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Abstract

The spectral radius of a graph (i.e., the largest eigenvalue of its corresponding adjacency matrix) plays an
important role in modeling virus propagation in networks. In fact, the smaller the spectral radius, the larger
the robustness of a network against the spread of viruses. Among all connected graphs on n nodes the path Pn

has minimal spectral radius. However, its diameter D, i.e., the maximum number of hops between any pair
of nodes in the graph, is the largest possible, namely D = n − 1. In general, communication networks are
designed such that the diameter is small, because the larger the number of nodes traversed on a connection,
the lower the quality of the service running over the network. This leads us to state the following problem:
which connected graph on n nodes and a given diameter D has minimal spectral radius? In this paper we

solve this problem explicitly for graphs with diameter D ∈
{

1, 2,
⌊

n
2

⌋
, n − 3, n − 2, n − 1

}
. Moreover, we

solve the problem for almost all graphs on at most 20 nodes by a computer search.
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1. Introduction

The theory of the spectra of graphs contains many beautiful results that relate physical prop-
erties of a network, such as for instance robustness, diameter, and connectivity, to eigenvalues of
matrices associated with the graph, see e.g. [4,13]. Recently it has been shown, see [14], that the
spectral radius of a graph (i.e., the largest eigenvalue of its corresponding adjacency matrix) plays
an important role in modeling virus propagation in networks. In fact, in [14] the Susceptible-
Infected-Susceptible (SIS) infection model is considered. The SIS model assumes that a node in
the network is in one of two states: infected and therefore infectuous, or healthy and therefore
susceptible to infection. The SIS model assumes instantaneous state transitions. Thus, as soon
as a node becomes infected, it becomes infectious and likewise, as soon as a node is cured it is
susceptible to re-infection. Epidemiological theory, see for instance [5], predicts the existence of an
epidemic threshold τ . If it is assumed that the infection rate along each link is β while the cure rate
for each node is δ then the effective spreading rate of the virus can be defined as β/δ. The epidemic
threshold can be defined as follows: for effective spreading rates below τ the virus contamination
in the network dies out, while for effective spreading rates above τ the virus is prevalent, i.e., a
persisting fraction of nodes remains infected. It was shown in [14] that τ = 1/ρ(A) where ρ(A)

denotes the spectral radius of the adjacency matrix A of the graph. If follows from this result that
the smaller the spectral radius, the larger the robustness of a network against the spread of viruses.

This naturally leads to the following problem statement: which connected graph on n nodes
has minimal spectral radius? It can be found for instance in [4] that the path Pn has minimal
spectral radius; see also Lemma 1 below.

Although the path Pn has the largest possible epidemic threshold, its diameter D, i.e. the
maximum number of hops between any pair of nodes in the graph, is also the largest possible,
namely D = n − 1. In general, communication networks are designed such that the diameter is
small, because the larger the number of nodes traversed on a connection, the lower the quality
of the service running over the network. For this reason, we adjust the problem statement above,
also taking into account the impact of the diameter of the graph: which graph on n nodes and a
given diameter D has minimal spectral radius?

As far as we know, the relation between the spectral radius and diameter has so far been
investigated by few others: Guo and Shao [7] determined the trees with largest spectral radius
among trees of given number of nodes and diameter, while Cioabă et al. [3] gave an upper bound
on the spectral radius in terms of the number of nodes, number of links, maximum degree, and
diameter. The problem of determining the graphs with maximal spectral radius among the graphs
with given diameter is completely solved in [6].

This paper is further organized as follows. In Section 2, we will consider graphs with a large
diameter, i.e., D ∈ {n − 3, n − 2, n − 1}. In Section 3, we will look at graphs with diameter two
and give an explicit expression for the minimal spectral radius of such graphs. In Section 4, we
determine the minimal spectral radius of graphs on at most 20 nodes, by using brute computational
force. We finish the paper with some concluding remarks in Section 5.

2. Graphs with large diameter

In this section we will explore the relation between the diameter of a connected graph and
the minimal spectral radius, in case of a large diameter, i.e., D ∈ {n − 3, n − 2, n − 1}. Starting
points are the following two well-known results; see for instance [4, p. 21]:
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Fig. 1. The graph Dn.

Lemma 1. Of all connected graphs on n nodes, the path Pn has minimal spectral radius;
ρ(Pn) = 2 cos

(
π

n+1

)
.

Lemma 2. Of all connected graphs on n nodes, the complete graph Kn has maximal spectral
radius; ρ(Kn) = n − 1.

Among the connected graphs on n nodes the path Pn has the largest diameter (D = n − 1)
while the complete graph Kn has minimal diameter (D = 1). It is clear that the complete graph is
also the graph on n nodes with minimal spectral radius and diameter D = 1. We will next determine
the graphs on n nodes with minimal spectral radius and diameter D = n − 2 and D = n − 3.

Let us first define P
m1,m2,...,mt
n1,n2,...,nt ,p as a path of p nodes (0 ∼ 1 ∼ 2 ∼ · · · ∼ p − 1) with pendant

paths of ni links at nodes mi , for i = 1, 2, . . . , t . Then we define the graph Dn through Dn=P 1
1,n−1;

see Fig. 1. Note that Dn is a graph on n nodes with spectral radius ρ(Dn) = 2 cos
(

π
2n−2

)
, cf. [4,

p. 77].

Theorem 3. Of all connected graphs on n nodes (n � 4) and diameter D = n − 2, the graph
Dn has the minimal spectral radius; ρ(Dn) = 2 cos

(
π

2n−2

)
.

For the proof of Theorem 3 we need a classical result by Smith [12].

Lemma 4. The only connected graphs on n nodes with spectral radius smaller than 2 are the
path Pn, the graph Dn and the graphs E6 (n = 6), E7 (n = 7), and E8 (n = 8) depicted in
Fig. 2.

Proof of Theorem 3. For the cases n ∈ {4, 5, 9, 10, . . .} the theorem follows immediately from
Lemma 4. For the casesn ∈ {6, 7, 8}we have to determine which of the graphsDn andEn has mini-
mal spectral radius. LetC(G, λ)denote the characteristic polynomial of the adjacency matrix of the
graph G, i.e., C(G, λ) = det(λI − A(G)). Let us first consider the case n = 6. A straightforward
calculation shows that C(D6, λ) = λ6 − 5λ4 + 5λ2, while C(E6, λ) = λ6 − 5λ4 + 5λ2 − 1. It
follows that C(D6, λ) = C(E6, λ) + 1 > C(E6, λ) for all λ, hence ρ(D6) < ρ(E6). The case n =
7 can be proved in a similar way by using that C(D7, λ) = λ7 − 6λ5 + 9λ3 − 2λ and C(E7, λ) =
λ7 − 6λ5 + 9λ3 − 3λ, which implies that C(D7, λ) = C(E7, λ) + λ > C(E7, λ) for all λ > 0,
hence ρ(D7) < ρ(E7). Finally for the case n = 8 we use C(D8, λ) = λ8 − 7λ6 + 14λ4 − 7λ2

and C(E8, λ) = λ8 − 7λ6 + 14λ4 − 8λ2 + 1, implying that C(D8, λ) = C(E8, λ) + λ2 − 1 >

C(E8, λ) for all λ > 1, hence ρ(D8) < ρ(E8). �

Next we define the graph D̃n through D̃n = P
1,n−3
1,1,n−1; see Fig. 3. Note that D̃n is a graph on

n + 1 nodes.

Fig. 2. The graphs E6, E7, E8.
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Fig. 3. The graph D̃n.

Fig. 4. The graphs Ẽ6, Ẽ7, Ẽ8.

Theorem 5. Among all connected graphs on n nodes (n � 5) and diameter D = n − 3, the
minimal spectral radius equals ρ = 2. For n � 8, the minimal spectral radius only occurs for
the graph D̃n−1. For n = 5, the minimal spectral radius occurs both for the cycle graph C5 and
the star with four leaves K1,4 = D̃4. For n = 6, the minimal spectral radius occurs both for the
cycle graph C6 and the graph D̃5. For n = 7, the minimal spectral radius occurs both for the
graph D̃6 and the graph Ẽ6 depicted in Fig. 4.

For the proof of Theorem 5 we again need results from Smith [12].

Lemma 6. The only connected graphs on n nodes with spectral radius equal to 2 are the cycle
graph Cn, the graph D̃n−1 depicted in Fig. 3 and the graphs Ẽ6 (n = 7), Ẽ7 (n = 8), and
Ẽ8 (n = 9) depicted in Fig. 4.

Theorem 5 follows directly from Lemmas 4 and 6, as does the following theorem:

Theorem 7. Among all connected graphs onnnodes (n � 5)and diameterD = ⌊
n
2

⌋
, the minimal

spectral radius equals ρ = 2. For n � 7, the minimal spectral radius only occurs for the cycle
graph Cn. For n = 5, the minimal spectral radius occurs both for the cycle graph C5 and the star
with four leaves K1,4 = D̃4. For n = 6, the minimal spectral radius occurs both for the cycle
graph C6 and the graph D̃5.

Based on the results so far, namely that certain trees minimize the spectral radius for graphs on n

nodes and diameter D, for D � n − 3, and the computational results of Section 4, we conjecture
the following:

Conjecture 8. For fixed e, the graph P

⌊
e−1

2

⌋
,n−e−

⌈
e−1

2

⌉
⌊

e−1
2

⌋
,
⌈

e−1
2

⌉
,n−e+1

has minimal spectral radius among

the graphs on n nodes and diameter D = n − e, for n large enough.

We finish this section with a qualitative result on the minimal spectral radius for connected graphs
on n nodes as a function of the diameter.

Theorem 9. For connected graphs on n nodes (n � 9), the minimal spectral radius is not a
monotonically decreasing function of the diameter of the graph.

Proof. The diameters of the graphs Cn and D̃n−1 are
⌊

n
2

⌋
and n − 3, respectively, while ρ(Cn) =

ρ(D̃n−1) = 2. For n � 9 there is at least one integer m satisfying
⌊

n
2

⌋
< m < n − 3. The minimal
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spectral radius for connected graphs on n nodes and diameter m must be larger than 2, because for
all graphs mentioned in Lemmas 4 and 6, the diameter D satisfies D = ⌊

n
2

⌋
or D � n − 3. �

3. Graphs with diameter two

From the previous section it follows that we know the minimal spectral radius of connected
graphs on n nodes and diameter D ∈ {

1,
⌊

n
2

⌋
, n − 3, n − 2, n − 1

}
. In this section we consider

the case of connected graphs on n nodes with diameter two. In fact, we shall prove that for these
graphs

√
n − 1 is the minimal spectral radius.

Theorem 10. For the spectral radius ρ of a graph with diameter two on n nodes we have ρ �√
n − 1 with equality only for the stars K1,n−1, the cycle graph C5, the Petersen graph Pe10, the

Hoffman-Singleton graph H50, and putative 57-regular graphs on 3250 nodes.

For the proof of Theorem 10 we need two lemmas.

Lemma 11. LetGbe a graph with diameter two on node setN ofnnodes,with degreesdv, v ∈ N.

Then n − 1 � 1
n

∑
v∈N d2

v with equality only if G is a star K1,n−1, the cycle graph C5, the Petersen
graph Pe10, the Hoffman-Singleton graph H50, or a putative 57-regular graph on 3250 nodes.

Proof. We count induced paths of two links (on three nodes) in two different ways. First, since
the diameter of the graph is two and hence each pair of nodes that is not linked is contained in
at least one such induced path, the number of induced paths of length two is at least n(n−1)

2 − e,
where e is the number of links in the graph. Second, each node v can be the middle node of at
most dv(dv−1)

2 induced paths of two links, hence there are at most
∑

v∈V
dv(dv−1)

2 such induced
paths. The claimed inequality now follows.

Equality is possible only if the graph contains no triangles, and any two non-adjacent nodes
have a unique common neighbour, and this is only the case in the stated graphs. Indeed, consider
in such a graph two non-adjacent nodes. These nodes must have the same number of neighbours,
since any neighbour of one of them is either also a neighbour of the other, or adjacent to one
neighbour of the other. Thus the graph is regular or its complement is disconnected. In the latter
case it is a star K1,n−1; in the first case, the graph is a (regular) Moore graph of diameter two. For
such Moore graphs, i.e., k-regular graphs (hence having spectral radius k) on k2 + 1 nodes with
diameter two, it was already shown in 1960 [8] that k ∈ {2, 3, 7, 57}. The case k = 2 is realized
by the cycle graph C5, the case k = 3 is realized by the Petersen graph Pe10; see Fig. 5, and the
case k = 7 by the Hoffman-Singleton graph H50; see [8]. For a nice graphical representation of
the Hoffman-Singleton graph we refer to [15]. Whether or not a 57-regular graph with diameter
two consisting of 3250 nodes exists is a famous open problem. �

Fig. 5. The Petersen graph.
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The following lemma is a result by Hofmeister [9]:

Lemma 12. Let G be a graph on node set N of n nodes, with degrees dv, v ∈ N, and spectral
radius ρ. Then ρ2 � 1

n

∑
v∈N d2

v . If G is connected, then equality holds if and only if G is regular
or bipartite with constant degrees on each of the two parts.

Theorem 10 now follows directly from Lemmas 11 and 12.

4. Graphs on at most 20 nodes

By computer we determined the minimal spectral radius for graphs on n nodes and diameter
D, for almost all D and n � 20. The results are given in Tables 1 and 2. (The names of the graphs
are explained below.)

For given n and given number of links e, we first generated all connected graphs on n nodes
and with e links using nauty [10]. We then determined the graphs among those that minimize
the spectral radius for each possible D; and then compared the results over all possible e. This
comparison was done by increasing e; for the following reason. If for some combination of n and
D the minimal ρ found by searching among the connected graphs with at most e links satisfied
ρ < 2(e + 1)/n then this ρ was the definite minimum, and e did not have to be increased further.
Indeed, because of the general bound ρ � 2e/n (the average degree) we would only find graphs
with spectral radius larger than the minimum so far.

For almost all cases the search was limited to e being increased to at most n + 2. Exceptions
were the cases [D = 3, n � 12] and [D = 4, n � 16].

In the cases n = 20 we could not increase e further for computational (capacity) reasons.
Thus for n = 20 we obtained the minimal spectral radius for D � 6, and upper bounds
for D = 4, 5. The upper bound for D = 3 is attained by an extremal 3-regular graph constructed
by Alegre et al. [1]. It would not surprise us if this gives the minimal spectral radius in this
case.

For [D = 3, n = 12], also the graphs with e = 15 were considered, and for [D = 3, n = 13],
the ones with e = 16 and 17 were checked. For [D = 3, n = 14], also the graphs with e = 17
and 18 were considered. Moreover, here also the graphs with e = 19 and maximal degree 4
were taken into account. The latter restriction can be made by using the inequality in Lemma
12: a node of degree at least 5 implies that ρ �

√
8. Similarly, for [D = 3, n = 15], also the

graphs with e = 18 and 19 were checked, and the graphs with e = 20 and node degrees only
2 and 3. For [D = 3, n = 16], also the graphs with e = 19, with e = 20 and node degrees at
most 7, with e = 21 and node degrees at most 6, and with e = 22 and node degrees at most 5
were checked. From Lemma 12 it follows that it was not necessary to check the graphs with
e = 23. For these cases with D = 3 we used a special routine to generate graphs with diameter
3, written by Kris Coolsaet (private communication). It was also used to check the graphs with
[D = 3, n = 17] with e = 24 and node degrees at most 5. This gave the upper bound in this case.
In the case [D = 3, n = 18] the upper bound is attained by a 3-regular graph, cf. [11]. In the case
[D = 3, n = 19] the upper bound is attained by the graph obtained by contraction of one of the
links in the 3-regular graph on 20 nodes.

For [D = 4, n = 16], also the graphs with e = 19 were considered, while for [D = 4, n = 17],
the graphs with e = 20, and the ones with e = 21 and node degrees 2 and 3 were also checked.
For the cases [D = 4, n = 18, 19, 20] we obtained only upper bounds.
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Table 1
Minimal spectral radius among graphs on n nodes with diameter D

D 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
\n
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 1.4142 1.7321 2 2.2361 2.4495 2.6458 2.8284 3 3.1623 3.3166 3.4641 3.6056 3.7417 3.8730 4 4.1231 4.2426 4.3589
3 1.6180 1.8478 2 2 2.3028 2.2784 2.4728 2.4860 2.5616 2.6970 2.7817 2.7321 2.8779 �2.9755 �3 �3.0742 �3
4 1.7321 1.9021 2 2 2 2.2361 2.2361 2.2230 2.3686 2.3778 2.3989 2.4303 2.5335 �2.7024 �2.7498 �2.7913
5 1.8019 1.9319 2 2.0840 2 2 2.1701 2.2105 2.1987 2.1907 2.3028 2.3167 2.3228 2.3536 �2.4605
6 1.8478 1.9499 2 2.0743 2.0743 2 2 2.1463 2.1940 2.1829 2.1753 2.1701 2.2688 2.2723
7 1.8794 1.9616 2 2.0684 2.1067 2.0684 2 2 2.1285 2.1693 2.1723 2.1649 2.1598
8 1.9021 1.9696 2 2.0647 2.1010 2.1010 2.0647 2 2 2.1149 2.1505 2.1649
9 1.9190 1.9754 2 2.0623 2.0912 2.1149 2.0912 2.0623 2 2 2.1056
10 1.9319 1.9796 2 2.0608 2.0840 2.1120 2.1120 2.0840 2.0608 2
11 1.9419 1.9829 2 2.0598 2.0785 2.1054 2.1183 2.1054 2.0785
12 1.9499 1.9854 2 2.0592 2.0743 2.1010 2.1169 2.1169
13 1.9563 1.9874 2 2.0588 2.0710 2.0981 2.1111
14 1.9616 1.9890 2 2.0586 2.0684 2.0962
15 1.9659 1.9904 2 2.0584 2.0664
16 1.9696 1.9915 2 2.0583
17 1.9727 1.9924 2
18 1.9754 1.9932
19 1.9777
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Table 2
Graphs with minimal spectral radius on n nodes with diameter D

D 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
\n
1 P2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

= K2
2 P3 D4 D̃4 K1,5 K1,6 K1,7 K1,8 K1,9 K1,10 K1,11 K1,12 K1,13 K1,14 K1,15 K1,16 K1,17 K1,18 K1,19

= K1,2 = K1,3 = K1,4
C5 Pe10

3 P4 D5 D̃5 C7 Q3,3,3 Q3,3,4 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 7 Fig. 7 Fig. 7 ? ? ? ?
C6 DS3,3

4 P5 D6 D̃6 C8 C9 T4(1,1,1) Q4,4,4 Q4,4,5 Fig. 8 Fig. 8 Fig. 8 Fig. 8 Fig. 8 ? ? ?
Ẽ6

5 P6 D7 D̃7 C0
8 C10 C11 C

0,3,6
9 Q4,5,5 Q5,5,5 Q5,5,6 Fig. 9 Fig. 9 Fig. 9 Fig. 9 ?

P
1,3
1,2,6 (2*)

6 P7 D8 D̃8 P 3
3,7 C0

10 C12 C13 C
0,4,8
11 Q4,6,6 Q5,6,6 Q6,6,6 Q6,6,7 Fig. 10 Fig. 10

P
1,4
1,2,7

7 P8 D9 D̃9 P
1,5
1,2,8 P

1,4
1,3,8 C0

12 C14 C15 C
0,4,8
13 C

0,3,5,8
13 Q5,7,7 Q6,7,7 Q7,7,7

C+2
10

8 P9 D10 D̃10 P
1,6
1,2,9 P

1,5
1,3,9 C

0,6
12 C0

14 C16 C17 C
0,5,10
15 C

0,3,6,9
15 Q5,8,8

P
2,6
2,2,9 C+2

12

P 4
4,9

9 P10 D11 D̃11 P
1,7
1,2,10 P

2,7
2,2,10 P

1,5
1,4,10 C

0,7
14 C0

16 C18 C19 C
0,6,12
17

C+3
12

10 P11 D12 D̃12 P
1,8
1,2,11 P

2,8
2,2,11 P

1,6
1,4,11 C+3

14 C
0,8
16 C0

18 C20

P
2,7
2,3,11 C

+1,+2
14

P 5
5,11

(continued on next page)
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Table 2 (continued)

D 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
\n

11 P12 D13 D̃13 P
1,9
1,2,12 P

2,9
2,2,12 P

2,8
2,3,12 P

1,6
1,5,12 C

+1,+2
16 C

0,9
18

C+4
14

12 P13 D14 D̃14 P
1,10
1,2,13 P

2,10
2,2,13 P

2,9
2,3,13 P 6

6,13 C+4
16

P
1,7
1,5,13 C

+1,+3
16

P
2,8
2,4,13 C

+2,+2
16

P
3,9
3,3,13

13 P14 D15 D̃15 P
1,11
1,2,14 P

2,11
2,2,14 P

2,10
2,3,14 P

3,10
3,3,14

14 P15 D16 D̃16 P
1,12
1,2,15 P

2,12
2,2,15 P

2,11
2,3,15

15 P16 D17 D̃17 P
1,13
1,2,16 P

2,13
2,2,16

16 P17 D18 D̃18 P
1,14
1,2,17

17 P18 D19 D̃19
18 P19 D20
19 P20
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Fig. 6. Graphs with minimal spectral radius and diameter 3; n = 10, 11, 12, 13.

Fig. 7. Graphs with minimal spectral radius and diameter 3; n = 14, 15, 16.

To explain Table 2, we need to define the following graphs. The graph Qn1,n2,...,nt consists of

two nodes connected by t disjoint paths of n1, n2, . . . , nt links. The graph C
m1,...,mt
m is defined

as a cycle of m nodes (0 ∼ 1 ∼ 2 ∼ · · · ∼ m − 1 ∼ 0) with pendant links at nodes m1, . . . , mt .
Also, let C+t

m be an m-cycle with a pendant path of t links. For even m, let C
+t,+s
m be a cycle of

m nodes (0 ∼ 1 ∼ 2 ∼ · · · ∼ m − 1 ∼ 0) with a pendant path of t links at node 0, and a pendant
path of s links at node m/2. The tree T4(1, 1, 1) is as defined by Woo and Neumaier [16]; it consist
of a node which is adjacent to three other nodes, which each in turn is adjacent to two endnodes.
The Double Star DS3,3 is a tree consisting of two adjacent nodes which each are adjacent to three
endnodes.

An interesting feature of Table 1 is that, as far as our computations show, for fixed diameter
D � 3 the minimal spectral radius ρ for n = D + 3 + i is the same as for n = 2D − i, for
i = 0, 1, . . . , D − 3. For i = 0 this clearly follows from the results in Section 2; however we
have no general explanation.

Besides Conjecture 8, we could make some other guesses on which graphs minimize the
spectral radius for particular values of n and D. From Table 2 it for example seems that the
graph C0

2D−2 minimizes the spectral radius for n = 2D − 1, D � 5. It also seems that the graph
QD,D,D+1 is the optimal graph for n = 3D, and similar graphs are optimal for slightly smaller
n. Notice also the pattern for n = 3D + 1 from Figs. 8–10.

Note further that Brouwer and Neumaier [2] classified all graphs with spectral radius between

2 and
√

2 + √
5 ≈ 2.0582. All these graphs have diameter D = n − 2 or D = n − 3, and from

the results in Section 2 it thus follows that none of them has minimal spectral radius given the
diameter and number of nodes.

Woo and Neumaier [16] show that a graph with spectral radius between 2 and 3
2

√
2 ≈ 2.1312

is either a tree with maximum degree 3 such that all nodes of degree 3 lie on a path; or is a
connected graph of maximum degree 3 such that all nodes of degree 3 lie on a cycle, and this is
the only cycle in the graph; or it consists of a path one of whose endnodes has 3 pendant links.
Indeed, we encounter some of these graphs in Table 2.
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Fig. 8. Graphs with minimal spectral radius and diameter 4; n = 13, 14, 15, 16, 17.

Fig. 9. Graphs with minimal spectral radius and diameter 5; n = 16, 17(2∗), 18, 19.

Fig. 10. Graphs with minimal spectral radius and diameter 6; n = 19, 20.

5. Conclusions

In this paper we have tackled the following problem: which graph on n nodes and a given
diameter D has minimal spectral radius? This problem was inspired by the fact that the smaller
the spectral radius of a graph, the larger the robustness of the network against the spread of
viruses.

We have solved the problem stated above explicitly for graphs with diameter D ∈ {
1, 2,

⌊
n
2

⌋
,

n − 3, n − 2, n − 1
}
. In addition, for almost all graphs on at most 20 nodes we have founds the

graphs minimizing the spectral radius by a computer search.
Interesting issues for further research include the following items:

• determine the graphs with minimal spectral radius for the cases: [D = 3, 17 � n � 20], [D =
4, 18 � n � 20], [D = 5, n = 20];

• prove Conjecture 8; probably a good starting point is the case e = 4, for which the conjecture
becomes: for n � 9 the graph P

1,n−6
1,2,n−3 has minimal spectral radius among the graphs on n

nodes and diameter D = n − 4;
• show that the graph C0

2D−2 minimizes the spectral radius for n = 2D − 1, D � 5, that the
graph QD,D,D+1 is the optimal graph for n = 3D, D � 3, etc.;

• prove that for fixed diameter D � 3 the minimal spectral radius ρ for n = D + 3 + i is the
same as for n = 2D − i, for i = 0, 1, . . . , D − 3;

• can sharp lower and upper bounds be formulated for the minimal spectral radius for diameter
D � 3? A good starting point is the case D = 3; an idea is to use the Moore bound to obtain
a lower bound for the minimal spectral radius.
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