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ANTITHETIC VARIATES, COMMON RANDOM IC'UMBERS AND 
OPTIMAL COMPUTER TIME ALLOCATION I N  SIMULATION* 

JACK P. C. KLEIJNENI  § 

Katholieke Hogeschool, Tilburg, Netherlands 

Two simple variance reduction techniques are discussed, viz. antithetic variates and 
common random numbers. Their joint application creates undesirable negative correla- 
tions between the responses of t ~ v o  simulated systems. Therefore three alternatives are 
considered: antithetics only, common random numbers only, antithetic and common 
random numbers combined. No alternative is al~vays best as is shown by analytical 
results for extremely simple systems and sin~ulation results for simple queuing systems. 
Therefore a procedure is derived tha t  starts with some pilot runs for both systems and 
estimates which alternative minimizes the  variance; a t  the same time this procedure 
allocates the  limited amount of computer time to  the two systems in an optimal way. 
Results of the application of the procedure to  several queuing systems are presented. 
Because of certain disadvantages of the procedure we may decide to select alternative 1 
(antithetics only) a priori. Then the procedure can still be used for the optimal computer 
time allocation. 

1. Introduction 

Variance reduction techniques (or briefly VRT) may decrease the variance of the 
estimated response in simulation experiments through replacement of the crude or 
"straight on" sa~lipling procedure by a revised procedure. I n  the literature we can find 
many VRT; see e.g. [6]. Unfortunately most of these techniques have been devised 
for the Monte Carlo solution of problems in mathematics and physics (e.g. estimation 
of integrals, ejgenvalues etc.) . The management scientist, however, is interested in the 
simulation of queuing systems, inventory systems etc. The adjustments, required to 
make the VRT applicable to simulation, can be found in e.g. [ 7 ] .  The resulting VRT 
are quite complicated and have hardly been applied in practice. TWO techniques, 
however, remain very simple, viz. antithetic variates and common random numbers 
(or correlated sampling). 

2. Antithetic Variates and Common Random Numbers 

In  the antithetic variates technique one simulation run is generated in the "normal" 
way from the random numbers r l ,  r 2 .  . . but a con~panion run is generated "anti- 
thetically" from the complen~ents of these random numbers, i.e. from (1 - r l ) ,  
(1 - rz),  . . . . I  The purpose of this approach is the creation of negative correlation 
between the responses of the two partner runs. Such correlation decreases the variance 

* Processed by Professor Charles H. Kriebel, Departmental Editor for Information Systems and 
Associate Editor Mark B. Garman; received July 25, 1972, revised July 19, 1973. This paper has been 
with the  author 3 months for revision. 

t On leave a t  Katholieke Hogeschool, Tilburg, Netherlands during December 1973-December 1974. 
§ T h e  Fortran programming was done by H. Tilborghs (Katholieke Hogeschool Tilburg) and 

D.  Graham (Duke University). We are indebted to the referees for their colninellts on two earlier 
drafts of this paper. The basic idea of our paper was first presented at  the European Meeting of IMS,  
TIMS, ES and IASPS, Amsterdam, 2-7 September, 1968. 

The antithetic values 1 - r may he  directly generated by replacing the starting value, say 20, 
by its complement m - zo  in the  multiplicative congruential generator z ,  = az,-1 (mod m ) ; see [6]. 
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of the average output of the two runs since 

(2.1) vari (21 + XZ)/2 = i var (XI) + var (xz) + 2 cov (xl , xz)J /4 

where XI and xz are the output of runs 1and 2 respectively. If the runs were generated 
in the usual way (i.e, run 2 were using a sequence of random numbers independent of 
run 1) then cov(z1, xz) would be zero. Whether antithetics indeed create negative 
correlation in a coil~plicated siinulation cannot be proved. Our intuition tells us that 
negative correlation may be expected; experiments ~ ~ i t h  various simulated systems of 
moderate conlplexity show that  such correlation is indeed created (some results will 
be shown in Tables 4 and 8).  

Commo7z ra7zdom numbers  can be utilized when we simulate two (or more) systems 
and want to compare their mean responses. Using the same sequence of random 
numbers means that  the systems are compared "under the same circumstances" or, 
statistically speaking, their responses are supposed to sho1v positive correlation. Such 
correlation is desirable since 

(2.2) var(x - y) = var (z)  + var(y) - 2 cov(x, y) 

where x and y are the response of systems 1 and 2 respectively. This VRT is actually 
the only technique widely used in practice. Some variance reductions obtained by this 
technique will be presented later on. 

3. The Conflict between Antithetic and Common Random Numbers 

Several authors have suggested combining both VRT; compare [2, p. 1981, [3, p. 231. 
We shall show, however, that joint application of the two techniques does not neces- 
sarily give best results. Yet, a t  first sight such a combination may look quite reasonable. 
For the difference between the mean responses of two systems is estimated by 

J, = 2 - g = XM xi/M - xy=ly?/.N.(3.1) 2 = 1  

Hence 

(3.2) var (2)= var (2) + var (g) - 2 cov(2, g) 

l-rhere u12 (uz2) is the variance of a run with system 1 (system 2 ) .  The covariances in 
(3.2) are determined by our choice of the random number streams. Antithetic variates 
reduce the variance of the average response of a particular system, i.e. var(2) and 
var(g) are decreased; common random numbers are supposed to create a positive 
covariance between 2 and g. But let us consider the joint application of both techniques 
in more detail, using Table 1.The columns (2) and (4) of this table show that systems 
1 and 2 are simulated with antithetics and IT-e suppose that this technique indeed 
creates the desirable negative correlation between xl and 2 2 ,  2 3  and 2 4 ,  etc. and 
between yl and yz , y3 and y4 . etc. Looking a t  a particular row we see that  the 'two 
systems use coinnlon random numbers. Therefore we suppose that  there is positive 
correlation between xl and yl , x2 and yz , etc. However Table 1 also shows negative 
correlation between xl and y2 ,xz and yl , 2 3  and y4 ,etc. These negative cross-correlations 
are unclesirable as (3.2) shows. Therefore Ifre shall next consider three obvious 
alternatives. 
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TABLE 1 

Joznt application of antithetzc variates and common random nrr,nbers 


System 2 
Run 1 System 1 1-


Random RandomI 1numben* Resgonae numbers* P n p o n s e  

*R: vector of random numbers. I:vector of one's. 

4. Three Alternative Methods of Variance Reduction 

In  this section we shall discuss three alt'ernative methods for the generation of 
correlated runs and the corresponding variances, var(d) . 

( A )  Antithetic variates only:  With this method the random numbers in the columns 
(2) and (4) of Table 1are no longer identical but become different. 

( B )  Common random numbers only:  Then xl and yl are generated from R1 , 2 2  and 
y2 from R2 , e t ~ . ~  

( C )  Jo in t  application of antithetic variates and common random numbers:  This 
alternative was shown in Table 1. 

The derivation of var(d) for each alternative is based on (3.2) above. Let cl denote 
the negative covariance created between two responses z of system 1 when using 
antithetics; c2 the negative covariance between two responses y of systein 2; c3 the 
positive cross-covariance between the responses of systeins 1and 2 generated from the 
same random numbers, c4 the undesirable negative cross-covariance between the 
responses of systeins 1and 2. Note that if the number of runs for a system is odd, then 
t'he last run cannot be generated antithetically, and if M f N then we cannot match 
all runs of systein 1with those of system 2. 

We illustrate the derivation of var(d) by considering the situation where only 
antithetics are applied and M = AT = even. The first summation term in (3.2) then 
reduces to 

I n  the same way we find that the third term in (3.2) reduces to N-lcs .  Since no 
correlation exists between runs of different systeins the last term in (3.2) vanishes. 
Hence 

(4.2) var(d) = M-lc1 + W-la12 + AT-lc2 + AT-lo2* (Method A, M = N even). 

The derivation of var(d) for the other situations is analogous. Because (3.2) always 

If N f M then we inay combine common random numbers with antithetics in the last, noncolnmon 
runs of the system that  is simulated most often, for these last runs do not create negative cross- 
correlations; see [6]. 
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contains the tn-o terms (M-'oI2 + A 7 - l ~ ~ ~ )these terms are not shown in Table 2. To 
save space Table 2 shows var(d) only for method (C).  For method (A)  we obtain 
var(d) by putting cd = c4 = 0 (i.e, delete the last term in Table 2) ; for method (B) 
put cl = c2 = c4 - 0 (so we obtain -2c8/1W). Table 2 does not show M < S but the 
results for this case are easily obtained by interpreting cl as the covariance among the 
responses (y)  of the system that is run most often, etc. 

5. Comparisons among Alternatives 

From Table 2 it follows that in order to  determine which of the three alternatives 
(A),  ( W ) ,  (C)  gives the lo~vest variance, we need to know the relative mag?litucles of 
the covaria~zces cl through c4 . For instance, if c3 > / c4 1 then method (C) is better than 
(A);  method (A) is better than (B) if ca < / cl + c2 / /2  (and M = A: = even); 
method (B) is better than (C) if j c4 1 > / cl + c2 1/2 (and M = N = even), etc. We 
would like to l r n o ~ ~  whether these inequalities hold in general in the simulation of 
systems. 

We first consider some very simple "systems" and by counterexample we prove that 
no inequality holds for all systems. I n  the "systems" under consideration, the response 
x depends on a single random number r and is a non no tonic increasing function of r, 
e.g. x = r2. Then the antithetic run is x* = (1 - r ) 2  so that 

cl = cov(x, x*) = E[r2(1 - r)2] - E(r2)  E[(l  - r) 2] 

Other simple "systems" are specified in the columns ( I )  and (2) of Table 3;  the 
resulting covariances have been calculated analogous to  (5.1) and are given in the 
columns (3) through (6); the columns (7) through (9) show the comparisons among 
covariances suggested above. These comparisons prove that no inequality holds for all 
systems, i.e. none of the methods ( A ) ,  (B) or (C) is best in  all cwcumstances. 

The counterexample in Table 3 actually proves our point, viz. neither method is 
always best. For illustratory purposes we give experime7ltal results for some more 
complicated systems. As Table 4 shows we simulated single-server queuing systems 
(variant a :  the two systems have exponential interarrival and service distributions; 
variant b :  system 2 has constant service times) and four-servers-in-sequence systems 
(systems 1 and 2 have different parameters for their exponential service time dis- 

TABLE 2 


T h e  variance of the estimaled d i f f e~ence  between the responses of systems 1 and  2 (to each entry  the common  

term (M-'uI2 + N-luz') shoul{L be added) .  


C: joint application of antithetic variates and 
Case. common random numbers. 

I M = N = even 

I1 M = N = odd 

I11 Af(even)  > N(even )  

I V  N ( e v e n  > AT(odd) 

V M(odd)  > N(even )  

VI M ( o d d )  > N ( o d d )  




-- 
--- 

---- -- 
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TABLE 3 

The relative magnitudes of the covariances i n  some simple systems. 

Systems Covariances Comparisons 

I c 1 + c 2 I  I c 1 + c 2 1  c3 
X = X ( T )  y = y ( r )  CI cz c3 cd ---

2cs 2 1 c4 1 I cn 

(1) (2) (3) (4) ( 5 )  (6) (7) (8) (9) 

r% r2 /2  -7 /90  -7/360 8/180 -7/180 > 1 > 1 > 1 
2r + 5 rZ + r - 1 / 3  -59/180 1 / 3  - 1 / 3  < 1 < 1 
2r2 di 8 / 6 3  -132/905 < 1 

tributions) . 3  For the single-server systems we took M = N = 50 and for the four- 
servers systems iM = N = 20. To these systems we also applied the crude method 
("method D") where all runs are independent. Since the resulting v$r (d) are stochastic 
variables the values and rankings of Table 4 are subjected to  sampling errors. An exact 
statistical analysis would require multiple comparison procedures to determine 
simultaneous confidence bands for the comparisons among the estimated variances, 
or-better-multiple ranking procedures to determine a reliable ranking of the 
variances; see [6]. A crude test of the hypothesis that method (C) is not the best 
technique, compares v$r(d) for (C) and (B) in the four-servers case (least favorable 
comparison for C) . Since v$r(d) is based on only ten independent observations for (C) 
(observation 1 is dl = (XI + x2)/2 - ( y ~+ y2)/2) we have 

which is significant at the 25% point (F,O;$= 1.41) but not a t  the 10% point of the 
F-statistic (F:;:: = 1.98). So the point estimates of Table 4 can yield only preliminary 
conclusions which, however, do not seem to contradict the results from Table 3, where 
for simple systems it  was shown analytically that (C) is not necessarily best. Our 
preliminary ranking is (B) ,  (C ) ,  (A) ,  (D)  for the four-servers and (C), (A),  (B) ,  (D)  
for the single-server systems. Andreasson found the ranking (C) , (B) , (A), (D)  for 

TABLE 4 
The eatimated variance of the estimated difference between the responses of two systems. 

l- Methods 

Systems 


A (antithetics) B (common) C (joint) D (independent) 

1. Single-server 
a. Exponential 
b. Exp./Constant 

2. Four-stations 

1-


More specific: Case l a :  system 1 has parameters X1 = 1.5 and p 1  = 2, system 2 has A 2  = 0.5 and 
pz = 2.5. Case l b :  At  = 1.5 and ~1 = 2,  XI = 1.5 and service times 0.5. Case 2 :  the two systems are 
plans I and I1 in Table 1 of [a]. We did not simulate systems as complex as met in practice, since such 
systems would require much modeling and running time and yet serve only illustration purposes. 
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his simulated multichannel systems (no statistically tested ranking; see [I, p. 191). 
Tocher (private communication) reported that (C) performed poorer than (B) .  

6. Optimum Alternative and Computer Time Allocation 

Since no alternative is best for all systems, we may try to  estimate which alternative 
gives best results for the two systems \\-e actually --ant to simulate. Therefore we inay 
generate some pilot runs for these two systems and estimate the variances q12and 
and the covariances s through c4 to  select the alternative that will be applied in the 
reniaining runs. ( I n  $7 xve shall consider the estimation procedure for the variances and 
covariances in detail.) If available computer time were unlimited then we could take 
M = N = rn so that var(d) = 0 for all three alternatives and the choice among them 
would be indifferent. Therefore liniited total computer time is taken into account. 
After the pilot phase in which Np  runs of both systems 1 and 2 are generated, we 
determine M and N such that the remaining (A1 - ATp) and ( N  - N,) runs consume 
the total computer time l'.Hence if tl and t2 denote the computer time per run of 
systems 1 and 2 we should satisfy (6.1) and (6.2). 

We want to  select M and N such that var (d) is minimized under the restrictions (6.1) 
and (6.2). Unfortunately Table 2 showed that  the formula for var(d) varies with M 
and N ,  and with (A) ,  (B) , (C). For the sake of simplicity we introduce an approximate 
formula for var ( d )  dropping terms in and in Table 2. This results in Table 5. 

From Table 5 we see that var (d) can be approxiniated by 

the values of the coefficients a1 and a2 varying with the niethods (A),  (B) ,  (C) and 
with the cases M 2 ;C', M 5 N. 

The optimum values of M and N (denoted by hfo and No) depend on the signs of 
the coefficients a1 and a2 : 

(i) If one of these coefficients is negative (two negative coefficients would yield rt 

negative variance) then 

For, suppose a1 is negative. Then ,V should be taken as large as possible. However, it 
can be shown that negative al implies M 2 N. Hence (6.4) must hold. 

TABLE 5 

Approx ima t ion  for var.(;l) (based o n  dropping terms i n  ?vIV and N-2) 


Case / Method 1 var(2) 
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TABLE 6 

Optimal  values of h4 and N if al and  an are positive (M* and N* specilfied i n  (6.3) and  (6.6)). 


(ii) If both coefficients are positive then minimization of (6.3) together with (6.1) 
yields 

This solution may violate (6.2). Itoreover, when we use particular values for al and 
az then these values imply either iM 5 N or M 2 N ;  see Table 5 .  Therefore Mo and 
NO should be taken from Table 6. This table shows that if (6.6) yields N* < N, then 
No is set equal to the pilot number N, ; if (6.6) results in N* > T/(tl + t z )  violating 
M 2 N then an equal number of runs Mo = No = T/(tl  + tz) is taken. 

There is one more restriction not mentioned yet, viz. M and N must be integer. 
Therefore we examine the integer points in the neighbourhood of iMo and No . We have 
to check if these integer pairs still satisfy all restrictions, i.e. (6.1), (6.2) and either 
M 2 N or M 6 N. (If we find more than one admissible pair we select the pair 
yielding the smallest variance. Obviously in (6.1) we replace the equal sign by 5 .) 

Using (6.4) or Table 6 we have found Mo and No . Ho~vever these values were 
determined for a particular pair of values of the coefficients al and az in (6.3). Table 5 
showed that a different pair holds for each alternative and for each case ( M  2 N, 
M 5 N ) ,  together six pairs. Actually method (A)  gives the same coefficients for 
M 2 N and M $ N so that we have five instead of six different pairs. Each of the 
five pairs (a1 , az) gives a corresponding pair (Mo , No) .  Substituting Mo and NO into 
(6.3) yields the minimum variance. I n  this way five minimum variances are found. 
Finally we select the minimum among these five minimal variances and determine the 
corresponding method ( (A), (B) or (C)) and number of runs (Mo and No). 

Summarizing this section, our selection procedure takes into account the covariances 
created by the various alternatives as these covariances determine the coefficients a1 
and a2 . Moreover we can incorporate possible differences among the computer times 
per run as we can take values for tl and tz  in (6.1) varying with (A), (B) and (C). The 
variance is minimized not only through selection of a suitable variance reducing method 
but also through an optimal combination of the number of runs per system. Note that 
once we have decided on the optimal number of runs per system we may obtain a more 
accurate estimate of var(d) using the exact formulas in Table 2. 

7. Estimation of the Coefficients in the Optimization Procedure 

In  this section we shall discuss how the pilot runs can be used to obtain estimates 
for the coefficients a1 , az, tl and tz . The N, pilot runs of the systems 1 and 2 should be 



ANTITHETIC VARIETIES. C O ~ I J I O N  RANDOM NUIIBERS AND OPTIMAL COMPUTER 1183 

generated using method (C) since this method creates all four covariances Q through 
ca . We can estimate cl , the covariance between antithetic runs of system 1, from 

(7.1) 21 = x?z1( z ~ i - ~- 3 )  (z2i- z*) / (n, - 1) (n, = -Vp/2,N peven) 

where the x2, are the n,  antithetic runs with average z*, and the xz,-l arc the n ,  normal 
runs with average 2. The covariance cz is estimated analogously. When estimating 
c3, the positive cross- covariance between s ,  and y, (z = 1, . . . ,N,) we have to  
remember that e.g. the pair (xl , yl) is not independent of ( 2 2  ,yz) ;see Table 1. There- 
fore divide the N ,  pilot runs into two groups as shown by Table 7, and estimate c~ 
from (7.2) through (7.4). 

Such grouping can also be used t,o estimate c 4 ,  and the variances a12 and uz? The 
estimates of the variances and covariances are substituted into Table 5 to obtain 
estimates of al and a2 for (A) ,  (B) ,  (C) a,nd M 2 N or M 5 N. 

If it takes T, units of time to run the first systcilz N ,  times applying method (C) ,  
then we can estiinat,e tl  by 

(In systems with a stochastic runlength T ,  will be stochastic.) I n  the same way we can 
estimate tz  . Since the extra computer time for antithetic or common random numbers 
is usually negligiblc, we may decide to  use the same fl and izfor ( A ) ,  (13) and (C). 

Notice that the optimuill values of fill N and var(d) are no?zlinear functions of the 
variances, covariances and times per run. Hence, when using unbiased estimators for 
these variances etc., the corresponding estimated optinluin M ,  N and var(d) are still 
biased. This type of bias was studied by Fishinan in [3]. Wc have not tried to  deter- 
mine this bias in our problem but wc conjecture that it is of negligible importance; 
see also [4]. If this bias ~ o u l d  not be negligible then the variance reduction might be 
less than maxinlal since we might not select the bcst VRT ( (A) ,  (B), (C)) and might 
not allocate computer time optimally (Mo ,No) .  Note, however, that the estimator of 
d remains unbiased since the pilot runs with method (C) yield unbiased estimators 

TABLE 7 

Groi~pingNp pilot Tttns for the estimation of the colsariance Ca. 


Group 1 I / Group 2 

Random 
numbers 

Response of system Random 
numbers 

Response of system 

1 2 1 2 
-
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and so do the remaining runs (independent of the pilot runs) using one of the methods 
(A) 1 (B) 1 (C) e 4  

8. Applications and Comments 

The optimization procedure was applied to  the estimation of the difference in mean 
waiting time in several simple queuing systems; see Table 8. The optimum M and N 
were found to differ greatly from each other (unless al is negative or N* > T(tl + tz)  ) . 
So taking an equal number of runs per system may be very suboptimal. Given an 
optimal choice of M and N we found point estimates of the variances suggesting that 
C is best and D is worst. 

Our optimization procedure has the following disadvantages. 
(i) I t  takes tzme to estimate the coefficients and to perform the necessary calcula- 

tions with these coefficients. Nevertheless in a complicated simulation study this extra 
time is negligible and therefore the optimization may be worthwhile. 

(ii) The procedure is based on estzmates of the variances and covariances calculated 
from the N ,  pilot runs. Hence if N, increases then these estimates become more 
reliable and a more reliable selection from the methods ( A ) ,  (B) ,  (C) is possible. 
Unfortunately, if we augment N ,  and we find that the best method is not (C) (the 
method applied in the pilot phase) but either (A)  or (B) ,  then most of the runs have 
already been generated with the inferior method (C) ! To solve this dilemma we mag 
decide to restrict N, to, say, lOyoof our a priori guess of 1140 and No . j  

(iii) If, after the pilot-phase, we decide to switch from (C) to either (A) or (B) ,then 
we get "nonhomogeneous" output, as switching to ( A )  means that the cross-covariances 

TABLE 8 

Results 0.f the application of the optimization procedure. 

Minimal vLr(2) X 105 -1 1 1Systems compared 

(A) (B) (C) (D) 

Optimum Jf and A' 
for method (C)+ 

-

Comment on 
IWand IT 

1. Single-server systems 
a. Exponential distributions 
b. Exponential distributions 

N* 
N* 

> T/(tl + tn) 
< N ,  

c. Constant service times a1 negative 
d. One exponential, one 

constant service time 
2. One single-server and 

one two-servers system 
3. Two two-servers systems 61 45 llal negative 

I I I I 

+ l a  and l b  use different computer programs. 
*For the methods (A, (B) and (D) approximately the same values were found. 

4 More technically: ii! = to ;ll + ( 1  - w)anwhere and 2%are the estimators from stages 1 and 2. 
In  the pilot phase ( C )yields an unbiased estimator al .  After the pilot phase either method (A) ,  or ( B )  
or ( C )will be used to obtain 2%depending on their variances, say 8,s ( 2  = 1, 2, 3), estimated in the 
pilot phase. Then E(&)  = with E(dn1&,2)being unbiased since the observations in phase 2E[E(a~/8,2)]  
are statistically independent of phase 1. 

Actually we should not compare var(2) when applying (A), ( B )or ( C ) in all X Oand ;VOruns but 
instead var(2) when applying (A) ,  (B)  or ( C )in ( J fo  - N, )  and (No - N,) runs and ( C )in N ,  runs. 
When N ,  is small compared with M oand No, as it should be, then for the sake of simplicity we may use 
the procedure of 96. 
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TABLE 9 

Optimal nlalues of M and N when applyinq antithetic variates otzl?/. 


ca and cq become zero, and switching t o  (B) means that  cl , cz and c4 become zero. This 
complicates the statistical analysis.  In [ 6 ]  we show how we can still estimate var(d) 
from formulas based on (3.2) (but differing from Table 2 where in all runs a single 
method is applied) ; the ?esulting confidence intervals hold only approximately. We 
also refer to 161 for a discussion of minimizing computer time subject to a fixed 
variance, and for generalizations to  k ( 2 2) systems. 

Because of the above disadvantages we may decide not to use the procedure to select 
one of the methods (A) ,  (B) , or (C) . Instead we may a priori choose method ( A ) ,  i.e. 
the method that does not complicate the statistical analysis of the simulation results 
(taking the average of each antithetic pair gives independent observations). Our 
procedure remains useful for the optimal computer time allocation. Since the coeffi- 
cients a1 and a2 are always positive for ( A ) ,  and we need not distinguish between 
M 2 N and M 5 N in Table 5 ,  me can replace Table 6 by Table 9. 
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