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In the literature on the empirical distribution of foreign exchange rates there is now consensus 
that exchange rate yields are fat-tailed. Three problems, however, persist: (1) Which class of 
distribution functions is most appropriate? (2) Are the parameters of the distribution invariant 
over subperiods? (3) What are the effects of aggregation over time on the distribution? In this 
paper we employ extreme value theory to shed new light on these questions. We apply the 
theoretical results to EMS data. 

1. Introduction 

In a recent issue of this Journal, Boothe and Classman (1987) provided a 
comprehensive study and exhaustive summary of the theoretical and empiri- 
cal work on the unconditional distribution of foreign exchange rate returns. 
Taking their excellent survey as our point of departure, it appears that three 
important questions are unresolved. 1 While the profession agrees on the 
stylized fact that shorter term foreign currency returns are fat-tailed, the 
three questions center on the precise implications of this tail-fatness for the 

*We wish to thank Laurens de Haan for his invaluable theoretical insights. Guido Imbens, 
Peter Schotman, an anonymous referee and the editors of this journal provided valuable 
comments. Ieko Sevinga provided able research assistance. We profited from presentations given 
at Brown University, the University of Zurich and the European Economic Association meetings 
1988. The major part of this work was conducted while all three authors were at Erasmus 
University Rotterdam. 

‘The survey by Boothe and Glassman gives the state of the art in modelling the exchange rate 
yield distribution. Therefore we deem it unnecessary to provide an exegesis of the existing 
literature. Rather, for each issue we discuss, we refer to the corresponding discussion in Boothe 
and Glassman. Thus, the reader should bear in mind that this is not a critique, but a 
continuation. Our approach, though, is quite novel. 
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distribution function.’ The questions are directly related to the exact 
amount of tail-fatness that is involved. In this paper we suggest ways to 

resolve some of those issues by methods that rely heavily on the presumption 
of fat tails, but are robust against the specific amount of leptokurtosis that is 
present. We discuss the three issues in turn. 

First, several non-nested distributions have been suggested as the appro- 
priate yield data generating functions, each varying in their degree of tail- 
fatness. At the one end of the spectrum we find the normal, which can be 
readily dismissed due to the excessive amount of outliers in the data. Closely 
related are the mixtures of the normal distribution, which are not appropri- 
ate for the same reason. The Student-c class with finite variance takes an 
intermediate position. The Student-t has been suggested, because it combines 
a finite variance with fat tails. A finite variance is often presumed in 
economic theory, and fat tails are an empirical regularity. For this class some 
moments do exist, but not all. At the other end of the spectrum are the sum- 
stable laws. The main attraction of the sum-stable laws is the additivity 
property together with the fat tails property. As the existence of moments is 
directly related to the amount of probability mass in the tails, the question 
about the appropriate class of distributions is directly related to the amount 
of tail-fatness that exists in the data. 

The problem is that these alternative models are non-nested, so that 
estimates are necessarily dependent on the maintained hypothesis. Therefore, 
the competing hypotheses cannot be directly tested against each other, i.e. 
likelihood ratios cannot be used. The Cox procedure is not applicable either, 
as the second moment may not exist [c.f. White (1982)]. Boothe and 
Glassman (1987) suggested employing the chi-square goodness of fit test, but, 
as they indicate, it has the drawback that one must break up the empirical 
distribution function into arbitrary intervals. Moreover, estimates from 
different samples cannot be compared in this way. As it turns out, the tail 
behavior of the alternatives can be parameterized by the so-called tail index 
a from the limit law of the distribution of the maxima. In case of a Student-c, 
a equals the degrees of freedom, and for the non-normal sum-stable law a 
equals the characteristic exponent. The idea is to focus on the tail behavior 
in order to recover a. Below, we present ways in which the tail index can be 
estimated directly, i.e. in such a way that the different hypotheses appear as 
nested alternatives. The advantage is that estimates do not rely on one of the 
alternatives as a maintained hypothesis. 

The estimation procedure also implies an asymptotic confidence interval 
for the estimate &. This gives the present method a clear advantage over 
traditional procedures like Fama and Roll’s (1971) method. As the Student-r 

LIn this paper the term tail-fatness refers to the probability weight in the tails of the 
distribution and is delined in section 2. By fat-tailed distributions we mean distributions that 
have fatter tails than the normal distribution. 
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class with finite variance requires r>2, and the leptokurtic sum-stable 
alternative has x<2, the contidence interval may be used to directly 
discriminate between these alternatives. 

Second, it is sometimes felt desirable to test for the stability of the 
parameters over different subsamples, i.e. related to a division of time or 
different exchange rates. For example, Boothe and Glassman divided their 
sample in halves to detect structural breaks, and compared the two 
subperiod distribution estimates on the basis of the non-parametric median 
quartile test. Here we will not test jointly for the stability of all parameters, 
but only for the tail index. It should be noted that the latter may be 
subsample invariant, while equality of the entire distribution is rejected. 

Analysis of the stability of x is especially relevant for the case of the EMS. 
One of the main objectives of the EMS was to delimit extreme swings in the 
bilateral exchange rates. The tail index x, by its very nature, is a suitable 
measure of the extremal behavior of exchange rate movements. Hence, one 
may wonder whether the formation of the EMS has been conducive to 
changing Q. Accordingly, we will gauge the effects of the EMS formation by 
employing the stability test. Sometimes, the possible variation in parameters 
is modelled explicitly. For example, the ARCH process, introduced by Engle 
(1982), conditions the current variance on past realizations, thereby generat- 
ing clusters of high and low volatility. The interesting economic question is 
then whether the fluctuation margins have affected this kind of volatility 
clustering. It is outside the scope of this paper to do full justice to these 
processes, but we do address the issue of dependent data to some extent. 

Third, there is the question of the effect of aggregation over time on the 
distribution of exchange rate returns. As is well known from economics 
principles, returns are additive over time. For this reason it is often felt 
desirable to preserve this additivity into the distribution of the returns. As it 
turns out, the class of sum-stable distributions is the only one that possesses 
this property. The combination of fat tails and the additivity property makes 
this class appealing. The Student-r class has been advocated mainly because 
of its finite variance while still being leptokurtic. The price is the loss of 
additivity, although - and this seems to have gone unnoticed in the 
economics literature - additivity in the tails of the Student-t is preserved. 
Thus, the sums of Student-t variates have the same tail index as their 
summands. Hence, the requirement of additivity is less restrictive than it 
appears at first sight. 

Additivity has been tested for by estimating the parameters of the sum- 
stable distribution on high and low frequency data, and comparing such 
estimates. A tendency towards 2 for the characteristic exponent has some- 
times been observed for the lower frequency data. Although formal testing 
for additivity is difficult due to the interdependency between the high and 
low frequency data, we go some way towards alleviating this problem. See 
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Diebold (1988a) for a related discussion. Especially the reduction in efficiency 
due to the use of low frequency data will become apparent. 

Given the dispute over the specific distribution, and the fact that returns 
are fat-tailed, we suggest employing extreme value theory that is robust 
against the former and exploits the latter observation.3 This theory focuses 
on the limit distribution of maxima, in analogy with the central limit 
theorem for sums. As the distribution of the maximum is especially sensitive 
to the tail behavior, the limit laws exhibit a direct relationship with the 
amount of tail-fatness. In fact, the tail index a characterizes the limit law. 
Below we formulate the above models as nested hypotheses about a, and 
estimate a directly. This procedure shares the advantage with the central 
limit theorem in that no specific assumptions about the data generating 
mechanism have to be made. It allows for asymptotic inferences about the 
main parameter of concern. This seems to accord well with Boothe and 
Glassman’s (1987, p. 314) remark that not ‘one of the alternatives is rhe 
distribution for exchange rate changes’. In other words, for many questions 
in the area of exchange rates it is sufficient to know some of the properties of 
the distribution function F, such as its tail index, without knowing F in 
detail. Thus, our methodology is not to try to recover the entire distribution 
that generates the returns, but only the tail of the distribution. This is not to 
say that changes in the non-extreme parts are of no interest; however, by 
giving up this information the tail analysis gains in robustness. 

The next section provides the necessary theoretical background. In section 
3 we apply the theory to EMS currency data and the British pound. 

2. The theory of extremes 

Consider a stationary sequence X1, X2,. . . of independent and identically 
distributed (i.i.d.) random variables with a distribution function F. Suppose 
one is interested in the probability that the maximum 

M,=max(X,,X, ,..., X,) (1) 

of the first n random variables is below a certain level x. As is well known, 
this probability is given by: 

P{M,sx} = F”(x). (2) 

Extreme value theory studies the limiting distribution of the order statistic 
M, appropriately scaled. That is, one is interested in the conditions under 
which there exist suitable normalizing constants a,>O, and b, such that 

?his approach may also prove useful in theoretical economics. For example, Flood and 
Garber (1984) use the limit law for extremes in their analysis of the peso problem. McFadden 
(1973) constitutes an example from the area of qualitative response models. 
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P{a,(M,-b,)Sx}SG(x), 

i.e. 
F”(x/a, + b,) 7 G(x), 
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(3) 

where G(x) is one of the three asymptotic distributions that are defined 
below, and w stands for weak convergence. If (3) holds, we shall say that F 
belongs to the domain of attraction of G, and write FE D(G). 

Define the class of limiting laws which may appear in (3) as follows: 

Definition I. A non-degenerate distribution function (d.f.) G is called max- 
stable if there exist real constants A,>0 and B, such that for all real x and 
n=l,2,... 

G”(A,x + B,) = G(x). 

One can show that if (3) holds, then G is max-stable. The main result is 
the Extremal Types Theorem: 

Theorem I. The max-stable distributions can be represented by 

G,(x) = exp ( - [ 1+ 7x]- “?), (4) 

for values of x such that 1 + yx 20. 

Note that the limit law is characterized by the parameter y which is the 
inverse of the tail index a referred to in the introduction. See Mood et al. 
(1974, p. 261) for an introductory account of this result. Leadbetter et al. 
(1983) provide a comprehensive treatment, with relatively straightforward 
proofs. Chapter 3 of the latter reference also contains an extensive treatment 
of dependent sequences. The dependency affects the norming constants but 
not the tail index. Therefore, the discussion below carries over to dependent 
sequences, as we focus primarily on a. 

The limit in (3) explicated in (4) is most easily interpreted by analogy with 
the central limit theorem. The difference is the focus on order statistics rather 
than averages, but its usefulness is the same as no detailed knowledge of F(x) 
is needed to apply the asymptotic theory. A complication is the fact that 
there are three limit laws, distinguished by the sign of y. For reference, a type 
II limit law obtains when y>O, a type III limit law obtains when y<O, and a 
type I limit law holds for y =O. In the last case (1 + YX)-“~ is interpreted as 
e-=. For exchange rate returns the type II limit law is of special interest. We 
state it here in an often used alternative format that exhibits the tail index a 
directly: 
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Type II: G,(x) =O. .Y 5 0, 

=esp( -.x-‘), .x>O, 
(5) 

where Q = lk/. 
Usually economic theory is not informative about the specific distribution 

F(x) that applies. However, the qualitative characteristics of the economic 
process may point to the relevant limit law. Consider the following two 
necessary conditions from De Haan (1976): 

Condition 1. If F ~D(Type I G(X)) and F(x) < 1 for all x, then I;” ?dF(t) is 
finite for all 8. 

Condition 2. If F ~D(Type II G(x)), then F(x) < 1 for all .Y and J’; ?dF(t) is 
finite for p<r and infinite for /I> c(. 

The intuition behind these conditions is as follows. Loosely speaking, the 
tail of the distribution is either declining exponentially or by a power. In the 
first case all moments exist, but in the second case the higher moments do 
not decay rapidly enough when ‘weighted’ by the tail probabilities to be 
integrable, i.e. the d.f. F(s) has fat tails. This explains the appearance of the 
double exponential in the Type I limit law and the exponential format of the 
Type II as well. The third limit law is characterized by the fact that it has a 
finite upper endpoint. The tail-fatness of a d.f. F is now suitably defined as 
the value of the tail index LY. Anticipating the next section, given that 
exchange rate returns are strongly fat-tailed and unbounded in principle, the 
Type II limit law is the relevant one if the maximum yield distribution 
converges at all. 

A sufficient condition on F(x) for the Type II limit to obtain is: 

Condition 3. It is sulficient for FE &Type II G(x)) that it has no finite upper 
endpoint, and for each x>O and some cz > r>O 

lim 1 -F(tX) =x-I 

f-m 1 -F(t) . 

The latter condition boils down to regular variation at infinity [see Feller 
(1971, ch. VIII.8) and Mood et al. (1974, p. 261, th. 16)]. 

The following discussion shows how the above conditions may be 
employed in specific cases. We return to the d.f.s F(x) that have received 
most of the attention in the literature on exchange rates. First, the normal 
and mixtures of the normal possess all moments, and hence Condition 1 
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applies. Therefore these alternatives are thin-tailed and seem unfit for 
modelling exchange rate returns. Second, the Student-t and the sum-stable 
d.f. both satisfy Condition 2, because not all moments are finite. To verify 
that the Student-r class satisfies Condition 3 is straightforward [see, for 
example, Mood et al. (1974, p. 262)]. The sum-stable distribution, which is 
not to be confused with the max-stable distribution G(x), takes some effort as 
only in specific cases does a closed-form solution for its density f=(t) exist (i.e. 
the normal, the Cauchy, and the inverted chi-square, while the so-called 
characteristic exponent a is respectively 2, 1 and )). Ibragimov and Linnik 
(1971), however, provide the following asymptotic formula for I large and 
O<a<2, a#l: 

h(r)=+ nz, y sin(fnnz)T(nx+ l)t-“a. 

Use this expansion to verify that Condition 3 holds: 

*im C(n!)-‘(-l) ” sin(+nnx)r(nr + l)(m)-“” t2 
,_m C(n!)-‘(- l)“sin(_tnna)f(nr+ l)(t)-“’ ~=n-‘* 

From this discussion it is immediate that the competing F(x)‘s are nested 
within their limit law G(x), and are distinguished by different values of rl. 
Specifically, the leptokurtic sum-stable hypothesis requires a <2 and the 
Student-r class allows for a2 2. The idea is now to estimate z directly 
without a prior commitment to either hypothesis. 

Before we turn to the estimation procedures, the case of dependent variates 
is briefly discussed. Consider, for example, the simple infinite MA process 
(AR 1 process): XI=C~o~‘&l_j, where the E, are i.i.d. sum-stable variates 
with tail index a: 1 <r<2, and 0ci.c 1. The effect of the dependency is that 
the larger values have a tendency to come in clusters. This affects the 
norming constants but not the tail index. Specifically, the limit law in eq. (5) 
becomes exp( - 0x-‘), where 0: 0 c 05 1, called the extremal index, is a 
scaling factor that compensates for the clustering. In this example, 8= 
E?(l -P), [cf. Leadbetter et al. (1983, ch. 3)]. As mentioned in the introduc- 
tion, the ARCH process is of economic interest as it exhibits both the 
clustering phenomenon and has a fat-tailed unconditional d.f. Because of the 
latter fact, Condition 2 is easily seen to hold. Sufficiency is more intricate to 
obtain. De Haan et al. (1989) have recently proved sufficiency and obtained 
expressions for the extremal index 0 by means of appropriate mixing 
conditions. 

Broadly speaking, the estimation procedures for a fall into two categories. 
A traditional approach uses ‘yearly maxima’ and assumes that each period’s 
maximum exactly follows one of the three limit laws. If the Type II limit law 
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applies, direct estimation by maximum likelihood is consistent. However, in 
this approach time is more or less arbitrarily divided into separate intervals 
from which one observation is used. As more than one extreme realization 
may occur in a period, some information could be lost. Another drawback of 
this method is that the excesses are assumed to follow the limit law exactly, 
whereas this is only approximately the case. Recently, some estimators have 
been proposed based on the largest order statistics which require only that 
the distribution generating these observations is in a sense well behaved. This 
implies that the remaining estimation error can be solely attributed to the 
use of finite samples. For example, regular variation at infinity is often a 
sufficient condition. For this reason the focus is on these methods. 

Let X,,X, ,..., X, be a sequence of stationary i.i.d. observations from 
some distribution function FE D(Type II G(x)). We are interested in obtaining 
an estimate for y, given that the Type II limit applies. Define X,,,sX,,,s 
*. . S Xtnj as the ascending order statistics from a sample Xi, X2,. . . , X, of n 
consecutive exchange rate yields Xi. The proposed estimator reads: 

j=G=A ,i CI”gx,,+,-i)-logx,,-,,)l. 
r-l 

The statistic j first appeared in Hill (1975). Mason (1982) proved that if 
Condition 3 is satisfied, jj is a consistent estimator for y. By a result of 
Goldie and Smith (1987), it follows that (f-;l)m”2 is asymptotically normal 
with mean zero and variance y2. 

The estimation procedure requires m(n)+*, but for a finite sample it is 
not known how to choose m optimally.4 A heuristic procedure is to 
compute 6 for different m and to select an m in the region over which h is 
more or less constant. There exists such a region because when one uses too 
few order statistics, then a will vary heavily with m due to inefficiency. In the 
opposite case the curvature of the distribution F generating the data weighs 
too heavily, i.e. only the tail probabilities are well approximated by the limit 
distribution G. In the empirical section we conduct a Monte Carlo study to 
select m. Due to the asymptotic normality of p, the MSE criterion may be 
used to select an optimal m for given sample size n and d.f. 

The implied asymptotic confidence interval allows one to test directly for 
the two competing hypotheses about F(x), i.e. the sum-stable and Student-r. 
The former requires 0~ a c2 and the latter allows for a2 2. As noted, 
discrimination between the two hypotheses is hampered by their non- 
nestedness. However, as our estimate of a is not conditional upon one of the 
two hypotheses being true, the asymptotic confidence interval may be used to 
test for H,: a <2 against Hi: a 2 2. The asymptotic normality of G may also 

4This is the case for both the maximum likelihood and order statistics procedures. 
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be exploited to compare 
statistic, 

a estimates from different samples. The following 
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where the a and m are as in (7) and the subindexes refer to two independent 
samples, is asymptotically x’(2) distributed. It can be used to test for the 
equality of a over pre-EMS and EMS data, and to test for equality over 
different exchange rates. 

The data we use consist of weekly bilateral exchange rate returns. In view 
of the third question concerning the time additivity, the returns over 
extended periods of time are relevant as well. In the case of a sum-stable 
distribution for weekly returns, it is immediate that monthly, yearly, etc. rates 
follow the same distribution, as this class of distribution is invariant under 
addition. For other leptokurtic alternatives like the Student-r, this is not the 
case. What has not been realized in the economics literature, though, is the 
fact that the tail behavior of alternatives like the Student-r is unaffected by 
aggregation. That is, M, generated from a Student-t or any finite sum of 
Student-t variates all tend to follow the Type II limit law, with the same a! A 
sufficient condition for this invariance is given in Theorem 2. 

Theorem 2. If 1 -F(x) varies regularly at infinity, i.e. satisfies Condition 3, 
then the M, from F(x) or any finite convolution of F(x) follow the same limit 
law. 

A lucid proof may be found in Feller (1974, ch. VIII.@. Hence, focusing on 
the limit law has the advantage that the amount of tail-fatness is invariant to 
the chosen period length between observations for ‘all’ fat-tailed alternatives. 
It guarantees a robustness to our methods that is not present in the others. 
In the case where the Student-t is estimated from the returns, the frequency 
of the data may not be immaterial to the amount of leptokurtosis one will 
find, for example. Unfortunately, a direct test of Theorem 2 does not seem 
possible due to the interdependency of high and low frequency data. But 
some testing is possible, as is discussed in the following section. 

3. Empirical results 

The aims of this section are to evaluate the amount of tail-fatness of the 
bilateral EMS foreign exchange rates. Our data consist of weekly Friday 
closing quotations of the Belgian franc (BF), French franc (FF), Italian lira 
(IL), Dutch guilder (DG), British pound (BP), Irish pound (IP), the German 
mark (GM) and the Danish krone (DK) quoted against the United States 
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dollar (US) spot exchange rate from the Harris Bank. The sample covers the 
period starting 26 March 1971 and ending 6 February 1987. The IP/US rate 
was only available for the period starting 9 March 1979 and ending 6 
February 1987, i.e. from the inception date of the EMS onwards. For the 
period from 10 February 1987 to 23 June 1989, Kempen and Co., 
Amsterdam, provided daily closing rates for the time aggregation tests. Our 
motivation for focusing on the EMS rates is that these are likely to generate 
the most interesting results for all three questions set forth above. The 
creation of the EMS, for example, constituted a major change in policy, 
explicitly geared towards affecting the behavior of exchange rates and 
provides a nice occasion to employ the Q test of eq. (8). The sample is split 
in a pre-EMS and EMS period, and the tail index estimates for both periods 
are compared in order to determine whether the formation of the EMS has 
indeed affected the extreme movements of the exchange rates. Another issue 
is the continuing debate as to whether the BP should become part of the 
EMS. The BP data are therefore included in the sample to shed some light 
on this matter. 

As is well known, in an arrangement like the EMS only n- 1 countries can 
set their exchange rates independently, whereas the nth country has a degree 
of freedom in choosing its money supply.’ In fact, Germany has functioned 
as the ‘nth country’ of the EMS. Therefore we take the liberty of econom- 
izing on the information by presenting evidence for the exchange rates vis-a- 
vis the DM only. The ECU rate used is the ECU-DM rate. 

It is well realized why returns rather than levels of exchange rates are the 
variable of interest for high frequency data. The main reason is that investors 
compare returns rather than levels, and capital movements are the prime 
cause of short-run exchange rate fluctuations. The stylized facts of exchange 
rate data are as follows. The logarithm of the spot rate is non-stationary, 
whereas returns are stationary. Sample moments of the empirical return 
distributions indicate the absence of skewness for freely floating convertible 
currencies, but may be skewed otherwise. The kurtosis usually points to 
fatness in the tails. The EMS data, when scrutinized by the usual tests, 
accorded well with the stylized facts. 6 All rates are significantly leptokurtic, 
i.e. the kurtosis is significantly different from zero. The weaker currencies, i.e. 
the BF, FF and IL, tend to be skewed and have non-zero means. This 
pattern is related to the periods of sustained excessive inflation and official 
intervention these currencies experienced. 

Above we discussed three open issues in the empirical exchange rate 
distribution literature. To recapitulate, these concern: (1) the type of distribu- 
tion function and the amount of tail-fatness; (2) parameter stability; and (3) 

‘Triangular arbitrage, moreover, implies that the cross rates are not independent. 
6Details are reported in Koedijk et al. (1989). which is available upon request. 
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Table 1 

Minimizing ,MSE m-levels.” 

Student-t ARCH 
distributions process 

z=l x=2 2=3 x=3 

m 66 28 16 28 
MSE 0.01-1 0.012 0.011 0.015 
Theoretical MSE 0.015 0.009 0.007 - 

‘The Monte Carlo experiment consisted of 100 replications 
of n=412 draws from three Student-t distributions and one 
ARCH process, after appropriate initialization. The theoreti- 
cal MSE is computed as y’,‘m for the i.i.d. cases. Further 
details are in the main text. 

the influence of the data frequency on the tail index. Each of these issues is 
now addressed empirically on the basis of the EMS data. 

We start with the relevancy of the different classes of distribution functions 
by estimation of the respective tail indices. As noted, the estimators are 
conditioned upon the m highest order statistics. In order to select appropri- 
ate m-levels we conducted a Monte Carlo experiment. The m-level is selected 
for which the MSE attains its minimum. The MSE criterion is an appropri- 
ate selection criterion given the asymptotic normality of the estimator in eq. 
(7). We simulated four different distributions, three Student-c distributions 
with 1, 2, and 3 degrees of freedom, respectively, and a first-order ARCH 
process with the autoregressive heteroscedasticity parameter equal to 0.73, 
which amounts to a tail index of 3. The values of x were chosen in the range 
l-3 with an eye towards the previous studies. Table 1 reports the minimizing 
m-levels and associated MSE. These m-levels vary inversely with the true tail 
index u. The reason is that the lower is ‘1, the fatter are the tails of the 
distribution, and hence the more ‘outliers’ are available for estimation. Above 
we noted that the MSE is expected to be U-shaped when plotted against m, 
and thus having a global minimum, given the trade-off between efficiency 
and bias. This was confirmed in all experiments.’ From the experiments for 
the ARCH process it appears that the dependency does not greatly affect the 
MSE and the choice of m. Because of the issue of whether a> 2 or xc2, we 
choose to condition the estimates on m= 28. This also accords well with the 
ARCH experiment. 

The tail index estimates are reported in table 2. From the table it appears 
that most exchange rates in both periods are characterized by point estimates 
for a below 2. We can now test formally for He: LY c 2 against the alternative 
H,:rxZ2 on the basis of the asymptotic normality of G. At the 5 percent 

‘Evidence is reported in table A2 in Koedijk et al. (1989). 
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Table 2 

The tail index.’ 

Period 

Pre-EMS 

Estimates 

EMS 

Currency j: i 

BF 2.61 (1.64-3.58) 1.49 (0.94-2.04) 
FF 1.92 (1.21-2.63) 1.25 (0.78-1.71) 
IL 1.41 (0.89-1.93) 1.78 (1.12-2.44) 
DG 1.69 (1.06-2.32) 1.62 ( 1.02-2.22) 
BP 2.66 (1.67-3.64) 2.17 ( 1.37-2.98) 
IP 1.63 ( 1.03-2.23) 
DK 1.59 (1.00-2.17) 2.02 (1.27-2.77) 
ECU - 2.41 (1.51-3.29) 

“The 95% asymptotic confidence interval of z 
is given in parentheses. The estimates are con- 
ditioned on m=28 and sample size n=412. 

significance level, H, is never rejected. H, is rejected for the IL over the 
pre-EMS period, and similarly for the FF during the EMS period. Thus, 
returns are clearly fat-tailed, i.e. normality or mixtures for that matter are 
overwhelmingly rejected, but only in some instances can we reject the 
Student-r with finite variance hypothesis. The sum-stable hypothesis is never 
rejected.’ 

Next, we enquire into the stability of a. Specifically, we ask how the 
creation of the EMS has affected a. A rise in a, for example, would implicate 
a reduction in the extreme volatility of the exchange rate movements. To this 
end the Q statistic of eq. (8) was calculated for the pre-EMS and EMS 
period, see table 3. In four cases, i.e. the BF, FF, DG and BP, the EMS h is 
below the pre-EMS &, and the reverse holds for the IL and DK. As is 
apparent from table 3, however, the stability of a cannot be rejected for any 
of the currencies. In this respect, it seems that the EMS has achieved little to 
reduce the extreme volatility. This runs counter to popular belief that the 
EMS has achieved a reduction in uncertainty. Such may still be the case, 
though, when the behavior in the midsection of the distribution is taken into 
account. But the shape of the tails of the distribution appear unaffected by 
the EMS. 

The EMS has other goals than reducing the extreme movements. In this 
respect it is of interest to ask whether the different currencies are sufficiently 
similar to belong to the same currency area. Similarity may be considered as 

‘For the EMS periods the tail indices were also estimated on samples with two weeks 
centered around each realignment date omitted. The resulting tail estimates, however, were not 
substantially different from the ones that are presented. 
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Table 3 

Parameter stability. 

Period 

Pre-EMS EMS Interval 
-~ 

Tail index 

Currency t, 

BF 2.61 1.49 1.41-2.12 
FF 1.92 1.25 1.07-1.82 
IL 1.41 1.78 1.07-2.03 
DG 1.69 1.62 1.11-2.19 
BP 2.66 2.17 1.63-3.11 
DK 1.59 2.02 1.22-2.29 

‘This column provides the interval for 
which H,: xt = zr is not rejected at the 5% 
significance level. 

a necessary precondition for achieving such other goals. By using the Q 
statistic again, we tested for the equality of the tail index between countries 
over the EMS period.g Equality was never rejected. This suggests that the 
currencies of the EMS are similar enough to belong to the same currency 
area, and this conclusion carries over to the BP. 

Lastly, we turn to the issue of time aggregation and the use of high and 
low frequency data. With an eye towards Theorem 2 we computed table 4. It 
displays the re-estimated a on the basis of different frequency data for the 
EMS period. lo Evidently, the increased width of the confidence intervals 
reflects the loss in efficiency due to the reduction in information. No clear 
rise or fall in the B’s can be detected, Quite a number of articles cite a rise in 
a towards 2 when using lower frequency data. Diebold (1988b) provided 
other evidence for a tendency towards normality. This may simply be due to 
the fact that 2 is more likely to be included in the confidence interval when 
using fewer observations. Unfortunately, one cannot use a statistic like Q to 
test formally for stability when using different frequency data, as the two 
samples are not independent. 

What may be done, however, is to compare the EMS low frequency 
estimates with the pre-EMS high frequency estimates. This is done by means 
of the Q statistic in table 5. Equality is never rejected. We recognize that this 
constitutes a rather indirect method of testing for equality, but at least it 
circumvents the dependency problem and generates a confidence interval. 

‘The Q statistic may be biased due to triangular arbitrage. 
“For the different frequency data new m-levels were established on the basis of Monte Carlo 

experiments as before. These results are not presented for considerations of space, but are 
available from the first author upon request. 
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Table 4 

Estimation with other frequency data.” 

Daily Bi-weekly Tri-weekly ,Monthly 
returns returns returns returns 
(n=619) (n=206) (n= 137) (n = 103) 

Currency (m=30) (m= 13) (m=ll) (m= IO) 

BF 

FF 

IL 

DG 

BP 

IP 

DK 

ECU 

2.56 
1.64-3.47 
2.3 I 
1.48-3. I3 
2.82 
1.81-3.83 
2.93 
1.88-3.97 
2.96 
1.90-4.02 
2.90 
I .863.22 
2.37 
1.52-3.22 
_ 

1.71 1.54 1.60 
0.78-2.63 0.62-2.45 0.61-2.60 
1.73 1.61 I .66 
0.79-2.67 0.66-2.56 0.63-2.69 
1.93 2.28 2.36 
0.88-2.99 0.93-3.64 0.90-3.82 
1.68 2.20 2.10 
0.76-2.59 0.9G3.49 0.80-3.41 
2.96 3.39 2.57 
1.35-4.57 1.39-5.39 0.974.17 
1.68 1.62 1.56 
0.77-2.59 0.66-2.58 0.59-2.53 
1.28 1.78 1.91 
0.59-1.98 0.72-2.83 0.72-3.10 
2.52 3.73 2.15 
1.15-3.89 1.52-5.93 0.82-3.48 

‘In the first line the estimates of I are presented and the 
second line gives their 95% contidence intervals. 

The table does not indicate that time aggregation does affect the tail index, 
i.e. the evidence is in agreement with Theorem 2. 

4. Conclusion 

The paper focuses on three questions concerning exchange rate returns: the 
amount of tail-fatness, parameter stability, and the effects of time aggrega- 
tion. As all three are in essence questions about the tail behavior, we have 
used extreme value theory because it explicitly deals with this. It was found 
that the main parameter of concern could be estimated directly by simply 
manipulating some of the higher order statistics. This parameter, the tail 
index a, also characterizes the main alternative classes of distribution 
functions which have been advanced in the literature. On the basis of the 
asymptotic confidence interval for u, several tests of the hypothesis were 
performed. Both the direct estimation procedure for the nested models and 
the confidence intervals constitute an improvement over other methods 
which have been used previously. 

On the basis of the EMS data it was found that the tail index hovers 
around 2, and is possibly slightly below 2, which is weak evidence in favor 
of the sum-stable hypothesis. In contrast, Boothe and Glassman (1987, pp. 
313/314) found evidence in support of the Student-t (with about 3 to 4 degrees 
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Table 5 

High and low frequency estimates compared. 

Period 

Pre-EMS EMS (197991987) EMS (1987-1989) 

Frequency 

Weekly returns Monthly returns Daily returns 

Tail index 

BF 
FF 
IL 
DG 
BP 
DK 

z1 

2.61 
1.92 
1.41 
1.69 
2.66 
1.59 

22 

1.60 
1.66 
2.36 
2.10 
2.57 
1.91 

Intervals’ 

13 

2.56 
2.3 1 
2.82 
2.93 
2.96 
2.37 

2,=,X* Za=Z, 1,=CZ, 

BF 1.42-2.82 1.43-2.8 1 1.75-3.41 
FF 1.12-2.56 1.32-2.80 1.44-2.73 
IL 0.98-2.05 1.663.69 1.64-1.77 
DC 1.08-2.45 1.67-3.54 1.63-2.41 
BP 1.59-3.68 1.75-3.93 1.91-3.69 
DK 1.01-2.30 1.38-3.05 1.36-2.33 

“These columns provide the interval over which H,:cr,=zj is not 
rejected at the 5% significance level. 

of freedom) and the mixture of a normal. The latter hypothesis seems 
implausible given our a estimates (the mixtures require LX to be infinite), but 
the Student-c with a finite variance (where LY corresponds to the degrees of 
freedom) cannot be ruledzut on the basis of our estimates. Exploiting the 
asymptotic normality of l/cc, probably due to the recurrent realignments it 
was found that the formation of the EMS did little to reduce the extreme 
risks. On the other hand, equality of the tail indices between the currencies, 
including the BP, was never rejected. Therefore even if the formation of the 
EMS did not reduce extreme volatility, the EMS currencies may still be 
natural companions with gains in other areas. One may want to think about 
this in terms of the parameters of the underlying d.f. F(x). While the tail 
index is constant, other parameters determining the center shape of F(x) 
could have changed. For example, Boothe and Glassman (1987, p. 315) 
found, admittedly for non-EMS data, that the stability of all parameters of 
F(x) over time is rejected, but this does not preclude a stable tail index. 
Finally, no indication was found for other frequency data to affect the LY- 
estimates. While an unequivocal comparison between the different frequency 
estimates is still marred by the non-independent samples problem, our partial 
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answer shows that the variations in h may well be within the confidence 
intervals [cf. Boothe and Glassman (1987, p. 308)]. It is hoped that this 
paper makes clear how extreme value theory may be usefully exploited for 
some questions in the area of exchange rates, where outliers are the rule 
rather than the exception. 
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