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Macro-~cono~c version of a classical formula 
in risk theory 
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In this paper an extension of Panjefs recursive formula is computed, taking into account macro-economic elements and a delay in 
the claim settlement. This formula will be used to calculate the cumuiative distribution function of the liabilities of an insurer up to 
some fixed time t. 
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1. In~~uction 

In risk theory compound distributions, such as the compound Poisson distribution, are often used to 
model the distribution of the total claim amount of claims that have occurred in a fixed period of time. 

Panjer (1981) developed a recursive definition for the distribution of the total claim amount for a 
certain family of claim number distributions and arbitrary claim amount distributions. The claim number 
distribution has to fulfill the following condition: 

P, ==P”& + &% n = 1, 2, 3,. . *, 0 -1) 

where p,, denotes the probability that exactly n claims occur in the fixed time interval. 
This paper will be devoted to the extension of Panjer’s formula in case a delay in the claim settlement is 

taken into account. 
We shall assume that a period of time may go by between the moment a claim occurs (called claim 

time) and the moment of settlement (payment) of that claim. 
The period of time between these two events is called the settling delay. 
We divide the settling delay into two parts: the handling delay and the payment delay. The handling 

delay is the time period between the claim time and the time both the insurer and the insured agree upon 
the eventual size of the ciaim. The payment delay is the time going by between the agreement upon the 
claim amount and the compensation of the claim by the insurer. 

Furthermore we shall assume that the claim amount may vary with the evolution of inflation during the 
handling delay, but remains independent of further possible fluctuations of inflation during the payment 
delay. For more details we refer to Boogaert and I-Iaezendonck (1989). 

As usual the claims are counted by a claim number process ( N,: t E llB + }. The moments of occurrence 
of the successive claims (claim times) are represented by r, (n E IV,) with r, = 0. We also make the 
assumption that the claim number distribution fulfills condition (1.1) 

Furthermore we introduce three sequences of real-valued and positive random variables: {X,,: n E N}, 

{H,: n E: f?l} and {V,: n E N}. We assume that X, is the size, that H,, is the handling delay and that V, is 
the payment delay of the n th claim. The random variables H,, -I- V,( n E IV) represent the successive 
settling delays. All the random variables and random processes considered in this paper are defined on 
some fixed .probability space (Q, s?, I’)_ Mathematically it is supposed that the sequence of random 
variables 

{(X,,, K, K): n E N} 
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is independent of the claim number process { N,: t E R + f and that the random vectors (X,, H,, V,) 
(n f N) are mutually independent and identically distributed. This assumption implies that { X,,: n E N>. 
(H,: n E NJ> and {V,: n E N} are sequences of i.i.d. random variables. Furthermore we make the 
additional assumption that the handling delay H,, and the payment delay V, are conditionally independent 
given the claim size X,,. 

We also need the following macro-economic elements: 

i(t) is the force of interest at time t(t E R +), 
6(t) is the force of inflation at time t( t E Iw +). 

We suppose that these mappings are continuous and that j(t) = i(t) - 8(t), called the force of real 
interest, is positive. Eventually 

represents the discounting factor at time t. [See Delbaen and Haezendonck (1987).] The present value of 
the liabilities of the insurer is then defined as follows: 

L,= il~xp{ -/;+;m’+Ki(r) dr)j(c+&,)X. ttcR+>. (I-3) 
n n 

In this formula 

represents the present value of the n th claim amount, and 

ii 

T,fKlf v,. 
exp - t(r) dr 

T,+K 1 

reflects the fact that the insurer has still income from interest on the claim amount during the payment 
delay. The random process ( L,: t E R + } is called the liability process. 

In Section 2 we will compute an extension of Panjer’s recursive definition for the distribution of the 
liabilities in a fixed period of time. 

In Section 3 some numerical illustrations will be given. 

2. Recursion formula 

The following lemma is useful for computations involving the probability distribution PL, of L,. 

Lemma 2.1. Let t > 0 be fixed and consider u sequence { Y,(‘): n E N } of i.i. d. real valued random variabies 

which are uniformly distributed on the intervai [0, t]. Assume that { Yi’): n f N} is independent of 
((8, (X,,, H,,, K)): t E R +, n E N}. Define 

-/“‘fH,+Ci(r) dr j(Y,“)+H,,)X,, 
Y”‘CH I 

(t=w+>. 
n n 

Then L, and V; have the same probability distribution. 

Proof. See Boogaert and Haezendonck (1989). CI 

From now on we will use the follo~ng notations: 

- g is the density function of the claim amount X,. 
- g is the density function of the expression exp{ -iv, -iHI -iY$“)Xl. 

(2.1) 
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- I? is the cumulative distribution function of the expression stated above. 

1 Fiil’ is the density function of the handling delay H, conditionally on the claim size Xt. 
ci Ix, is the density function of the payment deIay V, ~onditionaIly on the claim size X,. 

We suppose that these functions exist, whenever we use them. 
Throughout this and the following chapter we suppose that the force of interest i and the force of 

inflation 6 are constant. From (1.3) it then follows that 

L,= 2 exp{-iV;,-jHa-jT,,}X,, (tcR+). (2.2) 
n=l 

Take now t( > 0) fixed and 

&,(A) = EM91 

= EMU,)] 

A belonging to 9,. Using Lemma 2.1. we successively find that 

=po8~o~(A)-+- x p,,E i exp{-iv,--jH,-jYA”}X,,, 
tIL1 m=l 

=d+o,(A) + J,( n~~~.g*“(x)) dx- 

Now we take z r 0 and we will calculate c(t). We have 

I = E[ll,,,l(exp{ -iv, -jH, -j~~‘)}xt>] 

-iv, -jHr -jy>X,) dP dy 

(2.3) 

= f~~l~o.~~(exP{-i~-jh-jy}x)f~,~~,(ulx)f~,~~,(hlx)~(x) do dh dx dy. 

In case z < 0, we have that G(L) = 0. 

(2.4) 

Now we take the derivative of the right-hand side of expression (2.4.) w.r.t. z. After some tedious, but 
straightforward calculations we then find for z > 0, 

Lemma 2.2. Consider a sequence { W,: n E N } of i.i.d. and real cajued random variables, wirh common 
distribution function P,. For every Borel subset A we haue 

I 
xP$“(A -x) d&(x) = -&/y dP~(~+‘)(y). (2.6) 

A 
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Proof. We successively have 

/xP;.“(A -x) dP,(x)=~xE[l,(W,+ W,+ *** +W”+x)] dP,(x) 

= W,+,l,(W,+ ..a +W,+ W,+,)dP 
/ 

= -&(W’, + *.a +w,+,)lA(Wl + .a. +w,+,) dP 

= --&--y dP;:“‘+“(y). 0 
A 

Suppose that the density function (w.r.t. the Lebesgue measure) of P, exist. We use the notation fw. 
As a consequence of the lemma we then get 

1 (J 
x A/rCn( z-x) dz f&x) dx=&+;‘“+“(y) dy. 

1 
(2.7) 

A 

And therefore 

/(I A 

xj$“(z-x)&(x) dx dz= & yf;‘“+“(y) dy. 
i / A 

Equation (2.8) implies that 

(2.8) 

/ 
xf$“(z - x)~,+,(x) dx = -&$“+“(z). 

Now we put 

H(x) = c M’“(X). 
n2rl 

(2.9) 

(2.10) 

Proposition 2.1 (Recursive formula). For every positiue x we have 

H(x) = Pliw + /bX( a + ?$Cx -YMY) dy. (2.11) 

Proof. We successively find 

i exp{ -iv,-jH,,,-jYz’}X,,, 
m*l 

=plE[l,(exp{-iv,-jH,-jY/“}X,)] + c p,E 1, i exp{-iv,-jH,,,-jYz’}X, 
II>2 [ i m=l 

=p,E[l,(exp{ -iv1 -jH, -jY/“}X,)] + c P,,+~E 1, 
ntl H 

n+l 

c exp{ -iv,-jH,,,-jYi’}X,,, 
m=l 

=p,E[l,(exp{ -iv, -jHl -jY:“}X,)] 

?I+1 
+a c p,,E 1, 

n2l [ ( 
c exp{ -iV,,-jH,-jY$‘}X,,, 

m-1 iI 

+a nklexp{ -iv,-jH,-jYz’}X,,, . 
tlL1 m-l 
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Therefore 

g=(x) =p,g(x) + uj- 1 p”jj*“(x - u)g( u) du + b c l)lLg*(“+l)(x). 
n2l nr1 n + l 

From equation (2.9) it then follows that 

j(x) =M(x) + a/ c P”g*“(x - 
tl>l 

u)g(u) du + bj-: c JJ”~*~(x - u)g( u) du. 
n21 

So finally we get 

z(x) =p,g(x) + LZ/;(X - u)g(u) du + bj-;i(x - u)g( u) du. 

This completes the proof. 0 

159 

(2.12) 

Now we consider the special case where no handling nor payment delay is taken into account. Then we 
get the random process { $: r E R + }, where 

s,= 5 f(T,)X, (=R+). (2.13) 
n-l 

For more details on this random process we refer to Delbaen and Haezendonck (1987). 
For z 2 0 we then get 

G(z) = +/,‘/d.‘g(x) dx dy. 

And therefore, for z > 0, 

g(z) = +/olg(z eiY) ejydy 

In case the claim size is exponentially distributed with parameter l/p (IL > 0), i.e. 

g(x) = (I/CL) e-x/PItO.mt(x), 

we get 

g(z) = (l/gz)(e-Z/P - e-Ze”“L)lp,m, (z). 

(2.14) 

(2.15) 

(2.16) 

3. Example 

In this chapter we take t( > 0) fixed and we shall suppose that the claim number process {NJ: r E R +} 
is an homogeneous Poisson process with risk parameter h (> 0). Then 

pn = P( N, = n) = [ (Xt)“/n!] e+, n=O, 1,2 , . . . . (3.1) 

Therefore condition (1.1) is fulfilled for a equal to zero and b equal to A’r. 
Furthermore we suppose that the claim amount Xi is exponentially distributed with parameter l/p 

(Jo > 0), i.e. 

g(x) = (I/p) e-X”l[,,,[(-+ (3.2) 

To make it possible to compare the new results with the one obtained in the classical case, we will first of 
all consider this classical case. The liabilities of the insurer up to time I are then given by the classical risk 
process (S,: tEW+}, where 

s,= 2 4. (3.3) 
i-l 
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Table 1 

x fvs0.s~~) 

0.00 0.606531 

PCS, IX) 

0.367879 
0.05 0.621413 0.386045 
0.10 0.635747 0.403758 
0.20 0.662847 0.437859 
0.30 0.687978 0.472046 
0.40 0.711279 0.503967 
0.50 0.732880 0.530131 
0.60 0.752900 0.560236 
0.70 0.771452 0.583818 
0.80 0.788641 0.608682 
0.90 0.804563 0.632108 
1.00 0.819310 0.654254 

Panjer’s recursive formula then gives us that 

P(S, s x) ‘PO + J 0 oxi Y dy, x 2 0, (3.4) 

where 

i(y) =P~Y) + X$‘;;(Y - xk(x) dx, Y ‘0. 

Now we calculate the cumulative distribution function of S,, i.e. P(.S, I x), for different values of x. The 
results are given in the Table 1. For these calculations we used Panjer’s recursive formula [see (3.4)] and 
Simpson’s rule. 

For the calculations in the second column we took the risk parameter X equal to 1, the mean claimsize p 
equal to 1 and time t equal to 0.5. For those in the third column we took time t equal to 1. The other 
parameters have the same value as for the calculations in the second column. 

Now we consider the special case where no handling nor payment delay is taken into account and where 
the force of real interest is constant and strictly positive. 

Then we have [see expression (2.16)] that 

g(z) = (l/$7)(evz/’ - e-fr/p)e”), r>O (3.5) 

and 

f’tbx) =PO+@Y) dy, x 2 0, (3.6) 

where 

Now we will compute the cumulative distribution function of s, i.e. P($s x), for different values of x. 
This will be done using the recursive formula [see (3.6)] and using Simpson’s rule. For these calculations 
we supposed that the force of real interest was equal to 0.03. The value of the other parameters is the same 
as in the example stated above. (See Table 2.) 

Finally we will consider an example where there is a handling and a payment delay, where the force of 
interest and the force of inflation are both constant and where the force of real interest is strictly positive. 

Furthermore one can expect a larger claim size to give rise to a larger handling delay. Indeed, the larger 
the reported claim size, the more accurate the insurer will try to estimate the damage. However, the 
handling delay may not last longer than a specified amount of time. The same arguments apply to the 
payment delay. 
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Table 2 

was 5 xf P(S, IX) 

161 

0.05 0.606531 0.36781? 

0.05 0.621523 0.386316 

0.10 0.635958 0.404288 

0.20 0.663238 0.438864 

0.30 0.688517 0.471670 

0.40 0.711927 0.502758 

0.50 0.733581 0.532171 

0.60 0.753573 0.559934 

0.70 0.771972 0.586054 

0.80 0.788827 0.610512 
0.90 0.804157 0.633262 

1.00 0.817957 0.654225 

Therefore we make the following assumptions: 

r,,x,(hlx)= fl/PI(X~~I)Il~O,P,(x*a,tj(h) Uv.0, al’01 (3.7) 

and 

fY,,X,(~IX)=[1/Pz(XAa2)llIo.P2(x**,)1(~) (P2=-0~ a2’0)* 

wherexr\y=inf{x, y} and xVy=sup{x, y). 
Then, for z > 0, expression (2.5) becomes 

g(z) = (l/Co exp{ --z/CL) +4(z) +12(z), 

where 

I,(Z) = ~~~,~g(x)~rjd'/'"n'"'-y~~,,x,(~Ix)~~,,X,( +ln: - $ - $1~) dh dy dx. 

To simplify the notations we put 

A = (l/j) In(x/z), 

B=P*(xAaQ,), 

and 

C= tj~)~2(xA~~). 

We find that 

“(‘) = &te”&(x A q,B,cx A a2) g(x) dx 

x 
/ (:_B_C,Yo(((A -Y) AB) - ((A -Y - C> vO>> dy. 

Furthermore we find that 

X I (;~B_oyo(((A -Y> A@ - ($4 -Y - C) VO)) dy- (3.11) 

The integration of these integrals w.r.t. y is tedious but straightforward. 

(3.10) 
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X 

0.00 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

P(&.s~x) 

0.606531 

0.625912 

0.637012 

0.665578 

0.691310 

0.719009 

0.735975 

0.754175 

0.777107 

0.789840 

0.809706 

0.823739 

Table 3 

P(L, 5 x) 

0.367819 

0.388253 

0.404919 

0.439685 

0.473684 

0.503017 

0.536515 

0.564181 

0.586281 

0.616813 

0.636712 

0.663711 

We then calculate the cumulative distribution function of L,, i.e. P( L, I x), for different values of x. 
We suppose that the force of interest is equal to 0.05, that PI is equal to 0.25, that CY~ is equal to 20, that /I: 
is equal to 0.0833 and that 0~~ is equal to 12. The other parameters have the same values as mentioned 
above. (see Table 3.) 
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