shocks equal to 0:50.

2.1. Solution with rational expectations

We assume the monetary authority cannot commit to an announced policy and that it im-

plements a time-consistent, or optimal discretionary, policy. Although the optimal policy

under commitment improves policy loss relative to the time-consistent policy, it is not im-

plementable unless a commitment mechanism is in place, a point �rst made by Kydland and

Prescott (1977). To solve the model, we employ the procedures developed in Dennis (2007)

to solve for the �rst-order condition associated with the optimal discretionary policy. This

�rst-order condition is labeled a �speci�c targeting rule� in Svensson and Woodford (2005).

However, since the weight on the interest rate smoothing objective in the loss function is

nonzero, this speci�c targeting rule also involves the policy instrument it, allowing it to be

interpreted as an implicit instrument rule. A key feature of this targeting rule is that it is

expressed in terms of endogenous variables and excludes the shocks, ut and gt. Consequently,

as Giannoni and Woodford (2005) highlight, the targeting rule that we study is invariant, or

robust, to misspeci�cation of the shock processes; such rules are also known as robust optimal

explicit (ROE) rules.

To obtain the ROE rule when monetary policy is conducted with discretion, we �rst write

the model in the second-order structural form

A0yt = A1yt�1 +A2Etyt+1 +A3ut +A4vt; (4)

where yt is an n�1 vector containing the endogenous variables, ut is a p�1 vector containing
the policy instruments, vt, vt � iid [0;
], is an s � 1, 0 < s � n, vector of innovations, and
A0, A1, A2, A3, and A4 are matrices with dimensions conformable with yt, ut, and vt that

contain the structural parameters. The dating of the variables is such that any variable that
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enters yt�1 is predetermined, i.e., known at the beginning of period t.

Next we write the policy loss function in the form

L = E0
1X
t=0

�t
�
y0tWyt + u

0
tQut

�
; (5)

where W (n � n) and Q (p � p) are matrices containing policy weights and are symmetric
positive semi-de�nite, and symmetric positive de�nite, respectively.

The problem described by equations (4) and (5), which exploits our assumption that

� = r = 0, conforms to the class of dynamic optimization problems studied and solved by

Dennis (2007). For our purposes, the key result in Dennis (2007) is that the �rst-order

condition for the optimal discretionary policy can be written as

@L

@ut
= Qut +A

0
3D

0�1Pyt = 0; (6)

where D and P satisfy

D � A0 �A2H; (7)

P �W + �F01QF1 + �H
0PH; (8)

and where yt and ut evolve (in the time-consistent equilibrium) according to

yt = Hyt�1 +Gvt; (9)

ut = F1yt�1 + F2vt: (10)

Importantly, because this procedure yields the �rst-order condition for the optimal discre-

tionary policy, we can assume that the central bank implements an ROE policy, rather than a

state-contingent instrument rule policy, obtaining the time-consistent equilibrium by solving

for the rational expectations equilibrium of the system:�
A0 �A3

A03D
0�1P Q

� �
yt
ut

�
=

�
A1 0
0 0

� �
yt�1
ut�1

�
+

�
A2 0
0 0

�
Et

�
yt+1
ut+1

�
+

�
A4
0

�
[vt] ;

(11)

which in obvious notation can be written as

B0zt = B1zt�1 +B2Etzt+1 +B3vt: (12)

By construction, the solution to equation (12) is unique, has the form

zt = C1zt�1 +C2vt; (13)
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and is equivalent to equations (9) and (10).4 We refer to this equilibrium as the optimal

rational expectations equilibrium because equation (13) and equations (9) and (10) describe

a rational expectations equilibrium in which monetary policy is set according to an optimal

discretionary targeting rule.

2.2. Implementability

Evans and Honkapohja (2006) show that whether an optimal rational expectations equilib-

rium is learnable depends on the rule that the central bank uses to implement policy. In

particular, if a state-contingent rule, like equation (10), which describes equilibrium outcomes

for policy in the optimal rational expectations equilibrium, is used to conduct policy, then the

optimal rational expectations equilibrium may not be learnable. In fact, the optimal rational

expectations equilibrium can be implemented by a variety of instrument rules, with potentially

di¤erent implications for determinacy and E-stability. But where the state-contingent rules

that Evans and Honkapohja (2006) study are not consistent with learnability, they �nd that

targeting rules, such as the ROE targeting rule (equation (6)) that we focus on in this paper,

are. Because Q is positive de�nite, one way to implement this ROE targeting rule would be

for the central bank to set policy to satisfy

ut = �Q�1A03D0�1Pyt: (14)

Although equation (14) leads to optimal outcomes under discretion it places important

demands on the central bank. Speci�cally, it assumes that the central bank knows the

parameters in the model, an assumption that we seek to relax. When the central bank is

learning, the coe¢ cient matrices in equation (14) will be governed by parameters that are

estimated, rather than by the true parameters, but policy will still be conducted according to

the ROE targeting rule.

Of course, equation (14) provides a vehicle for implementing the targeting rule associated

with the time-consistent policy, not the optimal commitment policy. One reason to focus on

discretion and time-consistent behavior is that the demands associated with the commitment

policy are somewhat more taxing than those of the time-consistent policy. For instance,

a central bank�s credibility is likely to be sorely strained if it is continually revising its an-

nounced targeting rule as new parameter estimates are obtained. To implement an optimal

commitment policy the central bank must commit to an announced targeting rule and to an
4To operationalize this procedure, one needs to �nd a �x-point in P, H, G, F1, and F2. The details of how

this �x-point can be obtained is discussed in Dennis (2007).
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announced updating rule for each of the parameters; such commitments might be hard to

sustain.

3. Real-time learning

We study an environment in which both the central bank and the private sector must learn

in real-time. Although all agents must learn, their information sets di¤er and their learning

focuses on di¤erent aspects of the economy. The private sector, knowing its own behavioral

parameters but needing to forecast future outcomes, must learn the economy�s equilibrium law

of motion, which takes the form of a VAR model, equation (13). The central bank, needing

to set monetary policy, must learn the parameters in the economy�s structural relationships.

In the analysis that follows, we assume that the central bank knows �, �, and � and needs

only to estimate � and �.5

With both private agents and the central bank learning, the �rst issue we address is

whether the optimal rational expectations equilibrium is real-time learnable. For the optimal

rational expectations equilibrium to be learnable, two conditions must hold. First, the central

bank�s real-time estimates of � and � must converge to their true values, and second, the

private sector�s estimate of the economy�s law of motion must converge to the equilibrium law

of motion under full information and rational expectations. In contrast to the E-stability

literature, we do not restrict our analysis to small perturbations about the optimal rational

expectations equilibrium. Although local learnability is a necessary condition for real-time

learnability, sampling variability associated with parameter estimation raises the possibility

that the optimal rational expectations equilibrium may not be real-time learnable. Moreover,

our analysis of real-time learning reveals the magnitude, or cost, of the policy errors that arise

during the learning process and indicates the speed at which learning might be expected to

occur.

3.1. Private-sector learning

With the private sector learning, the expectations in equation (12) are no longer formed

rationally. Instead, expectations are formed according to the private sector�s adaptive learning

algorithm and denoted E�t zt+1. To form expectations, private agents estimate a perceived law

5By focusing on the estimation of � and � rather than of � and �, we avoid a thorny issue in the central
bank estimation problem: for values of � and � equal to zero, the instrument set would be invalid. Because
the central bank cannot preclude that � and � may equal zero, it would be using a set of instruments that is
invalid under possible population values of these parameters.
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of motion (PLM) that we assume mirrors the economy�s rational expectations equilibrium,

equation (13). More precisely, private agents recursively estimate c and C1 in the PLM

zt = c+C1zt�1 + ut; (15)

where a nonzero constant c has been added to allow for the fact that private agents do not

know either the central bank�s in�ation target, �, or the economy�s (real) natural rate of

interest, r. Period t estimates of c and C1 are obtained using either recursive least squares, a

decreasing-gain learning algorithm, or the Kalman �lter, a constant-gain learning algorithm,

and are denoted bc (t) and bC1 (t). Then, private-sector expectations of next-period outcomes
are given by6

E�t zt+1 = bc (t) + bC1 (t) zt; (16)

and their estimates of the in�ation target, �, and the natural rate of interest, r, can be obtained

as elements in E�tz, according to

E�tz =
h
I� bC1 (t)i�1 bc (t) : (17)

3.2. Central-bank learning

At time t, the central bank estimates � and � and implements the optimal discretionary policy

using its estimates. Following Sargent (1999) and much of the literature on adaptive learning,

the central bank is only boundedly rational because it neglects the e¤ect of its current decision

on future learning when setting policy (an issue examined in Wieland, 2000). Moreover, the

central bank does not take into account the sampling variability of its parameter estimates,

behaving instead as if the sample estimates were the population values. Finally, the central

bank assumes that private-sector expectations are rational, so that a policy transmission chan-

nel operating through private-sector learning is closed down. These standard assumptions

allow us to easily obtain and compare results under a variety of learning environments.

Given the simultaneity in the model, the central bank uses generalized instrumental vari-

ables (GIV) to estimate the model. Although ordinary least squares (OLS) and GIV are

both biased estimators in �nite samples, the GIV estimator, and not the OLS estimator, is

asymptotically unbiased and consistent. Section 5.1 discusses the small sample properties

6Equation (16) shows that private sector forecasts are conditioned on current endogenous variables, which
implies that current endogenous variables are in the private sector�s information set. This timing assumption
is adopted by Evans and Honkapohja (2006). An alternative assumption is that only t�1 endogenous variables
enter the forecast. Evans and Honkapohja (2006) point out that the E-stability of the rational expectations
equilibrium may depend on this timing assumption.
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of the central bank�s estimator. The set of econometric instruments consists of �t�1 if the

central bank does not smooth interest rates, and �t�1, xt�1, and it�1 if the central bank does

smooth interest rates. Because the forward-looking IS curve (equation (1)) and the Phillips

curve (equation 2) contain two and three structural parameters, respectively, neither equation

is fully identi�ed in the absence of interest rate smoothing. As mentioned earlier, to overcome

this identi�cation problem, we assume that the weight � in the policy objective function is

always nonzero and focus on the estimation of � and �.

Recall that the structural relationships to be estimated are

Et [(xt � �xt�1 � (1� �)xt+1 � � (it � �t+1)) zt] = 0; (18)

Et [(�t � ��t�1 � (1� �)��t+1 � �xt) zt] = 0: (19)

From the de�nition of rational expectations, �t+1 = Et�t+1+"�t+1 and xt+1 = Etxt+1+"
x
t+1,

where "�t+1 and "
x
t+1 are martingale di¤erence sequences. Substituting realized values for

expected values, de�ne

st � xt � �xt�1 � (1� �)xt+1 = � (it � �t+1) + gt � (1� �)"xt+1 � �"�t+1: (20)

Similarly, once expected in�ation is replaced with observed in�ation, de�ne

pt � �t � ��t�1 � (1� �)��t+1 = �xt + ut � (1� �)�"�t+1: (21)

De�ne rt � it � �t+1, and let r, s, z, and p be vectors containing the time series on rt, st,
zt, and pt, respectively, and r�1, s�1, z�1, and p�1 represent the lag of these vectors. Then

we obtain estimates of � and � using

b� (t) = ��r0z�1��z0�1z�1��1 �z0�1r���1 ��r0z�1��z0�1z�1��1 �z0�1s�� ; (22)

b� (t) = ��x0z�1��z0�1z�1��1 �z0�1x���1 ��x0z�1��z0�1z�1��1 �z0�1p�� : (23)

Monetary policy at time t+ 1 is then conducted based on b�(t) and b�(t).
3.3. Temporary equilibrium

Recall that the optimal rational expectations equilibrium can be obtained by solving the

system

B0zt = B1zt�1 +B2Etzt+1 +B3vt (24)
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for its rational expectations equilibrium. If expectations were rational, then the equilibrium

law of motion that satis�es equation (24) would describe the economy�s actual law of motion

(ALM). However, with both the central bank and private agents learning, the model di¤ers

from equation (24) for two reasons. First, the central bank�s targeting rule places a restriction

on the endogenous variables, a restriction that is based on its parameter estimates. Second,

the expectations that enter the IS curve and the Phillips curve are formed according to the

PLM, whose parameters are also estimated. As a consequence, the ALM is no longer the

rational expectations solution of equation (24). Instead, combining central-bank learning and

private-sector learning with the true model, the ALM is given by

zt+1 = c
� (t) +C�1 (t) zt +C

�
2 (t)vt+1; (25)

where

c� (t) =
hbB0 (t)�B2 bC1 (t)i�1B2bc (t) ; (26)

C�1 (t) =
hbB0 (t)�B2 bC1 (t)i�1B1; (27)

C�2 (t) =
hbB0 (t)�B2 bC1 (t)i�1B3: (28)

Equation (25) governs how zt+1 is determined, given zt and vt+1, and describes a temporary,

period t, equilibrium of the economy. Our study of real-time learnability essentially exam-

ines the behavior of this temporary equilibrium as additional information becomes available,

focusing on whether it converges to the optimal rational expectations equilibrium.

With the central bank and the private sector both learning, real-time learnability of the

optimal rational expectations equilibrium implies that � and � are real-time learnable by the

central bank and that c and C1 are real-time learnable by the private sector. If � and � are

real-time learnable by the central bank, then this implies that bB0 (t) ! B0 as t tends to 1.
But, at bB0 (t) = B0, as t tends to 1, C�1 (t) is known to converge to the solution, C�1, for
which the eigenvalues of (B0 �B2C�1)

�1B1 and
h
(B0 �B2C�1)

�1B1
i


h
(B0 �B2C�1)

�1B1
i

all have real parts less than one (see Evans and Honkapohja, 2001). If the eigenvalues of C�1

are bounded by 1 in modulus, then this solution, C�1, coincides with C1 in the optimal rational

expectations equilibrium. More generally, we can imagine cases where bB0 (t) ! B
0 6= B0,

where C�1 (t) ! C�1 6= C1, and/or where neither bB0 (t) nor C�1 (t) converge at all, situations
where the optimal rational expectations equilibrium is not real-time learnable by either the

central bank or the private sector.
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Situations where either only the central bank is learning or only the private sector is

learning also give rise to temporary equilibria. When only private agents are learning, the

central bank�s targeting rule is based on the true structural parameters and the Euler condition

implementing the optimal rational expectations equilibrium policy is contained in B0. Then,

the temporary equilibrium is given by equations (25) through (28) after setting bB0 (t) = B0,
8 t. Similarly, when only the central bank is learning, private-sector expectations of zt+1

(Etzt+1) are rational, conditional on the central bank�s targeting rule, which is a function ofb� (t) and b� (t). In this case, the targeting rule is contained in the matrix bB0(t). Because

they are formed assuming b� (t) and b� (t) are �xed for all t, private-sector expectations, while
obtained as the solution to a �x-point problem, are actually bounded rational. Then, the

temporary equilibrium is given by equations (25) through (28) after imposing bC1 (t) = C�1 (t),
and solving for the �x-point, C�1 (t), that satis�es equation (27).

3.4. Existence of a unique stable rational expectations equilibrium

The true model has a unique stable rational expectations equilibrium. However, in the real-

time learning environment the central bank policy depends on b� (t) and b� (t) and volatility of
the GIV estimator opens the door to the possibility that parameter estimates may occur that

imply a policy for which there is no unique, stable rational expectations equilibrium. The

appendix discusses the existence of the rational expectations equilibrium and shows how initial

sample size and policymaker preferences a¤ect the probability of obtaining GIV estimates

implying the nonexistence of a unique, stable rational expectations equilibrium. In the real-

time learning environment, we restrict the estimates b� (t) and b� (t) to belong to the parameter
set for which a unique, stable rational expectations equilibrium exists. Speci�cally, if a

unique stable rational expectations equilibrium does not exist for the estimates obtained, then

we assume the central bank retains its period t � 1 estimates.7 Although this assumption

is only necessary in situations where only the central bank is learning, for consistency it is

imposed on all numerical simulations.

7Related adjustments are made by Marcet and Sargent (1989) and Orphanides and Williams (2006). To
prevent the private sector�s learning algorithm from generating explosive expectations, these studies examine
the eigenvalues of the estimated PLM and assume that private agents adopt their estimated PLM, which is in
the form of a VAR(1), only if the eigenvalues are all less than 1 in modulus.
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4. Real-time learnability results

Having outlined how the economy evolves when both the central bank and the private sector are

learning and having discussed what is meant by real-time learnability of the optimal rational

expectations equilibrium, we now study the impact of real-time learning in the model. Before

studying learning dynamics, we �rst examine real-time learnability of the optimal rational

expectations equilibrium by simulating the learning environment, given an initial sample of 200

observations. These initial observations were generated using the model in equations (1) and

(2) under the assumption that monetary policy was set according to the rational expectations

equilibrium optimal discretionary rule.8 The central bank estimated � and � using recursive

GIV, while private agents estimated their PLM using recursive OLS. Simulations allowing

learning to occur for as many as 200; 000 periods con�rmed that the real-time parameter

estimates converged to their true values. Therefore, with real-time learning by private agents

and the central bank, and with real-time policymaking, the economy converged to a �x-point,

and that �x-point was the optimal rational expectations equilibrium. Similarly, learnability

of the optimal rational expectations equilibrium also occurred when only the central bank was

learning and when only the private sector was learning.

Of course, real-time learnability of the optimal rational expectations equilibrium does not

convey any information about the cost of learning or about the speed at which learning occurs.

To investigate these issues, we simulate the learning environment for 2; 000 periods beyond

the initial 200 observations and construct distributions for each parameter by repeating this

learning exercise 1; 000 times. To assess the cost of learning, for each period we compute

the loss function (3) evaluated using the temporary equilibrium law of motion described by

equation (25). De�ne this loss measure to be

L�t = L [c
� (t) ;C�1 (t) ;C

�
2 (t)] : (29)

L�t represents the loss attained by the policymaker when the optimal policy is computed using

its time t parameter estimates and when the private sector computes expectations using its time

t PLM. Because real-time learnability implies that the ALM converges to the optimal rational

8To be explicit, for our benchmark policy regime, the data generating process for the 200 initial observations
to 3 decimal places is24 �t+1

xt+1
it+1

35 =
24 0:318 0:119 �0:104
�0:084 0:255 �0:147
0:156 0:425 0:139

3524 �t
xt
it

35+
24 1:060 0:237
�0:282 0:511
0:521 0:850

35� ut+1
gt+1

�
:
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expectations equilibrium, as t " 1, L�t converges to the rational expectations equilibrium level
of loss, L. If the central bank were to stop learning and to use its current estimates of � and �

to set policy in the future, then the distance between L�t and L provides a measure of the cost

to the central bank of having a �nite sample with which to learn.9 This measure of the cost

of learning implies we are looking at the loss arising from the optimal rational expectations

equilibrium not being learned by time t. Intuitively, if a short sample can deliver a loss, L�t ,

close to L, regardless of how fast agents learn the true model, then the cost to deviations

from the optimal equilibrium are small and learning has only minor implications for optimal

policymaking.

Fig. 1: Real-time estimation with central-bank and private-sector learning

Figure 1 shows the median, and the 20th and 80th percentiles of the simulated distributions

of � (t) and � (t) for three policy regimes. Also shown are the corresponding statistics for L
�
t
L ,

9An advantage of this measure is that at each time t it depends only on the past data. An alternative
measure of the cost of learning is the total discounted loss averaged across simulations. This is a measure
of the cumulative loss of converging to the optimal rational expectations equilibrium, as evaluated at time t.
While clearly related to W �

t , it depends on the whole future sequence of ALM.
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the value of the loss function at each time t relative to the loss the policymaker would obtain

in the optimal rational expectations equilibrium. Because lower values of loss function are

better, relative loss values that are greater than one indicate that learning adversely a¤ects

loss. To facilitate comparison, the same shocks are applied for each policy regime. The

simulations assume that 200 initial observations (50 years of data) generated from the true

model are available, from which initial estimates are obtained, and that both the central bank

and the private sector are learning, using recursive GIV and recursive OLS, respectively. As

noted in Section 3.2, due to simultaneity, � and � are estimated using GIV and are each

subject to a �nite-sample bias; this �nite-sample bias is re�ected in Figure 1

Although the central bank can eventually learn the structural parameters, Figure 1 shows

that learning occurs slowly for each policy regime. Notably, sampling variation in b� (t) andb� (t) is considerable, especially when the sample size is small, and decreases only gradually as
the sample size increases. Where estimates of �, the intertemporal elasticity of substitution,

appear to be reasonably una¤ected by the choice of monetary policy regime, they are biased

downward, which is particularly evident when the sample size is small. As expected, as the

sample size increases, the bias in b� (t) disappears. Turning to the real-time estimates of

the slope coe¢ cient in the Phillips curve, �, we �nd that when the sample size is small the

estimates are biased downward, implying an upward bias in the estimate of price stickiness.

In addition, the estimates of � are a¤ected materially by the policy regime. Speci�cally, when

the weight on interest rate smoothing is small relative to the weight on output stabilization,

the sampling variation in the estimates of � increases.

The fact that the central bank learns slowly does not necessarily imply that the cost to

learning is large. A striking feature of Figure 1 is that learning is not always detrimental.

Relative to the optimal rational expectations equilibrium, learning improves outcomes roughly

50 percent of the time for all three policy regimes. Although this result may seem surprising

at �rst, it has a clear intuition. Discretionary policies, while time-consistent, are not optimal,

and, as a consequence, there exist policies that outperform the optimal discretionary rule.

The extent to which discretionary policies are suboptimal depends on the magnitude of the

stabilization bias, a term describing the fact that in New Keynesian models discretionary poli-

cies understabilize in�ation and overstabilize the output gap relative to fully optimal policies.

When the central bank is learning, its estimates of � and � can serve to counteract the mag-

nitude of this stabilization bias. In particular, the central bank will tend to intervene more

aggressively, raising the volatility of the output gap and lowering the volatility of in�ation, if
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it overestimates the degree of price rigidity (i.e., it underestimates �) or underestimates the

elasticity of intertemporal substitution (i.e., it underestimates �).

To see how these mechanisms work, consider the price rigidity case. If the central bank

overestimates the degree of price rigidity, then it underestimates the slope of the Phillips curve.

Consequently, the central bank believes that it must induce a larger change in the output gap

in order to change in�ation by a given amount. By basing its policy on this perception, the

central bank�s policy raises the volatility of the output gap and, because in�ation is actually

more sensitive to the output gap than the central bank believes, these movements in the output

gap damp the volatility of in�ation more than the central bank anticipates.

Furthermore, private-agent learning, by changing the persistence of in�ation and the output

gap, can potentially help to stabilize the economy. As we show in detail in Section 5, together

or individually, these factors can lead to outcomes under learning that are better than under

full information. However, as more data become available and the parameter estimates become

more precise, the likelihood of obtaining a loss that is close to the level for optimal rational

expectations equilibrium gradually increases.

4.1. Learning and interest rate smoothing

To assess the role of interest rate smoothing in the objective function, in Table 1 we compare

the baseline policy regime with a regime in which the weight on interest rate smoothing is

0:05. Table 1 reveals that when the weight on interest rate smoothing is small, the relative

loss distribution is skewed toward larger loss and learning has a larger probability of being

costly. This result can be traced to the fact that with a small weight on the interest rate

objective the parameter �, the slope of the Phillips curve, is di¢ cult to estimate precisely. By

smoothing interest rates, the central bank allows demand shocks to a¤ect the economy and

this additional source of variation allows � to be estimated with greater precision. The bias

and precision of b� (t) are important for monetary policy because � is critical for determining
the rate at which the central bank can trade o¤ a higher output variance for a lower in�ation

variance.
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Table 1: Learning and interest rate smoothing
� = 1; � = 0:5 � = 1; � = 0:05

50 periods 200 periods 50 periods 200 periods
Percentile Percentile Percentile Percentile

20 50 80 20 50 80 20 50 80 20 50 80b� (t) 0:44 0:55 0:70 0:48 0:57 0:69 0:32 0:44 0:60 0:39 0:49 0:65b� (t) 0:19 0:38 0:58 0:21 0:39 0:54 0:17 0:36 0:56 0:17 0:36 0:52b� (t) �0:04 0:00 0:04 �0:05 0:00 0:05 �0:04 0:00 0:04 �0:05 0:00 0:04br (t) �0:03 0:00 0:04 �0:03 0:00 0:03 �0:04 0:00 0:04 �0:04 0:00 0:03
L�t
L 0:93 1:00 1:11 0:94 0:99 1:10 0:92 1:00 1:14 0:94 1:00 1:16

Interestingly, were the policy regime parameters choice variables for the central bank,

then the results in Table 1 might suggest a potential role for optimal experimentation by the

central bank, along the lines of Wieland (2000). Speci�cally, even if the weight on interest

rate smoothing in society�s loss function were small, to help it learn the economy�s structure

the central bank might choose initially to overweight interest rate smoothing. With a higher

weight on interest rate smoothing, the central bank responds less to shocks and in�ation and

the output gap can become more volatile, which can assist learning.

4.2. Decreasing-gain versus constant-gain learning

Table 2 reports what happens if private agents learn using the Kalman �lter, with the gain set

to 0:02 rather than using recursive least squares. Again, there are 200 initial observations and

the central bank learns using recursive GIV. Table 2 reveals that the central bank�s estimates

converge to the true parameters, implying that the optimal policy is learnable, even though

private agents never learn the law of motion for the optimal rational expectations equilibrium.

Table 2 also shows that, in an environment where the true model is stationary, constant-gain

learning is largely equivalent to least-squares learning.10

10By way of contrast, in Section 6 we show that constant-gain learning can lead to a substantial increase in
loss for some nonstationary learning environments.
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Table 2: Decreasing-gain versus constant-gain learning: � = 1; � = 0:5
Decreasing-gain learning Constant-gain learning

50 periods 200 periods 50 periods 200 periods
Percentile Percentile Percentile Percentile

20 50 80 20 50 80 20 50 80 20 50 80b� (t) 0:44 0:55 0:70 0:48 0:57 0:69 0:44 0:55 0:70 0:47 0:56 0:68b� (t) 0:19 0:38 0:58 0:21 0:39 0:54 0:19 0:38 0:57 0:22 0:39 0:54b� (t) �0:04 0:00 0:04 �0:05 0:00 0:05 �0:09 0:00 0:08 �0:16 0:01 0:14br (t) �0:03 0:00 0:04 �0:03 0:00 0:03 �0:06 0:00 0:06 �0:07 0:00 0:07
L�t
L 0:93 1:00 1:11 0:94 0:99 1:10 0:90 1:00 1:17 0:90 1:03 1:17

5. Understanding the impact of learning

What accounts for the slow speed with which the central bank learns the true parameters and

the impact of learning on relative loss? The results in the previous section stem from the

interaction among three di¤erent factors: the central bank�s learning algorithm, the private-

sector�s learning algorithm, and real-time policymaking, with each factor a¤ecting the ALM

each period. This section examines how private-sector and central-bank learning behavior

a¤ects the real-time learning results.

5.1. Estimator behavior and the speed of learning

The speed with which the structural parameters are learned depends on the properties of the

GIV estimator used by the central bank and on how the ALM changes each period. The im-

pact of real-time learning and policymaking can be gauged by shutting o¤ these two channels

and focusing on parameter estimation in the absence of learning. This experiment accom-

plishes two goals. First, it establishes the level of parameter variation that can be expected

independent of learning. Second, it allows us to identify the properties and characteristics

of the model and of real-time estimation that are unrelated to feedback into model dynamics

from learning.

Assume, then, that private agents and the central bank each know the economy�s correct

structure and the true values for the structural parameters. Further assume that monetary

policy is set according to an optimal discretionary rule and that all agents form rational

expectations. Data generated from this environment are then collected by an econometrician

who is assumed to know the model�s structure but not its complete parameterization. Then, to

examine the properties of the GIV estimator in the context of this model, we perform a simple

Monte Carlo exercise. As earlier, we begin with a sample of 200 observations generated using
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the true model with rational expectations and simulate forward for 2; 000 periods. Repeating

this exercise 1; 000 times, we construct simulated distributions for each parameter.

Figure 2 shows the 20th, the 50th, and the 80th percentiles of the simulated distributions

for � and � under three policy regimes. For comparison across policy regimes and with the

real-time learning simulations in Figure 1, we apply the same shocks.

Fig. 2: Real-time estimation without learning

Several characteristics of the estimation exercise that have important implications for learn-

ing are illustrated in Figure 2. First, there is considerable sampling variation in b� (t) andb� (t), especially when the sample size is small. This sampling variability is an issue for real-
time learning because, if the central bank were to design a policy that employed parameter

estimates from the tails of the distributions, then that policy could easily generate a system

that has no rational expectations equilibrium.

Second, because the sampling variation indicates how quickly the estimator converges to

the true value, it also indicates the speed at which model parameters can be ideally learned.

Comparing the parameter estimates between Figures 1 and 2, it is clear that the estimated
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distributions and the speed of convergence are generally very similar under each policy regime.

This result implies that when policy is set in real-time there is relatively little feedback from the

estimated policy to subsequent parameter estimates, and the change in the ALM originating

from the private-sector model updating has little impact on the speed of learning. The bulk

of the variation in the real-time parameter estimates is due to sampling variation and the

properties of the GIV estimator. In essence, although learning the true parameters may be

di¢ cult, the central bank�s learning problem is not materially compounded by its past policy

decisions, or by private-sector learning behavior. Figure 2 also shows that the higher volatility

in b� (t) observed in Figure 1, for the case where the central bank assigns only a trivial weight
to interest rate smoothing, can be traced fully to poorer performance of the GIV estimator

under this policy regime.

5.2. Learning and relative loss

A key result of Section 4 is that learning can improve relative loss. Two mechanisms explain

this improvement. First, the central bank�s estimated parameters can produce optimization

constraints that distort the central bank�s policy in the direction of the optimal commitment

policy, a policy that is infeasible, because it is not time-consistent, when the central bank is

constrained by the true structural relationships. This mechanism is at work regardless of

private-sector learning. Second, conditional on the policy chosen by the central bank, the

economy�s actual law of motion di¤ers from the rational expectations equilibrium when the

private sector is learning. Private-sector expectations converge only asymptotically to rational

expectations. While learning continues, the actual law of motion is not given by the solution

to a �xed-point problem, and the resulting dynamics of the economy can generate a lower loss

than under rational expectations.
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Fig. 3: The e¤ects of learning on parameter estimation and relative loss

To investigate how improvements in relative loss arise, Figure 3 shows how private-sector

learning and central-bank learning a¤ect parameter estimation and relative loss under the

benchmark policy regime. When only the central bank is learning (panels A �C) the median

relative loss is greater than one, illustrating that, in and of itself, central-bank learning is costly

most of the time. However, improved outcomes do occur with non-negligible probability.

With private-sector learning shut o¤, this variation in loss relative to the optimal rational

expectations equilibrium arises from the variation associated with the central bank�s estimates

of the structural parameters. From the central bank�s perspective, it is implementing the

optimal discretionary policy given its parameter estimates, but these parameter estimates

twist, or distort, the constraints in the central bank�s optimization problem to the extent

that they di¤er from the true values. Depending on the particular set of estimates obtained,

the discretionary central bank may perceive a trade-o¤ between output and in�ation that

causes it to implement a policy that better stabilizes in�ation (at the expense of stabilizing

output), mitigating the magnitude of the discretionary stabilization bias and thereby achieving
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a value for the loss function superior to that obtained by the optimal discretionary policy when

expectations are rational.11 In such a situation, as the central bank accumulates information

about the economy, relative loss can actually increase.

In contrast, when only the private sector is learning (panels D �F) the median relative loss

is less than one. That is, where central-bank learning generally leads to worse outcomes and

to a rise in relative loss, private-sector learning often produces better outcomes and a decline in

relative loss. This result stems from the fact that the private sector forms expectations using a

learning algorithm, recursive OLS, that understates (downward-biases) the persistence in the

law of motion in �nite samples.12 As a consequence, the private sector�s estimates of future

in�ation are biased toward and more tightly anchored on the central bank�s in�ation target

(the unconditional mean of in�ation), making the central bank�s stabilization job easier. Put

di¤erently, if the central bank could convince the private sector that future in�ation would

be lower than what its policy implies, then policy loss would be lowered. Under rational

expectations and discretionary policymaking, this cannot be an equilibrium because the central

bank cannot make credible commitments. However, when private agents are learning, the

central bank does not need credible commitments to alter private-sector beliefs about future

in�ation: private sector in�ation expectations become better anchored simply as a consequence

of the private-sector�s learning algorithm. Note, however, that the improvement in loss does

not originate from the central bank purposefully trying to shape private-sector expectations,

or even from it trying to exploit how the private sector forms expectations; the anchoring of

expectations arising from the private sector�s learning algorithm delivers the result.13

11Nevertheless, when the central bank is the only agent that is learning, the loss under discretionary policy-
making and learning cannot outperform the loss under commitment and rational expectations.
12This bias is no di¤erent from the standard coe¢ cient bias associated with OLS in models containing

lagged-dependent variables (Orcutt and Winokur, 1969). As is well-known, despite this �nite-sample bias,
OLS remains consistent, justifying its application in such cases.
13 In the univariate case, the e¤ect of this coe¢ cient bias on loss is easy to see. Consider the univariate

process
zt = bzt�1 + cE

�
t zt+1 + vt;

fb; cg 2 (0; 1), jb+ cj < 1, in which private-sector expectations are formed according to

E�t zt+1 = hzt;

where h is estimated. With this learning algorithm, the actual law of motion is

zt = (1� ch)�1 bzt�1 + (1� ch)�1 vt:
If h is biased downward, then (1� ch)�1 b is also biased downward. If the loss function is quadratic in zt,

then this downward bias in the actual law of motion leads to lower loss. The result in the text is a multivariate
extension of this univariate result.
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When both the private sector and the central bank are learning (panels G �I), the increase

in loss associated with central-bank learning is largely o¤set by the decline in loss associated

with private-sector learning, bringing median relative loss back toward one.

6. Private-sector learning and structural change

The importance of private-sector learning for the central bank�s policy loss is illustrated clearly

in Figure 3. In this section we explore the importance of private-sector learning and its

connection to central bank transparency, considering the learning dynamics and the e¤ect

on policy loss that arises when private agents must learn about structural breaks in three

important parameters. The �rst structural break is a change to the real natural rate of

interest, which in our model equals the steady-state real interest rate. The second structural

break is a change to the central bank�s in�ation target. The �nal experiment we run is a

structural break in the relative weight the central bank places on output stabilization relative

to in�ation stabilization. In each of these experiments the central bank employs the rational

expectations equilibrium optimal policy while private agents are learning. Although private

agents are unaware that a structural break has occurred, they are alert to the possibility of

structural change and forecast the future output gap and future in�ation using the Kalman

�lter with the gain set to 0:02.

Because private agents learn using the Kalman �lter, they are never certain of the true

values of the in�ation target or the natural rate of interest, even in a world without structural

change. This uncertainty about the in�ation target and the natural rate implies that as the

sample size increases the loss function evaluated conditional on information at time t does not

converge in probability to the loss function evaluated under full information. Instead, the

private sector�s uncertainty about these parameters leads to the evaluated loss converging to

a distribution that is centered on a value higher than the policy loss under full information.

Intuition for this result can be gained by noticing that with equation (14) written as ut =

�Fyt, the loss function under learning (equation (29)) can be expressed in the form

L�t � L =
�

1� �

h
(c� (t)� c)0 eP (c� (t)� c) + tr h(C�2 (t)�C2)0 eP (C�2 (t)�C2)
ii ; (30)

where eP =W + F
0
QF+ � (C�1 (t)�C1)

0 eP (C�1 (t)�C1) (31)

and L�t is the expected loss in equation (5) conditional on the time-t policy and private-sector

expectations. Under decreasing-gain learning, fc� (t) ;C�1 (t) ;C�2 (t)g �! fc;C1;C2g and
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L�t �! L in the limit as t " 1. However, under constant-gain learning, L�t converges to a

distribution, the average value of the quadratic terms in equation (30) is always positive, and,

as a consequence, the average value of L�t converges to L
� > L even in the limit as t " 1. For

this reason, in this section only, the relative loss measures that we report are not taken with

respect to the full information value of the loss function, but rather relative to the median

policy loss obtained when the private sector is learning using the Kalman �lter but in the

absence of any structural change.

6.1. Learning about a change in r

The (real) natural rate of interest, r, enters the forward-looking IS curve. In the long run, a

permanent change in r only has the e¤ect of permanently increasing one-for-one the steady-

state nominal interest rate, i. In the short run, however, changes in r make it more di¢ cult

for private agents to forecast the output gap and its growth rate. We consider a permanent

1 percentage point (annualized rate) increase in r that is unknown to private agents. As

earlier, the simulations are initialized with a sample of 200 observations and are replicated

1; 000 times to build up a density. Following the increase in r, we consider 2; 000 periods of

learning and the results, in the form of estimates of �, r, and the implied relative policy loss,

are shown in Figure 4.
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Fig. 4: Private-sector learning about a change in r

Figure 4 reveals that, although it takes some time for private agents to relearn the natural

rate of interest, it takes less than 40 periods to learn 50 percent of the natural rate increase, and

the e¤ects of learning are relatively minor. Recalling that � was set to zero for convenience,

panels A, D, and G show that the need for private agents to relearn the natural rate does not

materially a¤ect their estimates of the in�ation target. Although private agents�estimates of

� are median unbiased, the volatility of the estimates are sensitive to the policy regime. A

policy regime that assigns less weight to output stabilization relative to in�ation stabilization

leads to estimates of the in�ation target that are more precise (compare panels A and G).

Similarly, a policy regime with less interest rate smoothing also leads to estimates of the

in�ation target that are more precise (compare panels A and D). With respect to relative

loss, the median relative loss converges to one, implying that the central bank�s loss following

the break in the natural rate converges to the policy loss in the absence of the structural break.

Moreover, immediately following the increase in the natural rate of interest, relative loss only

rises slightly above one, implying that the need for private agents to relearn the natural rate
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is relatively innocuous, at least in terms of its impact on policy loss.

6.2. Learning about a change in �

The in�ation target enters both the Phillips curve and the policy rule. As a consequence,

the fact that private agents must learn the in�ation target and relearn it if it changes can

have an important impact on expectations of both future in�ation and future interest rates.

To see the importance of private-sector learning, and their need to learn the in�ation target,

consider a one percentage point increase in the in�ation target, an increase that is known to

the central bank, but not to the private sector. As with the previous experiment, private

agents implement their adaptive learning algorithm using the Kalman �lter with the gain set

to 0:02. Figure 5 reports the private-sector estimate of the in�ation target, the (real) natural

rate of interest, and the implied policy loss.

Fig. 5: Private-sector learning about a change in �

Figure 5 reveals three important results. First, it takes a long time for private agents to

learn the new value for the in�ation target, literally centuries for the calibrations considered.
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However, some policy regimes make it easier for private agents to learn the in�ation target than

others. Relative to panel A, in which � = 1 and � = 0:5, panel D, which places less weight on

interest rate smoothing, allows private agents to learn the new in�ation target more quickly.

In contrast, a policy regime that places a high relative weight on output stabilization (panel

G) makes it more di¢ cult for private agents to learn. The intuition for these results is quite

clear: policy regimes that emphasize in�ation stabilization make it easier for private agents to

learn the in�ation target. Second, while private agents are learning the higher in�ation target

they tend to underestimate both the in�ation target and the natural rate of interest (panels B,

E, and H) and hence they greatly underestimate the nominal interest rate. Finally, as panels

C, F, and I show, the need for private agents to learn the new in�ation target has an important

impact on relative loss. Following the increase in the in�ation target, relative loss rises by

as much at 10 percent and remains high for a considerable time. Thus, whereas the need

for private agents to learn about a change in the natural rate is largely benign, the need for

them to learn about a change in the in�ation target is not. As expected, policy regimes that

allow private agents to learn the in�ation target more quickly� those emphasizing in�ation

stabilization� lower the cost of learning.

6.3. Learning following a change in �

The previous section showed that private-sector learning about a change in the in�ation target

occurs very slowly and that this slow learning rate translates into a large and persistent

increase in relative loss. This result provides an incentive for the monetary authority to be

transparent about its long-term in�ation objective. Indeed many countries have adopted an

explicit in�ation target to anchor long-term in�ation expectations and ease the transition to

an economic environment with lower average in�ation.

We can use our model to evaluate how private-sector learning about a change in the relative

weight placed on output stabilization a¤ects policy loss.14 We consider a one-third drop in �,

the weight on output stabilization relative to in�ation stabilization in the objective function.

The central bank implements its optimal discretionary targeting rule, which, with � smaller,

would imply a lower volatility of in�ation in the economy without learning. The private sector

must learn about the change in � using its constant-gain algorithm, with the gain set to 0:02.

Figure 6 shows the private sector�s real-time estimates of the in�ation target, the natural rate

14Tetlow and von zur Muehlen (2001) perform a similar experiment and �nd that the welfare loss can be
large.
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of interest, and the implied relative policy loss.

Fig. 6: Private-sector learning following a one-third decline in �

The private agents�estimates of � and r are unbiased. Thus, the need for private agents

to learn about the change in � does not distort their estimates of the in�ation target. Most

importantly, learning creates only a moderate temporary worsening in policy loss, which re-

turns to one much faster than when private agents must learn about a change in the in�ation

target. The di¤erent impact on policy loss is explained by the fact that, following a change

in the in�ation target, the private sector underestimates � and overestimates the persistence

of in�ation, which raises policy loss. Although a change in � does a¤ect the rate at which

in�ation and output will return to target following shocks, the e¤ect of this on the private

sector�s estimates of in�ation and output persistence is much smaller than when there is an

unannounced change in the in�ation target itself.

Clearly, private agents learning about a change in the in�ation target is much more costly

than their learning about a shift in the policymaker�s preferences, even if in the long run the

in�ation target is irrelevant to the value of policy loss. An important policy implication that
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follows from this result is that, although transparency about � is desirable, much more can

be gained by the central bank being transparent about its in�ation target.

7. Conclusion

This paper has examined whether central banks can learn to set policy optimally when they are

exposed to parameter uncertainty. Inevitably, central banks must formulate policy without

knowing the true structure of the economy and this uncertainty can, and should, a¤ect their

policies. Although it is clearly desirable for a central bank to be able to learn the economy�s

underlying structure, the interaction, or feedback, between parameter estimates and economic

outcomes that arises when central banks learn means that real-time learnability of the optimal

policy is not assured.

To uncover whether optimal policies are real-time learnable and to evaluate the impact

of learning on the policymaker�s loss, we employed a standard New Keynesian business cycle

model, whose behavior is governed by both forward and backward dynamics. Since a central

bank must know the economy�s structural relationships rather than simply its reduced-form

equilibrium relationships to formulate policy, we assumed that the central bank used recursive

(generalized) instrumental variables to estimate perceived structural relationships, and studied

the real-time learnability of the optimal rational expectations equilibrium when monetary

policy was conducted according to an optimal discretionary targeting rule.

Our main results are as follows. Provided the central bank�s perceived model is correctly

speci�ed, the optimal rational expectations equilibrium and hence the optimal discretionary

policy is real-time learnable. This result holds regardless of whether the central bank smooths

interest rates or not; however, learning occurs more quickly and is less costly if the central

bank does smooth interest rates. Our results also suggest that real-time learnability of the

optimal discretionary policy occurs whether the private sector�s expectations are rational or

are formed using either recursive least squares or a constant-gain learning algorithm. Further,

the impact of central-bank learning is small at the median. Although learning occurs slowly,

this is largely due to the slow convergence properties of the central bank�s learning algorithm

and there appears to be little feedback from real-time policymaking to the speed of learning.

While learning occurred slowly, the median cost of deviating from the rational expecta-

tions equilibrium was small. Yet, due to sampling variation in the central bank�s parameter

estimates, the variance in policy loss was large, implying that central-bank learning can have a

potentially signi�cant cost. At the same time, strikingly, with policy conducted under discre-
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tion, we found that central-bank learning could actually give rise to an equilibrium loss that

improved on the optimal rational expectations equilibrium. This result obtains because the

central bank�s estimated constraints may lead it to formulate a policy that would be infeasible

under discretion given the true constraints. When the private sector is also learning, the

likelihood of improved outcomes is even higher. Interestingly, these declines in policy loss are

reasonably large and are robust to changes in the monetary policy regime.

We also studied how unannounced changes in the policy regime a¤ect the economy�s be-

havior and policy loss when the private sector is learning. Our results reveal that learning how

the policymaker responds to shocks, that is, changes in how the central bank trades o¤ the

stability of output and in�ation, has only a modest e¤ect on policy loss. Similarly, changes in

the natural rate of interest, while detrimental, led to only a relatively small deterioration in

policy loss. In contrast, changes to the implicit in�ation target that private agents must infer

incurs a much higher cost in terms of policy loss. In other words, transparency regarding the

in�ation target in the policy objective function appears to be much more important for policy

loss than transparency regarding how the central bank trades o¤ output stability for in�ation

stability.

One issue not addressed in this paper is how monetary policy is a¤ected by the distributions

of the parameter estimates. In our analysis, once the structural parameters are estimated

they are taken to be �xed, clearly a simplifying assumption that could usefully be relaxed.

It would also be interesting to allow the central bank to take into account the private-sector

learning behavior when formulating its optimal policy (Gaspar, Smets, and Vestin, 2005).

Although interesting and clearly relevant for real-time policymaking, both of these issues are

left for future work.

A Appendix: Existence of rational expectations equilibrium

Figure 7 examines the relationships between sample size, the policy regime, and the likelihood
of obtaining parameter estimates of � and � for which a unique stable rational expectations
equilibrium does not exist in environments when only the central bank is learning. We perform
1; 000 simulations where each simulation involves 500 periods of real-time policymaking. The
reported probabilities are then the proportion of these 1; 000 simulations for which nonexis-
tence or indeterminacy is obtained for one or more of the 500 periods. The consistency of the
GIV estimator implies that nonexistence of a unique, stable rational expectations equilibrium
can be ameliorated by a large initial sample size, but the initial sample size needed may be
prohibitively large.
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Fig. 7: Probability of unstable or indeterminate RE equilibrium

As might be expected, as we move from panel A to panel D and the number of initial
observations increases from 50 to 300, the probability of obtaining indeterminacy or instability
declines. When the sample size is small (panel A), the probability of obtaining instability
or indeterminacy is large, simply because the variation in the central bank�s GMM estimator
is large. However, it is notable that the probability is increasing in both � and �, implying
that policy regimes that focus more directly on stabilizing in�ation are more likely to produce
a unique stable rational expectations equilibrium. As the sample size increases, while the
probability of obtaining instability or indeterminacy declines, it is notable that it declines
much more rapidly for policy regimes that focus on stabilizing in�ation and less rapidly for
policy regimes in which either � (output stabilization) or � (interest rate smoothing) are
large. This �nding is consistent with Orphanides and Williams (2006) who argue that it is
advantageous for central banks to place greater weight on in�ation stabilization, relative to
other goals, when setting policy in uncertain environments.

What happens if � and � are varied instead of � and �? The answer is nothing. The
reason is that � and � are not invariant to the units with which the data are measured, so
changes to � and � amount to a rescaling of the data. Consequently, while the central bank�s
estimates of � and � rise proportionately with changes in � and �, the central bank�s targeting
rule and the model�s behavior are una¤ected.
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