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CHARACTERIZATIONS OF THE β- AND THE
DEGREE NETWORK POWER MEASURE

ABSTRACT. A symmetric network consists of a set of positions and a set
of bilateral links between these positions. For every symmetric network we
define a cooperative transferable utility game that measures the “power” of
each coalition of positions in the network. Applying the Shapley value to
this game yields a network power measure, the β-measure, which reflects the
power of the individual positions in the network. Applying this power dis-
tribution method iteratively yields a limit distribution, which turns out to be
proportional to the well-known degree measure. We compare the β-measure
and degree measure by providing characterizations, which differ only in the
normalization that is used.
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measure, stationary power distribution
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1. INTRODUCTION

An undirected graph, which consists of a set of positions and
a set of links between pairs of positions, can represent various
types of networks. Examples of such symmetric networks, in
which the roles of the two positions on each link are symmet-
ric, are exchange networks, communication networks, disease
transmission networks and control networks. On the other
hand, in asymmetric networks the positions on a link have dif-
ferent roles. One can think of buyer–seller networks or firm
structures. The purpose of this article is to measure “power”
or “control” of positions in symmetric networks.

For every symmetric network we define a cooperative
transferable utility game that measures the worth or power
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of coalitions of positions. Applying the Shapley value (Shap-
ley, 1953) to this network power game yields the β-measure,
which is discussed in van den Brink and Gilles (2000) and
van den Brink and Borm (2002) for asymmetric networks. The
idea behind the β-measure is that each position in a network
has an initial weight equal to 1, and measuring power is
seen as fairly redistributing this weight to all its neighbours.
This measure fits well with power dependence theory as devel-
oped by Emerson (1962) since the power value of a position
decreases when its neighbours have more other neighbours.
We provide an axiomatic characterization of the β-measure
using four logically independent properties that are based on
graph-manipulation.

Instead of taking initial weights equal to 1, it seems nat-
ural to take weights that already reflect some power of the
positions. In this way one obtains weighted β-measures. Sim-
ilar as done in Borm et al. (2002) for asymmetric networks,
we consider a sequence of weighted β-measures. Starting with
the (unweighted) β-measure, we compute in each step a new
weighted β-measure, taking the outcome of the previous step
as input weights. We show that this sequence has a limit,
which is proportional to the well-known degree measure for
symmetric networks. This degree measure assigns to every
position just its number of direct neighbours. We provide an
axiomatic characterization of the degree measure that is simi-
lar to that of the β-measure, where the only difference is the
normalization that is used.

The article is organized as follows. In Section 2 we briefly
discuss some graph and game theoretic preliminaries. In Sec-
tion 3 we introduce network power games and introduce the
β-measure for symmetric networks. In Section 4 we provide
an axiomatic characterization of the β-measure. In Section 5
we discuss the sequence of weighted β-measures, show that its
limit is proportional to the degree measure, and provide an
axiomatic characterization of the degree measure. Finally, in
Section 6 we make some concluding remarks.
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2. PRELIMINARIES

In this section we discuss some graph and game theoretic
preliminaries. A symmetric network or undirected graph is a
pair (N,G) where N is a finite set of positions or nodes, and
G ⊆ {{i, j}|i, j ∈ N, i �= j} is a set of symmetric edges or links
between these positions. So, we assume the networks to be
irreflexive, i.e., {i, i} /∈G for all i ∈N . The collection of all (irre-
flexive) networks is denoted by G. We often refer to these just
as graphs.

If {i, j} ∈ G, then positions i and j are called neighbours
and are incident to the edge {i, j}. We denote the set of all
neighbours of position i ∈N in network (N,G) by

R(N,G)(i)={j ∈N | {i, j}∈G}.
For a set of positions S ⊆N we denote R(N,G)(S)=⋃

i∈S R(N,G)(i).
If R(N,G)(i)=∅, then position i is called an isolated position. Posi-
tion i ∈N is called a pending position if |R(N,G)(i)|=1. We denote
the set of isolated positions in network (N,G) by I (N,G) and the
set of pending positions by P(N,G).

For every graph (N,G) ∈ G and set of positions T ⊆ N ,
the induced subgraph (T ,G(T )) is given by G(T ) = {{i, j} ∈
G | {i, j} ⊆ T }. A network (N,G) is connected if for every
pair of positions i, j ∈ N there exists a sequence of positions
h1, . . . , hp such that h1 = i, hp = j , and {hk, hk+1} ∈ G for all
k ∈ {1, . . . , p − 1}. A set of positions T ⊆ N is a component
in (N,G) ∈ G if it is a maximally connected subset of N in
(N,G), i.e., if the graph (T ,G(T )) is connected and for every
i ∈ N \ T the graph (T ∪ {i},G(T ∪ {i})) is not connected. The
set of components in graph (N,G) that consist of at least
two nodes is denoted by B(N,G). (Note that B(N,G) is a
partition of N\I (N,G).) The component of (N,G) containing
node i ∈N is denoted by Bi(N,G).

A network power measure for symmetric networks is a map-
ping p that assigns to every network (N,G) ∈ G a vector
p(N,G)∈R

N . We refer to this vector as a network power dis-
tribution for (N,G). A well-known network power measure
is the degree measure, which assigns to every position in a
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network its number of neighbours. The degree measure thus is
the power measure d given by

di(N,G)=|R(N,G)(i)| for all i ∈N.

A (finite) cooperative game with transferable utility (or simply
TU-game) is a pair (N, v) with finite set N of players and
characteristic function v: 2N → R satisfying v(∅) = 0. A (single
valued) solution for TU-games is a function f that assigns to
every TU-game (N, v) a vector f (N, v) ∈ R

N , representing a
distribution of payoffs to the players. A well-known solution
is the Shapley value (Shapley, 1953), which equally distributes
the dividends �v(S) (see Harsanyi, 1959) over all players in
coalition S ⊆N,S �=∅:

Shi(N, v)=
∑

S⊆N

i∈S

�v(S)

|S| for all i ∈N,

where �v(S) = v(S) if |S| = 1, and recursively �v(S) = v(S) −∑
T �S

T �=∅
�v(T ) for all S ⊆N, |S| ≥ 2. For every T ⊆N,T �= ∅, the

unanimity game uT is given by uT (S)=1 if T ⊆S, and uT (S)=0
otherwise. It is well-known that every characteristic function
v: 2N → R can be written as a linear combination of unanim-
ity games in a unique way by v =∑

T ⊆N

T �=∅
�v(T )uT .

3. NETWORK POWER GAMES AND THE β-MEASURE

In order to measure power or control in networks, we assign
to every network (N,G) ∈ G a cooperative game with trans-
ferable utility (N, v), whose set of players N corresponds to
the set of positions in the network. In cooperative game the-
oretic tradition we take a conservative approach to measur-
ing the worth of a coalition by assigning to every coalition of
positions S ⊆N the number of neighbours of S that have no
neighbours outside S. The network power game (N, vG) corre-
sponding to (N,G)∈G thus is given by
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vG(S)=|{j ∈R(N,G)(S)|R(N,G)(j)⊆S}| for all S ⊆N.

Note that vG(N) = |N\I (N,G)| for all (N,G) ∈ G. The divi-
dends of vG are given by

�vG
(S)=|{j ∈N |R(N,G)(j)=S}| for all S ⊆N,S �=∅, (1)

which is easily seen since
∑

T ⊆S

T �=∅
�vG

(T )=∑
T ⊆S

T �=∅
|{j ∈N |R(N,G)(j)=

T }| = |{j ∈ N |∅ �= R(N,G)(j) ⊆ S}| = |{j ∈ R(N,G)(S)|R(N,G)(j) ⊆
S}| = vG(S). Hence, this game can be decomposed as vG =∑

i∈R(N,G)(N) uR(N,G)(i). So, every network power game is totally pos-
itive meaning that it can be expressed as a nonnegative sum of
unanimity games (see, e.g. Vasil’ev, 1975; Hammer et al., 1977).
As a corollary, a network power game is convex meaning that
v(S)+v(T )≤v(S ∪T )+v(S ∩T ) for all S,T ⊆N .

The Shapley value of a network power game can be seen as
a network power distribution of the underlying network. The
corresponding power measure is called the β-measure:

β(N,G)=Sh(N, vG) for all (N,G)∈G.

PROPOSITION 3.1. For every (N,G)∈G we have

βi(N,G)=
∑

j∈R(N,G)(i)

1
|R(N,G)(j)| for all i ∈N.

Proof. Using (1), we obtain

βi(N,G)=Shi(N, vG)=
∑

S⊆N

i∈S

�vG
(S)

|S|

=
∑

S⊆N

i∈S

|{j ∈N |R(N,G)(j)=S}|
|S|

=
∑

S⊆N

i∈S

∑

j∈N

R(N,G)(j)=S

1
|R(N,G)(j)| =

∑

j∈R(N,G)(i)

1
|R(N,G)(j)| .
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Figure 1. Network (N,G) from Example 3.2.

So, it turns out that the β-measure distributes the weight
over each position equally amongst its neighbours. Suppose
that the positions in the network (N,G) are occupied by agents
who will visit exactly one of their neighbouring positions. Then
βi(N,G) can be interpreted as the expected number of neigh-
bours that visit position i assuming that all neighbours of i

visit all their neighbours with equal probability. The worth of
a coalition of positions in the network power game then is the
number of positions in the coalition that with probability one
will visit a neighbour from inside the coalition.

EXAMPLE 3.2. Consider the network (N,G) with N ={1,2,3,

4,5} and G={{1,2}, {1,3}, {2,4}, {3,4}, {4,5}}, see Figure 1. For
this network we have β(N,G) = (1, 5

6 ,
5
6 ,2, 1

3), e.g. position 2
is visited by the agent in position 1 with probability 1

2 , and
by the agent in position 4 with probability 1

3 , yielding an
expected number of visits equal to 5

6 .

An important class of social networks consists of exchange
networks. These networks consist of a set of positions that
each own certain resources and a set of pairwise (sym-
metric) relations between these positions. The positions are
occupied by agents. The pairwise relations between the posi-
tions describe the possibilities of the corresponding agents to
engage in binary exchange processes. The possibilities of the
agents to obtain favourable resource bundles depend on their
positions in the exchange network. In this context the net-
work power of a position refers to the possibilities of the
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corresponding agent to obtain favourable exchange outcomes
because of its position in the exchange network.

In measuring power in such networks it is usual that the
power of a position increases if it has more neighbours.
However, indirect relations might have a positive or a neg-
ative effect on the power of a position. The positive effect
arises from the fact that the position can become interme-
diary between more pairs of other positions. The negative
effect arises from the fact that the position can become less
important as an intermediary for its direct neighbours whose
exchange possibilities increase (see, e.g. Cook et al., 1983;
Markovsky et al., 1998). This idea is based on power depen-
dence theory as discussed by Emerson (1962) which states that
if a direct relative of a position has more exchange possibili-
ties then this relative is less dependent on that position. For
a further discussion we refer to van den Brink (2002). Since,
according to the β-measure the power of a position increases
when it gets more neighbours, but decreases when its neigh-
bours get more neighbours, the β-measure fits within power
dependence theory.

4. A CHARACTERIZATION

In this section, we provide an axiomatic characterization of
the β-measure using four properties. Let p be a network
power measure. The first property is a normalization deter-
mining the total value of power to be distributed in each com-
ponent. Since, we want to measure power resulting from the
possibilities of positions to communicate with each other, we
require that in each component with at least two positions the
sum of the power values equals the number of positions in
that component.

Component efficiency For every (N,G)∈G and B ∈B(N,G)

it holds that
∑

i∈B pi(N,G)=|B|.
The second property is a boundary condition, which states

that the power value of a position never exceeds the num-
ber of its neighbours, and is at least equal to the number of
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its pending neighbours. The lower bound is motivated since
pending positions are fully dependent on their neighbours.
The upper bound reflects that a position cannot have more
than full power over its direct neighbours, and thus also indi-
rect power (i.e. power over neighbours of neighbours and so
on) cannot be more than direct power over direct neighbours.

Reasonability For every (N,G)∈G it holds that |R(N,G)(i)∩
P(N,G)|≤pi(N,G)≤|R(N,G)(i)| for all i ∈N .

Note that reasonability implies that all isolated positions
have power value equal to zero. The third property states that
cutting an edge into two pieces and putting two new positions
at the two endings does not change the power of the positions
that are not incident to the edge that is cut. This is a kind of
invariance property implying that the power of a position is
determined by a local structure.

Edge cutting independence Let (N,G) be such that {h, i} ∈
G. Then for N ′ =N ∪{j, k} with j, k /∈N , and G′ = (G\ {h, i})∪
{{h, j}, {i, k}} it holds that p�(N,G)=p�(N

′,G′) for all �∈N \
{h, i}.

The fourth property states that adding a new position to an
existing position changes the power value of each neighbour
of the existing position by the same amount. It is a kind of
equal treatment property implying that positions are not dis-
criminated with respect to the addition of a pending position
to a common neighbour.

Pending node addition Let (N,G) and (N ′,G′) be such that
N ′ = N ∪ {i} with i /∈ N , and G′ = G ∪ {h, i} for some h ∈ N .
Then pj(N,G)−pj(N

′,G′)=pk(N,G)−pk(N
′,G′) for all j, k∈

R(N,G)(h).
It is readily verified that the β-measure satisfies the four

properties introduced above. To prove uniqueness, we start
by showing that the first three properties uniquely determine
the β-measure for star components. We call a component B ∈
B(N,G) a star component in (N,G)∈G if there exists an h∈B

with h∈{i, j} for all {i, j}∈G(B). We call h a central position
in this star component.
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LEMMA 4.1. If a power measure p on G satisfies component
efficiency, reasonability and edge cutting independence, and B ∈
B(N,G) is a star component in (N,G) ∈ G, then pi(N,G) =
βi(N,G) for all i ∈B.

Proof. Let B ∈ B(N,G) be a star component in (N,G) ∈ G
with central position h. Reasonability implies that ph(N,G) =
|R(N,G)(h)|. If |B| = 2, then the result immediately follows. Oth-
erwise, let i, j ∈ R(N,G)(h). Cut the edge {h, i} and add the new
positions x and i ′ to h and i, respectively. This results in a graph
(N,G) with N = N ∪ {i ′, x} and G = (G\{{h, i}}) ∪ {{h, x}, {i, i ′}}.
By reasonability, ph(N,G)=|R(N,G)(h)|= |R(N,G)(h)|=ph(N,G).
By edge cutting independence, pk(N,G) = pk(N,G) for all k ∈
B\{h, i}. So, by component efficiency, px(N,G) = pi(N,G).
Next, cut the edge {h, j} and add two new positions y and
j ′ to h and j , respectively. This results in a graph (N ′,G′)
with N ′ = N ∪ {j ′, y} = N ∪ {i ′, j ′, x, y} and G′ = (G\{{h, j}}) ∪
{{h, y}, {j, j ′}} = (G\{{h, i}, {h, j}}) ∪ {{h, x}, {h, y}, {i, i ′}, {j, j ′}}.
By the same argument as before, px(N

′,G′) = pi(N,G) and
py(N

′,G′)=pj(N,G).
Note that we can also construct the graph (N ′,G′) from

(N,G) by first cutting {h, i} and adding y and i ′ and then cut-
ting {h, j} and adding x and j ′. By the same reasoning as in
the first construction, py(N

′,G′) = pi(N,G) and px(N
′,G′) =

pj(N,G) and thus pi(N,G) = px(N
′,G′) = pj(N,G). Since,

this holds for all i, j ∈ R(N,G)(h), together with ph(N,G) =
|R(N,G)(h)| and component efficiency, this implies pi(N,G) =
βi(N,G) for all i ∈B.

Next we show that these properties uniquely determine the
values for pending positions in any network.

LEMMA 4.2. If a power measure p on G satisfies component
efficiency, reasonability and edge cutting independence, then
pi(N,G)=βi(N,G) for all (N,G)∈G and all i ∈P(N,G).

Proof. Let (N,G) ∈ G, i ∈ P(N,G),h ∈ R(N,G)(i) and let m =
|R(N,G)(h)| − 1. Further, let the neighbours of h be labelled
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by R(N,G)(h) = {h1, . . . , hm}. Consider the network (Ni,Gi) ∈
G given by Ni = {1, . . . , n + 2m} and Gi = (G \ C) ∪ D ∪ E

with C = {g ∈ G | h ∈ g, i �∈ g},D = ⋃m
k=1{h,n + k} and E =⋃m

k=1{hk, n + m + k}. Since Bi(Ni,Gi) is a star component of
(Ni,Gi) we have that pi(Ni,Gi) = βi(Ni,Gi) by Lemma 4.1.
Since, (Ni,Gi) is obtained from (N,G) by cutting edges to
which position i is not incident, edge cutting independence
implies that pi(N,G)=pi(Ni,Gi)=βi(Ni,Gi)=βi(N,G).

Next we show uniqueness for components with two central
positions. We call a component B ∈ B(N,G) a double-centred
star component in network (N,G) ∈ G if there exists an edge
{h, i}∈G(B) such that {h, i}∩{g, j} �=∅ for all {g, j}∈G(B) and
R(N,G)(h)∩R(N,G)(i)=∅. We call h and i the central positions
in this double-centred star component. Note that a star com-
ponent is a double-centred star component in which (at least)
one of the central positions is pending.

LEMMA 4.3. If a power measure p on G satisfies component
efficiency, reasonability, edge cutting independence and pending
node addition, and B ∈B(N,G) is a double-centred star compo-
nent in (N,G)∈G, then pi(N,G)=βi(N,G) for all i ∈B.

Proof. Let B ∈B(N,G) be a double-centred star component
in (N,G) ∈ G with central positions h and i. If B is a star
component, then the result follows from Lemma 4.1. Other-
wise, let j ∈R(N,G)(i)\{h}. By Lemma 4.2, pj(N,G)=βj(N,G).

Starting with (N0,G0)= (N,G), construct a sequence of graphs
(Nt,Gt)t∈N, where Nt = Nt−1 ∪ {nt}, nt �∈ Nt−1, and Gt = Gt−1 ∪
{{i, nt}} for all t ∈ N. Then by Lemma 4.2, limt→∞ pj(N

t,Gt) =
limt→∞ βj(N

t,Gt) = 0. By pending node addition we then
have limt→∞ ph(N

t,Gt)=ph(N,G)−βj(N,G). By reasonability,
ph(N

t,Gt) ≥ |R(Nt ,Gt )(h) ∩ P(Nt,Gt)| = |R(N,G)(h) ∩ P(N,G)| for
all t ∈ N. Hence, ph(N,G) ≥ |R(N,G)(h) ∩ P(N,G)| + βj(N,G) =
βh(N,G). Similarly, one can show that pi(N,G) ≥ βi(N,G).
Together with pj(N,G)=βj(N,G) for all j ∈B\{h, i} (which fol-
lows from Lemma 4.2) and component efficiency, the statement
follows.
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Next, we show that in an acyclic component1 where all
positions are at distance at most two from a central position,
the power values are determined by the four properties.

LEMMA 4.4. Let B ∈B(N,G) be such that there exists an h∈
B such that i ∈R(N,G)(h)∪R(N,G)(R(N,G)(h)) for all i ∈B\{h}, and
({i} ∪ R(N,G)(i)) ∩ ({j} ∪ R(N,G)(j)) = {h} for all i, j ∈ R(N,G)(h).
If power measure p on G satisfies component efficiency, rea-
sonability, edge cutting independence and pending node addition
then pi(N,G)=βi(N,G) for all i ∈B.

Proof. By Lemma 4.2, pi(N,G) = βi(N,G) for all i ∈ B ∩
P(N,G). Let m = |R(N,G)(h)| − 1 and let the neighbours of h

be labelled by R(N,G)(h) = {h1, . . . , hm}. If B is a star com-
ponent, then the result follows from Lemma 4.1. Otherwise,
let i ∈ B\({h} ∪ P(N,G)), and let (Ni,Gi) be given by Ni =
{1, . . . , n + 2m} and Gi = (G\C) ∪ D ∪ E with C = {g ∈ G | h ∈
g, i �∈g},D =⋃m

k=1{h,n+ k} and E =⋃m
k=1{hk, n+m+ k}. Since

Bi(Ni,Gi) is a double-centered star component, pi(Ni,Gi) =
βi(Ni,Gi) = βi(N,G) by Lemma 4.3. Since i is not incident
to any edge that is cut going from (N,G) to (Ni,Gi), by
edge cutting independence it then follows that pi(N,G) =
pi(Ni,Gi)=βi(Ni,Gi)=βi(N,G). Finally, since the power val-
ues of all positions in B except the central position h are
determined as their β-outcomes, by component efficiency also
ph(N,G)=βh(N,G).

Finally, we can state our characterization of the β-measure.

THEOREM 4.5. A power measure p on G is equal to the β-
measure if and only if it satisfies component efficiency, reason-
ability, edge cutting independence and pending node addition.

Proof. It is readily verified that the β-measure satisfies the
four properties. For the converse, assume that the power mea-
sure p on G satisfies the properties, and let (N,G)∈G. Let h∈
N . If h ∈ I (N,G), then ph(N,G) = βh(N,G) by reasonability.
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Otherwise, construct the graph (N ′,G′) by cutting every edge
not incident to h and adding a new node to each of the
two positions involved. Then Bh(N

′,G′) is as described in
Lemma 4.4 and ph(N

′,G′) = βh(N
′,G′). As h is not involved

in any edge that is cut, it follows from edge cutting indepen-
dence that ph(N,G)=βh(N,G). Hence, p(N,G)=β(N,G).

Note that the four properties in Theorem 4.5 imply anonym-
ity meaning that when permuting the labels of the positions in a
graph the power distribution is obtained by permuting the payoffs
correspondingly.

We end this section by showing logical independence of the
four axioms of Theorem 4.5 using the following four alterna-
tive power measures.

1. The degree measure satisfies reasonability, edge cutting
independence and pending node addition. It does not sat-
isfy component efficiency.

2. Consider the power measure f given by fi(N,G)= 1 if i ∈
N\I (N,G), and fi(N,G) = 0 if i ∈ I (N,G). In this power
measure every non-isolated position keeps the power over
itself. This power measure satisfies component efficiency,
edge cutting independence and pending node addition. It
does not satisfy reasonability.

3. Consider the power measure f given for all i ∈ N by
fi(N,G) = βi(N,G) if Bi(N,G) is a star component, and
else by fi(N,G)= 0 if i ∈P(N,G)∪ I (N,G) and fi(N,G)=
|R(N,G)(i) ∩ P(N,G)| + 1 otherwise. The difference with the
β-measure is that in each component with at least two non-
pending positions, these positions retain the full power over
themselves. This power measure satisfies component effi-
ciency, reasonability and pending node addition. It does not
satisfy edge cutting independence.

4. Consider the power measure f given by fi(N,G)=βi(N,G) if
i ∈ P(N,G) ∪ I (N,G), and fi(N,G) = |R(N,G)(i) ∩ P(N,G)| +
|R(N,G)(i)\P(N,G)|

|R(N,G)(i)| if i ∈ N \ (P (N,G) ∪ I (N,G)). The difference
with the β-measure is that each non-pending (and non-iso-
lated) position retains that part of the power over itself that
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according to the β-measure would go to its non-pending neigh-
bours. This power measure satisfies component efficiency, rea-
sonability and edge cutting independence. It does not satisfy
pending node addition.

The following example illustrates that the above given four
power measures do not satisfy the corresponding axioms.

EXAMPLE 4.6. Consider the network (N,G) with N ={1,2,3,

4,5} and G={{1,2}, {2,3}, {3,4}, {3,5}}. The β-measure of this
network equals ( 1

2 ,11
3 ,2 1

2 ,
1
3 ,

1
3). The degree measure of this

network equals (1,2,3,1,1), so its components do not add
up to five, showing that this power measure does not satisfy
component efficiency. Clearly, the second power measure given
above yields power distribution (1,1,1,1,1) and thus position
3 gets less than 2 being the number of its pending neighbours,
showing that this power measure does not satisfy reasonabil-
ity.

The third power measure yields (0,2,3,0,0). Considering
the network (N ′,G′) given by N ′ = N ∪ {6,7} and G′ = (G\
{{2,3}}) ∪ {{2,6}, {3,7}}, the power measure for this network
equals ( 1

2 ,1,3, 1
3 ,

1
3 ,

1
2 ,

1
3). So, the power value of positions 4

and 5 changed although an edge on which they are not inci-
dent is cut, showing that this power measure does not satisfy
edge cutting independence.

Finally, the fourth power measure yields the power dis-
tribution ( 1

2 ,11
2 ,2 1

3 ,
1
3 ,

1
3) for (N,G). Considering the network

(N ′,G′) given by N ′ =N ∪ {6} and G′ =G∪ {{3,6}}, the power
distribution for this network equals ( 1

2 ,11
2 ,31

4 ,
1
4 ,

1
4 ,

1
4). So, the

power value of position 2 did not change while the power
value of positions 4 and 5 decreased by adding position 6 as a
pending position to position 3, showing that this power mea-
sure does not satisfy pending node addition.

5. AN ITERATIVE PROCEDURE AND THE DEGREE MEASURE

The idea behind the β-measure is that every position in a
network has an initial weight equal to 1, and each of its
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neighbours receives an equal share of this weight. Instead of
taking initial weights equal to 1, it seems natural to take
weights that already reflect the power of the positions. If we
take the β-measure as initial weights, we obtain the second
order measure β2. Of course, this second order measure can
be used as new input weights, and so on, yielding higher order
measures. Starting with

β0
i (N,G)=1 for all i ∈N,

we recursively define the measures

βt
i (N,G)=

∑

j∈R(N,G)(i)

βt−1
j (N,G)

|R(N,G)(j)| for all i ∈N, t ∈{1,2, . . . }.

(2)

In particular, β1(N,G) = β(N,G). This sequence of measures
has a limit, which is a stationary power distribution. A power
distribution p ∈R

N is a stationary power distribution of (2) if
redistributing these weights according to (2) yields the same
weights:

pi(N,G)=
∑

j∈R(N,G)(i)

pj (N,G)

|R(N,G)(j)| for all i ∈N. (3)

Borm et al. (2002) define a sequence similar to (2) for directed
or asymmetric networks (N,D) with D ⊆ N × N , and show
that it has a limit, which is also a stationary distribution.
Defining for every undirected network (N,G) ∈ G the cor-
responding directed network (N,D(G)) with D(G) = {(i, j) ∈
N × N | {i, j} ∈ G}, the existence of a stationary distribu-
tion of (2) can be shown in a similar way as their result.
Moreover, since for every (N,G) ∈ G and i ∈ N we have that∑

j∈R(N,G)(i)

dj (N,G)

|R(N,G)(j)| =
∑

j∈R(N,G)(i)

|R(N,G)(j)|
|R(N,G)(j)| = |R(N,G)(i)| = di(N,G),

the degree measure yields a stationary power distribution of
(2). In case the network (N,G) is connected, the correspond-
ing directed network (N,D(G)) is strongly connected,2 and
it follows from standard results on such networks (see, e.g.
Berger, 1993) that (2) has a unique component efficient sta-
tionary power distribution. If the network is not connected
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then it can be shown that in every stationary power distribu-
tion the power in every component is distributed proportional
to the degrees of the nodes in that component. By component
efficiency of every measure βt, t ∈{1,2, . . . }, this yields unique-
ness also for unconnected networks. Summarizing we have the
following proposition.

PROPOSITION 5.1. For every (N,G)∈G the sequence defined
by (2) has a limit, which is proportional to the degree measure
of (N,G). This limit is the unique component efficient station-
ary power distribution of (N,G).

In Section 3 we argued that the β-measure assigns to every
position the expected number of visits if all agents visit each
of their neighbours with equal probability. Now, suppose that
given the new positions of the agents (i.e. there may be more
than one agent in a position now) this process is repeated
once more. Every agent starts from one of its neighbouring
positions, and again everybody will move to each one of the
(new) neighbouring positions with equal probability. The sec-
ond order β-measure then gives the expected number of visits
after this second turn. By iteratively applying this procedure
the expected number of visits in the long run is proportional
to the degree measure of the network.

The degree measure satisfies all properties stated in Theorem
4.5 except component efficiency. Instead, it satisfies an alter-
native normalization, which distributes twice the number of
edges in every component with at least two nodes.

Degree efficiency For every (N,G) ∈ G and B ∈ B(N,G) it
holds that

∑
i∈B pi(N,G)=2|G(B)|.

Replacing component efficiency by degree efficiency in
Theorem 4.5 yields a characterization of the degree measure.

THEOREM 5.2. A power measure p on G is equal to the
degree measure if and only if it satisfies degree efficiency, rea-
sonability, edge cutting independence and pending node addition.

Note that the specific normalization is not essential for
proving uniqueness in the proofs of Theorem 4.5 and the
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preceding lemmas. Therefore the proof of Theorem 5.2 is a
straightforward adaptation of the proof of Theorem 4.5 and
is omitted.

6. CONCLUDING REMARKS

We provided axiomatic characterizations of the β- and degree
measures differing only in the normalization that is used. We
also showed that the limit of a recursive procedure which
starts with the β-measure, and in each step gives as output a
new weighted β-measure, taking as input weights the weighted
β-measure obtained in the previous step, is proportional to
the degree measure. Moreover, the degree measure is a sta-
tionary power distribution in the sense that it satisfies (3),
and as such can be interpreted within the context of power
dependence theory (see Emerson, 1962). On the other hand,
Hendrickx et al. (2005) take an alternative approach. Instead
of using weighted β-measures, they consider weighted Shapley
values of the corresponding network power game. For vari-
ous types of networks, they compute and interpret a Proper
Shapley value as introduced by Vorob’ev (1998), which assigns
to every network power game a particular weighted Shapley
value such that these values are equal to the chosen weights.
This yields a power measure π satisfying

πi(N,G)=
∑

j∈R(N,G)(i)

πj (N,G)
∑

h∈R(N,G)(j) πh(N,G)
for all i ∈N.

In defining the conservative network power game we fol-
lowed the game theoretic tradition to assign to every coalition
the minimal worth they can guarantee themselves. By defi-
nition, the dual game (N, v∗) of a TU-game (N, v) is given
by v∗(S) = v(N) − v(N\S). Since v∗

G(S) = vG(N) − vG(N\S) =
|R(N,G)(N)|− |{j ∈R(N,G)(N\S) |R(N,G)(j)⊆N \S}|= |R(N,G)(N)|−
|{j ∈ R(N,G)(N) | R(N,G)(j) ∩ S = ∅}| = |{j ∈ R(N,G)(N) | R(N,G)(j) ∩
S �= ∅}| = |R(N,G)(S)|, it follows that the dual game of the
conservative network power game corresponding to (N,G) ∈
G assigns to every coalition of positions S ⊆ N the total
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number of neighbours of S. This can be seen as an optimistic
approach to network power measurement. Since, the Shapley
value of a TU-game coincides with the Shapley value of its
dual game, the β-measure also is equal to the Shapley value
of this dual (optimistic) network power game. Moreover, lin-
earity of the Shapley value implies that the β-measure equals
the Shapley value of every convex combination of the conser-
vative network power game and the optimistic network power
game.

NOTES

1. A set of positions {i1, . . . , im} with i1 = im, ik �= il for all k, l ∈
{1, . . . ,m − 1}, and {ik, ik+1} ∈ G for all k ∈ {1, . . . ,m − 1}, is called
a cycle in (N,G). A component that contains no cycles is called an
acyclic component.

2. A directed graph (N,D) is strongly connected if for each pair of posi-
tions i, j ∈N, i �= j there is a sequence of nodes i1, . . . , ip such that
i1 = i, ip = j and (ik, ik+1)∈D for all k ∈{1, . . . , p −1}.
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