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The density of the quotient of two non-negative quadratic forms in normal variables is 
considered. The covariance matrix of these variables is arbitrary. The result is useful in the 
study of the robustness of the F-test with respect to errors of the first and second kind. An 
explicit expression for this density is given in the form of a proper Riemann-integral on a 
finite interval, suitable for numerical calculation. 
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1. Introduction 

Let Y ~  N,,(#, ~ )  be the n-variate normal distribution 
with expectation # and covariance matrix g2. Let A and B 
be two non-negative definite n x n-matrices. Set 

X =  (Y 'BY) I (Y 'A  Y) 
(1) 

g = (tr(A)/tr(B))X 

A relatively simple expression is given for the density g of  
X (or equivalently for the density of  F). For numerical 
calculation, some eigenvalues and eigenvectors must be 
computed once and then a one-dimensional proper 
Riemann-integral on a finite interval must be evaluated for 
each point x e ~ to get the value g(x). 

A special case with singular A and B arises with quo- 
tients of  orthogonal projections. Let L and R be two 
orthogonal linear subspaces of  N~ of dimensions l and r, 
respectively, (l > 1, r > 1, l + r < n). Set 

(2) 
F = (r/l)X 

with YL = Pc Y and Pc the orthogonal projection matrix 
belonging to L; YR and R are similarly defined. Then 
Equation 1 leads to Equation 2 for A = PR, B = Pc. 

This result is useful in studying the robustness of  the 
F-test in linear models. Let Y = Zfl + e with Z ~ [~ • k the 
(non-stochastic) matrix of  explanatory variables and 
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~ N,,(0, ~).  Then Y ~ Nn(#, g?) with p = Zfl ~ N". An 
(identifiable) hypothesis H 0 in terms of restrictions on fl is 
equivalent to Ho: # ~ Lo with L0 some linear subspace of 
.~(Z). The usual F-statistic F for testing Ho: # e L o against 
Hi: p ~ ~ ( Z ]  - L 0 is given by F in Equation 2, where L 
and R are determined by L . L L 0 ,  L + L 0 = ~ ( Z )  and 
R • .~(Z), R + ~ ( Z )  = ~". 

The usual assumption, F2 = cr2In, gives F ~  FI~(6), the 
non-central F-distribution with degrees of freedom l and r 
and non-centrality parameter  6 = IPc / / a<  Equivalently, X 
follows the distribution with density 

exp(-1~)  k = o k ~ P t x ; l / 2 + k , r / 2  ) x > 0  (3) 

where p(x; p~, P2) stands for the density of  the beta-distri- 
bution of the second kind given by 

p ( x ; p l , p 2 ) = x P , - l ( l  + x) m-P21B(pl,p2) x > 0  (4) 

So with an expression for the density g of  X for general g 
and $2 it is possible to study the robustness of  the F-test 
for specified probabilities for errors of  the first and second 
kind. 

The question of robustness of  the F-test is a very old 
problem. A detailed study for: heteroskedasticity and auto- 
correlation in some special ANOVA-designs can be found 
in Scheffe (1959), Readers are referred to this book for an 
overview. 
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The best references within the context  of  the general 
p rob lem are Lugannani  and Rice (1984) and Magnus  
(1986). 

2. S t a t e m e n t  o f  resul ts  

Let (2j, hi), j = 1 . . . .  , n, be the eigenvalues and or thogo-  
nal eigenvectors of  12. Set c~j=hjAhj,  f i i=h5Bhj .  
T h r o u g h o u t  this section it is assumed that  ~j2~ > 0 for 
some j,  fij2~ > 0 for s o m e j  and that  fij/c{~ is not  constant  in 
j. Let  I = (rain fi~/%, m a x  fij/~/), where rain and max  ex- 
tend o v e r j  = 1 . . . .  , n with ,{~ > 0 and ( %  fl~) ~ (0, 0). The 
following theorem 1 precedes the main  theorem 2 and is 
interesting in its own right. 

Theorem 1. The density g of  X defined by Equat ion  1 is 
restricted to the interval I and its value at x e I is given by 

;7 e - � 8 9  ~ ~?~j {1 - a / ( 1  - ~;~)}e�89 -~-~) 
g(x) - 4~i j=~ ioo 

x l-I (1 -- CxZ ) �89 dz (5) 

where the Z and FI opera tors  extend over  k = 1 . . . .  , n 
with 2k > 0 and with 

(~j = (hj  [.2) 2/.~j 
(6) 

Example  1. (f2 = a2I,, Equat ion  2, /~ ~ L): I f  I2 = a2I~ 
then 2; = o = for  all j. Hence,  wi thout  loss of  generality, it 
is possible to take hj such that  L = ~ ( h l , . . . , h t )  , 
R = ~(hr l , .  � 9  h,+ ~). Then 5~ = (hj#)2/o -2 for 
j = 1 , . . . ,  l and 6j = 0 elsewhere. This implies 
6 ~- Z (5 k = 1~ L [ 2 / a 2 ,  Fur thermore ,  O{j = 1 for 
j = l + l , . . . , l + r ,  f i j = l  for j =  l, . . . , l ;  other  e-  and 
fl-values are equal to 0. This gives I = (0, oo), cj = 0 -2 for 
j = l , . . . , l ,  c j = - 0 - 2 x  f o r j = l + l  . . . .  , l + r  and c j = 0  
for j = l + r + l , . . . , n .  Substi tut ion into Equa t ion  5 
leads, for any x > 0, to 

e 6/2 m 
g(x) = ~ r0- = e�89 __ o2~)( 1 - 0-2z) -,/2 

ioo 

x ( 1 + 0- 2xz) r/2 -- 1 dz 

e_a/2 ~,, (6/2) k r ifi:o ~- ( 1 -- Z) (l/2 + k) 
k=0 k! 4rci i~ 

x ( 1 + xz) -(~/2 + 1) dz (7) 

The  integral in the sum is a var ia t ion of  P o c h h a m m e r ' s  
con tour  integral for the beta-funct ion (see also Lugannani  
and Rice (1984) p, 487). 

1 ~('~ dz F(c~ + fl - 1) 
2 ~ i  J_ioo (z - a)~(b - z) ~ = (b - a) ~+l~ 'F(c0F(/~) (8) 

where Re(e + fi) > 1 and a < 0 < b. This leads to 

( 1  -- Z) (l/2+k)(1 "4- XZ) --(r/2 + l) d z  
4ui io~ 

= p ( x ;  l/2 + k, r/2) (9) 

where p is defined by Equa t ion  4. Hence  

(6/2) = , 
g ( x ) = e  a/2 ~ ~ ( [ _ .  p t x ; l / 2 + k , r / 2  ) x > 0  (10) 

k = 0  

in agreement  with Equat ion  3. 

The following theorem shows that  Equa t ion  6 can be 
writ ten as a proper  Riemann- in tegra l  on a finite interval. 

Theorem 2. (Condi t ions  of  theorem 1): 

g(x) = ~ (a l + b 1) exp 

• ~ ~ i ) j j  [ I  (fk) 1 ak: (11) 
j = l  

with 

Ij = Bj (t) ~I (Ak(t)) ~ak/exp 5 2 5kfk COS a t/Ak(t) 
do 

11, ) t x cos~" cos +Sej arcsin(7 k sin t / A k ( t ) ) - S k ( t )  

+ arcsin(S i (t)/Cj (t)) ] a t  (12) 

where 

a = max(2jflj) 

b = x max(2j~9) 
(13) 

f j -= 1 - - l c j ( a - I - b  1) 

7 j = � 8 9  -1 + b - 1 ) / f j  

A j ( t ) = c o s  2 t + 7 2  sin 2t  

Cj(t) = (1 - c~jfj) cos = t + 72 sin = t 
(14) 

Sj (t) = 6jfjTj sin t cos t 

2 ! g ( O  = {c2 (t) + s: (0}= 

Remark .  Since a >-max cj, b > - - m i n  cj it follows that  
f j  > 0 and 17j[ < 1. 

Corollary. I f  / , = 0  then 6 j = 0  for all j. Then 
Cj(t) = A j ( t ) = B j ( t )  and S j ( t ) = 0  and so Equa t ion  12 
reduces to 

i re/2 1 1 I I 
Ia = 1~ (ak(t))-a-~a, ,  e o s ~ ' -  t 

dO 

x + c o s [ ~ ( ~  6ej)arcsin(Tk sin t /Ak ( t ) ) Jd t  (15) 
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Example 2 (g] = a 2 i , ,  Equat ion  2, # = 0 ) :  Using the 
results in example 1 it is seen that  ~. = 0 for  all j and 
a = o  -2, b = o'2x. This leads to f j  =�89 + l/x),  7 j =  1 for 

�89 j = l  . . . . .  l ; f j =  + x ) , T j = - - I  f o r j = l + l  . . . . .  l + r  
and f j  = 1, 7j = 0 f o r j  = l + r + 1 . . . . .  n. Substi tution into 
Equat ions  13-15 leads for any x e I = (0, oo) to 

17c/2 g(x) = X I/2 1(1 q- X) - ( l+ , - ) /22( l+  ~)/2 r,~_ Cos( l+  ~)/2 - 1  l 
do 

X COS{(/-- r)/2 -- 1} dt (16) 

The integral is a variant  for  the integral expression for 
the beta-function (see Gradshteyn and Ryzhik (1965) p. 375) 

f ~/2COS~+fi i t COS(~ --f i  -- 1) dt 
~0 

= ~/{2~ +e(~ + fi)B(c~, fl + 1)} (17) 

where R e T > 0  and R e f l > - l .  This leads to g(x)= 
p(x; l/2, r/2), where p is defined by Equat ion  4. 

3. P r o o f  o f  theorems 

Lemma 1. Let (XI, X2) have an absolutely cont inuous 
distribution with joint  characteristic function ~o. If  X2 -> 0 
a.s. and E{X2} < m then Y = X1/X 2 has a density g given 
by 

l fO (ao(ul,u2)] dul (18) 
g(Y) = ~ ~ \ ~?u2 /1~2= ),-~ 

Proof. See Cramer  (1946), exercise 6, p. 317 or Geary  (1944) 
and for the multivariate generalization Phillips (1985). 

Lemma 2. Let X ~ N~ (#, g2), I2 = TT' > 0 with T E ~n • ~. 
Let X1 = X'A l X, X 2 = X 'A2X with symmetric 
A1, A2 e ~ . . . .  . Then the joint  characteristic function ~0 of  
X, and X2 is given by 

(p(u,, u2) tl, - 2iC 1-�89 ' I ' = exp{5~/ (In --1/,]} -~t / ' t /}  - 2 i C )  

(19) 
where 

~/= T - I #  
(20) 

C= ul T'A1 T +  u2 T'A2 T 

Proof. See Magnus (1986), lemma 5, p. 102. 

Lemma 3. (Condi t ions of  lemma 2 with A 2 > 0):  If  vec(Al) 
and vec(A2) are linearly independent,  then the density g of  
Y = X1/222 is given by 

1 �9 
e ~"" f :~  el�9 l(y,z>,lS(y ,z)j_�89 

g(Y) - 4~zi i oo 

x [ t r ( S - l ( y ,  z)T'A213 

+t l 'S  l (y ,z)T 'AzTS-1(y ,z) t l]  dz (21) 

where 

S(y, z),=In - z(T'A I T - y T ' A 2 T )  (22) 

Proof. Note  that (X~, X2) has an absolutely cont inuous 
distribution iff vec(A~) and vec(A2) are linearly indepen- 
dent. Lemmas 1 and 2 and the following formula  are used: 

dA - l _  A - l  dA A-1  
dx dx (23) 

dial ( d A )  ,AI#0 
dx = ]Altr A-ld-xx 

Differentiation of  Equat ion  19 leads with Equat ion 20 and 

O ii " _ 2 i c l _ l  = il/~ _ 2iCl_�89 tr{(l,  - 2iC) 1T'A2 T} 
0u2 

(24) 

- -  (I, - 2iC) - ~ = 2i(I~ - 2iC) ~ T'A2 T(I~ - 2iC) 
0u~ 

t o  

&0(ul, u2) 
c3u 2 

- iq~(ui, u2)[tr{(/~ - 2iC) 1T"A2T } 

+ rl'(l,, - 2iC) -~T'A2 T(ln - 2iC) - 1/i] 

So with Equat ion  22 
�9 t 1 

(~9(H1 , --YH1 ) = Is(y, 21 ,)1 -= exp{ - �89 

• exp{�89 2iu~)/} 

(~(#(Ul, U2) u2 = 
~H2 --yu 1 

(25) 

(26) 

= irp(ul, - y u l  ) [ t r { S - l ( y ,  2iul )T'A2 T} 

+tl, S i(y, 2 iul )T,A2TS-I(y ,  2iul)r/] 

(27) 

Substi tution of  these expressions into Equat ion  18 to- 
gether with z = 2iu1 leads to Equat ion  21. 

Proof of  theorem 1. Suppose I2 > 0 or, equivalently, 2j > 0 
for  all j. Use Equat ions 21 and 22 with A1 = B  and 
Az=A. Since g2=Z2jhih  J it is possible to take 

1 ! 
T = Z 2~hjhj. This gives 

r'a r =  A,h,h; 
s = s ( y .  z) = y .  ( 1 - c j z ) h A ;  

S - 1  = 2 (  1 --Cjz)--lhjh; 

IS[ �89 I~ ( 1 -  cjz)-�89 

tr(S-1T'AT) = Z (1 - cF) '~j2j 
l  =Za hj 

, ' ,=Eaj  
~'S  I ? I = E  (~j(I--cjz)--I  

I~3 ITtATS-11,] = ~ gj~j(~j(1 7_ cjz) 2 

(28) 
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Substi tution into Equat ion  21 with the Kronecker  
symbol cSkj = 1 if k = j ,  6kj = 0 if k vsj leads to Equat ion  
5. 

For  fixed j with aj2j > 0 the integrand in Equat ion  5 is 
O([zl-~ ) for [z[-~ oo; fur thermore  it has singular points in 
the half  plane Re z > 0 iff x < fij/ej for  some j and singu- 
lar points in Re z < 0 iff x > flj/c 9 for some j. So g(x) = 0 
if x > max(fij /ei)  or x < min(fij /ej).  This concludes the 
p roo f  of  the theorem for g2 > 0. The general case follows 
by continuity arguments with respect to the eigenvalues 2j 
of  D. 

Proof of theorem 2. The substitution s = ( b -  a -  2abz)/ 
(b + a) and c = ( b -  a)/(b + a) can be made into Equa- 
tion 5. Then  1 -  ckz = (1 +7ks) / fk  and so 

e - 1 52t5 k 

g ( x ) -  8zc~(a  l + b  1 ) ~  O~j,JjH(fk)lq6kJlj(c) (29) 
j = l  

with 

• {1 -- (~jfj/(1 -I- 7js)}e �89 +,~s) as (30) 

The integrand has singular points at s = - 1 / ? k .  Since 
a > max ck and b >- - r a i n  ck then 17~1 -< 1 and so all singu- 
lar points are outside {s: [Re s I < 1}. Therefore  ~(c) does 
not  depend on c provided that  ]c I < 1. Since I b - a l l  
(b + a ) <  1 it is possible to replace the particular value 
c = ( b -  a)/(b + a) by c = 0. This gives the intermediate 
result 

e - 1 z 6  k 

g ( x ) -  (a -1  + b  -1) ~ ej2j I ]  ( fk) �89 (31) 
8~ j= 1 

with 

�9 1 

=/ j (0 )  = (1 + ~ u ) - ~  ~J 
oo 

�9 l 
x {1 - 6Jj / (1  + l'yju)}e gz'~kfk/(1 +iyku) du (32) 

This expression can be rewritten in the form of  a Riemann 
integral on a finite interval. Substi tution of  u = tg t and 
du = cos 2 t dt together with 

1 + iyku = Ak(t) cos t exp{i arcsin(?k sin t /A~(t))} 

1 -- 6j f j /(  1 + iyju) = A j  1 (t)Bj (t) 

x exp{i arcsin(Sj( t) /Aj( t))}  (33) 

exp{16kfk/(1 + iYk U) } = exp{�89 6kfk COS 2 t /Ak(t)  } 

X exp{--iSk(t)} 

leads to Equat ions 11 and 12. 
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