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Abstract

This paper develops a general equilibrium model to examine the quantitative effects of

speculative bubbles on capital accumulation, growth, and welfare. A near-rational bubble

component in the model equity price generates excess volatility in response to observed

technology shocks. In simulations, intermittent equity price run-ups coincide with positive

innovations in technology, investment and consumption booms, and faster trend growth,

reminiscent of the U.S. economy during the late 1920s and late 1990s. The welfare cost of

speculative bubbles depends crucially on parameter values. Bubbles can improve welfare

if risk aversion is low and agents underinvest relative to the socially-optimal level. But for

higher levels of risk aversion, the welfare cost of bubbles is large, typically exceeding one

percent of annual consumption.
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Bubbles are often precipitated by perceptions of real improvements in the produc-
tivity and underlying profitability of the corporate economy. But as history attests,
investors then too often exaggerate the extent of the improvement in economic fun-
damentals.

Federal Reserve Chairman Alan Greenspan, August 30, 2002.

1 Introduction

1.1 Overview

The magnitude of short-term movements in stock prices remains a challenge to explain within

a framework of rational, efficient markets. Numerous empirical studies starting with Shiller

(1981) and LeRoy and Porter (1981) have shown that stock prices appear to exhibit “excess

volatility” when compared to the discounted stream of ex post realized dividends.1 Another

prominent feature of stock price data is the intermittent occurrence of sustained run-ups above

estimates of fundamental value, so-called speculative bubbles, that can be found throughout

history in various countries and asset markets.2 The dramatic rise in U.S. stock prices during

the late 1990s, followed similarly by U.S. house prices during the mid 2000s, are episodes that

have both been described as bubbles. The former episode was accompanied by a boom in

business investment, while the later was accompanied by a boom in residential investment.

Both booms were later followed by falling asset prices and severe retrenchments in the associ-

ated investment series, as agents sought to unwind the excess capital accumulated during the

bubble periods. Coincident booms in stock prices and investment also occurred during the

late 1920’s–a period that shares many characteristics with the late 1990s. In particular, both

periods witnessed major technological innovations that contributed to investor enthusiasm

about a “new era.”3

This paper develops a general equilibrium model to examine the quantitative effects of

speculative bubbles on capital accumulation, growth, and welfare. The framework for the

analysis is a real business cycle model with endogenous growth and capital adjustment costs

(an -type model) along the lines of Barlevy (2004).4 A near-rational bubble component in

the model equity price generates excess volatility in response to observed technology shocks. I

also allow for the possibility of an Arrow-Romer type productive externality, such that agents

may underinvest relative to the socially-optimal level. The severity of the underinvestment

1Lansing and LeRoy (2012) provide a recent update on this literature.
2For an overview of historical bubble episodes, see the collection of papers in Hunter, Kaufman, and Pomer-

leano (2003).
3Similarities between the two periods are noted by Shiller (2000), Gordon (2006), and White (2006), as

described further below.
4 In support of this class of models, Ramey and Ramey (1995) find empirical evidence of a link between

fluctuations and growth. McGrattan (1998) finds that periods of high investment rates roughly coincide with

periods of high growth, as predicted by -type endogenous growth models
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problem turns out to be important for analyzing the welfare consequences of fluctuations

stemming from either speculative bubbles or business cycles which, in this model, can affect

the economy’s trend growth rate.

Labor supply in the model is inelastic, consistent with the idea that asset prices are deter-

mined in securities markets by agents who remain fully-employed at all times.5 The represen-

tative agent (a capitalist-entrepreneur) must only decide the fraction of available output to be

devoted to investment, with the remaining fraction devoted to consumption. The investment-

consumption ratio pins down the value of the equity price-dividend ratio. In the fully-rational

model, the technology response coefficient in the agent’s decision rule is small in magnitude

such that price-dividend ratio is nearly constant for reasonable levels of risk aversion. In

contrast, the price-dividend ratio in long-run U.S. stock market data is volatile and highly

persistent–close to a random walk. The model result obtains because rational agents un-

derstand that technology shocks give rise to both income and substitution effects which work

in opposite directions. The two effects exactly cancel when the intertemporal elasticity of

substitution in consumption (the inverse of the coefficient of relative risk aversion) is unity,

representing logarithmic utility. In this case, the technology response coefficient in the rational

agent’s decision rule is zero, such that the resulting price-dividend ratio is constant.

To introduce excess volatility, I decompose the model equity price into a fundamental com-

ponent and a bubble component. I postulate a law of motion for the bubble component that

satisfies the associated no-arbitrage condition exactly at the model steady state (when tech-

nology shocks are zero) and approximately satisfies the no-arbitrage condition away from the

steady state (when technology shocks are non-zero). The law of motion for the bubble com-

ponent is characterized by a single parameter that governs the bubble’s response to observed

technology shocks. I calibrate the technology response parameter to match the volatility of

the price-dividend ratio in long-run U.S. data. But for any value of this parameter, the bubble

law of motion is “near rational” in the sense that there is little opportunity for arbitrage.

Unlike a rational bubble solution, the near-rational law of motion is stationary (but highly

persistent) and allows the equity price to occasionally dip below the fundamental value in

the bubble-free economy. The bubble component in the equity price maps directly into a

bubble component of investment. The bubble-component of investment augments the stock

of physical capital, but the shareholders who supply the investment funds receive no claim

to any extra dividends; their expected return on the additional funds derives solely from the

prospect for price appreciation of their shares. This is reminiscent of late-1990s investors

who purchased shares in numerous initial public offerings of internet technology companies–

firms whose prospects for future earnings, let alone dividends, were basically nil.6 In a given

5The setup is also consistent with the near-zero elasticity estimates obtained by most empirical studies. For

an overview of the empirical estimates, see Blundell and McCurdy (1999).
6The term “bubble” was coined in England in 1720 following the famous price run-up and crash of shares in

the South Sea Company. The run-up led to widespread public enthusiasm for the stock market and an explosion

2



period, the bubble component of investment influences the stochastic discount factor (via

the consumption decision) and the total resources which are available to pay dividends to

shareholders. Consequently, there is feedback from the bubble component to the fundamental

equity price. In the presence of the bubble, the fundamental component of the equity price

continues to exactly satisfy the agent’s intertemporal consumption Euler equation.

In model simulations, intermittent equity price run-ups coincide with positive innovations

in technology, investment and consumption booms, and faster trend growth, reminiscent of the

U.S. economy during the late 1920s and late 1990s. The model can also generate prolonged

periods where the price-dividend ratio remains in the vicinity of the rational model value. So

long as technology shocks remain small, the bubble component in the equity price remains

close to zero. Due to the nonlinear nature of the model solution, the simulated price-dividend

ratio in the bubble model exhibits non-Gaussian features such as positive skewness and excess

kurtosis. These features are also present in the data.

Interestingly, the bubble component also improves the model’s ability to match the relative

volatilities of consumption growth, investment growth, and output growth. Because of capital

adjustment costs, investment growth in the rational model exhibits about the same volatility

as output growth, whereas investment growth in the data is about three times more volatile

than output growth. Barlevy (2004, p. 983) acknowledges the difficulty of generating sufficient

investment volatility in a rational model with capital adjustment costs. In the bubble model,

excess volatility of the equity price maps directly into excess volatility of investment, thereby

improving the comparison with investment volatility in the data.

Finally, I examine the welfare costs of fluctuations that can be attributed to either: (i) spec-

ulative bubbles, or (ii) business cycles. Welfare costs are measured by the percentage change

in per-period consumption that makes the agent indifferent between the two economies being

compared. The welfare cost of bubbles depends crucially on parameter values. Bubbles can

improve welfare (relative to the rational model) if risk aversion is low and agents underinvest

relative to the socially-optimal level. But for higher levels of risk aversion, the welfare cost of

bubbles is large, typically exceeding one percent of annual consumption. In dollar terms, one

percent of annual U.S. consumption translates into a yearly cost of around $855 per household

in 2009.

The welfare results are driven by the interaction of several effects. Since the bubble model

directs more resources to investment on average, bubbles can help address the economy’s

underinvestment problem if one exists. But if the private marginal product of capital is equal

to the social marginal product, then the bubble model is characterized by overinvestment

which serves to reduce welfare. The bubble model is also characterized by higher volatility in

investment which leads to inefficiency in the production of new capital due to the presence of

of highly-suspect companies attempting to sell shares to investors. As documented by Mackay (1841), one such

venture notoriously advertised itself as “a company for carrying out an undertaking of great advantage, but

nobody to know what it is.”
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convex capital adjustment costs. As a mitigating factor, the bubble model’s excess volatility in

investment serves to lower the volatility of consumption growth relative to the rational model.

Which of these effects dominate depends on parameter values. When risk aversion is low and

the underinvestment problem is severe, bubbles can improve welfare, but the reverse holds

true for higher levels of risk aversion or when underinvestment is less severe.

An important unsettled question in economics is whether policymakers should take delib-

erate steps to prevent or deflate asset price bubbles.7 Those who advocate leaning against

bubbles point out that excessive asset prices can distort economic and financial decisions, cre-

ating costly misallocations that can take years to dissipate. Others argue that policies intended

to prick a suspected bubble might send the economy into a recession, thereby foregoing the

benefits of the boom that might otherwise continue. While the welfare results presented here

do not settle the policy question, they do show that speculative bubbles can be very costly for

typical parameter settings.

1.2 Related Literature

The term “excess volatility” implies that asset prices move too much to be explained by

changes in dividends or cash flows. The behavioral finance literature has examined a wide

variety of evidence pertaining to this phenomenon. Controlled experiments on human sub-

jects suggest that people’s decisions are influenced by various “heuristics,” as documented by

Tversky and Kahneman (1974). The “representativeness heuristic” is a form of non-Bayesian

updating whereby subjects tend to overweight recent observations relative to the underlying

laws of probability that govern the stochastic process. De Bondt and Thaler (1985) find evi-

dence of overreaction in comparing returns of portfolios comprised of prior winning and losing

stocks. Arbarbanell and Bernard (1992) and Easterwood and Nutt (1999) find evidence that

security analysts’ earnings forecasts tend to overreact to new information, particularly when

the information is positive in nature. Daniel, et al. (1998) develop a model where investors’

overconfidence about the precision of certain types of information causes them to overreact to

that information. In the laboratory asset market of Caginalp et al. (2000), prices appeared to

overreact to fundamentals and to be driven by previous price changes, i.e., momentum.

This paper also relates to a line of research that explores the links between non-fundamental

asset price movements and investment in physical capital. Theoretical research that examines

rational bubbles in overlapping generations models with productive externalities or market

imperfections includes Saint Paul (1992), Grossman and Yanagawa (1993), King and Ferguson

(1993), Oliver (2000), and Caballero et al. (2006). This paper goes beyond previous work by

exploring the quantitative implications of bubbles in a plausibly-calibrated model.

The capital adjustment cost formulation in the model implies that movements in the equity

price are linked directly to movements in investment, as in a standard Tobin’s  framework.

7For an overview of the various arguments, see Lansing (2008, 2011).
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Along these lines, an empirical study by Barro (1990) finds that changes in real stock prices

since 1891 have strong explanatory power for the growth rate of business investment. Studies

by Chirinko and Schaller (2001), Gilchrist et al. (2005), and Campello and Graham (2012)

all find evidence of a significant empirical link between stock price bubbles and investment

decisions by firms.

Dupor (2005) examines the policy implications of non-fundamental asset price movements

in monetary business cycle model with capital adjustments costs. Non-fundamental asset price

movements are driven by exogenous “expectation shocks” that a drive a wedge between the

true marginal product of capital and the market return observed by firms when making their

investment decisions. The volatility of these shocks is calibrated to match a return volatility

statistic for the S&P 500 index, analogous to the procedure used here to calibrate the law of

motion for the bubble component of the equity price. He finds that optimal monetary policy

should lean against non-fundamental asset price movements. Hassan and Mertens (2011)

consider the welfare costs of excess volatility in a capitalist-worker model where the forecasts

of capital owners are perturbed away from the rational expectation by an exogenous shock,

similar to the model of Dupor (2005).

2 Historical Motivation

A reading of stock market history suggests that speculative bubbles are often linked to tech-

nological innovation. Shiller (2000) argues that major stock price run-ups have generally co-

incided with the emergence of some superficially plausible “new era” theory that involves the

introduction of new technology. Figure 1 depicts four major run-ups in real U.S. stock prices.8

Shiller associates each run-up with the following technological advances that contributed to

new era enthusiasm:

• Early 1900s: High-speed rail travel, transatlantic radio, long-line electrical transmission.

• 1920s: Mass production of automobiles, travel by highways and roads, commercial radio
broadcasts, widespread electrification of manufacturing.

• 1950s and 60s: Widespread introduction of television, advent of the suburban lifestyle,
space travel.

• Late 1990s: Widespread availability of the internet, innovations in computers and infor-
mation technology, emergence of the web-based business model.

In comparing the late 1920s with the late 1990s, Gordon (2006) and White (2006) both

emphasize the simultaneous occurrence of major technological innovations, a productivity

8The series for real stock prices, real dividends, and real per capita consumption employed in the paper are

from Robert Shiller’s website www.econ.yale.edu/~shiller/.
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revival, excess capital investment, and a stock market bubble fueled by speculation. Using data

on newly-issued patents, Nicholas (2008) argues that the 1920s was “a period of unprecedented

technological advance.” Schwert (1989, 2002) documents the pronounced increase in stock

market volatility that occurred during both periods, particularly in technology-related stocks

in the late 1990s. Cooper et al. (2001) document a pronounced “dotcom effect” in the

late 1990s, whereby internet-related corporate name changes produced permanent abnormal

returns. The authors attribute their results to a form a speculative mania among investors for

“glamour” industries that are associated with new technology.

Much of the surge in business investment in the late 1990s was linked to computers and

information technology. During these years, measured productivity growth picked up, which

was often cited as evidence of a permanent structural change–one that portended faster

trend growth going forward.9 A recent analysis by Ireland and Schuh (2008) concludes that

the productivity revival of the 1990s was temporary rather than permanent. But at the time,

widespread belief in the so-called “new economy” caused investors to bid up stock prices to

unprecedented levels relative to dividends (Figure 2). The rise and fall of potential output

growth as measured by the Congressional Budget Office (CBO) coincides roughly with the

rise and fall of cyclical movements in stock prices (Figure 3). The observed correlation be-

tween estimates of potential output growth and movements in the stock market motivates

consideration of a model where equity price bubbles can affect the economy’s trend growth

rate.

Caballero et al. (2006) argue that rapidly rising stock prices in the late 1990s provided

firms with a low-cost source of funds from which to finance their investment projects. Figure 4

shows that the trajectory of the S&P 500 stock index, both before and after the bubble peak,

is strikingly similar to the trajectory of investment.

On January 13, 2000, near the peak of the stock market, Fed Chairman Alan Greenspan

discussed the possibility that productivity-enhancing innovations might have raised the U.S.

economy’s growth pace, but that investors might have overreacted to these developments:

“When we look back at the 1990s, from the perspective of say 2010...[w]e may

conceivably conclude from that vantage point that, at the turn of the millennium,

the American economy was experiencing a once-in-a-century acceleration of inno-

vation, which propelled forward productivity, output, corporate profits, and stock

prices at a pace not seen in generations, if ever. Alternatively, that 2010 retrospec-

tive might well conclude that a good deal of what we are currently experiencing

was just one of the many euphoric speculative bubbles that have dotted human

history. And, of course, we cannot rule out that we may look back and conclude

that elements from both scenarios have been in play in recent years.”

9For an optimistic assessment at the time, see Oliner and Sichel (2000). For a sceptical view, see Gordon

(2000).
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The model presented here incorporates “elements from both scenarios” described by Greenspan.

Figure 5 shows that one can observe similar comovement between asset prices and investment

in the recent U.S. housing market. Real house prices rose sharply from 2000 to 2006 while real

residential investment experienced an unprecedented boom. Both series then reversed course

dramatically. An accommodative interest rate environment, combined with a proliferation

of new mortgage products (loans with little or no down payment, minimal documentation of

income, and payments for interest-only or less), helped fuel the run-up in house prices. While

perhaps less obvious than with the late-1990s stock market bubble, one can make the case

that over-enthusiasm for new technology played a role in the mid-2000s housing market boom.

On April 8, 2005, near the peak of the housing bubble, Fed Chairman Alan Greenspan

offered the following optimistic assessment of new technology:

“[T]he financial services sector has been dramatically transformed by technol-

ogy... Information processing technology has enabled creditors to achieve signifi-

cant efficiencies in collecting and assimilating the data necessary to evaluate risk

and make corresponding decisions about credit pricing. With these advances in

technology, lenders have taken advantage of credit-scoring models and other tech-

niques for efficiently extending credit to a broader spectrum of consumers...Where

once more-marginal applicants would simply have been denied credit, lenders are

now able to quite efficiently judge the risk posed by individual applicants and to

price that risk appropriately. These improvements have led to rapid growth in

subprime mortgage lending.”

The subprime lending boom was later followed by a sharp rise in delinquencies and fore-

closures, massive write-downs in the value of securities backed by subprime mortgages and

derivatives, the collapse of several large financial institutions, and, ultimately, a serious finan-

cial crisis prompting unprecedented U.S. government intervention in private capital markets.

In retrospect, Greenspan’s enthusiasm for a “new era” in credit risk modeling appears a bit

overdone.

3 Model

The representative agent is a capitalist-entrepreneur who maximizes

0

∞X
=0


∙
1− − 1
1− 

¸
 (1)

subject to the budget constraint

 +  =     0 (2)
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where  is consumption,  is investment,  is output (or income),  is the subjective time

discount factor, and  is the coefficient of relative risk aversion (the inverse of the elasticity

of intertemporal substitution). When  = 1 the within-period utility function can be written

as log ()  The symbol  represents the mathematical expectation operator.

Output is produced according to the technology

 =  exp () 

 
1−
    0  ∈ (0 1] (3)

 =  −1 +   ∼ 
¡
0 2

¢
 0 given, (4)

where  is the agent’s stock of physical capital and  represents a persistent, mean-reverting

technology shock. When   1 output is also affected by , which represents the stock of

human capital or knowledge. Following Arrow (1962) and Romer (1986), I assume that 

grows proportionally to, and as a by-product of, accumulated private investment activities.

This “learning-by-doing” formulation is captured by the specification  = , where  is the

economy-wide average capital stock per person which the agent takes as given. In equilibrium,

all agents are identical, so we have  =  which is imposed after the investment decision is

made. When   1 the private marginal product of capital is less than the social marginal

product such that agents underinvest relative to the socially-optimal level.

Resources devoted to investment augment the stock of physical capital according to the

law of motion

+1 =  1−     0  ∈ (0 1] 0 given, (5)

which reflects capital adjustment costs. This formulation has been employed previously by

Cassou and Lansing (2006) in a welfare analysis of tax reform. Equation (5) can be interpreted

as a log-linearized version of the following specification employed by Jermann (1998) and

Barlevy (2004):

+1


= 1−  + 0

µ




¶1

' 

µ




¶

 (6)

 =
01

³f´1
1 −  + 0

³f´1   =
1 −  + 0

³f´1³f´ 

where  and  are Taylor-series coefficients and f = exp { [log ()]} is the approxima-
tion point.10

The agent’s first-order condition with respect to +1 is given by

 
−


+1
=   

−
+1

∙
+1

+1
+
(1− ) +1

+1

¸
 (7)

10Since the functional form of the constraint affects the agent’s intertemporal optimality condition, the

economic environment considered here is not isomorphic to that of Jermann (1998) and Barlevy (2004).
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where +1 is known at time  The first-order condition can be rearranged to obtain the

following standard asset pricing equation

|{z}


=  

∙
+1



¸−
[+1 − +1| {z }

+1

+ +1| {z }
+1

] (8)

where  ≡  is the ex-dividend price of an equity share with claim to a perpetual stream

of dividends  =  − . When  = 1 consumption is equal to dividends, analogous to

the Lucas (1978 ) endowment economy. When   1 consumption strictly exceeds dividends,

owing to the presence of the learning-by-doing externality which can be viewed as separate

source of income for the agent. The term  (+1)
− is the stochastic discount factor.

The model’s adjustment cost specification (5) implies a direct link between the equity

price  and investment  consistent with a standard Tobin’s  framework. This feature is

also consistent with the observed comovement between U.S. stock prices and business invest-

ment shown in Figure 4. Although the model implies perfect comovement between  and

 this prediction could be relaxed by introducing stochastic variation in the adjustment cost

parameter 11

The gross return from holding the equity share from period  to + 1 is given by

+1 =
+1 + +1


=

+1



∙
+1

+1
+ 1− 

¸
 (9)

which shows that return volatility is driven by the volatility of investment growth and by the

volatility of the output-investment ratio.

To facilitate a solution to the agent’s problem, the first-order condition (8) must be rewrit-

ten in terms of stationary variables. If we define the price-consumption ratio as  ≡  =

() , then the budget constraint (2) can be used to derive the following expressions for

the equilibrium allocations:

 =

∙
1

1 + 

¸
 (10)

 =

∙


1 + 

¸
 (11)

 =

∙
 − (1− )

1 + 

¸
 (12)

where  =  exp ()  in equilibrium. The price-dividend ratio can be written as




=




=



 − (1− )
 (13)

11Lansing (2011) considers an adjustment cost specification that allows for stochastic variation in the relative

contributions of new investment versus existing capital in the production of new capital goods.
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which is a non-linear function of the price-consumption ratio  When there is no productive

externality, we have  = 1 such that  = 

An expression for equilibrium consumption growth can be obtained by combining (10),

(11), and (5) to yield

+1


=

∙
1 + 

1 + +1

¸
+1


=

∙
1 + 

1 + +1

¸
exp (+1 − )

+1




= 

"
(1 + )

1− ()

1 + +1

#
exp [+1 − (1− ) ]  (14)

Substituting the above expression into the first-order condition (8) together with +1 =

+1 + +1 yields the following transformed version of the first-order condition in terms of

stationary variables:


1−
 exp [ (1− ) ]

(1 + )
(1−) = 

e " + +1 (1− + )

(1 + +1)


#
exp (+1)  (15)

 ≡ 1− , e ≡ 
h
 ()

i


The observed technology shock  and the existing capital stock  uniquely determine the

amount of per capita output according to (3). Each period, the agent must only decide the

fraction of available output to be devoted to investment, with the remaining fraction devoted

to consumption. The investment-consumption ratio is given by  =  Hence, the agent’s

decision problem can be formulated equivalently in terms of the price-consumption ratio 

which is a stationary variable.

3.1 Rational Solution

The transformed first-order condition (15) is a non-linear stochastic difference equation. Ex-

cept for the special case of log utility ( = 0)  an exact analytical solution cannot be obtained.

To facilitate an approximate analytical solution, both sides of equation (15) are approximated

as power functions around the points e = exp { [log ()]} and e = 0 to obtain:
0

he i1 exp [ (1− ) ] =  0

h+1e i1
exp ( +1)  (16)

where 0 1 0 and 1 are Taylor-series coefficients that depend on e, as defined in Appendix
A. In equilibrium, movements in  are driven solely by movements in the technology shock

 The approximate rational solution is given by the following proposition.

10



Proposition 1. An approximate analytical solution for the rational price-consumption ratio

is given by

 = e exp ( ) 
where e = exp { [log ()]} is the approximation point and  is given by

 =
 [− (1− )]

1 − 1


Proof : See Appendix A.

In the special case of logarithmic utility, we have  = 0 such that  = 0 resulting in

 = e for all  From equation (13), the price-dividend ratio  is also constant in the

logarithmic case. When  6= 0 the valuation ratios  and  respond to technology shocks.
The direction of movement depends on the relative magnitudes of the income and substitution

effects of the shock, which in turn are governed by the elasticity of intertemporal substitution

(EIS), as given by 1 (1− ). When   1 we have   0 such that EIS  1. The sign of

the technology response coefficient  depends not only on the sign of , but also on the sign

of − (1− ) 12 In the baseline calibration, the result is   0. When   0 the substitution

effect of a positive technology shock dominates the income effect such that investment increases

relative to consumption, thus causing the ratio  = ()  to rise. For moderate levels of

risk aversion,  and  exhibit very little volatility because the income and substitution

effects of a technology shock largely offset one another.

3.2 Near-Rational Bubble Law of Motion

The first-order condition (8) imposes a no-arbitrage condition from period  to  + 1 Since

equation (8) does not enforce a transversality condition, it admits solutions where the equity

price  can deviate from the rational solution implied by fundamentals alone. So-called “ra-

tional bubble” solutions have been proposed as a way to account for the empirical observation

that equity prices appear excessively volatile relative to a discounted stream of dividends or

cash flows. The underlying assumption is that agents are forward-looking, but not to the

extreme degree implied by the transversality condition.13

The equity price  =  in equation (8) can be disaggregated as follows

 = f + b  (17)

where f = f and 
b
 = b  are the fundamental and bubble components of the equity price

which are directly proportional to the fundamental and bubble components of investment,

12For all calibrations examined, 1 − 1  0
13See Lansing (2010) for a review of the literature on rational bubbles and the numerous theoretical caveats

that govern their existence.
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denoted by f and b  Substituting the above equation into (8) yields the following pair of

no-arbitrage conditions:

f|{z}
f

=  

∙
+1



¸−
[+1 − f+1 − b+1| {z }

+1

+ f+1| {z }
f+1

] (18)

b |{z}
b

=  

∙
+1



¸−
b+1| {z }
b+1

 (19)

In equation (18), the fundamental component of the equity price f is equal to the expected

discounted value of next period’s payoff amount +1+
f
+1. In contrast to a Lucas (1978) type

model where consumption and dividends are exogenous, the bubble component here influences

both the stochastic discount factor  (+1)
− and the dividend +1 Hence, feedback from

the bubble component affects the fundamental equity price, similar to the model of Weil

(1990). In equation (19), the bubble component of the equity price b is equal to the expected

discounted value of next period’s bubble price b+1 with no regard for dividends. Hence, while

the bubble component of investment b augments the stock of physical capital via equation

(5), the shareholders who supply the investment funds to the capitalist-entrepreneur receive

no claim to any extra dividends; their expected return on the additional funds derives solely

from the prospect for price appreciation of their shares.

Defining f ≡ f and b ≡ b  the no-arbitrage conditions (18) and (19) can be

written as

f =  

∙
+1



¸ h
 + f+1 (1− + )− b+1 (1− )

i
 (20)

b =  

∙
+1



¸
b+1 (21)

where  ≡ 1− and have I substituted in +1 = +1+ f+1+ b+1. Equation (21) implies that

the bubble component of the price-consumption ratio b must grow over time in expectation

by a sufficient amount to offset the discounting implied by the stochastic discount factor.

A rational bubble solution that satisfies (21) exactly would thus deliver the result that b

is non-stationary, ruling out the existence of a balanced growth path. Moreover, as shown

by Lansing (2010), there can be a continuum of rational bubble solutions that satisfy the

no-arbitrage condition, with solutions along the continuum exhibiting different equilibrium

responses to fundamental state variables. The representative agent must postulate a solution

for b in order to evaluate the conditional expectation on the right side of the no-arbitrage

condition. For risk aversion coefficients near unity, the no-arbitrage condition can be written

as b ' 
b
+1 which shows that the postulated solution can have a strong influence on the
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resulting no-arbitrage value. Depending on the functional form of the postulated solution, the

agent’s expectations may become self-fulfilling, allowing for multiple rational bubble solutions.

To sidestep the complications associated with rational bubbles, I postulate the following

stationary law of motion for the bubble component:

b = f [exp(
b )− 1] (22)

where b is a parameter that governs the response to observed technology shocks. The bub-

ble is “intrinsic” in the terminology of Froot and Obstfeld (1991) because the bubble law of

motion depends solely on fundamentals; there are no extraneous shocks or sunspot variables.

Consistent with the historical examples provided by Shiller (2000), equation (22) implies that

fundamental technology innovations are important to investors, but their effects are amplified

whenever b  0. Under this formulation, a sequence of sufficiently large technology innova-

tions can produce large excursions away from the fundamental equity price. Notice that for

any value of b the bubble law of motion satisfies the no-arbitrage condition (21) exactly when

 = +1 = 0. Later, in the model simulations, I will show that the bubble law of motion is

“near-rational” in the sense that it approximately satisfies the no-arbitrage condition for most

realizations of  and +1 Unlike a rational bubble solution, the near-rational law of motion

allows the equity price to occasionally dip below the equilibrium value implied by Proposition

1 for the bubble-free economy.

3.3 Fundamental Solution in the Bubble Economy

The expression for +1 in the bubble economy takes the same form as equation (14), but

now  = f + b  Similarly, the form of equations (10) through (13) carry over to the bubble

economy. Substituting +1 from equation (14) into the fundamental no-arbitrage condition

(20) and then also substituting in  = f+b  with 
b
 given by the bubble law of motion (22)

yields the following equation that governs the evolution of the fundamental price-consumption

ratio f in the bubble economy:

(f)
1− exp

£

¡
1− − b

¢

¤£

1 + f exp (
b)

¤(1−) = 
e ( + f+1

£
1−  (1− ) exp(b+1)

¤£
1 + f+1 exp (

b+1)
¤

)
exp ( +1) 

(23)

where  and e are defined as before. The above expression collapses to equation (15) when
b = 0 such that  = f

To facilitate an approximate analytical solution for f I proceed as before and approximate

both sides of equation (23) as power functions around the points e f = exp{[log(f)]} ande = 0 to obtain:
f0

∙
fe f
¸f1

exp
³
f2 

´
=  

f
0

"
f+1e f

#f1
exp

³
f2 +1

´
 (24)
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where f0 
f
1 

f
2 

f
0 

f
1 and 

f
2 are Taylor-series coefficients that depend on e f and b as shown

in Appendix B. The approximate fundamental solution is given by the following proposition.

Proposition 2. An approximate analytical solution for the fundamental price-consumption

ratio in the bubble economy is given by

f = e f exp(f )
where ef = exp{[log(f)]} is the approximation point and f is given by

f =
f2 − f2
f1 − f1



Proof : See Appendix B.

Substituting the laws of motion for f and 
b
 into the definitional relationship  = f+b

yields the following approximate expression for the total price-consumption ratio

 = ef exp[( f|{z}
depends

on b

+ b) ] (25)

which collapses to the rational solution from Proposition 1 when b = 0 or when  = 0 The

above equation implies [log()] = [log(f)] When b  0 the price-consumption ratio

“overreacts” to innovations in technology, thereby generating excess volatility.

The total price-dividend ratio is given by




=

f + b


=


 − (1− )
 (26)

where  = f + b  Due to the non-linear nature of the above equation, the presence of

excess volatility in  can generate sharp run-ups and crashes in the price-dividend ratio

which resemble patterns observed in long-run U.S. data.

4 Model Calibration

A time period in the model is taken to be one year. The technology response parameter b

in the bubble law of motion (22) is calibrated so that the bubble model matches the volatility

of the price-dividend ratio in long-run annual U.S. data. This method of calibrating b is

analogous to the manner in which the exogenous crash probability parameter might be chosen

in a particular class of rational bubble models.14 The remaining parameters of the model

14The procedure for calibrating b abstracts from the underlying source of excess volatility. Reduced-form

modeling devices such as this are often employed in macroeconomics. Examples include Calvo-type sticky price

models which abstract from the underlying source of price stickiness, or money-in-the-utility-function models

which abstract from the underlying role played by money in facilitating transactions.
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are chosen simultaneously to match various empirical targets, as summarized in Table 1. For

example, the volatility of the technology shock innovation  is chosen so that the model

matches the standard deviation of real per capita consumption growth in long-run annual

U.S. data. Appendix C contains the approximate analytical moments that are used as a

starting point to calibrate the nonlinear model.

The rational model employs the same parameter values as the bubble model, except that

b = 0 for the rational model. I examine a range of values for the externality parameter

 and the risk aversion coefficient  Specifically, I consider  ∈ {04 06 10} and  ∈
{05 10 15 20 25}  The baseline calibration is  = 04 and  = 15 Whenever  or  is

changed, the remaining parameters are re-adjusted to maintain the same targets shown in

Table 1.

Given the calibrated values of  and  shown in Table 1, equation (6) can be used to

recover the implied curvature parameter 1 for comparison with Barlevy (2004). Assuming

an annual depreciation rate of  = 01 equation (6) yields 1 = 059 when  = 04 and yields

1 = 012 when  = 10 Barlevy (2004) considers values in the range 012 ≤ 1 ≤ 026 for
an endogenous growth model that corresponds to the  = 10 case. As 1 → 10 the implied

adjustment costs approach zero. Hence, the calibration methodology used here delivers lower

implied adjustment costs when   1

Table 1: Example Calibrations for the Bubble Model

Parameter Value Description/Empirical Target

 0.4 0.6 1.0 Capital share of income.

 1.5 1.5 1.5 Coefficient of relative risk aversion.

 0.333 0.333 0.333 Mean capital-output ratio = 3.

 0.071 0.030 0.014 Mean investment-output ratio = 0.25.

 1.217 1.100 1.056 Mean consumption growth = 2.03 %.

 0.054 0.072 0.086 Standard deviation of consumption growth = 3.51 %.

 0.9 0.9 0.9 Corr. ( −1−1) ' 09.
 0.968 0.969 0.970 Mean price-dividend ratio = 26.6.

b 2.305 2.410 2.560 Standard deviation of price-dividend ratio = 13.8.

When  = 04 and  = 15 the parameter values in Table 1 yield  = 0069 in the rational

model from Proposition 1 and f = −0752 in the bubble model from Proposition 2. The

presence of the bubble thus alters the nature of the fundamental solution. The small positive

value of  in the rational model implies that a favorable technology shock brings about a

small increase in the ratio  But in the bubble model, we have 
f + b = 155 so that a

favorable technology shock brings about a large increase in the ratio  thereby magnifying

the volatility of the equity price relative to consumption and dividends. When a favorable

technology shock increases the bubble component of investment, less resources are available

for paying dividends which are given by  −  All else equal, a dividend cut pushes down

the fundamental component of the equity price and fundamental investment. The fact that
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f  0 shows that the fundamental investment response serves to partially undo the extra

investment induced by the bubble.

5 Near-Rational Bubble Dynamics

The top panel of Figure 6 checks the conformance of the bubble law of motion (22) with the

no-arbitrage condition (21) for the baseline calibration with  = 04 and  = 15. Other cali-

brations produced similar results. To construct the no-arbitrage value, I employ the following

power-function approximation for consumption growth that is derived in Appendix C:

+1


= exp(e f) h+1e f i1 h e f i2 exp [+1 − (1− ) ] (27)

where e f is the endogenous trend growth rate of consumption that depends on e f and b

and 1 and 2 are Taylor-series coefficients. To evaluate the conditional expectation on the

right side of the no-arbitrage condition, I insert the approximate laws of motion for +1 and

 from equation (25) into the consumption growth equation (27), resulting in the following

expression:



∙
+1



¸
b+1 =  exp

n
 ef + 

h
1(

f + b) + 1
i
+1 + 

h
2(

f + b)− 1 + 
i


o
b+1

=  ef expn ef + 
h
2(

f + b)− 1 + 
i


o
× exp

n

h
1(

f + b) + 1
i
+1

o
×
n
exp

h
(f + b) +1

i
− exp(f +1)

o
 (28)

where I have also substituted in the postulated bubble law of motion for b+1 from equation

(22). The second line of the equation groups terms that are known at time . Given the sto-

chastic process for +1 the conditional expectation of the above expression can be computed

analytically each period to provide a no-arbitrage value for b that satisfies equation (21) by

construction.

Similarly, the bottom panel of Figure 6, checks the conformance of the total price-consumption

ratio  with the following no-arbitrage condition implied by the first-order condition (8):

 =  

∙
+1



¸
[ + +1 (1− + )]  (29)

To evaluate the conditional expectation on the right-side of the above expression, I again

make use of the consumption growth approximation (27) together with the approximate laws of

motion for +1 and  from equation (25). As before, the conditional expectation is computed

analytically each period to provide a no-arbitrage value for  that satisfies equation (29) by

construction.
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Figure 6 plots the constructed no-arbitrage values versus b and  from the calibrated

model. In both cases, there is close agreement between the two series except for extreme

realizations of the technology shock that correspond to extreme readings for b  Recall that

the postulated bubble law of motion satisfies the no-arbitrage condition exactly when  =

+1 = 0 But even for moderate shock realizations, there is close agreement between the

two series showing that there is little opportunity for arbitrage. Intuitively, due to the self-

referential nature of the no-arbitrage conditions, the postulated law of motion for the bubble

component is close to self-fulfilling.

An AR(1) regression on data for b generated by the calibrated law of motion (22) yields

b = 0897b−1 + 0002 Whereas the typical rational bubble solution yields non-stationary
behavior for the price-consumption ratio, the near-rational bubble considered here is stationary

but highly persistent.

A natural question to ask is whether the postulated bubble law of motion (22) is learnable.

Similar to the near-rational bubble solution presented in Lansing (2010), equation (22) is

underparameterized relative to a rational bubble solution that would satisfy the no-arbitrage

condition (21) exactly. Given data on  
f
 and  the agent could estimate the technology

response parameter for the near-rational bubble component as follows

b =


£
log
¡
 

f


¢
 

¤
  ()

 (30)

where  = f + b  In a typical real-time learning algorithm, the most-recent estimate of

b would be allowed to influence the evolution of f and b by solving (20) and (21) each

period, where the agent’s conditional forecasts would be computed using the postulated law of

motion, as in equation (28) above. The agent’s estimate of b would then be updated and the

simulation continued until some sort of convergence criteria is achieved.15 As an approximation

to such an algorithm, I generate data for f and 
b
 under the baseline calibration with  = 04

and  = 15 The data is generated by jointly solving the no-arbitrage conditions (20) and

(21), with b = 2305 (the postulated value). The agent’s conditional forecasts are computed

using the postulated law of motion (22). Using this data, the estimated technology response

parameter from equation (30) is b = 21 which is reasonably close to the postulated value

used to generate the data. From the agent’s perspective, sampling variation in the covariance

between log( 
f
 ) and  could account for the deviation between the estimated value and

the postulated value. Qualitatively similar results are obtained for other calibrations. Hence,

to a first approximation , the postulated law of motion for the bubble is consistent with data

generated by an actual law of motion.

15For examples of real-time learning algorithms along these lines, see Lansing (2009, section 4.1) and Lansing

(2010, section 4.3).
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6 Model Simulations

This section demonstrates the ability of the bubble model to match various features of long-run

U.S. data.

Table 2 presents unconditional moments computed from long simulations, where +1 ≡
log (+1) and +1 ≡ log (+1) are the growth rates of dividends and consumption,

respectively. The table also reports the corresponding statistics from long-run U.S. data.16

Table 2: Unconditional Asset Pricing Moments

Statistic U.S. Data

Rational

Model

Bubble

Model

Mean  26.6 23.0 26.5

Std. Dev. 13.8 0.38 13.8

Skew. 2.20 0.03 4.23

Kurt. 8.21 2.94 44.3

Corr. Lag 1 0.93 0.90 0.84

Mean +1 7.84 % 6.66 % 7.27 %

Std. Dev. 17.8 % 6.06 % 12.1 %

Corr. Lag 1 004 −004 −006
Mean +1 1.37 % 2.03 % 2.04 %

Std. Dev. 11.7 % 4.96 % 8.25 %

Corr. Lag 1 0.13 −003 −003
Mean +1 2.03 % 2.03 % 2.04 %

Std. Dev. 3.51 % 5.33 % 3.51 %

Corr. Lag 1 −007 −003 0.21

Note: Model statistics are from a 15,000 period simulation with  = 04  = 15

Recall that the bubble model is calibrated to match the mean and volatility of the price-

dividend ratio in the data. But the model also does a reasonably good job of matching other

asset pricing moments. In particular, the U.S. price-dividend ratio exhibits positive skewness

and excess kurtosis, which suggest the presence of nonlinearities in the data. The bubble

model is able to capture these features because excess volatility in  together with the non-

linear form of equations (22), (23), and (26), produces intermittent run-ups and crashes in

the price-dividend ratio. In contrast, the rational model delivers very low volatility, near-zero

skewness, and no excess kurtosis. The persistence of the price-dividend ratio in both models

is inherited from the persistent technology shock process with  = 09.

The mean equity return for both models is just slightly below the long-run U.S. average of

7.84%. The volatility of returns in the bubble model is about twice that of the rational model

(12.1% versus 6.06%), but somewhat below the return volatility of 17.8% in the data. Equation

16The sample periods for the U.S. data shown in Table 3 are as follows: price-dividend ratio 1871-2008, real

equity return 1871-2008, real dividend growth 1872-2008, real per capita consumption growth 1890-2008. The

price-dividend ratio in year  is defined as the value of the S&P 500 stock index at the beginning of year + 1

divided by the accumulated dividend over year 
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(9) shows how excess volatility in investment contributes directly to excess volatility in the

equity return. The reason the bubble model underpredicts the U.S. return volatility is because

it underpredicts the volatility of dividend growth, which is one component of the return. The

volatility of dividend growth in the bubble model is 8.25% whereas the corresponding figure in

U.S. data is 11.7%. From equation (12), the volatility of dividend growth could be increased by

introducing stochastic variation in either the production function parameter  or the capital

adjustment cost parameter 

The bubble model is calibrated to match the first and second moments of per capita con-

sumption growth in the data. Consumption growth in the bubble model exhibits small positive

serial correlation, with a correlation coefficient of 0.21, whereas the correlation coefficient in

the data is slightly negative at −007 In post-World War II U.S. consumption data, however,
the correlation coefficient is around 0.20.

Figure 7 plots simulations from both models for the baseline calibration with  = 04 and

 = 15 In the top left panel, the highly persistent and volatile nature of the price-dividend

ratio in the bubble model gives rise to intermittent excursions away from the rational model

value. The behavior of the model price-dividend ratio looks qualitatively similar to the U.S.

data shown earlier in Figure 2. With b  0 the bubble component of the equity price

increases in response to a positive technology shock, as does the total price-dividend ratio

because f + b  0. The technology-driven bubble episodes in the model coincide with

economic booms and excess capital formation, as shown in the lower panels of Figure 7.

Interestingly, the bubble model can also generate prolonged periods where the price-dividend

ratio remains in close proximity to the rational value. This is because the bubble component

remains close to zero so long as technology shocks remain small. Consequently, only a fraction

of the cyclical fluctuations in the model are due to bubble-like episodes.

Table 3 compares the volatilities of the model growth rates to those in the data.17 In the

rational model, the presence of capital adjustment costs makes the volatility of investment

growth about the same as the volatility of output growth, which is counterfactual. In long-

run U.S. data, investment growth is about three times more volatile than output growth. By

construction, the bubble model magnifies equity price volatility which is linked directly to

the volatility of investment growth. Given that output growth volatility in the two models

is about the same, the excess volatility of investment growth in the bubble model results in

a lower volatility of consumption growth relative to the rational benchmark. This result has

implications for the welfare analysis, which is discussed in the next section.

Figure 8 plots annual growth rates of macroeconomic variables from model simulations.

The excess volatility of investment growth in the bubble model not only magnifies the volatility

of dividend growth (bringing it closer to the data) but it also changes the cyclical pattern of

17Data on per capita real GDP from 1870-2008 was obtained from www.globalfinancialdata.com. Data on

real business fixed investment from 1929-2008 was obtained from the U.S. Bureau of Economic Analysis/Haver

Analytics.
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dividend growth relative to the rational model. This is because an increase in the bubble

component of investment absorbs resources that could otherwise be paid out as dividends.

Table 3: Volatility of Real Growth Rates

Variable Dates

U.S.

Economy

Rational

Model

Bubble

Model

∆ log () 1871-2008 5.28 542 545

∆ log () 1890-2008 3.51 533 351

∆ log () 1872-2008 11.7 496 825

∆ log () 1930-2008 16.2 571 118

∆ log () 1872-2008 17.9 571 118

Note: In percent, from 15,000 period simulation with  = 04  = 15

7 Welfare Analysis

This section examines the welfare costs of fluctuations that can be attributed to either: (i)

speculative bubbles, or (ii) business cycles. Details of the welfare computations are contained

in Appendix E. Expected lifetime utility in each economy is approximated by the average

over 5000 simulations, each 2500 periods in length, after which the results are not changed.

Welfare costs are measured by the percentage change in per-period consumption that makes the

agent indifferent between the two economies being compared. Given annual U.S. consumption

expenditures of around $10 trillion in 2009, a one percent change in per-period consumption

translates into an aggregate welfare cost of $100 billion per year, which is equivalent to an

annual cost of $855 per household, based on an estimate of about 117 million U.S. households

in 2009.18

The basic intuition underlying the welfare results is as follows:

• Bubbles direct more resources to investment on average which can help address the
economy’s underinvestment problem when   1.

• However, when  = 1 bubbles cause over-investment and under-consumption on average.

• Bubbles raise the volatility of investment, which leads to inefficiency in the production
of new capital due to convex adjustment costs.

• As a mitigating factor, excess volatility in investment implies lower volatility in con-
sumption growth relative to the rational model.

Which of these various effects dominate depends crucially on parameter values. It turns

out that bubbles can be welfare-improving when risk aversion is low and the underinvestment

18Data on aggregate U.S. consumption and the number of U.S. households are from Haver Analytics.
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problem is severe. Table 4 summarizes some moments that influence the welfare computa-

tion.19 For each value of the risk coefficient , the bubble model is calibrated to match the

mean and volatility of per capita consumption growth in long-run U.S. data. The rational

model uses the same parameter values as the bubble model. The deterministic model sets

 = 0 for all  such that the  ratio and the growth rate of consumption are both constant

at their deterministic steady-state values. As described in Appendix E, the initial level of

consumption in the deterministic model differs from the average initial consumption levels in

the fluctuating models.

Table 4 shows that the mean  ratio is highest in the bubble model. This result follows

directly from the bubble law of motion (22) which implies 
¡
b
¢
= 

£
b  ()

¤
 0 i.e., the

bubble-component of investment is positive on average. Since the bubble model directs more

resources to investment on average, it helps to address the economy’s underinvestment problem

whenever   1. But when  = 1 the bubble model is characterized by overinvestment which

serves to reduce welfare.

The bubble model is also characterized by higher volatility of the  ratio, which leads

to inefficiency in the production of new capital due to the convex adjustment costs embedded

in the capital law of motion (5). Figure 9 plots the model relationship between gross capital

growth +1 and the investment-capital ratio  The upward-sloping dashed straight line

(in red) is the hypothetical relationship implied by a linear law of motion with no adjustment

costs and a constant annual depreciation rate, i.e., +1 = 1−  + . The hypothetical

constant depreciation rate is computed from the bubble model simulations as  = 1+ ()−
 (+1) = 0064 The vertical intercept of the hypothetical relationship is 1− Comparing
the slope of the straight line (equal to 1.0) to the slope of the model relationship (equal to

0.845) shows that capital adjustment costs are relatively small on average, i.e., when  =

 () = 0086 The figure also depicts ±1 standard deviation bands around the mean 
ratio from the simulations. The slope of the model relationship can vary between 0.64 and

1.23 as the  ratio varies above or below its mean value by one standard deviation.

Since the capital law of motion implies +1 =  ()
  a mean-preserving increase

in the volatility of  will lower the mean growth rate of the capital stock +1 which

in turn influences the mean growth rate of consumption. Excess volatility in the ratio 

thus tends to waste resources that could otherwise be used to support capital formation and

growth. But as a mitigating factor, the bubble model lowers the volatility of consumption

growth relative to the rational model, as noted earlier in the description of Table 3. When

risk aversion is low and the underinvestment problem is severe, the positive welfare impacts

from bubbles outweigh the negative impacts, but the reverse holds true for higher levels of

risk aversion or when the underinvestment problem is less severe.

19The model statistics for +1 shown in Table 4 differ slightly from those shown earlier in Tables 2 and

3 because the Table 4 statistics are averaged over 5000 simulations as part of the welfare computation, as

described in Appendix E.
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Table 4: Moments that Influence Welfare Computation

 = 04


Statistic

Deterministic

Model

Rational

Model

Bubble

Model

0.5

Mean 
Std. Dev. 
Mean +1
Std. Dev. +1

833

0

213

0

841

095

215

554

863

231

212

347

1.5

Mean 
Std. Dev. 
Mean +1
Std. Dev. +1

823

0

205

0

832

108

206

529

860

229

211

348

2.5

Mean 
Std. Dev. 
Mean +1
Std. Dev. +1

803

0

187

0

821

113

195

518

859

228

210

348

Note: In percent, averaged over 5000 simulations of 2500 periods each.

Table 5 summarizes the welfare cost of speculative bubbles relative to the rational model

with identical parameter values. The table shows that bubbles can improve welfare if risk

aversion is very low ( = 05) and the underinvestment problem is severe ( = 04). Higher

levels of risk aversion cause the welfare cost of bubbles to increase rapidly when  = 04,

but the welfare costs decline a bit with risk aversion when  = 1 When  = 1 there is no

underinvestment problem in the economy. In this case, the bubble model’s higher mean value

of  represents a misallocation of resources. The bubble model’s excess volatility in 

continues to waste resources via the convex capital adjustment costs. These negative welfare

impacts must be weighed against the rational model’s higher consumption growth volatility,

with the latter taking on greater significance for welfare at higher degrees of risk aversion.

Consequently, as risk aversion rises with  = 1, the welfare cost of bubbles relative to the

rational model exhibits a declining tendency over the range 05 ≤  ≤ 25.
Table 5: Welfare Cost of Speculative Bubbles

  = 04  = 06  = 10

0.5 −093 107 327

1.0 041 168 274

1.5 132 215 242

2.0 206 257 223

2.5 275 298 213

Note: In percent of per-period consumption.

The results in Table 5 reflect a complex combination of effects that involve shifts in the

endogenous trend growth rate of consumption, shifts in the volatility of consumption growth,

and shifts in the level of consumption (as reflected in average initial consumption and the mean

 ratio). In an effort to gauge the magnitude of the effects coming from the endogenous
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growth feature, I replace  =  in the production function (3) with the specification  =

0 exp ( )  where  = 00203 is an exogenous trend growth rate imposed on both the rational

and bubble versions of the model. For simplicity, I employ the same decision rules for  as in

the original versions of each model.20 For the baseline calibration with  = 04 and  = 15

the welfare cost of speculative bubbles under exogenous growth is 0.30 percent–less than

one-fourth of the 1.32 percent cost obtained under endogenous growth. This result is not

surprising; it is well-known since Lucas (1987) that the welfare cost of cyclical fluctuations in

standard models is generally small in the absence of long-run growth effects. Notwithstanding

this result, the U.S. data plotted in Figure 3 supports the notion that bubbles can influence

trend growth, as captured by the original model.

Table 6 summarizes the welfare cost of business cycles in the bubble model relative to a

deterministic model with identical parameter values. I focus on the welfare cost of business

cycles in the bubble model (as opposed to the rational model) because, by construction, the

bubble model matches the empirical targets listed in Table 1, and hence is a more realistic

representation of the U.S. economy for the chosen parameter values. The welfare comparison

between the bubble model and the deterministic model shown in Table 6 can be interpreted

as a more extreme experiment in the effects removing fluctuations relative to that shown in

Table 5. As before, the welfare costs increase rapidly with risk aversion when  = 04 Now

however, the welfare costs are also increasing with risk aversion when  = 1 in contrast to the

pattern in Table 5. In this case, the bubble model is being compared to an alternative where

consumption growth is constant, whereas in Table 5, the bubble model is being compared to

an alternative where consumption growth is more volatile.

Referring back to Table 4, when  = 05 and  = 04 the deterministic model exhibits

a lower mean  ratio than the bubble model (8.33% versus 8.63%)–a feature that is

particularly costly when  = 04 Business cycles (which include intermittent bubble episodes)

serve to direct more resources to investment on average and thereby help to address the

underinvestment problem. For this reason, and because risk aversion is low, business cycle

fluctuations in the bubble model serve to increase welfare by 2.42%. But as risk aversion

increases, the agent increasingly dislikes consumption growth volatility and the negative effects

of fluctuations dominate the positive effects, producing large welfare losses.

20The re-optimized decision rules for  would depend not only on the technology shock  but also on the

normalized capital stock, defined as   exp ( ) 
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Table 6: Welfare Cost of Business Cycles in Bubble Model

  = 04  = 06  = 10

0.5 −242 −001 216

1.0 042 168 275

1.5 228 311 346

2.0 375 441 424

2.5 502 565 509

Note: In percent of per-period consumption.

Overall, the main message from the welfare analysis is that technology-driven bubbles and

the associated business cycle fluctuations can be very costly for typical parameter settings.

When the risk aversion coefficient is  = 15 the welfare costs in Tables 5 and 6 range from a

low of 1.32% to a high 3.46%.

Barlevy (2004) estimates that eliminating business cycles can yield welfare gains of around

7 percent of per-period consumption in an endogenous growth model with logarithmic utility

( = 1) and no productive externality ( = 1)  Barlevy’s rational model is calibrated to match

post-World War II data, whereas the bubble model considered here is calibrated to match

long-run data prior to the year 1900. Interestingly, the welfare costs of business cycles in

the bubble model with  = 1 are not too far from Barlevy’s results, despite differences in

the capital adjustment cost formulation and the calibration methodology. Qualitatively, the

results presented in Table 6 are consistent with Barlevy’s finding that the welfare cost of

business cycles can be large when fluctuations influence trend growth.

8 Concluding Remarks

“Nowhere does history indulge in repetitions so often or so uniformly as in Wall Street,”

observed legendary speculator Jesse Livermore way back in the year 1923.21 History has

proven him right. The dramatic run-up and crash of the U.S. stock market in the late 1920s was

followed decades later by twin bubbles and crashes in Japanese real estate and stocks during

the late 1980s and early 1990s. These episodes were later followed by the U.S. technology

stock mania of the late 1990s, which ended abruptly in March 2000. Most recently, a global

housing bubble during the mid-2000s nearly brought down the world’s financial system when,

like all preceding bubbles, it ultimately burst.

History tells us that periods of major technological innovation are often accompanied by

speculative bubbles. Excessive run-ups in asset prices can have important consequences for the

economy because mispriced assets imply a shift in resources relative to a bubble-free economy.

Innovations to technology are also considered by many economists to be an important driving

force for ordinary business cycles.

21From Livermore’s thinly-disguised biography by E. Lefevére (1923, p. 180).
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This paper developed a real business cycle model in which a bubble component in the

equity price generates excess volatility in response to observed technology shocks. The setup

can be described as “near-rational” because the bubble law of motion approximately satisfies a

period-by-period no-arbitrage condition. The bubble model outperformed the rational model

in capturing several features of long-run U.S. data, including the moments of asset pricing

variables and the relative volatilities of output, investment, and consumption growth rates.

Interestingly, even from the narrow perspective of this simple theoretical model, it remains

an open question whether the costs of speculative bubbles outweigh the possible benefits to

society. According to the model, risk aversion must be low and the underinvestment problem

must be severe for bubbles to be welfare-improving. But for typical parameter settings, the

model showed that the welfare cost of bubbles is large.

It should be noted, of course, that the model abstracts from numerous real-world issues

that would affect investors’ welfare. One noteworthy example is financial fraud. Throughout

history, speculative bubbles have usually coincided with outbreaks of fraud and scandal, fol-

lowed by calls for more government regulation once the bubble has burst.22 Recent bubble

episodes are no different.

22For a comprehensive historical review, see Gerding (2006).
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A Appendix: Rational Solution

This appendix provides the proof of Proposition 1. Taking logarithms of both sides of the

transformed first-order condition (15) and then applying a first-order Taylor series approxi-

mation to each side yields equation (16). The Taylor-series coefficients are given by

0 =
e1−

(1 +  e)(1−)  (A.1)

1 = 1 −  (1 + e)
1 +  e  (A.2)

0 = e " + e (1− + )

(1 +  e)
#
 (A.3)

1 =
e (1− + )

 + e (1− + )
−  e
1 +  e (A.4)

where e = exp { [log ()]} is the approximation point and e ≡ 
h
 ()

i


The conjectured form of the rational solution +1 = e exp ( +1) is substituted into the
right-side of (16). After evaluating the conditional expectation and then collecting terms, we

have:

 = e ∙ 0
0

¸11
exp

"
(1 + )2 2

2 1

#
| {z }

exp

⎡⎢⎢⎣ (1 + )−  (1− )

1| {z }




⎤⎥⎥⎦  (A.5)

which shows that the conjectured form is correct. Solving for the undetermined coefficient 

yields

 =
 [− (1− )]

1 − 1
 (A.6)

where 1 and 1 both depend on e from (A.2) and (A.4).

The undetermined coefficient e solves the following nonlinear equation
e =  exp

h
e+ (1 + )2 22

i
1−  (1− + ) exp

h
e+ (1 + )2 22

i  (A.7)

where e depends on e as shown below:
exp (e) = 

∙
 e

1 +  e
¸

 (A.8)

Comparing (A.8) to equation (14) shows that e represents the endogenous trend growth rate
of consumption in the rational model. Given a set of parameter values, equations (A.7) and

(A.8) are solved simultaneously for e and e Equation (A.6) is then used to compute  ¥
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B Appendix: Fundamental Solution in Bubble Economy

This appendix provides the proof of Proposition 2. Taking logarithms of both sides of the

transformed first-order condition (23) and then applying a first-order Taylor series approxi-

mation to each side yields equation (24). The Taylor series coefficients f0 
f
1 

f
0 and f1 take

the same form as equations (A.1) through (A.4), but e is now replaced by e f since eb = 0.
The Taylor-series coefficients f2 and f2 are given by

f2 = (1− − b) −  (1− )e fb
1 +  e f (B.1)

f2 =

£
1 + e f(1− b)

¤
1 +  e f −  (1− ) e fb

 + e f (1− + )
 (B.2)

where e f = exp{[log(f)]} = exp{[log()]} is the approximation point. Notice that the
bubble law of motion influences the fundamental solution via the presence of b in the expres-

sions for f2 and f2.

The conjectured form of the fundamental solution f+1 = e f exp(f +1) is substituted
into the right-side of (24). After evaluating the conditional expectation and then collecting

terms, we have:

f = e f ∙ f0
f0

¸1f1
exp

"¡
ff1 + f2

¢2
2

2 f1

#
| {z } f

exp

⎡⎢⎢⎢⎢⎣(
ff1 + f2)− f2

f1| {z }
f



⎤⎥⎥⎥⎥⎦  (B.3)

which shows that the conjectured form is correct. Solving for the undetermined coefficient f

yields

f =
f2 − f2
f1 − f1

 (B.4)

The undetermined coefficient e f solves the following nonlinear equation
e f =  exp

h
e f + ¡ff1 + f2

¢2
22

i
1−  (1− + ) exp

h
e f + ¡ff1 + f2

¢2
22

i  (B.5)

where e f depends on e f as shown below:
exp(e f) = 

∙
 e f

1 +  e f
¸

 (B.6)

In the above equation, e f represents the endogenous trend growth rate of consumption in the
bubble economy. Given a set of parameter values and a value for b, equations (B.5) and

(B.6) are solved simultaneously for e f and e f  Equation (B.4) is then used to compute f  ¥
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C Appendix: Approximate Moments for Calibration

Starting from equation (26), a Taylor series approximation for the total price-dividend ratio

in the bubble economy is given by




=

f + b


= 0

h e f i1  (C.1)

where 0 =
e f

 − (1− ) e f  1 =


 − (1− ) e f 
and e f = exp{[log(f)]} = exp{[log()]} with eb = 0. The above expression implies the
following unconditional moments:

 [log ()] = log (0)  (C.2)

  [log ()] = (1)
2   [log ()] 

= (1)
2 (f + b)2   ()  (C.3)

 [log ()  log (−1−1)] =  [log ()  log (−1)] 
=  [ −1] 
=  (C.4)

Given equations (C.2) and (C.3), the unconditional mean and variance of  can be com-

puted by making use of the properties of the log-normal distribution.23

Starting from equation (14) which carries over to the bubble economy with  = f + b ,

a Taylor-series approximation for consumption growth is given by

+1


= exp(e f) h+1e f i1 h e f i2 exp [+1 − (1− ) ]  (C.5)

where 1 =
− e f
1 +  e f  2 =

 (1 + e f)
1 +  e f 

and exp(ef) is given by equation (B.6). Given the solution for  in equation (25), the above
expression implies the following results

log (+1) = e f + h1(f + b) + 1
i
+1 +

h
2(

f + b)− 1 + 
i
 (C.6)

 [log (+1)] = e f  (C.7)

  [log (+1)] =

½h
1(

f + b) + 1
i2
+
h
2(

f + b)− 1 + 
i2
+

+ 2
h
1(

f + b) + 1
i h

2(
f + b)− 1 + 

io
  ()  (C.8)

23 If a random variable  is log-normally distributed, then  () = exp

 [log ()] +

1
2
  [log ()]


and

  () =  ()
2 {exp (  [log ()])− 1} 
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In the nonlinear model simulations (described below in Appendix D), the moments of

the price-dividend ratio and consumption growth in the bubble model can differ from those

predicted by the approximate moment formulas, depending on the calibration. A process of

trial and error is used to select the parameter values used for the nonlinear model simulations.

The parameter values implied by the approximate moment formulas provide a good starting

point for the trial and error calibration process.

D Appendix: Model Simulations

The simulation algorithm is governed by the following system of nonlinear stochastic difference

equations:

(f)
1− exp

£

¡
1− − b

¢

¤£

1 + f exp (
b)

¤(1−) = f0 exp
h
(ff1 + f2) +

1
2
(ff1 + f2)

22

i
(D.1)

b = f [exp(
b )− 1] (D.2)

 = f + b (D.3)

where  is governed by the stochastic process (4). Equation (D.1) is the fundamental no-

arbitrage condition (23) where the right side shows the agent’s conditional forecast computed

using the power function approximation from (24) together with the approximate fundamental

solution from Proposition 2. Given the conditional forecast and the current observed value

of  the left side of (D.1) is solved for 
f
 each period using a nonlinear equation solver.

Given f and  the bubble law of motion (D.2) is used to compute 
b
 which in turn gives 

from (D.3). Given  equations (10) through (12) are used to compute the allocations in the

bubble model where output is given by  =  exp ()  The capital stock evolves according

to equation (5).

The initial condition in the simulations is the deterministic steady state which is the same

for both the bubble model and the rational model. The steady-state price-consumption ratio

is denoted by  Steady-state consumption growth is denoted by . The values of  and 

solve the following system of nonlinear equations

 =
 exp ()

1−  (1− + ) exp ()
 (D.4)

exp () = 

∙


1 + 

¸
 (D.5)

E Appendix: Welfare Cost Computation

This appendix describes the procedure for computing the welfare costs presented in Tables 5,

6, and 7.

E.1 Welfare Cost of Speculative Bubbles

Average lifetime utility can be written as

 =
−1

 (1− )
+

∞X
=0


()




  ≡ 1−  (E.1)
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where  = 1 2 for the rational model and the bubble model, respectively. From equation

(10) we have  =  (1 + ) where  is computed using the nonlinear algorithm

described in Appendix D. The unconditional mean  is approximated by the average over

5000 simulations, each 2500 periods in length, after which the results are not changed. The

initial consumption levels at  = 0 are stochastic variables. Each simulation starts at  = −1
with  = 1 such that  = 1 (1 + )  where  is the steady-state price-consumption

ratio from equation (D.7). Note that the rational model and the bubble model share the same

steady state.

The welfare cost of speculative bubbles is the constant percentage amount by which 2
must be increased in the bubble model in order to make average lifetime utility equal to that

in the rational model. Specifically, I solve for  such that

1 =
−1

 (1− )
+

∞X
=0


[2 (1 + )]




=
−1

 (1− )
+ (1 + )

∙
2 +

1

 (1− )

¸
 (E.2)

which yields the result

 =

∙
 (1− )1 + 1

 (1− )2 + 1

¸ 1


− 1 (E.3)

In the case of log utility ( = 0)  equation (E.3) becomes  = exp [(1 − 2) (1− )]− 1

E.2 Welfare Cost of Business Cycles

Lifetime utility in the deterministic model is computed from equation (E.1) with  = 0 and

is denoted by 0 The welfare cost of business cycles in the bubble model is the constant

percentage amount by which 2 must be increased in order to make 2 equal to 0. The

deterministic simulation starts at  = −1 with 0 = 1 such that 0 = 1 (1 + )  where 

is given by equation (D.4). Deterministic consumption evolves according to the law of motion

0 = 0−1 exp ()  where  is given by equation (D.5). Deterministic consumption at  = 0
will thus differ from average consumption at  = 0 in the fluctuating models.

Analogous to equation (E.3), the welfare cost of business cycles in the bubble model is

given by

 =

∙
 (1− )0 + 1

 (1− )2 + 1

¸ 1


− 1 (E.4)

In the case of log utility, ( = 0)  equation (E.4) becomes  = exp [(0 − 2) (1− )]− 1
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Figure 1: Four major run-ups in U.S. stock prices.

0

10

20

30

40

50

60

70

80

90

80 90 00 10 20 30 40 50 60 70 80 90 00 10

S&P 500 Index: Price-Dividend Ratio, 1871-2008

Figure 2: The price-dividend ratio reached unprecedented levels around the year 2000.
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Figure 3: Rise and fall of the “new economy.”
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Figure 6: Bubble law of motion approximately satisfies the no-arbitrage condition.

36



Figure 7: Bubbles coincide with economic booms and excess capital formation.
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Figure 8: Bubbles magnify investment volatility but reduce consumption volatility.

38



Figure 9: Slope of model relationship declines as  ratio rises above mean value.
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