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Abstract 

Recently a number of papers were written that present low-complexity interior-point methods for 
different classes of convex programs. The goal of this article is to show that the logarithmic barrier 
function associated with these programs is self-concordant. Hence the polynomial complexity 
results for these convex programs can be derived from the theory of Nesterov and Nemirovsky on 
self-concordant barrier functions. We also show that the approach can be applied to some other 
known classes of convex programs. 
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1. Introduction 

The efficiency of a barrier method for solving convex programs strongly depends on 

the properties of the barrier function used. A key property that is sufficient to prove 

polynomial convergence for barrier methods is the property of self-concordance intro- 

duced in [ 17]. This condition not only allows a proof of polynomial convergence, but 

numerical experiments in [ 1,11,14] and others further indicate that numerical algorithms 
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based on self-concordant barrier functions are of practical interest and effectively exploit 
the structure of the underlying problems. 

A well-known barrier function for solving convex programs is the logarithmic barrier 
function, introduced in [ 5,6]. To describe the logarithmic barrier function more precisely, 
we will first give a general form for the classes of problems considered in this paper: 

{ min f0 (x ) ,  
(C'P) fi(2c) <~ O, i = 1 . . . . .  m, 

A x  = b, 

where A is a p × n matrix and b a p-dimensional vector. The logarithmic barrier function 
for this program is given by 

~b(x,/z) = --f°(x) _ ~ l n ( - f i ( x )  ) ,  

]Z i=1 

where /z > 0 is the barrier parameter. We show that for several classes of convex 
problems for which interior-point methods were presented in the literature the logarith- 
mic barrier function is self-concordant. These classes are: dual geometric programming, 
(extended) entropy programming, primal and dual lp-programming. Since for dual ge- 
ometric programming and dual/p-programming no complexity results are known in the 
literature, these self-concordance proofs enlarge the class of problems for which poly- 
nomiality can be proved. (In [ 12] only a convergence analysis is given.) Moreover, we 
show that some other smoothness conditions used in the literature (relative Lipschitz 
condition [3,9], scaled Lipschitz condition [13,25], Monteiro and Adler's condition 
[ 16] ) are also covered by this self-concordance condition. These observations allow a 
unification of the analyses of interior-point methods for a number of convex problems. 

The article is divided in three parts. In Section 2 we give the definition of self- 
concordance and state some basic lemmas about self-concordant functions. In Sections 
3-6 we prove self-concordance for the classes of problems treated in [7,12,23], and 
in Section 7 we show that the smoothness conditions used in [3,9,13,16,25] imply 
self-concordance of the barrier function. 

2. Some general composition rules 

Let us first give the precise definition of self-concordance as given by Nesterov and 
Nemirovsky [ 17]. 

Definition. Let b r° be an open convex subset of ]~n. A function ~ : ~r0 __~ • is called 
K-self-concordant on ~-0, K ~> 0, if ~ is three times continuously differentiable in b r° 
and if for all x E ~c0 and h E ~n the following inequality holds: 

V3~(X) [h, h, h] ~< 2K (hTV2qg(x )h )  3/2 , 

where x73~(x) [h, h, h] denotes the third differential of 9 at x and h. 
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Intuitively, since x73q~ describes the change in X72~o, and since V3~o is bounded by a 
suitable power of x72~o, this condition implies that the relative change of x72~o is bounded 
by 2s:. The associated norm to measure the relative change is given by X72~o(x), i.e., 
for h E ~n the norm associated with the point x is IIh]lv2¢(x) : =  (hTX~2~o(x)h) 1/2. 
(See [ 10] and [2], for example, where also a brief analysis is given, showing that the 
property of self-concordance of the barrier function of a convex program is sufficient to 
prove polynomial convergence. A more detailed analysis that includes certain nonconvex 
programs and that uses an additional condition relating the first and second derivatives 
of ~ is given in [ 17] .) 

The following lemma gives some helpful composition rules for self-concordant func- 
tions. The proof follows immediately from the definition of self-concordance. 

Lemma 1 (Nesterov and Nemirovsky [ 17] ). 
• (addition and scaling) Let ~vi be Ki-self-concordanton ä~i, i = 1,2, andpl ,p2  E 1R+; 

then pl~ol + p2~o2 is K-self-concordant on ~11 f3 -~22, where t( = max{xl/v/'p-i-, x2 / x /~} .  
• (affine invariance) Ler ~o be K-self-concordant on ~o and let 13(x) = B x + b  : ]Rk --* 

1R n be an affine mapping such that 13(~ k) M~ v° 5¢ ~). Then ~o(13(.) ) is K-self-concordant 
o n  {x: ~(x)  E ~~-o}. 

The next lemma gives a sufficient condition for an objective function f to guarantee 
that f "combined" with the logarithmic barrier function for the positive orthant R~_ of 
]R n is self-concordant. This lemma will help to simplify self-concordance proofs in the 
sequel. 

Lemma 2. Let f ( x )  E C 3 ( ä  L~0) be convex, with 9 C ]R~_. I f  there exists a fl such that 

[ V 3 f ( x ) [ h ' h ' h ] ] ~ f l h T X 7 2 f ( x ) h  Z ~ 2 '  (1) 
i=1 "*" i 

Vx E ~ and Vh E R", then 

~v(x) := f ( x )  - ~ l n x i  
i=1 

is ( 1 + ½B)-self-concordant on ~~-o and 

¢,(~,x) := - I n  (~, - f ( x ) )  - ~ l n x i  
i=1 

is (1 + ½B)-self-concordant on ~~'~. Here, fio C R x .~o is the set {(v,x)[x  E .r ~r°, v > 

f ( x ) } .  

At a first glance, condition (1) may look somewhat arbitrary. We give a brief moti- 
vation right after the following proof, and we will see that the lemma has indeed useful 
applications, 
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Proof. We start by proving the first part of the lemma. Straightforward calculations 
yield 

~7~0(x)T h = ~ 7 f ( x ) T h  _ ~ --,hi (2) 
i=1 Xi 

h T V 2 ~ ( x ) h  = h T V 2 f ( x ) h  + h--~i z , (3) 
i=I 

n h~ 
v3÷(x) [h, h, h] = V3:(x) [h, h, h] - 2y~ù 2X" (4) 

i=1 Xi 

We show that 

(V3~(x) [h, h, h]) 2 ~< 4( 1 + ½fl)2(hTV2~,(x)h)  3, (5) 

from which the lemma follows. Since f is convex, the two terms on the right-hand side 
of (3) are nonnegative, i.e., the right-hand side can be abbreviated by 

hTV2~o(x)h = a 2 + b 2, (6) 

with a, b ~> 0. Because of (1) we have that 

[V3f(x)  [h, h, h] I ~< fla2b. 

Obviously, 

~3 ~~~;_, x7 

So we can bound the right-hand side of (4) by 

IV3~o(x) [h, h, h] I <~ fla2b + 2b 3. (7) 

It is straightforward to verify that 

(fla2b + 2b3) 2 ~< 4(1 + ½fl)2(a2 + b2) 3. 

Together with (6) and (7) our claim (5) follows and hence the first part of the lemma. 
Now we prove the second part of the lemma. Let 

(') h = " , g(Yc) = ~, - f ( x )  > 0; (8) 

hn 

n 

~0(2) = - l n g ( ~ )  - Z l n x i ,  
i=1 

(9) 
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~7~(yc)Th =Vg(yc)Th ni~l~ i 
g(2) 

79 

(lo) 

2 hTV2#t(yc)h= hZV2g(x) h (Vg(.~)Th)2 + ~-~2, 
g(£) + g(x)2 i=1 

(11) 

V30(2)[h,h,h] = V3g(2)[h,h, hl +3(hTVZg(~)h)Vg(2)Th 
g(2) g(2)2 

2 (Vg(2)Th)3 2 ~L~ hi 3 

g(2)3 ~i=1 x~" 
(12) 

We show that 

(V3~b(2) [h, h, h]) 2 ~< 4( 1 + ½/3)2(h'rVx~p(~)h) 3, (13) 

which will prove the lemma. Since g is concave, all three terms on the right-hand side 
of (11) are nonnegative, i.e., the right-hand side can be abbreviated by 

hTV2~b(2)h = a= + b 2 + c 2, (14) 

with a, b, c >~ 0. Due to (1) we have 

~73g(2) [h, h, h] I g(Yc) , <~ /3a2c' 

so that we can bound the right-hand side of (12) by 

IV3~b(2) [h, h, h] I <<./3a2c + 3a2b + 2b 3 + 2c 3. (15) 

It is straightforward to verify that 

(/3a2c + 3a2b + 2b 3 + 2c3) 2 ~ 4(1 + 1/3)2(a2 + b 2 + c2) 3, 

by eliminating all odd powers in the left-hand side via inequalities of the type 2ab <~ a2+ 
b 2. Together with (14) and (15) our claim (13) follows. This proves the lemma. [] 

n 1 We now explain property (1) in more detail. Let ¢ (x )  = - ~ i = l  nxi be the loga- 
rithmic barrier for R~_. Observe that 

i ~-~ h2i = v/hT~72~b(x)h = [[hllv2¢(x). 
i=1 X2 

We recall that (as mentioned above) the canonical norm associated with some barrier 
function ¢ at a point x is given by vZ¢(x ) .  Loosely speaking, property (1) tells us 
that for Ilhllw¢(x) --- 1, the spectral norm of the third derivative ~73f is bounded by a 
multiple/3 of the spectral norm of the second derivative V2f. This property is defined 



80 D. den Hertog et al./Mathematical Programming 69 (1995) 75-88 

in [ 17] as f being compatible with ~b, and, as we have seen, it implies self-concordance 
of the combined barrier functions ~ and ¢. 

Clearly, if f satisfies ( i ) ,  then so does f / l~  for any (fixed) parameter /x > 0. 
In particular, this implies that also the function f ( x ) / i  x - ~ l n x i  is (1 + ½fl)-self- 
concordant. Finally we note that for any parameter q >/ 1 the above proof also holds 
true for - q  In( u - f ( x )  ) - ~inl  In xi. This observation can be used to prove that for the 
classes of problems considered in this paper not only the logarithmic barrier function 
but also the center function of [8] (also used in, e.g., [2,9,10,21] ) is self-concordant. 

3. The dual geometric programming problem 

Let {Ik}~--1,..« be a partition of {1 . . . . .  n} (i.e., Uk=l Ik = {1 . . . . .  n} and Ik N It = 0 
for k ~ I). The dual gcometric programming problem [4] is then given by 

{ minCTx + ~~~~=1 [~--~~iClk X i l nx i -  (~iElk xi) la (~iclkXi)], 
( ~DG7 2 ) Ax = b, 

x>~0, 

where A is an m x n matrix and c and b are n- and m-dimensional vectors, respectively. 
For this problem we have the following lemma. 

Lemma 3. The logarithmic barrier function of the dual geometric programming prob- 
lem ( 7)G7 ~ ) is 2-self-concordant 3 • 

Proof. Because of Lemma 1, it suffices to verify 2-self-concordance for the logarithmic 
barrier function 

B(X) = Z x i l n x i - -  ( Z x i )  ln(i~clkXi) - -Z lnx i ,  (16 )  
iGlk iGlk / " iElk 

for some fixed k. For simplicity, we will drop the subscript i ~ Ik. Now we can use 
Lemma 2, so that we only have to verify that (1) holds for 

f ( x ) : = ~ x i l n x i - -  ( ~ x i )  l n ( ~ x i ) ,  

and fl = 3, which is equivalent to the following inequality: 

~ _ h 3 i ( ~ h i ) 3 ( h 2 i ( ~ h i ) 2 ) v ~ h ~ ~ < 3  ~ (17) 
X/2 (~ .~i)2 __ Xi ~ Xi X'-~i" 

Here x i > 0 and hi arbitrary. Dividing the whole inequality by ~ xi and then substi- 
tuting first hi = yixi and thereafter ti = x i / ~  xj we get the equivalent inequality 

y3T t -- (yTt)3  ~ 3 ( y 2 T t -  (yTt)2)  ~ ß - f ,  

3 This corrects a remark in [ 12], in which it is claimed that the self-concordance property does not hold for 
this problem. 
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where Yi are arbitrary, t i positive and ~ ti = 1. (Here y3, e.g., is the vector with entries 

y3.) Since yTt = E ( y )  can be interpreted as the expected value of  some random variable 

y, the last inequality is equivalently rewritten as 

E ( y  3) - E ( y )  3 ~< 3 ( E ( y  2) - E ( y ) 2 ) V / ~ y 2 i ,  

relating the variance of  y to some third moment. By adding 

( E ( y  2) - E ( y ) 2 ) V / - - ~ y  ] 

>~ ( E ( y  2) - E ( y )  2) max yi = E ( ( y  - E ( y )  )2max  yi) 

> / E ( ( y  - E ( y )  )2y) = E ( y  3) - 2 E ( y ) E ( y  2) + e ( y )  3 

and 

2~ / - ~ y 2  2 ( E ( y  2) - E ( y )  ) V / ' ~  i /> 2(E(Y 2) - E ( y ) 2 ) E ( Y )  = 2 E ( y ) E ( Y  2) - 2 E ( y )  3, 

we get 

3 ( E ( y  2) - E ( y ) 2 ) ~ / - - ~ y 2  i > / E ( y  3) - E ( y )  3, 

i.e., inequality (17) follows. [] 

4. The extended entropy programming problem 

The extended entropy programming problem is defined as 

{ n min cTx -+- ~-~~i=1 gi(xi ) ,  
( £ £ ~ )  Ax  = b, 

x>~O, 

where A is an m x n matrix and c and b are n- and m-dimensional vectors, respectively. 

Moreover, it is assumed that the scalar functions gi E C 3 satisfy Ig~"(xi)] <~ «ig~'(xi)/xi,  
i = 1 . . . . .  n. This class of  problems is studied in [7,23] 4. In the case of  entropy 

programming we have g i (x i )  = x i l n x i ,  for all i, and Ki = 1. Self-concordance for the 

logarithmic barrier function of  this problem simply follows from the following lemma. 

L e m m a  4. Suppose that [g~" ( xi ) l <~ Kig~' ( xi ) / xi, i = 1 . . . . .  n; then the logarithmic bar- 
rier function for  the extended entropy programming problem (gg79) is ( 1 + ½ maxi «i) - 

self-concordant. 

Proof. Using Lemma l it suffices to show that 

gi(xi)  - lnxi  

4 In [7] it is conjeetured that these problems do not satisfy the self-concordance eondition. The lemma shows 
that this conjecture is not true. 
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is (1 + ½Ki)-self-concordant. Since (1) reduces in the present case to 

1 
Igl"(xi)  l < Kig~t (Xi)--, 

Xi 

this immediately follows from Lemma 2. [] 

5. The primal lp-programming problem 

Let {Ik}k=l,..., r be a partition of {1 . . . . .  rn} (i.e., UL1 Ik = {1 . . . . .  m} and Ik NI~ = 0 
for k ~¢ I). Ler Pi >~ 1, i = 1 . . . . .  m. Then the primal lp-programming problem [ 18,22] 
can be formulated as 

f max T]Tx, 
(T'£.p) ( ~ i E t k ( 1 / p i ) [ a T x - - c i [ P i + b T x - - d k < ~ O ,  k = l  . . . . .  r, 

where (for all i and k) ai, bk and r/ are n-dimensional vectors, and ci and dk are 
real numbers. Nesterov and Nemirovsky [17] treated a special case of this problem, 
namely the so-called lp-approximafion problem. We will reformulate (3o/~p) such that all 
problem functions remain convex, contrary to Nesterov and Nemirovsky's reforrnulation. 

In a first step, the primal lp-programming problem can be reforrnulated as: 

/ max ~Tx, } 
~ - ] i E l k ( 1 / p i ) t i + b T x - - d k ~ O ,  k = l  . . . . .  r, 

Pi 
S i ~ ti, (18) 
a T x - -  Ci ~ Si, i-~ 1 . . . . .  m,  

--aTi X --~ C i ~ Si, 

s>~O. 

In the same way as we will prove Lemma 5, it can be proved that the logarithmic 
barrier function for this reformulated/p-programming problem is (1 + ~ maxi IPi - 21)- 
self-concordant, i.e., the concordance parameter depends on pl. We can eliminate this 
dependence as follows. Replace the constraints s~ i «, ti by the equivalent constraints 
si <~ t~ i, where 0 < ~i := 1/pi  <~ 1, and replace the (redundant) constraints s >~ 0 by 
t ~> 0. So, we obtain the following reformulated/p-programming problem: 

/ max '/']Tx, } 
T 

~-~~iClk tl~ pi q- bkx  -- dk <~ 0, k = 1 . . . . .  r ,  

(~r)ff~p) Si <~ ti ' (19) 

a~x - c i ~ si, i = 1 . . . . .  m, 

--aTi x -k- ci <~ si, 
t >~O. 

Observe that the transformed problem has 4m + r constraints, compared with r in the 
original problem (79£p) .  Now we have the following lemma. 
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Lemma 5. The logarithmic barrier function for the reformulated lp-programming prob- 
lem ( 7~F~p ) is ~-self-concordant. 

Proof.  First note that the logarithmic barrier function for the linear constraints is 1-self- 
~'i  concordant. Moreover, since f i ( t i )  :=  -- t  i , 0 < 7ri <~ 1, satisfies (1) with fl = 2 - 7 r i ,  

we have from Lemma 2 that 

-- ln(t~ ri - si) -- In ti 

is ( 1 + ½ (2 -- 7ri) )-self-concordant, where 0 < 7/" i ~ 1. From Lemma 1 it follows that 
the logarithmic barrier function is ~-self-concordant. [] 

6. The dual lp-programming problem 

Let qi be such that 1/Pi -{- 1/qi = 1, 1 <~ i ~< m, and let the rows of  a matrix A be 
ai, i = 1 . . . . .  m, and the rows of  a matrix B be bk, k = 1 . . . . .  r. Then, the dual of  the 
lp-programming problem (79/~p) is (see [ 18-20,22] ) 

(D£p) { min cTy + dTz+ ~~=z zk ~ictk (1/qi)lyi/zk] qi, 
AXy + BTz = tl, 
z >~O. 

( I f  Yi ~ 0  and zk = 0, then Zk[Yi/Zk] qi is defined as c~.) The above problem is equivalent 

to 

[ min cTy +dTz + ~n=l ti/qi, 
sq ~--qi+l . (  t . , Zink "~ i, i E Ik, k = l , . ,  r, 
y<~ s, 
-y<~ s, 

I ATy + BTz = tl, 
z >~O, 
s>~O. 

(20) 

Similarly as in the proof  of  the next lemma, it can be proved that the logarithmic 

barrier function of  this reformulated dual lp-programming problem is ( 1 + ½ x/~ ma,xi (q i+  
1))-self-concordant.  Again, the dependence on qi can be eliminated: the constraints 
sqlzZ qi+l <~ ti are replaced by the equivalent constraints t~'z~ -»I+1 >1 si, where 0 < 
pi := 1/qi ~< 1, and the redundant constraints s ~> 0 are replaced by t /> 0. The new 

reformulated dual lp-programming problem becomes: 
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I 
ra in cTy +dTz  + ~n=l ti/qi, 

Si <~ t/P'Zk p'+I, i C Ik, k= l . . . . .  r, 
y<~ s, 

( D £ p )  - y  ~< s, (21) 

Ary + Brz = r I, 
Z>.O, 
t >~O. 

Note that the original problem (79£p) has r inequalities, and the reformulated problem 

(DEp) 4m + r. We now have the following lemma. 

L e m m a  6. The logarithmic barrier function of  the reformulated dual lp-programming 
problem (79£p) is 2-self-concordant. 

Proof.  By Lemma 1 it suffices to show that 

- ln(t/PiZk p~+l -- Si) -- In zk -- In ti 

is (1 + ½x/2(pi + I))-self-concordant,  or equivalently by Lemma 2 that (we will omit 

the subscripts i and k in the sequel of  this proof) f ( t ,  z) := - tPz-P+l with 0 < p < 1 

satisfies (1) for fl = x /2(p  + 1), i.e., 

~ /~212 {h212 (22) I V 3 f ( t , z ) [ h , h , h ] {  <. x / 2 ( p +  1 ) h T V 2 f ( t , z ) h  + z--5-, 

where h T = (hi ,  h2). After doing some straightforward calculations, we obtain for the 

second-order term 

hT~72 f ( t ,  z )h  = p( 1 - p ) tp -3z -p-2( t z3h  2 + t3zh~ - 2t2z2hlh2) 

= p (  1 -- p )  tP-3Z - p - 2  (Zhl  - th2) 2tz, 

and for the third-order term 

} V 3 f ( t , z ) [ h , h , h ] ]  

= p ( t  -- p)SP-3Z -p-2 

× }(p -- 2)z3h~ - (p  + 1)t3h~ - 3 ( p  - 1)tzZh~hz + 3pt2zhlh~] 

= p(1  - p) tp -3z -p-2(zh l  - th2)2](p-  2)zhl  - ( p +  1)th2] 

p(1  - p) (p + 1)tP-3 Z-P-2( zht --th2)2(z}hll + tlh21). 

Now we obtain 

I V 3 f ( t , z ) [ h , h , h ] {  
hTV2f ( t ,  z )h  - - - ~  Z2 • Z 

This proves (22).  The lemma follows since pi <. 1. [] 
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7. Other smoothness conditions 

85 

Relative Lipschitz condition 
Jarre [9] introduced the following relative Lipschitz condition (also used in, e.g., 

[3] ) for the Hessian matrix of the problem functions f i (x) ,  0 <~ i <~ m, of (C79): 

~ M > 0 :  VvC]R n V x , x + h C . Y ° :  

[vT(V2 f i (x  -~ h) - V2 fe(x))vl ~ MHhllnvTV2 fi(x)v, (23) 

where H is the Hessian matrix of the corresponding logarithmic barrier function. As 
shown in [ 10], if the Hessians of the problem functions fi of (C79) fulfil this relative 
Lipschitz condition with parameter M, and if fi E C 3, then the associated logarithmic 
barrier function is (1 + M)-self-concordant. (The converse is not true.) Moreover, in 
[ 10] it is shown that the relative Lipschitz condition for the logarithmic barrier function 
is equivalent to self-concordance if the underlying function is three times continuously 

differentiable. 

Monteiro and Adler's condition 
Monteiro and Adler [ 16] considered minimization problems with linear equality 

constraints and a separable convex objective function on the positive orthant of IR n. The 

objective function f ( x )  = ~igi(xi)  must satisfy the following condition: 

There exist positive numbers T and p such that for all reals x > 0 and y > 0 and all 
i = 1 . . . . .  n, we have 

,, ,  ) Y- P ,,  
Y]gi (Y ' ~ T m a × { ( y ) P , ( x )  }gi (x)" 

Using Lemma 2 and substituting y = x in the above condition, it is easy to see that 
gi satisfies (1) with/3 = T, i.e., that the logarithmic barrier function for such a problem 
is (1 + ½T)-self-concordant. Using Lemma 2 we may simplify the condition of [16] 

to the (weaker) condition that there exists a positive number T such that for all reals 
y > 0 and all i = 1 . . . . .  n, we have 

Y{g~"(Y)I <~ Tg~'(x). 

This condition is not only simpler, also the dependence on some extra parameter p is 

eliminated. 

Scaled Lipschitz condition 
In [ 13,25] interior-point methods are given and analyzed for problems with linear 

equality constraints and convex objective function f ( x )  on the positive orthant of R n. 
The objective function has to satisfy the following scaled Lipschitz condition: 

There exists M > 0, such that for any y, 0 < 3 /<  1, 

IIX(V f ( x  + Ax) -- V f ( x )  - •2f(x)Ax)ll <. MAxTV2f(x)Ax, (24) 
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whenever x > 0 and [[X-IAxI[ <~ 3/. (Here, Il" [I is the Euclidean norm.) 

This condition is also covered by the self-concordance condition if f is three times 
continuously differentiable in the interior of the feasible domain. More precisely we 
will show in the next lemma that the corresponding logarithmic barrier function is 
(1 + ~M)-self-concordant. 

Lemma 7. Suppose f ( x) E C 3 fulfils the scaled Lipschitz condition with parameter 
M. Then the logarithmic barrier functions ~o and ~b from Lemma 2 are (1 + ~M)-self- 
concordant. 

Proof. It suffices to prove (1).  Set h = Ax as in definition (24). First note that 

i h~__ xT IIx-'•xll. 
i=1 

Since f E C 3, we may expand V f  as follows: 

V f ( x  + AX) = V f ( x )  + V 2 f ( x )  Ax + ½V3f(x) [Ax, AX, .] + o(llzlxll=), 
where V3f (x ) [z lx ,  zlx, .] is a vector whose/th component is equal to 

O3f(x)  . • 

j,k 

Replacing zlx by AAx in definition (24), inserting the above expansion, dividing by A 2, 
and taking the limit as A tends to zero, we obtain 

[[XV3 f ( x )  [ Ax, Ax, .] II «. 2MAxTV•f(x)  Ax. (25) 

Considering X V 3 f ( x ) [ A x ,  Ax, .] as a column vector, we may continue 

IIXV3 f ( x )  [Ax, Ax, .] II > / ( ~ T x v 3 f ( x )  [Ax, dx, .] 
II - II 

V3f(x)  [ AX, AX, AX] 

i i x - l ~ x L i  , 

and obtain that 

V3 f ( x )  [ /tx, zlx, zlx] <~ 2Ml[X-~ zlxllAxrve f(x)zlx,  

which is exactly relation (1).  [] 

Before we conclude this work, we would like to briefly point out a class of problems 
considered in [ 15] (and also in [24] ) which does not have a self-concordant logarith- 
mic barrier function. Mehrotra and Sun [ 15 ] introduced a curvature constraint of the 
following form. There exists a number x ) 1 such that for all x, y and h in R n, 

hTV2 f i ( x ) h  <~ KhTV2 f i ( y )h .  
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For  constraint  funct ions  f i  sat isfying this condi t ion,  they present  a p o l y n o m i a l - t i m e  

in ter ior-point  a lgor i thm (which  needs at most  O ( K S x / ~ l n  e)  Newton  i terat ions to reduce  

the error  by a factor  o f  é ) .  Clearly, there are constraints  wi th  se l f -concordant  barr iers  

that do not satisfy this condi t ion,  and, conversely,  this condi t ion  covers  some  const ra int  

funct ions  that do not  have a se l f -concordant  barrier  function.  For  mos t  appl icat ions  

however,  we  bel ieve  that the se l f -concordance  condi t ion  is more  practical.  
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