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Abstract

In this paper we study hedonic games where each player views
every other player either as a friend or as an enemy. Two simple
priority criteria for comparison of coalitions are suggested, and the
corresponding preference restrictions based on appreciation of friends
and aversion to enemies are considered. We characterize internally
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stable coalitions on the proposed domains and show how these char-
acterizations can be used for generating a strict core element in the
�rst case and a core element in the second case. Moreover, we prove
that an element of the strict core under friends appreciation can be
found in polynomial time, while �nding an element of the core under
enemies aversion is NP-hard.
Journal of Economic Literature Classi�cation Numbers: C71, A14,

D20.
Keywords: additive separability, coalition formation, core stability,

hedonic games, NP-completeness, priority.

1 Introduction

The study of the hedonic aspect of coalition formation goes back to Drèze

and Greenberg (1980) who stress the dependence of a player�s utility on the

composition of members of her coalition. The formal model of a hedonic game

was introduced by Banerjee, Konishi and Sönmez (2001) and Bogomolnaia

and Jackson (2002). In their work, the focus on the identity of the members

of a coalition determines the structure of the game: the latter consists of

a preference ranking, for each player, over the coalitions that player may

belong to.

Despite the simplicity of the model, it turned out that the question of the

existence of a core stable partition, that is, a partition of the set of all players

for which there is no group of individuals who can all be better o¤by forming

a new deviating coalition, does not have an easy answer. In this paper we

restrict ourselves to hedonic games with separable preferences, i.e. games

where the e¤ect of a given player on another player�s preferences is the same,

regardless of which coalition the latter player is a member of. In such games

every player partitions the society into desirable and undesirable coalitional

partners (friends and enemies, respectively), and the division between friends
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and enemies guides the ordering of coalitions in the sense that adding a friend

leads to a more preferable coalition, while adding an enemy leads to a less

preferable coalition.

As shown by Banerjee, Konishi and Sönmez (2001), non-emptiness of the

core is not guaranteed even if one restricts separability to additive separa-

bility (players�preferences are representable by an additive separable utility

function) and imposes in addition symmetry (i.e. the players have the same

reciprocal values for each other). For an excellent study of the role of symmet-

ric additive separable preferences for non-emptiness of the core of a hedonic

game the reader is referred to Burani and Zwicker (2003).

In this paper we restrict the domain of additive separable preferences by

assuming that each player uses a simple priority criterion when comparing

coalitions she may belong to. As a result, the class of additive separable pref-

erences based on appreciation of friends and the class of additive separable

preferences based on aversion to enemies are considered. The �rst prefer-

ence domain corresponds to a situation in which every player in the game has

very strong friends and very weak enemies: when comparing two coalitions

she may belong to, a player who appreciates her friends pays attention �rst

to the friends in either coalition. The coalition that contains more friends

is declared by the player as better than the other, and if the two coalitions

have the same number of friends, then the coalition with less enemies wins

the comparison. The second preference domain displays a situation in which

every player has very strong enemies and very weak friends, i.e. a player

who is averse to her enemies looks �rst at the enemies in either coalition.

The coalition that contains less enemies is declared by the player as better

than the other, and if the two coalitions have the same number of enemies,

then the number of friends is decisive for the comparison. Notice that both
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restrictions allow for indi¤erences in the corresponding rankings over coali-

tions. We characterize internally stable coalitions on the proposed domains

and show how these characterizations can be used for generating a strict core

element in the �rst case and a core element in the second case. Moreover,

we prove that an element of the strict core under friends appreciation can be

found in polynomial time, while �nding an element of the core under enemies

aversion is NP-hard.

The outline of the paper is as follows. Section 2 introduces the model of a

hedonic game and presents the formal de�nitions of our domain restrictions.

We introduce the notions of an internally stable coalition and of a devia-

tion stable collection of coalitions as our basic tools in Section 3, and relate

them to core stability. In Section 4 we present results with respect to the

structure of an internally stable coalition provided that players�preferences

are separable. However, in order to provide full characterization results we

have to restrict the preferences either to friends appreciation or to enemies

aversion. These results are collected in Section 5 and Section 6, respectively,

where we present our core existence proofs as well. Section 7 is devoted to

the computational complexity for �nding a core stable element for hedonic

games in our domains.

2 Preliminaries

Consider a �nite set of players N = f1; 2; : : : ; ng. A coalition is a non-empty
subset of N . For each player i 2 N , we denote by Ni = fX � N j i 2 Xg
the collection of all coalitions containing i. A collection C of coalitions is
called a coalition structure if C is a partition of N , i.e. the coalitions in C are
pairwise disjoint and

S
C2C C = N . By C

N we denote the set of all coalition
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structures of N . For each coalition structure C 2 CN and each player i 2 N ,
by C(i) we denote the coalition in C which contains i, i.e. fC(i)g = C \ Ni.

We assume that each player i 2 N is endowed with a preference �i over
Ni, i.e. a binary relation over Ni which is re�exive, complete, and transitive.

We denote by P = (�1;�2; : : : ;�n) a pro�le of preferences �i for all i 2 N ,
and by P the set of all preference pro�les. Moreover, we assume that the

preference of each player i 2 N over coalition structures is purely hedonic, i.e.

it is completely characterized by �i in such a way that, for each C; C 0 2 CN ,
player i weakly prefers C to C 0 if and only if C(i) �i C 0(i).
A hedonic game is a pair (N;P ) consisting of a �nite set N of players and

a preference pro�le P 2 P. This paper is devoted to the question whether
there exists a coalition structure C 2 CN which is stable in some sense. The

corresponding stability notions are given in Section 3.

We now specify the preference domains that will be considered. For each

i 2 N , we let Gi := G(�i) = fj 2 N : fi; jg �i figg be the set of friends
of player i, and its complement Bi = N n Gi the set of enemies of player i.
Notice that, from fig �i fig, we have i 2 Gi for each i 2 N . The next de�n-
ition suggests two ways of how each player i ranks the sets in Ni depending

on the numbers of her friends and enemies.

De�nition 1 Let P = (�1;�2; : : : ;�n) 2 P be a pro�le of players�prefer-

ences.

� We say that P is based on appreciation of friends if, for all i 2 N
and all X;Y 2 Ni, X �i Y if and only if (1) jX \ Gij > jY \ Gij or
(2) jX \Gij = jY \Gij and jX \Bij � jY \Bij;

� We say that P is based on aversion to enemies if, for all i 2 N and

all X; Y 2 Ni, X �i Y if and only if (1) jX \ Bij < jY \ Bij or (2)
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jX \Bij = jY \Bij and jX \Gij � jY \Gij.

Thus, if the preference pro�le is based on appreciation of friends, we have

a priority for friends when comparing two coalitions. If the preference pro�le

is based on aversion to enemies, each player looks �rst at her enemies when

comparing two coalitions. In the following, the set of all preference pro�les

based on appreciation of friends is denoted by Pf , and the set of all preference
pro�les based on aversion to enemies is denoted by Pe.
It is not di¢ cult to see that if players�preferences are induced by either

way suggested by De�nition 1, then each player i 2 N will be equipped with

a preference relation over Ni with Gi being its top and Bi [ fig being its
bottom. The next example illustrates this point.

Example 1 Let N = f1; 2; 3g and G1 = f1; 2g, G2 = f2g, G3 = f1; 2; 3g.
Let P = (�1;�2;�3) 2 P.

� If P 2 Pf , then
- the ranking over N1 is f1; 2g �1 f1; 2; 3g �1 f1g �1 f1; 3g,
- the ranking over N2 is f2g �2 f1; 2g �2 f2; 3g �2 f1; 2; 3g,
- the ranking over N3 is f1; 2; 3g �3 f1; 3g �3 f2; 3g �3 f3g.

� If P 2 Pe, then
- the ranking over N1 is f1; 2g �1 f1g �1 f1; 2; 3g �1 f1; 3g,
- the ranking over N2 is f2g �2 f1; 2g �2 f2; 3g �2 f1; 2; 3g,
- the ranking over N3 is f1; 2; 3g �3 f1; 3g �3 f2; 3g �3 f3g.

In fact, the preference pro�les based on appreciation of friends and the

preference pro�les based on aversion to enemies belong to a more general class

of preference pro�les, namely the class of additive separable preferences. A

pro�le P 2 P of players�preferences is additive separable if, for all i 2 N ,
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there exists a function vi : N ! R such that for all X; Y 2 Ni, X �i Y
if and only if

P
j2X vi(j) �

P
j2Y vi(j). We denote the set of all additive

separable preferences by Pas. For the preference pro�le P 2 Pf in Example 1,
one can take v1(1) = v1(2) = v2(2) = v3(1) = v3(2) = v3(3) = 3 and

v1(3) = v2(1) = v2(3) = �1. For the preference pro�le P 2 Pe in the same
example the choice can be v1(1) = v1(2) = v2(2) = v3(1) = v3(2) = v3(3) = 1

and v1(3) = v2(1) = v2(3) = �3. More generally, when P 2 Pf , one can
take, for each i 2 N , vi(j) = n if j 2 Gi, and vi(j) = �1 otherwise; when
P 2 Pe, one can take, for each i 2 N , vi(j) = 1 if j 2 Gi, and vi(j) = �n
otherwise. Therefore, we have (Pf [ Pe) � Pas.
Notice �nally that the preferences in Pf [ Pe are also separable because

for every player i 2 N we have that for every j 2 N and X 2 Ni with j =2 X,
we have [X [ fjg �i X , j 2 Gi] and [X [ fjg �i X , j 2 Bi]. We denote
the set of all separable preferences by Ps. Hence, the relation among Pf , Pe,
Pas, and Ps is as follows: (Pf [ Pe) � (Pas \ Ps) � P.

3 Core stability, deviation stability and in-

ternal stability

Let N = f1; 2; : : : ; ng be a �nite set of players and let DN denote the set

of all collections of disjoint non-empty coalitions. For each D 2 DN and for

each i 2
S
D2DD, we denote by D(i) the coalition in D containing i, i.e.

fD(i)g = D \ Ni. Notice that the empty collection of coalitions belongs to

DN , i.e. ; 2 DN . Observe further that each coalition structure is also a

collection of non-empty disjoint coalitions, and thus, CN � DN .

De�nition 3 Let P 2 P, X � N and D 2 DN .
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� We say that X is a deviation from D if ; 6= X �
S
D2DD, and

X �i D(i) for each i 2 X.

� We say that X is a weak deviation from D if ; 6= X �
S
D2DD,

X �i D(i) for each i 2 X, and X �j D(j) for at least one j 2 X.

By using these notions, we de�ne now core stability and strict core sta-

bility.

De�nition 4 Let P 2 P and C 2 CN .

� We say that C is core stable if a deviation from C does not exist.

� We say that C is strictly core stable if a weak deviation from C does
not exist.

Notice that fXg 2 DN for every non-empty coalition X � N . Similar to
the notion of core stability for coalition structures, one can de�ne the notion

of internal stability for coalitions.

De�nition 5 Let P 2 P and X � N with X 6= ;.

� We say that X is internally stable if there is no Y � X which is a

deviation from fXg.

� We say that X is strictly internally stable if there is no Y � X

which is a weak deviation from fXg.

We denote by W (N;P ) the collection of all internally stable coalitions,

and by S(N;P ) the collection of all strictly internally stable coalitions.

Remark 1 Note that for each hedonic game (N;P ) the sets W (N;P ) and

S(N;P ) are non-empty since singletons are always (strictly) internally stable.
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Remark 2 Observe that, for every P 2 P and every C 2 CN , we have

C � W (N;P ) if C is core stable, and C � S(N;P ) if C is strictly core
stable.

Theorem 1 stated below without proof is very useful because, when

(strict) core stability is under consideration, it allows us to concentrate only

on (weak) deviations which are (strictly) internally stable. Note that this

theorem is basically a variation of Ray�s (1989) well-known result on the

credibility of blocking coalitions.

Theorem 1 Let P 2 P. For every C 2 CN ,

� C is core stable if and only if there does not exist any deviation from C
which is internally stable,

� C is strictly core stable if and only if there does not exist any weak
deviation from C which is strictly internally stable.

When presenting our results the following concepts will allow us to provide

constructive existence proofs.

De�nition 6 Let P 2 P and D 2 DN .

� We say that D is deviation stable if, for each C 2 CN with D � C,
there does not exist any deviation X from C such that X 2 W (N;P )
and X \

�S
D2DD

�
6= ;.

� We say that D is strictly deviation stable if, for each C 2 CN with

D � C, there does not exist any weak deviation X from C such that
X 2 S(N;P ) and X \

�S
D2DD

�
6= ;.

Observe that, by de�nition, for each D 2 DN , D � W (N;P ) if D is

deviation stable, andD � S(N;P ) if D is strictly deviation stable. Moreover,
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from Theorem 1, the following corollary can be obtained immediately.

Corollary 1 Let P 2 P. For every C 2 CN ,

� C is core stable if and only if C is deviation stable, and

� C is strictly core stable if and only if C is strictly deviation stable.

A sketch of our constructions of core stable coalition structures in the

following sections looks as follows:

� start with the empty collection of coalitions, which is (strictly) devia-
tion stable;

� construct a new (strictly) deviation stable collection of disjoint non-

empty coalitions by including a (strictly) internally stable coalition,

and repeat this until a coalition structure (a partition of N) is obtained.

So that, from Corollary 1, we will �nally obtain a (strictly) core stable

coalition structure.

4 Separability and internal stability

It should be clear from the previous section that the notion of an internally

stable coalition plays an important role in the study of the existence of core

stable partitions in hedonic games. In what follows in this section we o¤er a

�rst look at the structure of an internally stable coalition provided that the

players in the corresponding hedonic game have separable preferences.
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Let N = f1; 2; : : : ; ng and P 2 Ps. Let X � N with X 6= ;, and i 2 X.
For each positive integer t, let Gti(X) � X be a set de�ned as follows:

G1i (X) = Gi \X;

Gt+1i (X) =
[

j2Gti(X)

(Gj \X):

Let G�i (X) = Gti(X) for a positive integer t such that G
t
i(X) = Gt+1i (X).

Notice that G�i (X) 6= ; for each X � N with X 6= ; and i 2 X; this fact
follows simply from i 2 Gi for all i 2 N . Moreover, we have Gni (X) =

Gn+1i (X) for each X � N and each i 2 X, and G�i (X) � X and G�i (Y ) �
G�i (X) for each Y � X and each i 2 Y .
The interpretation of G�i (X) for X � N and i 2 X becomes more clear

by noticing that, given separability, we can always construct a directed graph

H(N;P ) = (V;E) with set of vertices V = N and set of directed edges E =

f(i; j) 2 N � N j i 6= j; j 2 Gig. Observe then that, for every X � N

and i; j 2 X, we have j 2 G�i (X) if and only if there exists a sequence

k1; k2; : : : ; km for some m � 1 such that k1; k2; : : : ; km 2 X and kl+1 2 Gkl
for each 1 � l � m�1. Thus, j 2 G�i (X) if and only if there exists a directed
path from i to j via vertices belonging to X. If, for each i; j 2 X with i 6= j,
there exist directed paths via vertices belonging to X from i to j and from

j to i (i.e. G�i (X) = X for each i 2 X), then the induced subgraph HX of
H(N;P ) byX is called strongly connected, whereHX is the directed graph such

that VX = X and EX = E\(X�X). The next lemma simply says then that,
given separability, the induced subgraph by every strictly internally stable

coalition is strongly connected.

Lemma 1 Let P 2 Ps and X � N with X 6= ;. Then, X 2 S(N;P ) implies
G�i (X) = X for each i 2 X.
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Proof. Suppose X 2 S(N;P ) and there exists i 2 X such that G�i (X) 6= X.
Since G�i (X) � X for each i 2 X, we have X n G�i (X) 6= ;. Because

X \ Gj = G�i (X) \ Gj for each j 2 G�i (X) and from P 2 Ps, we have
X n G�i (X) � N n Gj = Bj for each j 2 G�i (X). From P 2 Ps and the
non-emptiness of X n G�i (X), we have G�i (X) �j X for each j 2 G�i (X).

That is, G�i (X) is a deviation from fXg, and is also a weak deviation from
fXg. This contradicts the assumption that X 2 S(N;P ).

Example 2 shows that the reverse implication to the one in Lemma 1 may

not hold when P 2 Ps. Every player in this example is indi¤erent among
coalitions on the same row and, for each i 2 N , the top row corresponds to
Gi and the bottom row corresponds to Bi [ fig.

Example 2 Let N = f1; 2; 3; 4g and players�preferences be as follows:

1 2 3 4

12 123 34 134

1; 123; 124 12; 23; 1234 3; 134; 234 14; 34; 1234

1234 2; 124; 234 1234 4; 124; 234

13; 14 24 13; 23 24

134 123

Notice that the directed graph corresponding to this game is strongly connected

but for example f1; 2g is a weak deviation from N , i.e. N is not strictly

internally stable.

Given N = f1; 2; : : : ; ng and P 2 Ps, our next result provides a su¢ cient
condition for a strongly connected subgraph HX of H(N;P ) to be induced by a

strictly internally stable coalition X � N . This su¢ cient condition requires
X to be a clique in H(N;P ), i.e. a subset of V such that (i; j); (j; i) 2 E for

every i; j 2 X. Notice that this requirement is equivalent to �G1i (X) = X
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for each i 2 X�.

Lemma 2 Let P 2 Ps and X � N with X 6= ;. Then, G1i (X) = X for each

i 2 X implies X 2 S(N;P ).

Proof. Suppose X � N with X 6= ; is such that G1i (X) = X for each

i 2 X. If jXj = 1, then, in view of Remark 1, X 2 S(N;P ). Suppose

now that jXj � 2 and let Y � X be a non-empty proper subcoalition of X.

Then, from Y � X and G1i (X) = X for each i 2 X, we have, for each i 2 Y ,
X = Gi \ X � Gi, and thus, X n Y is a non-empty subset of Gi for each

i 2 Y , i.e. X �i Y from P 2 Ps. Thus, there is no subcoalition of X that is

a weak deviation from fXg, i.e. X 2 S(N;P ).

Notice again that the reverse implication to the one in Lemma 2 may not

hold when P 2 Ps. This is shown in

Example 3 Consider N = f1; 2; 3g and let f1; 2; 3g �1 f1; 2g �1 f1; 3g �1
f1g, f1; 2g �2 f1; 2; 3g �2 f2g �2 f2; 3g, and f1; 2; 3g �3 f1; 3g �3 f2; 3g �3
f3g. Notice that the grand coalition N is strictly internally stable and, hence,

internally stable but it is not a clique in the directed graph corresponding to

this game.

As we shall see in the next two sections, the reverse implications in the

above lemmas hold true when the preferences are based on appreciation of

friends and aversion to enemies, respectively.

5 Appreciation of friends

We consider in this section hedonic games with preference pro�les belonging

to Pf and provide a characterization of strictly internally stable coalitions
(Lemma 3). Then, we show via Lemma 4 how this characterization can
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be used for proving (in Theorem 2) the existence of a strictly core stable

partition for all games in the friends appreciation domain.

Lemma 3 Let P 2 Pf and X � N with X 6= ;. Then, X 2 S(N;P ) if and
only if G�i (X) = X for each i 2 X.

Proof. The fact that X 2 S(N;P ) implies G�i (X) = X for each i 2 X
follows from Lemma 1. Suppose now that X � N with X 6= ; and is such
that G�i (X) = X for each i 2 X. If jXj = 1, then, in view of Remark

1, X 2 S(N;P ). Suppose now that jXj � 2 and let Y � X be a non-

empty proper subcoalition of X. Then, we have G�i (X) n Y 6= ; for each
i 2 Y , and thus, there exists a j 2 Y such that Gj \ (X n Y ) 6= ;. That is,
jX \ Gjj > jY \ Gjj, and from P 2 Pf , we have X �j Y for some j 2 Y .
It follows that there is no subcoalition of X which is a weak deviation from

fXg. Therefore, we have X 2 S(N;P ).

Next, we show a useful property of the set of all strictly internally stable

coalitions.

Lemma 4 Let P 2 Pf . If X;Y 2 S(N;P ) with X \ Y 6= ;, then X [ Y 2
S(N;P ).

Proof. Suppose X; Y 2 S(N;P ) with X \Y 6= ;. From Lemma 3, it su¢ ces
to show that G�i (X[Y ) = X[Y for each i 2 X[Y . Recall that we have, for
each non-empty Z � N and each i 2 Z, G�i (Z) � Z, and G�i (Z) � G�i (Z 0) if
Z � Z 0. Thus G�i (X)[G�i (Y ) � G�i (X [Y ) � X [Y for each i 2 X [Y . In
the following, we show that X [ Y � G�i (X [ Y ) for each i 2 X [ Y .
Let i 2 X \ Y . By assumption, G�i (X) = X and G�i (Y ) = Y , and thus,

we have X [ Y = G�i (X) [G�i (Y ) � G�i (X [ Y ) for each i 2 X \ Y .
Let i 2 X n Y . By assumption, G�i (X) = X, and thus, X � G�i (X [ Y ).

Let j 2 X \ Y . Notice that such a j exists by assumption. Then j 2
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G�i (X [ Y ), and by de�nition G�j(X [ Y ) � G�i (X [ Y ). Since Y = G�j(Y ) �
G�j(X [ Y ), we have Y � G�i (X [ Y ). Thus, X [ Y � G�i (X [ Y ) for each
i 2 X n Y . By the same argument, one can show that X [ Y � G�i (X [ Y )
for each i 2 Y nX.
Now we can conclude that X [ Y 2 S(N;P ) if X; Y 2 S(N;P ) with

X \ Y 6= ;, and the proof is completed.

Having described, for games with preference pro�les belonging to Pf ,
a characterization of strictly internally stable coalitions and the structure

of the collection S(N;P ), we redirect our attention to the problem of core

stability of such games.

For each M � N , we denote by SM(N;P ) the collection of all strictly

internally stable coalitions which are subsets of M , i.e. SM(N;P ) = fX 2
S(N;P ) j X � Mg. Let GSM(N;P ) be the collection of all largest coali-
tions among coalitions belonging to SM(N;P ), i.e. GSM(N;P ) = fX 2
SM(N;P ) j jXj � jY j for all Y 2 SM(N;P )g. Obviously, SN(N;P ) =
S(N;P ). Notice that fig 2 SM(N;P ) for each i 2M . Hence, SM(N;P ) and
GSM(N;P ) are non-empty whenever M is non-empty.

The following proposition suggests a way for extending a strictly deviation

stable collection of disjoint coalitions for P 2 Pf .

Proposition 1 Let P 2 Pf , D 2 DN nCN , and M = N n (
S
D2DD). If D

is strictly deviation stable, then D[fD0g is strictly deviation stable for each
D0 2 GSM(N;P ).

Proof. Suppose D is strictly deviation stable and let D0 2 GSM(N;P ).

Observe that D[fD0g 2 DN and D0 2 GSM(N;P ) � SM(N;P ) � S(N;P ).
In the following we show that D [ fD0g is strictly deviation stable.
SinceD is strictly deviation stable, everyX 2 S (N;P ) withX\

�S
D2DD

�
6=
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; cannot be a weak deviation from any C 2 CN such that (D [ fD0g) � C.
Thus, a strictly internally stable coalition X with X \

�S
D2DD [D0� 6= ;

is a weak deviation from some C 2 CN such that (D [ fD0g) � C only if
X � M and X \D0 6= ;. Let X 2 S (N;P ) with X � M and X \D0 6= ;.
From D0 2 S (N;P ) and Lemma 4, we have X [ D0 2 S (N;P ). Since

X;D0 � M , we have X [D0 2 SM (N;P ). Moreover, if X � D0, then, from

D0 2 S (N;P ), X cannot be a weak deviation from fD0g, and thus X cannot

be a weak deviation from any C 2 CN such that (D [ fD0g) � C. Then,
if X * D0 we have jX [D0j > jD0j, which contradicts D0 2 GSM (N;P ).
Therefore, D [ fD0g is strictly deviation stable.

Hence, we have the following theorem1.

Theorem 2 For each P 2 Pf , a strictly core stable coalition structure exists.

Proof. Extend the empty collection of coalitions (which is strictly deviation

stable) to a strictly deviation stable coalition structure of N in the way sug-

gested by Proposition 1. Then, from Corollary 1, such a coalition structure

is strictly core stable.

6 Aversion to enemies

The way of proving the existence of a strictly core stable partition for the

case of appreciation of friends can be used also for the case of aversion to

enemies.

First, we show a characterization of internally stable coalitions when P 2
1 For a proof of the existence of a core stable element on a larger domain than Pf

without using a characterization of internally stable coalitions the reader is referred to

Alcalde and Revilla (2004).
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Pe.

Lemma 5 Let P 2 Pe and X � N with X 6= ;. Then, X 2 W (N;P ) if
and only if G1i (X) = X for each i 2 X.

Proof. The fact that G1i (X) = X for each i 2 X implies X 2 S(N;P ) �
W (N;P ) follows from Lemma 2. To show the reverse implication, let X � N
with X \ Bi 6= ; for some i 2 X. Then, from fig �i X, fig is a deviation
from fXg, i.e. X 62 W (N;P ). Thus, X � Gi for each i 2 X ifX 2 W (N;P ).
Obviously, G1i (X) = X if X � Gi.

In other words, W (N;P ) is the collection of all non-empty coalitions of

players in N such that, for each of these coalitions, the players like each other

under preference pro�le P 2 Pe.
As analogy to SM(N;P ) and GSM(N;P ), we de�ne WM(N;P ) = fX 2

W (N;P ) j X �Mg and GWM(N;P ) = fX 2 WM(N;P ) j jXj � jY j for all
Y 2 WM(N;P )g for each M � N . Again, WM(N;P ) and GWM(N;P ) are

non-empty whenever M is non-empty.

The following proposition suggests a way for extending a deviation stable

collection of disjoint coalitions for P 2 Pe.

Proposition 2 Let P 2 Pe, D 2 DN n CN , and M = N n (
S
D2DD).

Then, if D is deviation stable, then D [ fD0g is deviation stable for each
D0 2 GWM(N;P ).

Proof. The proof is similar to the proof of Proposition 1. Again, observe

that D [ fD0g 2 DN and D0 2 GWM(N;P ) � WM(N;P ) � W (N;P ). In

the following we show that D [ fD0g is deviation stable.
Since D is deviation stable, every X 2 W (N;P ) with X \

�S
D2DD

�
6= ;

cannot be a deviation from any C 2 CN such that (D [ fD0g) � C. Thus,
an internally stable coalition X with X \

�S
D2DD [D0� 6= ; is a deviation
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from some C 2 CN such that (D [ fD0g) � C only if X �M and X\D0 6= ;.
Let X 2 W (N;P ) with X � M and X \D0 6= ;. From Lemma 5, we have

jX \Bij = jD0 \Bij = 0 for each i 2 X \ D0. Then, if jXj � jD0j we have
D0 �i X for each i 2 X \D0, and thus, X cannot be a deviation from any

C 2 CN such that (D [ fD0g) � C. Moreover, from D0 2 GWM(N;P ), we

have jXj � jD0j for every X 2 WM (N;P ). Therefore, D [ fD0g is deviation
stable.

With the help of this proposition, we are able to present our main result

in this section.

Theorem 3 For each P 2 Pe, a core stable coalition structure exists.

Proof. Extend the empty collection of coalitions (which is deviation stable)

to a deviation stable coalition structure of N in the way suggested by Propo-

sition 2. Then, from Corollary 1, such a coalition structure is core stable.

The next example shows that the strict core may be empty when the

players are averse to their enemies.

Example 4 Consider N = f1; 2; 3g under aversion to enemies with G1 =
f1; 2g, G2 = f1; 2; 3g, and G3 = f2; 3g. We have then the following prefer-
ences:

1 2 3

12 123 23

1 12; 23 2

123 2 123

13 13

Clearly, the candidates for strictly core stable coalition structures should be

core stable as well. As it can be easily seen from the graph that corresponds to
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this game, there are two maximal cliques - f1; 2g and f2; 3g. If one extends
the empty collection of coalitions by f1; 2g, then the resulting partition of
N will be ff1; 2g ; f3gg. Alternatively, if one starts by adding f2; 3g, then
the partition will be ff2; 3g ; f1gg. The reader can easily check that these
partitions are core stable. Notice however that f2; 3g and f1; 2g are weak
deviations from ff1; 2g ; f3gg and ff2; 3g ; f1gg, respectively. Therefore, no
strictly core stable coalition structure exists.

Remark 3 For a comparison of the preference restriction based on aversion

to enemies with other su¢ cient conditions for non-emptiness of the core of

a hedonic game the reader is referred to Dimitrov et al. (2004).

7 Computational complexity

For general hedonic games the existence problem of a core stable coalition

structure is shown to be NP-complete; moreover, if one imposes anonymity

(the players pay attention only to the size of the corresponding coalitions)

the problem remains NP-complete even when only strict preferences are al-

lowed (see Ballester (2004)). Cechlárová and Hajduková (2002) study the

computational complexity of the existence problem of a strict core element

for the speci�c extension of the preferences over individuals to preferences

over coalitions proposed by Cechlárová and Romero-Medina (2001) and show

that when ties are included the existence problem is NP-complete. In con-

trast, according to Theorem 2 and Theorem 3, a strictly core stable coalition

structure for the case of appreciation of friends and a core stable coalition

structure for the case of aversion to enemies always exists. In other words,

the two corresponding existence problems always have the answer �Yes�, and

of course, the answer can be obtained without computation.
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In the following, the computational complexity for �nding core stable

coalition structures is considered. As it turns out, even if we know that

a core element always exists, the problem for �nding a core element for the

case of aversion to enemies is NP-hard (Theorem 4). In contrast, a strict core

element on the domain of appreciation of friends can be found in polynomial

time as we show in Theorem 5. Here, we assume that each preference pro�le

is given by a collection (G1; G2; : : : ; Gn) of n subsets of N satisfying i 2 Gi for
each i 2 N . The collection (G1; G2; : : : ; Gn) determines the set of friends for
each player i 2 N . Observe that the input size (the length for representing
a collection (G1; G2; : : : ; Gn)) is O(n2).

We start with a lemma for the case of aversion to enemies.

Lemma 6 For every P 2 Pe and every C 2 CN , GW (N;P ) \ C 6= ; if C is
core stable.

Proof. Let C 2 CN be such thatGW (N;P )\C = ;, and letX 2 GW (N;P ).
Then, we have jXj > jC(i)j for each i 2 X. From Lemma 5, X � Gi for each
i 2 X, i.e. jX \Bij = 0 for each i 2 X. Thus, X �i C(i) for each i 2 X, i.e.
X is a deviation from C. Therefore, C is not core stable.

This lemma allows us to formulate our result on computational complexity

for �nding any core stable partition in hedonic games with enemy averse

preferences.

Theorem 4 When P 2 Pe, the problem of �nding a core stable coalition

structure is NP-hard.

Proof. The NP-hardness is shown by reduction from the Maximum Clique

Problem, which is known to be NP-hard.

Maximum Clique Problem: For a given undirected graph H = (V;E),
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�nd a clique with the maximum cardinality in H, where a clique K in

H is a subset of V such that fi; jg 2 E for every i; j 2 K with i 6= j.

Let H be an undirected graph. Without loss of generality, we assume

that V = f1; 2; : : : ; ng. Consider the hedonic game (N;P ) with P 2 Pe such
that N = f1; 2; : : : ; ng and Gi = fig [ fj 2 N j fi; jg 2 Eg for each i 2 N .
Notice that, from Lemma 5, for each X � N , X 2 W (N;P ) if and only if X
is a clique in H, and GW (N;P ) is the set of all cliques with the maximum

cardinality. Then, from Lemma 6, to each core stable coalition structure

belongs at least one clique X with the maximum cardinality. This implies

that the problem of �nding a core stable coalition structure when P 2 Pe is
at least as di¢ cult as �nding a clique with the maximum cardinality in an

undirected graph. Therefore, the problem of �nding a core stable coalition

structure when P 2 Pe is NP-hard.

Remark 4 Notice that, from the proof of Theorem 4, the problem of �nding

a core stable coalition structure when P 2 Pe remains NP-hard even if the
mutuality condition �j 2 Gi if and only if i 2 Gj�is imposed.

In the following, we show that when P 2 Pf , a strictly core stable coali-
tion structure can be found in polynomial time, by taking a graph theoretical

approach.

Theorem 5 When P 2 Pf , a strictly core stable coalition structure can be
found in polynomial time.

Proof. Let N = f1; 2; : : : ; ng, P 2 Pf , and let H(N;P ) = (V;E) be a di-

rected graph such that V = N and E = f(i; j) 2 N �N j i 6= j; j 2 Gig. It
follows by Lemma 3 that X 2 S(N;P ) if and only if the induced subgraph of
H(N;P ) by X is strongly connected. Moreover, X 2 GS(N;P ) if and only if
the induced subgraph of H(N;P ) by X is a strongly connected component in
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H(N;P ) with the largest number of vertices. From Theorem 2, a strictly core

stable coalition structure can be found as follows.

� Set M := N and C := ;.

� Repeat the following until M = ;:
- Find a set X �M such that the induced subgraph of H(M;P ) by X is

a strongly connected component in H(M;P ) with the largest number of

vertices.

- Set M :=M nX and C := C [ fXg.

� Return C.

Observe that the outcome is in fact the collection of all strongly connected

components of H(N;P ). An algorithm for �nding all strongly connected com-

ponents of a directed graph (i.e. a strong decomposition of a directed graph)

is proposed by Tarjan (1972), which has running time O(n2). Therefore, a

strictly core stable coalition structure can be found in polynomial time.

Remark 5 Notice that the algorithm described in Theorem 5 delivers a

unique decomposition of a directed graph into strongly connected subgraphs.
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