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Abstract We consider semidefinite programming problems on which a per-
mutation group is acting. We describe a general technique to reduce the size of
such problems, exploiting the symmetry. The technique is based on a low-order
matrix ∗-representation of the commutant (centralizer ring) of the matrix alge-
bra generated by the permutation matrices. We apply it to extending a method of
de Klerk et al. that gives a semidefinite programming lower bound to the cross-
ing number of complete bipartite graphs. It implies that cr(K8,n) ≥ 2.9299n2−6n,
cr(K9,n) ≥ 3.8676n2 − 8n, and (for any m ≥ 9)

lim
n→∞

cr(Km,n)

Z(m, n)
≥ 0.8594

m
m − 1

,
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where Z(m, n) is the Zarankiewicz number � 1
4 (m − 1)2�� 1

4 (n − 1)2�, which is
the conjectured value of cr(Km,n). Here the best factor previously known was
0.8303 instead of 0.8594.

Keywords Crossing numbers · Complete bipartite graph · Semidefinite
programming · Regular ∗-representations
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1 Introduction

This paper is inspired by papers of Kanno et al. [5] and Gatermann and Parrilo
[4], that study semidefinite programming problems whose underlying matrices
have symmetries that enable us to reduce the size of the problems, and it extends
results of de Klerk et al. [7] on the crossing number of complete bipartite graphs.

The new contribution of the present paper is a general but explicit method
to reduce the order of the matrices in a semidefinite programming problem
if the problem is invariant under a group acting on its variables. The method
is based on constructing a ‘regular ∗-representation’ of a matrix ∗-algebra. A
matrix ∗-algebra is a collection of matrices closed under addition, scalar and
matrix multiplication, and transposition. In this paper, all matrices are real, and
all positive semidefinite matrices are symmetric.

The results in this paper relate to representation theory (cf. [3]), C∗-algebra
(cf. [10]), and the theory of association schemes (cf. [2]) – however, this paper
is mainly self-contained.

The method applies to problems of the form

min{tr(CX) | X positive semidefinite, X ≥ 0, tr(AjX) = bj for j = 1, . . . , m}, (1)

where C and A1, . . . , Am are given real symmetric matrices (all of the same
order), and b1, . . . , bm are given real numbers. (This is a generic form of a
semidefinite programming problem.)

The method is in particular effective when the order of the matrices C and
Aj is large, whereas there is a relatively large multiplicative group G of per-
mutation matrices that commute with each of C, A1, . . . , Am. In that case, we
can assume without loss of generality that also X commutes with all matrices
in G. As we will show below, this makes it possible to reduce the order of the
matrices involved to the dimension of the algebra of matrices commuting with
all matrices in G. This often is much smaller than the order of the original input
matrices, which allows to solve the semidefinite programming problem much
more efficiently, or to solve it at all.

As application of the method we extend the bounds on the crossing num-
ber of complete bipartite graphs Km,n found by de Klerk et al. [7], as we will
describe in Sect. 3.
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2 The regular ∗-representation

Let G be a finite group acting on a finite set Z. That is, we have a homomorphism
h : G → SZ, where SZ is the group of all permutations of Z. So for each π ∈ G,
hπ is a bijection Z → Z with hππ ′ = hπ hπ ′ and hπ−1 = h−1

π for all π , π ′ ∈ G.
For each π ∈ G, let Mπ be the Z × Z matrix with

(Mπ )x,y :=
{

1 if hπ (x) = y,
0 otherwise,

(2)

for x, y ∈ Z. So Mπ is the Z × Z permutation matrix corresponding to the
permutation hπ of Z. Hence π 	→ Mπ defines an orthogonal representation of
G, i.e., it satisfies

Mππ ′ = Mπ Mπ ′ and Mπ−1 = MT
π (3)

for all π , π ′ ∈ G.
Let A be the matrix ∗-algebra

A :=
{∑

π

λπMπ | λπ ∈ R (π ∈ G)

}
. (4)

The invariant matrices are the Z × Z matrices X satisfying

XMπ = Mπ X (5)

for all π ∈ G. In other words, Mπ XMπ−1 = X.
So the collection of invariant matrices is precisely the commutant A′ of A:

A′ := {X ∈ R
Z×Z | XM = MX for all M ∈ A}. (6)

(The commutant is also known as the centralizer ring.) The commutant is again
a matrix ∗-algebra.

The matrix ∗-algebra A′ has a basis of {0, 1}-matrices E1, . . . , Ed such that

E1 + · · · + Ed = J, (7)

where J is the all-one Z × Z matrix. They correspond to the orbits of the action
of G on Z × Z. (This is the action (x, y) 	→ (hπ (x), hπ (y)) for x, y ∈ Z and
π ∈ G.)

Computationally, we do not need to work with these matrices, but we should
be able to identify them and to calculate their multiplication parameters, as will
be specified below.
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Observe that for each i there is an i∗ with

Ei∗ = (Ei)
T (8)

(possibly i∗ = i).
We normalize the Ei to

Bi := tr(ET
i Ei)

−1/2Ei (9)

for i = 1, . . . , d. Then

tr(BT
i Bj) = δi,j, (10)

where δi,j is the Kronecker delta.
The multiplication parameters λk

i,j are defined by

BiBj =
∑

k

λk
i,jBk (11)

for i, j = 1, . . . , d.
Define the d × d matrices L1, . . . , Ld by

(Lk)i,j := λi
k,j (12)

for k, i, j = 1, . . . , d. Let L be the linear space

L :=
⎧⎨
⎩

d∑
k=1

xkLk | x1, . . . , xd ∈ R

⎫⎬
⎭ . (13)

Let φ be the linear function A′ → L determined by φ(Bk) = Lk for k = 1, . . . , d.
We will show that φ is a ∗-isomorphism; that is, it is a bijection and satisfies
φ(YZ) = φ(Y)φ(Z) and φ(YT) = φ(Y)T for all X, Y ∈ A′.

Theorem 1 φ is a ∗-isomorphism.

Proof Consider any k = 1, . . . , d. Let the linear function �k : A′ → A′ be
defined by: �k(X) := BkX for each X ∈ A′. Then Lk is the matrix correspond-
ing to �k, using the basis B1, . . . , Bd of A′. Indeed,

�k(Bj) = BkBj =
∑

i

λi
k,jBi =

∑
i

(Lk)i,jBi. (14)

So φ(Bk) is the matrix corresponding to the linear operator X 	→ BkX on A′
(since Lk = φ(Bk)). Hence, as the Bk span A′, it follows that, for each Y ∈ A′,
φ(Y) is the matrix corresponding to the linear operator X 	→ YX on A′. This



Reduction of symmetric semidefinite programs 617

implies that φ(YZ) = φ(Y)φ(Z) for all Y, Z ∈ A′ (since (YZ)X = Y(ZX)).
Moreover, φ is one-to-one, since if φ(Y) = 0, then YX = 0 for all X ∈ A′, hence
YYT = 0, and so Y = 0.

Finally, φ(YT) = φ(Y)T . Indeed, we have for each i,

YBj =
∑

t

φ(Y)t,jBt. (15)

Hence

tr(BT
i YBj) =

∑
t

φ(Y)t,jtr(BT
i Bt) =

∑
t

φ(Y)t,jδi,t = φ(Y)i,j. (16)

Since similarly φ(YT)j,i = tr(BT
j YTBi) and since tr(BT

j YTBi) = tr(BT
i YBj), we

have φ(YT)j,i = φ(Y)i,j. So φ(YT) = φ(Y)T . 
�
Those familiar with representation theory will see that φ is the regular ∗-repre-
sentation of A′ associated with the orthonormal basis B1, . . . , Bd of A′.

An important consequence of Theorem 1 is that, for any x1, . . . , xd ∈ R,

d∑
i=1

xiBiis positive semidefinite ⇐⇒
d∑

i=1

xiLiis positive semidefinite. (17)

(Recall that each positive semidefinite matrix is symmetric, and that
∑

i xiBi
and

∑
i xiLi are symmetric if and only if xi∗ = xi for each i.) Statement (17) is a

well-known and easy fact from C∗-algebra. It can be seen as follows. Trivially,
as φ is a ∗-isomorphism, φ maintains symmetry of matrices. Now let M ∈ A′
be symmetric and let p(x) be the minimal polynomial of M. Then p is also the
minimal polynomial of φ(M), as φ is an algebra ∗-isomorphism (since X =
0 ⇐⇒ φ(X) = 0). Then M is positive semidefinite ⇐⇒ all roots of p are
nonnegative ⇐⇒ φ(M) is positive semidefinite.

Since the order d of the matrices Li is equal to the number of matrices Bi
(that is, to the number of orbits of the action of G on Z × Z), this may give a
considerable reduction of the size of the matrices to which we want to apply
semidefinite programming.

To be more precise, let the matrices C and Aj in (1) be Z × Z matrices com-
muting with Mπ for each π in some finite group acting on Z. Then there is an
optimum solution X that commutes with each of the Mπ , since we can replace
any optimum solution X by

X ′ := |G|−1
∑
π∈G

Mπ XMT
π , (18)

as X ′ is feasible again and tr(CX ′) = tr(CX). Hence we can require X = ∑
i xiBi

for some xi. Then by (17)
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min
{
tr(CX) | X positive semidefinite, X ≥ 0,

tr(AjX) = bj (j = 1, . . . , m)
}

= min

⎧⎨
⎩

d∑
i=1

tr(CBi)xi |
d∑

i=1

xiBi positive semidefinite, xi ≥ 0 (i = 1, . . . , d),

d∑
i=1

tr(AjBi)xi = bj (j = 1, . . . , m)

⎫⎬
⎭

= min

⎧⎨
⎩

d∑
i=1

tr(CBi)xi |
d∑

i=1

xiLi positive semidefinite, xi ≥ 0 (i = 1, . . . , d),

d∑
i=1

tr(AjBi)xi = bj( j = 1, . . . , m)

⎫⎬
⎭ . (19)

Assuming that we can compute the values of tr(CBi) and tr(AjBi), this gives
a smaller semidefinite programming problem.

Since the matrix
∑

i xiLi is symmetric if and only if xi = xi∗ for each i, the
number of variables in (19) can be reduced to the reduced dimension dreduced,
which is the number of distinct pairs {i, i∗}. In other words, it is the dimension
of the subspace of A′ of symmetric matrices.

Finally, we mention the following equality, that may be useful in determining
the matrices Lk:

λk
i,j = tr(Dk∗DiDj) (20)

(which can be derived from Eq. 16). It implies λk
i,j = λ

j∗
k∗,i = λi∗

j,k∗ = λk∗
j∗,i∗ =

λ
j
i∗,k = λi

k,j∗ .

3 Crossing numbers

As application we give an extension of a method of de Klerk et al. [7] to lower
bound the crossing number cr(Km,n) of a complete bipartite graph Km,n. (The
crossing number of a graph G is the minimum number of intersections of edges
when G is drawn in the plane such that all vertices are distinct.) This is based
on finding, for some fixed m, a lower bound for cr(Km,n) using semidefinite
programming.

The bound relates to the problem raised by the paper of Zarankiewicz [12],
asking if

cr(Km,n)
?= Z(m, n) := � 1

4 (m − 1)2�� 1
4 (n − 1)2�. (21)
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(In fact, Zarankiewicz claimed to have a proof, which however was shown to
be incorrect.) Here ≤ follows from a direct construction. This equality was
proved by Kleitman [6] if min{m, n} ≤ 6 and by Woodall [11] if m ∈ {7, 8} and
n ∈ {7, 8, 9, 10}.

Consider any m, n. Let Km,n have colour classes {1, . . . , m} and {u1, . . . , un}.
(This notation will be convenient for our purposes.) Let Zm be the set of cyclic
permutations of {1, . . . , m} (that is, the permutations with precisely one orbit).
For any drawing of Km,n in the plane and for any ui, let γ (ui) be the cyclic
permutation (1, i2, . . . , im) such that the edges leaving ui in clockwise order, go
to 1, i2, . . . , im respectively.

For σ , τ ∈ Zm, let Cσ ,τ be equal to the minimum number of crossings when
we draw Km,2 in the plane such that γ (u1) = σ and γ (u2) = τ . de Klerk et al. [7]
applied a direct algorithm to compute Cσ ,τ , due to Kleitman [6] and described
in detail by Woodall [11]. One may show that for any σ ∈ Zm:

Cσ ,σ−1 = 0 and Cσ ,σ = � 1
4 (m − 1)2�. (22)

The Cσ ,τ define a matrix C = (Cσ ,τ ) in R
Zm×Zm (see [7] for more details

about this matrix). Then define the number αm by:

αm := min{tr(CX) | X ∈ R
Zm×Zm+ , Xpositive semidefinite, tr(JX) = 1}, (23)

where J is the all-one matrix in R
Zm×Zm .

de Klerk et al. [7] showed:

Theorem 2 cr(Km,n) ≥ 1
2 n2αm − 1

2 n� 1
4 (m − 1)2� for all m, n.

Proof Consider a drawing of Km,n in the plane with cr(Km,n) crossings. For
each cyclic permutation σ , let dσ be the number of vertices ui with γ (ui) = σ .
Consider d as column vector in R

Zm , and define

X := n−2ddT . (24)

Then X satisfies the constraints in (23), hence αm ≤ tr(CX). For i, j = 1, . . . , n,
let βi,j denote the number of crossings of the edges leaving ui with the edges
leaving uj. So if i �= j, then βi,j ≥ Cγ (ui),γ (uj). Hence

n2tr(CX) = tr(CddT) = dTCd =
n∑

i,j=1

Cγ (ui),γ (uj) (25)

≤
n∑

i,j=1
i �=j

βi,j +
n∑

i=1

Cγ (ui),γ (ui) = 2cr(Km,n) + n� 1
4 (m − 1)2�.

Therefore,
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cr(Km,n) ≥ 1
2 n2tr(CX) − 1

2 n� 1
4 (m − 1)2� ≥ 1

2αmn2 − 1
2 n� 1

4 (m − 1)2�. (26)


�
This implies:

Corollary 1 cr(Km,n) ≥ m(m − 1)

k(k − 1)
( 1

2 n2αk − 1
2 n� 1

4 (k − 1)2�) for all n and k ≤ m.

Proof Consider a drawing of Km,n in the plane with cr(Km,n) crossings. Let G be
the collection of all subgraphs of Km,n isomorphic to Kk,n, obtained by selecting
k vertices from 1, . . . , m. Then |G| = (m

k

)
. Moreover, any two disjoint edges in

Km,n occur in
(m−2

k−2

)
of the graphs in G. So each crossing of Km,n occurs in

(m−2
k−2

)
of the graphs in G. Therefore,

cr(Km,n) ≥
(m

k

)
(m−2

k−2

)cr(Kk,n) = m(m − 1)

k(k − 1)
cr(Kk,n). (27)


�
This in turn implies:

Corollary 2 lim
n→∞

cr(Km,n)

Z(m, n)
≥ 8αk

k(k − 1)

m
m − 1

for all k ≤ m.

Proof Using Corollary 1:

lim
n→∞

cr(Km,n)

Z(m, n)
≥ lim

n→∞
m(m − 1)( 1

2 n2αk − 1
2 n� 1

4 (k − 1)2�)
k(k − 1)Z(m, n)

= lim
n→∞

m(m − 1)( 1
2 n2αk − 1

2 n� 1
4 (k − 1)2�)

k(k − 1)� 1
4 (m − 1)2�� 1

4 (n − 1)2�
= 2αk

k(k − 1)

m(m − 1)

� 1
4 (m − 1)2� ≥ 8αk

k(k − 1)

m
m − 1

. (28)


�
The parameter αm is defined by the conceptually very simple semidefinite pro-
gramming problem (23), but the order (m − 1)! of the matrices increases fast
with m. For m ≥ 7, it is too large for present-day semidefinite programming
software.

However, using the symmetry of C, de Klerk et al. [7] computed α7 =
4.3593154965 . . . , which implies

cr(K7,n) ≥ 2.1796n2 − 4.5n, (29)

and also, for each m ≥ 7 and n:

cr(Km,n) ≥ 0.0518m(m − 1)n2 − 3
28 m(m − 1)n (30)
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and for each m ≥ 7:

lim
n→∞

cr(Km,n)

Z(m, n)
≥ 0.8303

m
m − 1

. (31)

We describe the approach to exploiting the symmetry further, and apply the
method described in Sect. 2. Fix m ∈ N. Let G := Sm × {−1, +1}, and define
h : G → SZm by

hπ ,i(σ ) := πσ iπ−1 (32)

for π ∈ Sm, i ∈ {−1, +1}, σ ∈ Zm. So G acts on Zm. Moreover, the cost matrix
C satisfies Mπ CMT

π = C for each π ∈ G (cf. [7]), and also Mπ JMT
π = J for

each π ∈ G. Hence the method of Sect. 2 applies, and we can reduce (23) as
in (19). Let the algebra A (as defined in (4)) in this case be denoted by Cm.
So its commutant is C′

m.
Applying this method requires that we are able to identify the matrices Ei

and the multiplication parameters λk
i,j. This indeed is possible for this applica-

tion, where we have to identify the equivalence classes of pairs (σ , τ) ∈ Zm×Zm
under the equivalence relation

(σ , τ) ∼= (σ ′, τ ′) ⇐⇒ ∃(π , i) ∈ G : hπ ,i(σ ) = σ ′, hπ ,i(τ ) = τ ′. (33)

Since each equivalence class contains a pair (ι, τ), where ι is the permutation
ι := (1, . . . , m), this can be done for instance by enumerating all (m − 1)! pairs
(ι, τ) and check their equivalences. (We note here that (9 − 1)! = 40, 320 is
still computationally feasible in this respect, whereas 40, 320 × 40, 320 matrices
are too large for present-day semidefinite programming software.) Also the
multiplication parameters λk

i,j can be computed (for m = 9) within reasonable
time.

With this method we were able to compute α8 and α9. It turns out that
α8 = 5.8599856444 . . . , implying

cr(K8,n) ≥ 2.9299n2 − 6n, (34)

and also, for each m ≥ 8 and n:

cr(Km,n) ≥ 0.0523m(m − 1)n2 − 3
28 m(m − 1)n (35)

and for each m ≥ 8:

lim
n→∞

cr(Km,n)

Z(m, n)
≥ 0.8371

m
m − 1

. (36)

Moreover, α9 = 7.7352126 . . . , implying

cr(K9,n) ≥ 3.8676063n2 − 8n, (37)
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Table 1 Table of dimension d
and reduced dimension
dreduced

m d dreduced

1 1 1
2 1 1
3 2 2
4 3 3
5 8 7
6 20 17
7 78 56
8 380 239
9 2,438 1,366
10 18,744 9,848

and also, for each m ≥ 9 and n:

cr(Km,n) ≥ 0.0537m(m − 1)n2 − 1
9 m(m − 1)n, (38)

and for each m ≥ 9:

lim
n→∞

cr(Km,n)

Z(m, n)
≥ 0.8594

m
m − 1

. (39)

The dimension d of C′
m and the reduced dimension dreduced (cf. the end of

Sect. 2) are given in Table 1.
Computations for this paper were done on an SGI Altrix cluster running 64-

bit Linux on 32 Itanium II processors, and with 128 GB of shared memory. We
used the interior point implementation CSDP by Borchers [1] that relies upon
BLAS/LAPACK matrix library routines (for the latter we used the parallel
implementation by SGI).

For m = 9, the SDP problem to compute α9 had more than 44 million non-
zero data entries. This is larger than any SDP benchmark problem known to
the authors. Its solution on the SGI Altrix cluster required more than 7 days of
wall clock time and used 1.47 GB of memory.

It is therefore safe to say that the computation of α10 is out of reach of present-
day computing power, at least when general-purpose interior point SDP solvers
are used, even if we would be able to find the most economical representation
of the problem (i.e., a block-diagonalization), simply because the number of
variables remains too large. Any interior point method has to form and solve
dense linear systems of order dreduced = 9, 848 at each iteration when computing
α10 (cf. Table 1). This is regardless of whether a block-diagonalization is known
for the regular representation of C′

m.
Moreover, an interior point algorithm will have to compute Choleski and/or

singular value decompositions of matrices of order d × d at each iteration (or
of order the largest block if a block-diagonalization is used).
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Fig. 1 Each computed value αk gives the lower bound limn,m→∞ cr(Kn,m)

Z(n,m)
≥ 8αk

k(k−1)

Figure 1 shows the lower bounds obtained on the ratio

lim
m,n→∞ cr(Km,n)/Z(m, n)

by computing αk for k = 2, . . . , 9 (cf. Corollary 2). So far, odd values of k gave
relatively large improvements compared to the even values. This is reminiscent
of the fact that, if the Zarankiewicz conjecture holds for K2m−1,n, it also holds
for K2m,n.

We finally note that, for m ≥ 6, the number of orbits of Zm × Zm under the
actions of G = Sm × {−1, +1} is strictly smaller than if we restrict the actions to
Sm × {1}. In fact, G is precisely the full automorphism group of the matrix C.

4 Concluding remarks

We discuss what is new in this paper compared with [4,5]. Gatermann and
Parrilo [4] only consider the situation where the canonical representation of
the commutant is known. In the example we consider, this is not the case. In
the paper of Kanno et al. [5], it is shown that the central path in semidefinite
programming converges to a group symmetrical optimal solution (i.e. a solu-
tion in the commutant). Our approach restricts the optimization process to the
commutant (in fact to a more economical representation of it). Thus the desir-
able feature of a symmetric optimal solution is retained, but with the additional
advantage of a reduction in the size of the optimization problem.

Our method may also be applied to compute upper bounds on the size of
error-correcting codes. For instance, it may reduce the Terwilliger algebra of
the Hamming scheme Hn (cf. [9]), whose matrices have order 2n × 2n, to an
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algebra of matrices of order
(n+3

3

)×(n+3
3

)
. This makes the corresponding bounds

computable in time bounded by a polynomial in n (rather than in 2n). How-
ever, for this application the block-diagonalization has been found ([9]), which
allows a more efficient computation of the bounds. Laurent [8] showed that
with the method of the present paper a hierarchy of further, polynomial-time
computable sharpenings can be obtained for the coding problem.

Related to the coding application is computing the Lovász’s ϑ bound of
graphs G (and its variant ϑ ′) when the commutant of the automorphism group
of G has low dimension (or when the algebra generated by the adjacency matrix
and the all-one matrix has low dimension). Another potential application would
be the truss topology design problem described in Kanno et al. [5] for trusses
with suitable symmetry.

Acknowledgements We are thankful to the referees for helpful suggestions as to the presentation
of this paper.
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