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Abstract

Let J be the all-ones matrix, and let A denote the adjacency matrix of a graph. An old result of Johnson
and Newman states that if two graphs are cospectral with respect to yJ − A for two distinct values of y, then
they are cospectral for all y. Here we will focus on graphs cospectral with respect to yJ − A for exactly one
value ŷ of y. We call such graphs ŷ-cospectral. It follows that ŷ is a rational number, and we prove existence
of a pair of ŷ-cospectral graphs for every rational ŷ. In addition, we generate by computer all ŷ-cospectral
pairs on at most nine vertices. Recently, Chesnokov and the second author constructed pairs of ŷ-cospectral
graphs for all rational ŷ ∈ (0, 1), where one graph is regular and the other one is not. This phenomenon is
only possible for the mentioned values of ŷ, and by computer we find all such pairs of ŷ-cospectral graphs
on at most eleven vertices.
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1. Introduction

For a graph � with adjacency matrix A, any matrix of the form M = xI + yJ + zA with
x, y, z ∈ R, z /= 0 is called a generalized adjacency matrix of � (as usual, J is the all-ones matrix
and I the identity matrix). Since we are interested in the relation between � and the spectrum of M ,
we can restrict to generalized adjacency matrices of the form yJ − A without loss of generality.

Let � and �′ be graphs with adjacency matrices A and A′, respectively. Johnson and Newman
[7] proved that if yJ − A and yJ − A′ are cospectral for two distinct values of y, then they
are cospectral for all y, and hence they are cospectral with respect to all generalized adjacency
matrices. If this is the case we will call � and �′ R-cospectral. So if yJ − A and yJ − A′ are
cospectral for some but not all values of y, they are cospectral for exactly one value ŷ of y. Then
we say that � and �′ are ŷ-cospectral. Thus cospectral graphs (in the usual sense) are either
0-cospectral or R-cospectral. For both types of cospectral graphs, many examples are known
(see for example [5]). In Fig. 1 we give an example of both. This figure also gives examples
of ŷ-cospectral graphs for ŷ = 1

3 and ŷ = −1. Note that � and �′ are ŷ-cospectral if and only
if their complements are (1 − ŷ)-cospectral. So we also have examples for ŷ = 1, 2

3 and 2. If
ŷ = 1

2 , one can construct a graph cospectral with a given graph � by multiplying some rows and
the corresponding columns of 1

2J − A by −1. The corresponding operation in � is called Seidel
switching. This shows that every graph with at least two vertices has a 1

2 -cospectral mate.
It is well known that, with respect to the adjacency matrix, a regular graph cannot be cospectral

with a nonregular one (see [2, p. 94]). In [5] this result is extended to generalized adjacency matri-
ces yJ − A with y /∈ (0, 1). In [1] a regular-nonregular pair of ŷ-cospectral graphs is constructed
for all rational ŷ ∈ (0, 1). In the next section we shall see that ŷ is rational for any pair of
ŷ-cospectral graphs. Thus we have:

Theorem 1. There exists a pair of ŷ-cospectral graphs, where one graph is regular and the other
one is not, if and only if ŷ is a rational number satisfying 0 < ŷ < 1.

In the final section we will generate all regular-nonregular ŷ-cospectral pairs on at most
eleven vertices. The smallest such pair has only six vertices; it is the 1

3 -cospectral pair of Fig. 1.
In Section 3 we shall construct ŷ-cospectral graphs for every rational value of ŷ. Therefore:

Fig. 1. Some examples of (generalized) cospectral graphs.
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Theorem 2. There exists a pair of ŷ-cospectral graphs if and only if ŷ is a rational number.

In the final section we also generate all pairs of ŷ-cospectral graphs on at most nine vertices.

2. The generalized characteristic polynomial

For a graph � with adjacency matrix A, the polynomial p(x, y) = det(xI + yJ − A) will
be called the generalized characteristic polynomial of �. Thus p(x, y) has integral coefficients,
p(x, y) can be interpreted as the characteristic polynomial of A − yJ , and p(x, 0) = p(x) is the
characteristic polynomial of A. The generalized characteristic polynomial is closely related to
the so-called idiosyncratic polynomial, which was introduced by Tutte [9] as the characteristic
polynomial of A + y(J − I − A). We prefer the polynomial p(x, y), because it has the important
property that the degree in y is only 1. Indeed, for an arbitrary square matrix M it is known
that det(M + yJ ) = det M + y� adj M , where � adj M denotes the sum of the entries of the
adjugate (adjoint) of M . It is also easily derived from the fact that by Gaussian elimination
in xI + yJ − A one can eliminate all y-s, except for those in the first row. In this way we
will obtain more useful expressions for p(x, y) as follows. Partition A according to a vertex v,
the neighbors of v and the remaining vertices (1 denotes an all-ones vector, and 0 an all-zeros
vector):

A =
⎡
⎣0 1� 0�

1 A1 B

0 B� A0

⎤
⎦ .

Then

p(x, y) = det

⎡
⎣ x + y (y − 1)1� y1�

(y − 1)1 xI + yJ − A1 yJ − B

y1 yJ − B� xI + yJ − A0

⎤
⎦

= det

⎡
⎣ x + y (y − 1)1� y1�

(−1 − x)1 xI + J − A1 −B

−x1 J − B� xI − A0

⎤
⎦

= p(x) + y det

⎡
⎣ 1 1� 1�

(−1 − x)1 xI + J − A1 −B

−x1 J − B� xI − A0

⎤
⎦

= p(x) + y det

⎡
⎣ 1 21� 0�

−1 xI − A1 J − B

0 J − B� xI − A0

⎤
⎦− xy det

⎡
⎣0 1� 1�

1 xI − A1 −B

1 −B� xI − A0

⎤
⎦

This expression provides the coefficients of the three highest powers of x in p(x, y). A similar
expression is used for the computations in Section 4.

Lemma 1. Let � be a graph with n vertices, e edges, and generalized characteristic polyno-
mial p(x, y) = ∑n

i=0(ai + biy)xi . Then an = 1, bn = 0, an−1 = 0, bn−1 = n, an−2 = −e

and bn−2 = 2e.

Proof. By using the above expression for p(x, y), and straightforward calculations. �
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Thus the coefficient of xn−2 in p(x, y) equals e(2y − 1). This implies the known fact that, for
any y /= 1

2 , the number of edges of a graph can be deduced from the spectrum of yJ − A. Note
that a 1

2 -cospectral pair with distinct numbers of edges can easily be made by Seidel switching.
Now let � and �′ be graphs with generalized characteristic polynomials p(x, y) and p′(x, y),

respectively. It is clear that p(x, y) ≡ p′(x, y) if and only if � and �′ are R-cospectral, and �
and �′ are ŷ-cospectral if and only if p(x, ŷ) = p′(x, ŷ) for all x ∈ R, whilst p(x, y) /≡ p′(x, y).
If this is the case, then ai + ŷbi = a′

i + ŷb′
i with (ai, bi) /= (a′

i , b
′
i ) for some i (0 � i � n − 3).

This implies ŷ = − (ai − a′
i

)
/
(
bi − b′

i

)
. Thus we proved the mentioned result of Johnson and

Newman, that there is only one possible value of ŷ. Moreover, we see:

Proposition 1. Let � and �′ be two ŷ-cospectral graphs then

(i) ŷ is a rational number.

(ii) Let |ŷ| = p/q with p and q relative primes. Then |ŷ| � p � 4
(

1 + 1
2

√
n + 1

)n+1
.

Proof. We have ŷ = − (ai − a′
i

)
/
(
bi − b′

i

)
for some i with ai , a′

i , bi and b′
i integral. Therefore

p � |ai | + |a′
i |. The Hadamard bound gives that the absolute value of the determinant of any

m × m (0, 1)-matrix is at most 2−m(m + 1)(m+1)/2. Hence the coefficient ai of the characteristic
polynomial

∑n
i=0 aix

i of any n × n (0, 1)-matrix satisfies

|ai | �
(

n

i

)
2i−n(n − i + 1)

n−i+1
2 �

n∑
i=0

(
n

i

)
2i−n(n + 1)

n−i+1
2 = 2−n

(
2 + √

n + 1
)n+1

.

Therefore p � 4
(

1 + 1
2

√
n + 1

)n+1
. �

The generalized characteristic polynomial p(x, y) of a graph � is related to the set of main
angles {β1, . . . , β�} of �. Suppose the adjacency matrix A of � has � distinct eigenvalues λ1 >

· · · > λ� with multiplicities m1, . . . , m�, respectively, then the main angle βi is defined as the
cosine of the angle between the all-ones vector 1 and the eigenspace of λi . For i = 1, . . . , �, let
Vi be an n × mi matrix whose columns are an orthonormal basis for the eigenspace of λi . Then
βi

√
n = ‖V �

i 1‖. Moreover, we can choose Vi such that V �
i 1 = βi

√
ne1 (where e1 is the unit

vector in Rmi ). Put V = [V1 · · · V�], then V �AV = �, where � is the diagonal matrix with the

spectrum of A, and V �1 = √
n
[
β1e�

1 · · · β�e�
1

]�
.

Assume that � and �′ are cospectral graphs with the same angles. Then there exist matri-
ces V and V ′ such that V �AV = V ′�A′V ′ = � and V �1 = V ′�1. Define Q = V V ′�, then
Q�AQ = A′ and Q1 = Q�1 = 1. This implies that Q�(yJ − A)Q = yJ − A′, so yJ − A and
yJ − A′ are cospectral for every y ∈ R, hence � and �′ have the same generalized characteristic
polynomial.

Cvetković and Rowlinson [3] (see also [4, p. 100]) proved the following expression for p(x, y)

in terms of the spectrum and the main angles of �:

p(x, y) = p(x)

(
1 + yn

�∑
i=1

β2
i /(x − λi)

)
.

This formula also shows that the main angles can be obtained from p(x, y), as can be seen as fol-
lows. Suppose q(x) = ��

i=1(x − λi) is the minimal polynomial of A, put r(x) = p(x)/q(x) and
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q(x, y) = p(x, y)/r(x). Then q(x, y) is a polynomial satisfying q(λj , 1) = nβ2
j �i /=j (λj − λi),

which proves the claim. As a consequence, we also proved (a result due to Johnson and Newman
[7]) that � and �′ are R-cospectral if and only if there exist an orthogonal matrix Q such that
Q�AQ = A′ and Q1 = 1. The next theorem recapitulates the conditions we have seen for graphs
being R-cospectral.

Theorem 3. Let � and �′ be graphs with adjacency matrices A and A′. Then the following are
equivalent:

• � and �′ have identical generalized characteristic polynomials,
• � and �′ are cospectral with respect to all generalized adjacency matrices,
• � and �′ are cospectral, and so are their complements,
• � and �′ are cospectral, and have the same main angles,
• yJ − A and yJ − A′ are cospectral for two distinct values of y,

• yJ − A and yJ − A′ are cospectral for any irrational value of y,

• yJ − A and yJ − A′ are cospectral for any y with |y| > 4
(

1 + 1
2

√
n + 1

)n+1
,

• there exist an orthogonal matrix Q, such that Q�AQ = A′ and Q1 = 1.

3. A construction

We construct pairs of graphs� and�′ onnvertices. For each pair the vertex set is partitioned into
three parts with sizes a, b, and c for �, and a′, b′, and c′ = c for �′. Thus a + b = a′ + b′ = n − c.
With these partitions � and �′ are defined via their adjacency matrices A and A′ as follows (O
denotes the all-zeros matrix):

A =
⎡
⎣O O O

O O J

O J J − I

⎤
⎦ , A′ =

⎡
⎣O J O

J O J

O J J − I

⎤
⎦ .

So for the matrices M = yJ − A and M ′ = yJ − A′ we get:

M =
⎡
⎣yJ yJ yJ

yJ yJ (y − 1)J

yJ (y − 1)J (y − 1)J + I

⎤
⎦ , M ′ =

⎡
⎣ yJ (y − 1)J yJ

(y − 1)J yJ (y − 1)J

yJ (y − 1)J (y − 1)J + I

⎤
⎦ .

Clearly rank (M) � c + 2, so the characteristic polynomial p(x, y) of M has a factor xn−c−2.
Moreover rank (M − I ) � a + b + 1, so p(x, y) has a factor (x − 1)c−1. In a similar way we
find that the characteristic polynomial p′(x, y) of M ′ also has a factor xn−c−2(x − 1)c−1. Define

r(x, y) = p(x, y)

xn−c−2(x − 1)c−1
and r ′(x, y) = p′(x, y)

xn−c−2(x − 1)c−1
.

Then r(x, y) and r ′(x, y) are polynomials of degree 3 in x and degree 1 in y. Clearly M and M ′
are cospectral if r(x, y) = r ′(x, y) for all x ∈ R. Write

r(x, y) = t0 + t1x + t2x
2 + t3x

3, and r ′(x, y) = t ′0 + t ′1x + t ′2x2 + t ′3x3,

where ti and t ′i are linear functions in y. Then t3 = t ′3 = 1, and t2 = t ′2 = −ny + c − 1, because
−ny = −trace(M) = −trace(M ′), which equals the coefficient of xn−1 in p(x, y) and p′(x, y).
We shall require that

b′(a′ + c) = bc.
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This means that � and �′ have the same number of edges. In the previous section we saw that the
number of edges determines the coefficient of xn−2 in the generalized characteristic polynomial.
Therefore the above requirement gives t1 = t ′1. Finally we shall use the fact that r(x, y) and r ′(x, y)

are the characteristic polynomials of the quotient matrices R and R′ of M and M ′, respectively
(the quotient matrices are the 3 × 3 matrices consisting of the row sums of the blocks). So if we
choose y = ŷ such that these quotient matrices have the same determinant we have t0 = t ′0, and
therefore M and M ′ have the same spectrum. We find

det R = det

⎡
⎣ya yb yc

ya yb yc − c

ya yb − b yc − c + 1

⎤
⎦ = −yabc,

and

det R′ = det

⎡
⎣ ya′ yb′ − b′ yc

ya′ − a′ yb′ yc − c

ya′ yb′ − b′ yc − c + 1

⎤
⎦ = (1 − 2y)a′b′(c − 1).

Using bc = b′(a′ + c), this leads to ŷ = a′(c − 1)/(2a′c − 2a′ − ac − aa′). So any choice of
positive integers a, a′, b, b′, and c that satisfy a + b = a′ + b′, bc = b′(a′ + c), and 2a′c −
2a′ − ac − aa′ /= 0 leads to a pair of ŷ-cospectral graphs with the above ŷ (indeed, ŷ is uniquely
determined, hence � and �′ are not R-cospectral). For example (a, a′, b, b′, c) = (2, 4, 3, 1, 2)

leads to the two −1-cospectral graph of Fig. 1. Moreover, by a suitable choice of these numbers
we can get every rational value of ŷ > 1/2. Indeed, write ŷ = p/q with 2p − q � 2, then

a = 2p − q − 1, a′ = a(p + 1), b = p(a + 1), b′ = p, and c = p + 1

satisfy the required conditions and gives ŷ = p/q. As remarked in the introduction, 1
2 -cospectral

graphs are easily made by use of Seidel switching, and we also saw that two graphs are ŷ-cospectral
if and only if their complements are (1 − ŷ)-cospectral. Thus we have:

Proposition 2. A pair of ŷ-cospectral graphs exists for every rational ŷ.

Variations on the above construction are possible. The ŷ-cospectral pairs, with 0 < ŷ < 1,
constructed in [1] (where one graph is regular and the other one not) are of a completely different
nature.

4. Computer enumeration

By computer we enumerated all graphs with a ŷ-cospectral
(
ŷ /= 1

2

)
mate on at most nine

vertices. For fixed numbers of vertices (n) and edges (e) we generated all graphs with these
numbers using nauty [8], and for each graph we computedp(x, y) forx = 0, . . . , n. Note that these
n + 1 linear functions in y uniquely determine the polynomial p(x, y). For each pair of graphs we
compared the corresponding linear functions, giving a system of n + 1 linear equations in y. If the
system had infinitely many solutions, then we concluded that the pair was R-cospectral; and if it
had a unique solution ŷ, then the pair was ŷ-cospectral. The results of these computations are given

in Table 1. Note that we only considered the cases where 2e �
(

n

2

)
since, as mentioned before, the

complement of a pair of ŷ-cospectral graphs is a pair of (1 − ŷ)-cospectral graphs. In the table,
the columns with e give the numbers of edges and the columns with # give the numbers of graphs



E.R. van Dam et al. / Linear Algebra and its Applications 423 (2007) 33–41 39
Ta

bl
e

1
N

um
be

rs
of

gr
ap

hs
w

ith
a

ŷ
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Table 2
Numbers of regular graphs ŷ-cospectral with nonregular graphs

n k # 1
5

1
4

2
7

1
3

4
11

3
8

2
5

5
12

3
7

5
9

4
7

7
12

3
5

2
3

3
4

6 2 2 . . . 1 . . . . . . . . . . .
8 2 3 . . . 1 . . 1 . . . . . . . .
8 3 6 1 . . 3 . . . . . . . . . . .
9 2 4 . 1 . 1 . . . . . . . . . . .
9 4 16 . 1 . 1 . . 2 1 2 . 2 1 2 1 1
10 2 5 2 1 . 1 . . . . . . . . . . .
10 3 21 1 2 1 5 . . 1 . 1 . . . . . .
10 4 60 . 4 . 3 . . 4 . . 1 1 . 1 1 .
11 4 266 . 45 . 22 1 2 5 . . . . . . 1 .

Fig. 2. Regular-nonregular ŷ-cospectral pairs on eight vertices.

with e edges. The columns with header R contain the number of graphs that have an R-cospectral
mate. The columns with a number ŷ in the header contain the numbers of graphs that have a
ŷ-cospectral mate. Note that this does not mean that a graph cannot be counted in more than one
column; for example, of the triple of 0-cospectral graphs with seven vertices and five edges, one
(the union of K1,4 and an edge) also has a 1-cospectral mate, and another (the union of K2,2, an
isolated vertex, and an edge) also has a 1

4 -cospectral mate.
We may conclude that the 0-cospectral pair of Fig. 1 is the smallest pair of ŷ-cospectral graphs.

The smallest pair of ŷ-cospectral graphs for ŷ /= 0 is the pair of 1
3 -cospectral graphs in Fig. 1.

This is also the smallest example where one graph is regular, and the other one not. The smallest
R-cospectral pair of graphs, and the smallest ŷ-cospectral pair of graphs for a negative ŷ are also
given in Fig. 1.
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We remark that also in [6] all graphs with an R-cospectral mate, as well as all graphs with
a (usual) cospectral mate were enumerated (up to eleven vertices). The latter enumeration is
different from our enumeration of graphs with a 0-cospectral mate since it also counts graphs
with a R-cospectral mate (whereas these are excluded in our enumeration).

We also enumerated all regular graphs with a nonregular ŷ-cospectral mate
(
ŷ /= 1

2

)
on at most

eleven vertices; see Table 2. The columns with a number ŷ in the header contain the numbers
of graphs that have a ŷ-cospectral mate. The column with n gives the number of vertices, the
column with k gives the valency and the column with # gives the number of k-regular graphs
with n vertices. The computations were restricted to v � 2k + 1 for a similar reason as before.
We remark further that for missing pairs (v, k) in the considered range, such as (11, 2), there
are no regular graphs with a ŷ-cospectral mate

(
ŷ /= 1

2

)
. In Fig. 2 we give all regular-nonregular

ŷ-cospectral pairs on eight vertices (up to complements).
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