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A rich data set on 4,600 franchised retail stores belonging to a single
chain is analyzed. Some of these stores are still in operation, so that
basic statistics such as the mean and/or median duration of the sample
cannot be computed directly. A stochastic mixture model is developed
that allows these important characteristics to be estimated. Moreover,
our formal modeling approach allows us to make comparisons and
draw managerial implications that could not have been done using
conventional methods. Finally, we make a case for using percentiles
(e.g., medians) of the formal distribution since the ‘‘fat-tailed’’ behav-
ior of the typical duration distributions renders the usual moments, e.g.
means and variances, either misleading or possessing the preposterous
value of infinity.

INTRODUCTION

Now widely accepted is the notion that many retail firms, especially
small stores, fail during their early years. Yet there is little hard informa-
tion on the life expectancy of small retail firms. This may be due both to
a lack of adequate data (Marcus 1967, Hemenway 1977) and to difficulties
in modeling analytically life-time or duration phenomena (Morrison and
Schmittlein 1980). Information on the life expectancies of retail stores, and
perhaps more importantly, on the factors that affect these expectancies, is
crucial in designing programs to decrease retailers’ failure rates. Such
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knowledge could for example help prospective entrepreneurs to improve
their chances of survival in the marketplace. Similarly, franchisors could
use this knowledge to maximize the life expectancies of individual fran-
chisees joining the system. Dickinson (1981), for example, suggests im-
proved training of store managers and better initial selection procedures as
two strategies a franchisor might adopt to reduce the failure rate among his
franchisees. Although these suggestions are intuitively appealing, they
may not be equally effective in all situations. It is difficult to prescribe
effective procedures for improving the survival probabilities of a group of
stores without a systematic knowledge of the determinants of their failure
rates and/or life expectancies.

The purpose of this paper is to present a systematic procedure for mod-
eling the life expectancies (or store durations) of individual retail stores. In
general, we propose a stochastic model of store durations that considers
how the expected failure rate of a given store changes over time, as well
as how failure rates vary among stores. The hazard functions based on
alternative mixture distributions are derived and empirically estimated on
data from a convenience-store franchise. A nonparametric approach, that
makes no assumption about the functional form of the distribution of life
times, is also considered. In each case we discuss the underlying assump-
tions of the model and illustrate its empirical application. We estimate
these models for the entire sample of stores operated by the franchise as
well as for some subgroups of stores formed on the basis of their country
of origin and their time of coming into the market. These data sets differ
markedly in terms of the proportions of stores that have gone out of
business. Our model will allow us to make *‘apple to apple’” comparisons
across these diverse data sets, even though the usual summary statistics
such as the sample mean or median could not be computed.

CHARACTERISTICS OF DURATION-TYPE DATA

Research on the life expectancy of small retail stores has been impeded
not only by the lack of adequate data. Formal modeling approaches are also
made more difficult by the data structure normally found in duration prob-
lems.

The data at hand typically consist of a longitudinal record of when
events happened to a sample of individuals, stores, etc. (Allison 1984). In
the case at hand, a typical data set could consist of:

® the starting and (for those who have failed already) closing dates of a
number of stores
® a dummy variable to indicate whether the store is still in operation
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® the values of a number of covariates, which may be time-independent
(e.g., the country of origin) or time-varying (e.g., yearly sales).

The data-gathering process may therefore be conceptualized as follows.
Each time period an observation is made on each store to determine
whether the store is still in existence. When it is still in operation, the
values for the time-varying covariates are recorded (e.g., last year’s sales
figures). When the store fails, the closing date is recorded, the value of the
corresponding dummy variable is changed, and no further observations are
made on that store. The objective then is to model a store’s propensity to
fail over time and/or as a function of some of these covariates. Here, we
propose a stochastic model of store durations to consider (1) how a given
store’s propensity to fail evolves over time, and (2) how these failure rates
vary among stores. The impact of covariates is considered indirectly, as the
proposed framework is applied not only to the total sample but also to some
relevant subsamples. No covariates are included directly in the model, as
the data set used in the empirical part of the paper contained only one
time-invariant covariate (i.e., the country of origin) and no time-varying
covariates.

Ideally, all stores in the sample would have the same starting date and
would have a completed duration (i.e., a closing time would have been
observed for every store). In most practical applications however, the data
set will contain right-censored and/or non-cohort data.

Right-Censored Data

Right-censored data are present when some firms are still in the market
at the end of the observation period. The presence of this kind of data
makes it impossible to compute the mean life-time of the observed sample,
or even (when more than half of them are still in operation) to assess their
median life-time. In the data set at hand, for example, more than 80
percent of the stores located in France were still in operation at the end of
the observation period. Ignoring stores that are still in operation, a practice
noticed by one of the authors some years ago in an analysis of job-duration
data, would not only result in the omission of most of the data but also in
a strong under-estimate of the true survival rate of this group. A procedure
to incorporate information on the surviving stores in the estimation of some
relevant summary statistics will be outlined in the following sections. This
will allow us to gain more accurate insights in the true failure behavior of
our group of stores and to make more meaningful comparisons between
diverse subgroups of stores.
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Non-cohort Data

Non-cohort data are due to the fact that not all stores in operation at a
certain point in time have come into business simultaneously. In the em-
pirical example discussed in a later section, the starting dates ranged from
July 1957 to December 1987, which is also the end of the observation
period. The proposed modeling framework makes it possible to cope with
this phenomenon in such a way that information on stores who have only
very recently entered the market is also taken into account.

THE CONCEPT OF INERTIA
The Hazard Function

As the presence of right-censored and non-cohort data makes the com-
putation of some commonly used statistics such as the mean and/or median
difficult or impossible, one may resort to the derivation of the hazard
function to summarize the quitting behavior of a group of stores. The latter
function, also sometimes referred to as the empirical quitting rate,' can be
defined as the ratio of the number of stores discontinuing business in a
certain duration interval (¢;,t,) to the number of stores having attained a
duration of #,. A decreasing quitting rate can then be interpreted as indi-
cating that the longer a store has been open, the less likely it is to close
down in the next month or year, a phenomenon also called inertia. In-
creasing quitting rates on the other hand imply that the longer stores have
been in business, the more likely they are to discontinue their operation in
the coming period, reflecting a negative inertia.

Empirical quitting rates can be computed both from the data reported by
Star and Massel (1981), who examined the survival rates of a number of
retail stores started in 1974, and from the estimated discontinuance per-
centages of the Department of Commerce (Dickinson 1981), and are pre-
sented in Table 1. Both types of hazard functions, i.e. first increasing and
then decreasing on the one hand and monotonically decreasing on the other
hand, are observed in the literature (see Schmittlein and Morrison 1983).

! The term *‘quitting rate’’ is somewhat more general than “‘failure rate,”” as a store can
finish its operations for a variety of reasons (inability to pay creditors, retirement of the store
owner, and so forth). In the current paper no distinction is made between the different causes
for discontinuing one’s operations, and the terms failure rate and quitting rate will be used
interchangeably.
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TABLE 1
Estimates of the Aggregate Quitting Rate from Published Data

Starr and Massel (1981)-data

year estimated aggregate quitting rate
1 0.186
2 0.256
3 0.195
4 0.170
5 0.131
Department of Commerce estimates®
year estimated aggregate quitting rate
1 0.333
2 0.269
3 0.143
4 0.120
5 0.108

® derived from figures in Dickinson (1981)

It will be pointed out in the following sections that very different assump-
tions can produce identical aggregate hazard functions.

‘““Real’’ Versus ‘“Spurious’’ Inertia

The quitting rates given in Table 1 are aggregate figures. Observed
inertia effects in the aggregate data are due both to the quitting probabilities
at the individual store level and to the fact that one is aggregating over a
population with differing mean-duration times. Decreasing quitting rates
can thus be ‘‘real,’’ i.e., a characteristic of the individual stores, or can be
‘‘spuriously’’ caused by the aggregation over stores with different (mean)
quitting rates. The latter case shows that even when each individual store
has a constant probability of closing down in each period, the aggregate
quitting rate would still display inertia.

A Hypothetical Example

Consider for example two distinct groups of stores. Each group has an
observed (aggregate) quitting rate that is decreasing over time. For the first
group however, the quitting rate of each individual store is assumed to be
constant, implying that all observed inertia is due to the aggregation effect.
Stores of the second type on the other hand are assumed to come from a
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homogeneous population where all stores are characterized by the same
mean quitting rate, and all individual quitting probabilities are assumed to
be decreasing over time. All inertia effects in the latter case are thus real.

A franchisor owning the second group of stores should not focus on
improved selection procedures to enhance the survival chances of his
stores, as there is no heterogeneity in the initial failure probabilities that
could be reduced by such a policy. The evolution of the individual quitting
probabilities on the other hand can be interpreted as an indication of the
amount of learning that is going on. The hazard function of stores in the
first group is independent of the time they are already in operation. No
experience effect is therefore observed in this group. The decreasing in-
dividual quitting probabilities in the second group, on the other hand,
indicate the presence of a positive learning effect on the part of those store
managers.

The previous discussion described only two possible situations. A more
detailed discussion of the policy implications of these and other scenarios
will be given after a description of the methodology. The empirical results
will then be discussed in some detail and, finally, some areas for future
research will be indicated.

A STOCHASTIC MODEL OF STORE DURATIONS

Two different assumptions with respect to the individual store’s quitting
possibilities will be examined.

Time-Independent Quitting

In a first model, the individual store’s quitting rate is assumed to remain
constant over time. This implies that the store has an equal probability of
closing down in the next period, irrespective of how long it has already
been open. The continuous distribution associated with a constant quitting
rate is the exponential one, so that 7, the random variable denoting the
store duration time, has a probability density function (p.d.f.), cumulative
distribution function (c.d.f.), and hazard function («) that are given respec-

tively by
At:N) = Ae™ t>0A>0 1
FegN)=1—-—e™ >0 ()
u(t;\) = A t>0 3
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Time-Dependent Quitting

A more general model allows the quitting rate to vary as a power of ¢,
so that it can be written as’

u(tbh,b) = Ab? ™! t>0 4

“b”’, which can be interpreted as a shape parggne:ter,3 can be seen as an
index of the inertia at the individual level. The individual store’s quitting
rate increases for b greater than one and decreases for.b smaller than one.
The former (latter) case implies that the longer a store has been open, the
more (less) likely it is to finish its operations in the next period of time. If
b equals one, (4) obviously reduces to (3) and a b-value of two implies a
linearly increasing individual quitting rate. The inertia parameter can also
be interpreted as being an indicator of the amount of learning that is
currently occurring by the individual store managers. A b-value of one
implies that no learning or experience effect can be observed, as the quit-
ting probability in a certain period is found to be independent of the
accumulated experience level. Stores characterized by a b-value smaller
than one on the other hand are showing an experience effect, and their
failure probability decreases with time. An interesting extension of the
current research could therefore be to relate the magnitude of the obtained
learning-parameter to covariates as the type or amount of training received.
In case groups of stores trained by program A systematically have a smaller
b-value than groups trained by program B, evidence for the higher effi-
ciency of the former is provided. Finally, stores having a b-value greater
than one are displaying a negative learning effect, since the more experi-
ence they have accumulated, the more likely they are to quit. This might
indicate a discontentedness with some aspects of the franchise agreement.
Some modifications in this agreement or improved feedback procedures
might therefore be appropriate in this case.

Modeling Between-Store Differences

Although each individual store is assumed to have a store duration that
is either exponentially or Weibull-distributed, differences among their
mean duration times are virtually certain to exist. This heterogeneity can be
modeled by allowing the scaling parameter A to vary across the different

2 The distribution with a hazard function defined as in (4) is the Weibull distribution whose
p.d.f. and c.d.f. are given in the Appendix, Section A.1.

3 \, on the other hand, will in what follows be denoted as the scaling parameter of the
distribution.
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stores according to a certain distribution. The aggregate distribution of
store durations, which is also the one actually observed, is then obtained by
weighting each {z;A) or f(z;\,b) by the likelihood of that particular A-value.
This is illustrated in (5) for the case of exponentially distributed individual
store-duration times.

K@) = L ® At \)g(\d\ ®)

In what follows, k and g will often be called, respectively, the observable
mixture and unobservable mixing distributions. A convenient and flexible
mixing distribution is the gamma distribution, whose p.d.f. is given by*

g\;r.a) = %r) (@) te®™ AX>0;ra>0 (6)

as it can take on a variety of J-shapes when r is less than one and unimodal
shapes when r is greater than one.

As the mean and the variance of the gamma distribution are given
respectively by

EQ\) = rla
Var(\) = rid®

the coefficient of variation CV, which can be interpreted as measuring the
degree of heterogeneity of A across all stores, reduces to

CV = SDN)/EQN) = r™ '~ Q)

giving the r-parameter a straightforward interpretation. A very high r-value
indicates, then, a large degree of homogeneity in the mean quitting rates.
The appropriateness of using improved selection procedures to enhance the
survival chances of such a group of stores can be questioned, as there is no
(or little) diversity in the initial failure probabilities that could eventually
be reduced by such a policy. The r-parameter is thus an indicator of the
potential usefulness of improved screening procedures in reducing the
quitting rate of a group of stores.

A deficiency of using the gamma mixing distribution is that it cannot
take on bimodal forms. This situation occurs when quite a number of stores
have a high quitting rate and many other stores are having a low rate,
whereas few of them are characterized by a medium rate. One way to

“ In this formula I'( ) stands for the gamma function.
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model such a situation was proposed by Morrison and Schmittlein (1980)
and involves the estimation of a two-point mixture of exponentials. This
type of model will not be developed any further in this paper however,
leaving the problem of modeling store durations in cases where a bimodal
mixing distribution would be more appropriate as an issue for further
research.

In line with the previous distinction between exponentially and Weibuil-
distributed individual duration times, two situations can be distinguished.

Mixtures of Exponentials

If exponentially distributed individual store duration times are mixed by
a gamma distribution g(\;r,a), a mixture distribution known as the Pareto
distribution’ is obtained, whose hazard function is given by

u(t;r,a) = t>0 8)

at+t
It is obvious that in this case the aggregate hazard function u is a mono-
tonically decreasing function of ¢, the time the store is already open. As the
individual quitting rate of each single store is assumed to be constant in this
model, this observed inertia at the aggregate level is solely due to the fact
that one is aggregating across a heterogeneous population.

Mixtures of Weibulls

Considering the more general case where Weibull-distributed individual
durations are mixed by a gamma distribution, a mixture distribution known
as the Burr distribution is obtained, where the hazard function is given by

rbt~!
a+t

u(t;r,a,b) = t>0 )
Two different situations arise, depending on whether b is greater or less
than one. If b is less than one, each individual store displays a decreasing
quitting rate, and consequently the aggregate rate will show the same
pattern, as both forces (the individual-level inertia and the mixing across a
heterogeneous population) are working in the same direction. If b is greater
than one, each individual store’s quitting rate increases over time. As is

* The reader is referred to the Appendix (Sections A.2 and A.3) for the expressions of the
p.d.f. and c.d.f. of, respectively, the Pareto and Burr distributions.
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derived in Morrison and Schmittlein (1980), the aggregate quitting rate
then increases monotonically up to

* = [ab — 1" (10)

after which it decreases monotonically. Inertia will then be displayed at the
aggregate level after r*, although not a single store is showing inertia at the
individual level. An intuitively appealing Bayesian interpretation of this
phenomenon is given by the same authors, stating that for small values of
t little information has been collected on the mean duration of an observed
store. All individual stores are characterized by an increasing quitting rate,
and little additional information on the observed store is available. Thus
the aggregate rate is also seen to increase. Having observed stores for a
duration ¢ > t* without having seen them go out of the market, the belief
that we are observing a store with a long mean duration becomes stronger
than the knowledge that each store is in fact showing an increasing quitting
rate, resulting in a decreasing aggregate hazard function.

A Nonparametric Approach

A nonparametric approach also will be considered. As opposed to the
method described in the previous sections, no assumptions will be made
about the functional form of the underlying duration distribution. Denoting
by #é(t;_ ;, 1)) the empirical quitting rate in the period (; _;, #;), which is the
number of stores closing down in that duration interval after having been
in operation for at least 7;,_, time units, an estimate of the observable
mixture distribution function H(t,-) can be obtained from

1 - A@) = [] 11 - a-1,0)). an

j=1

Each factor at the right-hand side indicates the empirical probability that a
store will not close down in the period (j — 1, j), given that this has not
yet happened in a previous period. The product of all these factors results
then in an estimate of the empirical aggregate survival function.® In what
follows a smoothed version of (11) will be used to obtain nonparametric

6 When the ; are chosen in such a way that they coincide with the observed closing times
of the individual stores in the sample, the nonparametric estimate H(t,) is often referred to as
the Kaplan-Meier estimate of the cumulative distribution function (Kaplan and Meier 1958).
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estimates of a number of relevant quantiles, so that a comparison with the
corresponding parametric estimates will be possible. The reader is referred
to Schmittlein and Morrison (1983) for a detailed discussion on the im-
plementation of this smoothing procedure.

EMPIRICAL RESULTS
Description of the Data

The duration of over 4,600 retail stores belonging to a large convenience
chain with locations geographically dispersed all over the world will be
analyzed. The data set consists of the opening dates of those 4,600 stores,
and, for those who have finished their operation, the closing date. A store
duration will be defined as the number of months elapsed between the
opening date and either the closing date (for the non-censored observa-
tions) or the end of the observation period (for the censored observations).
No distinction is made in this analysis between the different possible
causes of a store’s discontinuance.

We are confronted with non-cohort data, as stores have started their
operation at different times between July 1957 and December 1987. A lot
of data are also right-censored, since by the end of the observation period
(December 1987) 75 percent of the stores have not yet closed down. The
complete data set will be analyzed, as well as subgroups of stores formed
on the basis of:

® country of origin
® time of coming into the market.

Analysis of the Total Sample
The observed hazard function, as well as the estimated parameters and

some summary statistics for the respective models are given in Table 2
(refer to the Appendix, Section B for details on the estimation procedure).

The Empirical Quitting Rate
The empirical quitting rate is reported on a per-year basis for successive
periods of one year. Each figure is computed on at least ten closings in

order to obtain a greater stability of the estimates. As a consequence, some
quitting rates had to be calculated over more than one year, and those cases
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TABLE 2

The Empirical Hazard Function, Parameter Estimates and
Summary Statistics: Total Sample and According to the Country

of Origin
Time Total
(years) Sample  Benelux  Germany France Japan
0-1 0.0393 0.0277 0.0214 0.0279
{0.0200}
1-2 0.0472 0.0280 0.0328 0.0469
2-3 0.0330 0.0431 0.0248 0.0265 0.0308
34 0.0286 0.0274 0.0214
{0.0097} {0.0128}
4-5 0.0185
{0.0174} {0.0120}
5-6 0.0207 0.0148
{0.0133}
6-7 0.0204
{0.0120}
7-8 0.0158
{0.0096}  {0.0043} {0.0206}
89 0.0184
9-10 0.0226
{0.0121}
10-11 0.0194
11-12 0.0192
{0.0145}  {0.0074}  {0.0140} {0.0143}
12-13 0.0218
13-14 0.0134 —
14-15 0.0224 —
{0.0128}
15-16 0.0157 —
{0.0247} {0.0012} —
16-17 0.0269 —
17-18 —
{0.0166}
18-19 — —
{0.0078}
19-20 0.0276 — —
20-21 0.0461 — — —
{0.0203}
21-22 0.0388 — — —
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TABLE 2 Cont’d

Time Total
(years) Sample  Benelux  Germany France Japan
22-23 0.0480 — — —
23-24 — — —
N® 4646 505 1028 779 601
Estimated quantities: Gamma mixture of Weibulls
r 0.394 0.475 0.704 0.0050 0.146
a 138.096  390.055  239.507 293.930 307.251
b 1.073 1.280 0.853 2.145 1.434
t* (yrs.) 0.72 3.26 0 1.26 2.53
Mean (yrs_) oo o © o 00
Median (yrs.) 35.43 22.36 93.83  738.80 123.65
10 percent q.
(yrs.) 2.73 2.97 75.59 2.96 4.70
20 percent q.
(yrs.) 6.38 5.91 193.725 9.39 11.07
Estimated quantities: Gamma mixture of exponentials
r 0.557 3.037 0.214 0.232 1.448
a 158.739  995.499  105.663  73.786 798.394
Mean (yrs.) o 40.72 o o0 148.39
Median (yrs.) 32.72 21.27 216.97 115.54 40.84
10 percent q.
(yrs.) 2.75 2.93 67.165 3.53 5.02
20 percent q.
(yrs.) 6.52 6.32 194.097 9.94 11.09
Likelihood ratio statistic
X 1.172 1.785 0.414  11.329%* 2.728
Nonparametric estimates
10 percent q.
(yrs.) 2.33 3.18 64.17 3.15 5.59
20 percent q.
(yrs.) 7.42 n.a. n.a. n.a. n.a.

* N stands for the number of observations in the sample, whereas all other symbols are as
defined in the previous sections.
** p < 0.01
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are in the following tables indicated by pairs of braces. To illustrate the
interpretation of the empirical hazard rate, the 0.0472 in the second column
of Table 2 indicates that 4.72 percent of all stores that were still open after
one year closed down in the next year.

A direct comparison between the hazard function corresponding with the
estimated parameter values and the empirical quitting rate is difficult, as
the latter is dependent on the window size, i.e. the length of the intervals
used in the computations, which in our case was one year (Watson and
Leadbetter 1964). The empirical hazard function is helpful in comparing:

® the forecasted time of maximal hazard, which is given by equation
(10), with the point where the empirical hazard function reaches its
maximum value

® nonparametric estimates of some relevant percentiles with their para-
metric counterparts.

The forecasted (zero years) and observed (within the second year) time of
maximum hazard rate are lying in adjacent intervals. The usefulness of this
comparison is however moderated both by the fact that a rather broad
window size had to be used in the calculations and by the inherent insta-
bility in the estimation of the empirical hazard rate as illustrated by the
saw-tooth pattern of the figures in Table 2. The latter phenomenon is due
to the fact that the number of stores at risk in a certain period (which
constitutes the denominator in the computation of the hazard rate) dimin-
ishes in successive periods.’

Better insights can be obtained by comparing the nonparametric esti-
mates of the ten and twenty percentiles (2.33 and 7.42 years) with the ones
resulting from the Pareto-distribution® (2.75 and 6.52). The latter estimates
are more efficient when the underlying model approximates closely reality,
whereas the former offer the advantage of a greater generalizability when
that condition is not met. The obtained results in all analyses were however
very similar, increasing our confidence in the appropriateness of the
adopted modeling assumptions.

7 This can be clarified by considering the extreme case where in a certain period the last
(and only remaining) store stops its operation. An empirical quitting rate of one would then
be observed, although in the previous periods the ‘‘real’’ quitting rate will probably have been
higher.

8 The Kaplan-Meier estimates are compared with the estimates resulting from the fitted
Pareto distribution, as the likelihood ratio test indicated that the estimated value of b was not
significantly different from one. In cases where a significant difference is found, the estimates
resulting from the Burr-distribution will be used as comparison base.
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Policy Implications of the Obtained Parameter Values

The parameter values obtained for r and b respectively indicate:

® the degree of diversity in the mean duration of the stores included in
the sample

® the degree of learning or experience on the part of the individual store
managers.

The coefficient of variation (CV) of the unobservable gamma mixing
distribution, r~'2, is a measure of the heterogeneity in the population. The
low r-value (0.394), which gives a high CV (= 1.533) implies a great
diversity in the mean duration times of the stores in our data set. Improved
initial selection procedures might therefore be a highly efficient way to
enhance the survival chances of this chain’s stores.

The estimated b-value of 1.07 in the mixture of Weibulls is very close
to one, and the likelihood ratio test also indicates no significant difference
between this model and the gamma-mixture of exponentials where the
b-value is one. This implies that at the individual store-level a constant
quitting rate is observed. All observed inertia effects will therefore be due
to an aggregation across a heterogeneous population. Another implication
of this result is that as yet no learning is occurring on the part of the
individual store managers, which may question the appropriateness of the
currently used training programs.

The obtained parameter estimates result in an estimated mean duration
of infinity, making it useless both as a summary statistic and as a means
of comparing the quitting behavior across groups. This phenomenon,
which is due to the skewed and fat-tailed nature of the underlying distri-
bution, occurs frequently in analyzing duration data. We therefore propose
to compute the median or other quartiles of the distribution. These are not
sensitive to the tail of the distribution, and are better suited to make
meaningful comparisons across different groups of stores. The subsequent
sections will therefore focus on the percentiles rather than on the moments
of the distribution.

Analysis by Country

In Tables 2 and 3 the estimates are given for a grouping of the stores
according to the country where they are located. Surprising findings were:

® some of the groupings are better modeled by a homogeneous distri-
bution
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TABLE 3

The Empirical Hazard Function, Parameter Estimates and
Summary Statistics: According to the Country of Origin

Time United Kingdom
(years) and Ireland Australia
0-1 0.0625
{0.0271}
1-2 0.0983
2-3 0.0906
{0.0334}
34 0.0773
4-5 0.0755
{0.0275}
5-6 0.0626
6-7 0.0958 0.0612
7-8
{0.0457} {0.0366}
89
9-10 0.0129 —
10-11 —
{0.0701}
11-12 —
12-13 —
{0.0568}
13-14 —
14-15 —
15-16 —
{0.0797}
16-17 —
17-18 —
18-19 —_
{0.1081}
19-20 —
21-22 —
22-23 —
{0.1273}
23-24 —
N 432 277
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TABLE 3 Cont’d

United Kingdom
and Ireland Australia

Estimated quantities: homogeneous Weibull
A 0.00407 0.000991
b 1.129 1.230
Median (yrs.) 7.89 17.15
10 percent q.

(yrs.) 1.49 31
20 percent q.

(yrs.) 2.89 6.82
Estimated quantities: homogeneous exponential
A 0.00753 0.003065
Median (yrs.) -7.67 18.85
10 percent q.

(yrs.) 1.17 2.86
20 percent q.

(yrs.) 2.46 6.07
Likelihood ratio statistic
X 5.59* 4.93*
Nonparametric estimates
10 percent q.

(yrs.) 1.40 3.59
20 percent q.

(yrs.) 2.59 n.a.

*p <0.05

® some of the estimated medians are quite different despite similar
initial quitting rates.

For stores located in either the United Kingdom or Ireland or in Australia,
no convergence was obtained by the computer program, since the value of
r increased without bound. As r~ "2 is a measure of the homogeneity of the
scale parameter A, this would indicate that the program was actually trying
to fit a homogeneous Weibull or exponential distribution. The parameters
of these distributions were therefore estimated, and a very good correspon-
dence was obtained between the resulting estimates of the ten and twenty
percentiles and their nonparametric counterparts. The absence of hetero-
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geneity in the mean quitting rates makes the use of improved initial selec-
tion procedures inappropriate as a policy to reduce the failure rates of
stores located in those countries. The increasing individual-level quitting
probabilities suggest however the desirability of improving some aspects in
the channel relationships, as a negative learning effect is observed with
those store managers.

Comparing further the Benelux Countries (Belgium, Luxembourg, and
The Netherlands) with France, we note that, although their initial quitting
rates are of the same order of magnitude, the estimated median duration for
stores located in France is much higher than for the ones in the Benelux,
a phenomenon attributable to the much larger heterogeneity in the mean
life times of stores located in France.

Analysis According to the Year of Entry in the Market

Table 4 contains the results from dividing the sample in two groups
according to their date of entry into the market. December 31, 1974 was
selected as the dividing point, as this date coincided (approximately) with
the first half of the chain’s existence.

Comparing these two groups of stores, the following observations can be
made:

® cach of them is best described through a homogeneous distribution,
although their respective parameters are very different

® the group of “‘early’’ stores is characterized by a much larger median
duration

® one only sees a positive learning effect for the ‘‘late’’ stores.

Both subsamples are, for similar reasons as the ones given before, best
described through a homogeneous Weibull distribution. This result might
seem surprising: the overall sample was showing a lot of heterogeneity,
whereas all early stores and all late stores are best described by a homo-
geneous distribution. Although the scaling parameter A is very homoge-
neous within each subgroup, one notes that its value is much greater for
stores opened after 1975 than for stores that started their operation before
that date (0.00564 versus 0.000037, or a ratio of 152 to one). The corre-
sponding medians are therefore also quite different, namely 14.34 versus
46.43 years. The total sample thus consists of two homogeneous but very
distinct subsamples, which explains the heterogeneity observed when an-
alyzing all stores as one group. This illustrates the usefulness of further
analyses for separate subgroups, since better insights into the nature of the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Retailing

TABLE 4

The Empirical Hazard Function, Parameter Estimates and
Summary Statistics: According to the Year of Entry

Time openings year openings year
(years) <75 =75
0-1 0 0.0533
1-2 0 0.0667
2-3 0 0.0554
34 0 0.0454
4-5 0.0305
56 0.0368
{0.0029}
6-7 0.0374
7-8 0.0294
8-9 0.0083 0.0340
9-10 0.0174 0.0324
10-11 0.0144 0.0324
11-12 0.0188
{0.0308}
12-13 0.0218
13-14 0.0134 —
14-15 0.0224 —
15-16 0.0157 —
16-17 0.0269 —
17-18 0.0132 —
18-19 0.0230 —
19-20 0.0276 —
21-22 0.0461 —
22-23 0.0391 —
23-24 0.0480 —
24-25 —
25-26 —
{0.0167} —
26-27 —
N 1229 3417
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TABLE 4 Cont’d
openings year openings year
<75 =75

Estimated quantities: homogeneous Weibull
A 0.000037 0.00563
b 1.556 0.935
Median (yrs.) 46.43 14.34
10 percent q. (yrs.) 13.83 1.91
20 percent q. (yrs.) 22.41 4.27
Estimated quantities: homogeneous exponential
A 0.001016 0.00426
Median (yrs.) 56.85 13.56
10 percent q.

(yrs.) 8.64 2.06
20 percent q.

(yrs.) 18.30 4.37
Likelihood ratio statistic
X’ 129.06** 5.34%
Nonparametric estimates
10 percent q.

(yrs.) 13.21 1.74
20 percent q.

(yrs.) 19.18 4.59

*p < 0.05

** p < 0.01

underlying heterogeneity can be obtained in this way. The presence of two
homogeneous subgroups further indicates that a bimodal mixing distribu-
tion might have been better in capturing the diversity in mean duration
times. The use of mixing distributions other than the gamma distribution
(which cannot take on bimodal forms) is however left as an area for future
research.

We already noted that the estimated median for the early stores (46.43
years) is higher than the one estimated for the later ones (14.34 years). One
should however exert some care in interpreting this last result. The figure
for the early stores is estimated more from the tail of the distribution. The
late stores on the other hand will be situated more in the front of the
distribution. The above result should therefore not be too surprising.
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Finally, stores opened after December 1974 display an inertia at the
individual level, as the estimated b-value for this sample is significantly
lower than one. The early stores on the other hand are characterized by the
fact that the longer they have been open, the more likely they are to stop
their operation in the next period. A possible interpretation of this finding
is that the support given to the individual store managers has improved
over the years.

CONCLUSION

A general model for the analysis of store duration times has been pre-
sented. In contrast to previous analyses we took explicit account of prob-
lems caused by the presence of non-cohort and right-censored data in the
sample. The proposed model also allowed us to distinguish between inertia
effects due either to decreasing quitting rates at the individual store level
and/or to the fact that one is aggregating across a heterogeneous population
when one is observing empirical quitting rates.

The parameters of the models were shown to have a clear behavioral
interpretation and direct policy implications. Alternative strategies to re-
duce the failure rates were conjectured to be more or less effective in
different situations, depending on the parameter values of the model.

This model was applied to a data set consisting of store durations of
stores belonging to one large chain, both at the total sample level and for
some subsamples. The latter type of analysis indicated that not all store
segments should be approached with a similar kind of strategy in order to
reduce their failure rates.

Several areas for future research remain open however, as

® an explicit consideration of alternative causes for a store’s discontin-
uance
® the incorporation of explanatory variables.

It was indicated before how the fat-tailed nature of most duration distri-
butions leads to an estimated mean duration of infinity. Stores obviously
do not stay in operation for an infinite time period. Their discontinuance
can be due to a variety of reasons: inadequate profits, ill health, retirement
or death of the store owner, and so on (Dickinson 1981). A more complete
model would be a competing-risk model where the different underlying
processes that can lead to the discontinuance of a store’s operations are
considered simultaneously. A duration ¢ is then defined as

T = min{Tl,Tz, .. .} (12)
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where

T, = the time till the business stops its operation due to inadequate
profits, provided no other reason causes its discontinuance

T, = the time till the store owner retires, provided . . .

Vilcassim and Jain (1991) adopted a competing-risk framework in their
analysis of individual households’ purchase timing and brand choice de-
cisions. A Markovian-type framework was adopted where the different
possible outcomes (i.e., the different brands chosen) defined the event
space, and where the transition probabilities were modeled in terms of
hazard functions. This approach was not used in this paper for the follow-
ing reasons: (1) the data set at hand did not distinguish between the alter-
native causes of a store’s discontinuance and (2) the added complexity
would not alter the spirit of our empirical results. Indeed, a competing-risk
model would affect the tail of the distribution (and therefore solve the
infinite mean problem), but the percentiles in the important part of the
distribution would not be altered. We therefore decided to use the simpler
models and ignore the estimated mean of the distribution.

The more fruitful area for future research is the incorporation of explan-
atory variables, so that the managerial implications would become more
specific. Helsen and Schmittlein (1989) estimated a Weibull-hazard model
with time-varying covariates to investigate the impact of marketing-mix
variables on the interpurchase times of saltine crackers. They did not
account however for the possible confounding effects of unobserved het-
erogeneity, which could have biased their results (Gupta 1991). Jain and
Vilcassim (1991) on the other hand considered both unobserved heteroge-
neity and covariates in a hazard-rate model. In their framework the hazard
rate is defined as

h(t) = ho(t)exp(aX, + cb) (13)
where

ho(®)

the base-line hazard with a prespecified distribution (e.g., expo-
nential, Weibull)
X, = the considered covariates, which can cause a proportional shift in
the base-line hazard
6 = an added component with a distribution across the population to
capture the unobserved heterogeneity.

The impact of covariates that are an explicit function of time (e.g., the time
since the last training, time since entering the market) can however not be
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considered in this framework, since an identification problem would result
between the parameters of the base-line hazard function on the one hand
and the parameters associated with these time-dependent variables on the
other hand. Further research is therefore needed on how to include best
time-varying covariates and unobserved heterogeneity in a hazard-type
framework.
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APPENDIX
A. Expressions for the used p.d.f.’s and c.d.f.’s
A.1 The Weibull Distribution

AEND) = (WD) 1e™ >0 b>0
FtAbp)=1— e t>0
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A.2 The Pareto Distribution

r at!
. P >0 >
h(t;r,a) a@+ t>0;ra>0
. = - >
H(tra) =1 @+ t>0
A.3 The Burr Distribution
Wby = 25 >0;rab>0
(t,r,a,b) = @+ oy t s r.a,
H(t; b)=1 _L >0
(t’r;a; )— (a + Ib)r t

B. Derivation of the likelihood function

The parameters of the Pareto and Burr distribution are estimated by
means of the method of maximum likelihood. It might be instructive to
first consider the contribution of each individual store to that function. If
the observed durations could be considered as a continuous variable, the
likelihood of observing a store with a completed duration of length ¢,
would be described by a term h(t,), where h( ) is the p.d.f. under consid-
eration. Stores that are still in operation at the end of the observation period
and that have been so already for ¢, time units, are contributing a term 1 —
H(t,), giving in fact the probability of observing a duration greater than z,.
Given the independence of the different observations and making the ap-
propriate adjustments asked for by the discrete nature of the available data,
the likelihood can be written as

K
L(rab) = | [ [H@) — H@)FLQ — Hupl"

k=1

where H is the c.d.f. of the Pareto or Burr distribution as given in Section
A.2 and A.3 of the Appendix. u, and u, denote respectively the upper and
lower bounds of the discrete duration intervals that are considered. The
likelihood of observing a duration of length 7, is therefore replaced by the
probability of observing a duration between u, and u,. X and Y, finally,
are counts of the number of stores with respectively a completed or right-
censored duration falling in the k-th duration interval.
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The parameters of the model are estimated by maximizing this likeli-
hood function, whereby a Hookes-Jeeves accelerated-pattern search
(Himmelblau 1972) is used by the computer program. Using the invariance
property of maximum likelihood estimators, these estimates will also make
it possible to derive maximum likelihood estimates for the mean, median,
and mode of the respective distributions.” As the gamma mixture of ex-
ponentials is just a special case of the gamma mixture of Weibulls, where
in the former case b is restricted to be one, a likelihood ratio test will be
performed to test whether b is in fact significantly different from one.

C. Formulas for the mean and median of the Pareto
and Burr distribution

C.1 Pareto Distribution

) al'(r — 1)
I'(r)

median : a2V - 1)

mean

C.2 Burr Distribution

. a®T(r — 1/b)T'(1/b)
I'(r)

median : [a2V" — 1)]¥®

mean

® The formulas for these quantities are given in the Appendix, Section C.
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