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Abstract

We consider a principal-agent setting in which a manager’s compensation de-

pends on a noisy performance signal, and the manager is granted the right to

choose an (accounting) method to determine the value of the performance signal.

We study the effect of the degree of such reporting discretion, measured by the

number of acceptable methods, on the optimal contract, the expected cost of com-

pensation and the manager’s expected utility. We find that while an increase in

reporting discretion never harms the manager, the effect on the expected cost of

compensation is more subtle. We identify three main effects of increased report-

ing discretion and characterize the conditions under which the aggregate of these

three effects will lead to a higher or lower cost of compensation.
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1 Introduction

We consider a principal who contracts with a risk- and effort-averse manager in order

to motivate him to deliver the desired effort level. Since the effort provided by the man-

ager is not directly observable, the principal contracts on the basis of a noisy signal, e.g.

based on accounting numbers. Accounting standards such as Generally Accepted Ac-

counting Principles, however, usually offer a variety of acceptable accounting methods

(e.g. LIFO vs FIFO, accelerated vs straight line depreciation, etc.). It has been demon-

strated in several settings that it may be optimal to grant a manager the discretion

to choose an accounting method, even when his compensation depends on performance

measures derived from reported accounting numbers. Demski et al. (1984) show that

when accounting method choice is verifiable, delegating the choice to the manager may

be optimal because by motivating the manager to use a different accounting method

for different realizations of his private information, the manager’s information rent is

reduced. Verrecchia (1986) considers a setting where accounting method choice is par-

tially unverifiable, and shows that even when the principal has the option to implicitly

eliminate reporting flexibility by affecting the attractiveness of the acceptable reporting

alternatives, it is in general not optimal to do so. Ozbilgin and Penno (2006) con-

sider a principal-agent model with a set of ex-ante equivalent performance measurement

methods, and find that delegating the choice of measurement method to the manager is

optimal if he is sufficiently risk averse.

Given these various conditions under which delegating accounting method choice

(or, more generally, performance measurement method) to the manager is optimal, and

given the ongoing debate on the ”desired” degree of flexibility in GAAP, it is clearly

relevant and important to investigate the effect of the degree of reporting flexibility on

the internal agency problem. Prior literature shows that risk aversion plays a crucial

role in understanding the effect of increased reporting flexibility on the expected cost

of compensation. Demski (1998) considers a multi-period model where the manager

has private information and can manipulate earnings numbers. He shows that the ex-
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pected cost of compensation when the manager is motivated to manipulate earnings

numbers can be lower than in a situation where he has no private information, so that

results can only be reported truthfully. The underlying reason is that the manager can

only manipulate the performance signal in case the desirable effort level is delivered,

and allowing for manipulation reduces the manager’s risk. Ozbilgin and Penno (2006)

show that when the manager has the discretion to choose the performance measure-

ment method, increased reporting flexibility (as measured by the number of acceptable

performance measurement methods) decreases the expected cost of compensation if the

manager is sufficiently risk averse. Their setting has no information asymmetry other

than the manager’s action and measurement choices. These results show that more re-

porting flexibility for the manager, either through diversity in acceptable measurement

methods (as in Ozbilgin and Penno, 2006) or through allowed earnings manipulation

(as in Demski, 1998) can be beneficial to the principal since it reduces the manager’s

compensation risk.1

In this paper we take a principal-agent approach similar to Ozbilgin and Penno (2006),

in which the manager’s compensation depends on a noisy performance signal, and the

manager is granted the right to choose an (accounting) method to determine the value

of the performance signal. We study the effect of the degree of reporting flexibility,

measured by the number of acceptable measurement methods, on the expected cost of

compensation and on the manager’s expected utility.2 Our results complement and ex-

tend theirs in several directions. First, the setting in Ozbilgin and Penno (2006) is such

that the manager always earns a limited liability rent. In contrast, whether the limited

liability constraint is binding in our setting is endogenous and depends on the degree of

reporting flexibility. This has important implications for the effect of the level of report-

ing flexibility on the expected cost of compensation. Second, we distinguish two critical

1Penno (2005) considers a manager who can choose between N performance measurement signals

that are i.i.d. exponentially distributed, and shows that the expected cost of compensation is indepen-

dent of N . This remarkable result is due to the nature of the exponential distribution.
2Ozbilgin and Penno (2006) distinguish settings in which the discretion to choose the method rests

with the principal and settings where it rests with the manager. The focus in our paper is on the latter.
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values of the degree of reporting flexibility, both of which are increasing in the degree of

risk aversion of the manager. The first critical value determines whether the manager

will earn a limited liability rent. The second critical value determines whether increased

reporting flexibility makes it easier or more difficult to prevent shirking, i.e. whether

a higher bonus is required to motivate high effort. As long as the degree of flexibility

does not exceed either of these two critical values, the limited liability constraint will

not be binding and increased reporting flexibility allows for a lower bonus. As a conse-

quence, higher reporting flexibility then yields a lower expected cost of compensation,

even though it does not affect the manager’s expected utility. Above the two threshold

values, both the size of the bonus and the limited liability rent are strictly increasing in

the degree of reporting flexibility. Increased reporting flexibility is then strictly benefi-

cial to the manager, but harmful to the principal. For intermediate degrees of reporting

flexibility, the effect is ambiguous. We show that increased reporting flexibility may

then be socially optimal in the sense that it makes both the principal and the manager

strictly better off.

Finally, we show that a minimal level of reporting flexibility may be necessary for

the existence of an optimal contract, i.e. if incentive problems cannot be resolved at

finite cost, an increase in the degree of reporting flexibility can be sufficient to solve this

problem.

Although related, the problem studied in this paper differs in several ways from the

literature on equilibrium earnings management when the Revelation Principle fails to

hold due to, e.g., restricted communication, lack of commitment, or contracting restric-

tions. There, the focus is on settings where the manager has private information and

may be able to manage earnings in a way that would not be accepted if detected by an

audit system. The issue is then whether motivating rejection of earnings management

is optimal. It has been demonstrated that allowing for, and motivating, manipulation

of performance measures may be beneficial to the principal in situations where manip-

ulation requires costly effort (Demski et al. 2004, Liang 2004) or when there is limited

commitment (Arya et al. 1998). In our setting, there is no private information (other
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than the action and measurement method choice) and all available measurement meth-

ods are equally acceptable. The issue is therefore not whether the manager should be

motivated to choose a particular method. Rather, the focus is on the effect of diversity

in measurement methods on the expected cost of compensation, given that the manager

can strategically choose any method from the set of acceptable methods.

The rest of the paper is organized as follows. In section 2, we present the model.

In section 3, we derive the optimal contract, and in section 4 we study the effect of

the number of alternative measurement methods on the optimal contract, the expected

cost of compensation and on the manager’s expected utility. Section 5 discusses the

implications of reporting flexibility for both the principal and the manager. Section 6

concludes. All proofs are deferred to the Appendix.

2 The model

We consider a principal who contracts with a risk- and effort-averse manager in order to

motivate him to deliver the desired effort level. Since the effort provided by the manager

is not directly observable, the principal contracts on the basis of a noisy signal.

The model is similar to the models in Penno (2005) and Ozbilgin and Penno (2006).

Specifically, there is managerial reporting flexibility in the sense that there are a number

of different noisy performance signals, each resulting from equally acceptable measure-

ment methods. The manager has the discretion to choose a measurement method, and

report the corresponding signal to the principal.3 The choice occurs ex post, i.e. after

all the signals have realized. Since it is assumed that verification of the signals is costly

for the principal, only the reported signal will be verified and used for contracting.

There are two effort levels a ∈ {aH , aL} , and a set of N equally acceptable measure-

ment methods. Each method yields a signal that can take two values y ∈ {yH , yL} ,

3Ozbilgin and Penno (2006) distinguish settings in which the discretion to choose the method rests

with the principal and settings where it rests with the manager, and show that delegating the choice

to the manager is optimal if he is sufficiently risk averse.
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with yH > yL. The signals resulting from the N different measurement methods are

independent and identically distributed random variables yi, i = 1, ..., N , for which the

probability distribution is determined by the action chosen by the manager in the fol-

lowing way:

P{yi = yH |a = aH} = 1 − p,

P{yi = yL|a = aH} = p,
(1)

P{yi = yH |a = aL} = 1 − q,

P{yi = yL|a = aL} = q.
(2)

Without loss of generality we assume that q > p, i.e. the probability of outcome

yL is higher under aL than under aH . This implies that the monotone likelihood ratio

property (MLRP) holds, i.e. if aH is the desirable action, yH is a ”good” signal, and yL

is a ”bad” signal. The principal is risk neutral; the manager is a risk averse expected

utility maximizer with utility function u (x) = −e−ρx, where ρ > 0 represents the degree

of risk aversion. The manager is effort-averse, and the cost of providing effort aH (aL)

equals cH (cL), with cH > cL.

The timeline is as follows:

• Date 0: The principal specifies the level of compensation that will be paid to the

manager in case yH , respectively yL, is reported. The manager decides to accept

or reject the contract. If the manager accepts the contract, he then chooses his

effort level a ∈ {aH , aL}.

• Date 1: The manager determines the value yi ∈ {yH , yL} of the signal resulting

from the ith acceptable performance measurement method, for i = 1, · · · , N , and

reports one signal ŷ ∈ {yi; i = 1, ..., N} to the principal. Compensation is paid

and the game ends.
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3 The optimal contract

Let us denote s(y) for the compensation received in case y is reported. Without loss

of generality, we focus on the compensation scheme needed to motivate the manager

to take action aH .4 Then, similarly to Dye and Magee (1991), Arya et al. (1992),

and Ozbilgin and Penno (2006), the principal needs to minimize the expected cost of

inducing the agent to choose action aH , taking into account his self-interested behavior

with respect to his action and reporting choices. Specifically, s(yH) and s(yL) need to

be determined such that the expected cost of compensation is minimized, under the

constraints that: i) the manager reports the most favorable signal (i.e. the one that

maximizes his compensation) among the set of N acceptable signals yi, i = 1, ..., N , ii)

providing high effort yields a higher expected utility than providing low effort (incentive

compatibility), iii) staying with the firm and accepting the contract is preferable to

the first best alternative (individual rationality), and, iv) compensation is nonnegative

(limited liability).

Let u (M) denote the manager’s reservation utility. Then, the following optimization

problem needs to be solved:

min
s(·)

E [s(ŷ)| a = aH ]

s.t.
ŷ ∈ arg max

y∈{y1,...,yN}
s(y)

E [u(s(ŷ) − cH)| a = aH ] > u(M)

E [u(s(ŷ) − cH)| a = aH ] > E [u(s(ŷ) − cL)| a = aL]

s(ŷ) > 0.

(3)

Clearly,

s(yH) > s(yL) =⇒ ŷ = max{yi; i = 1, ..., N},

s(yH) 6 s(yL) =⇒ ŷ = min{yi; i = 1, ..., N}.

4It is easily verified that, due to the MLRP, the cost minimizing compensation scheme that motivates

the manager to take action aL is given by sL = sH = M + cL, for all N > 1.
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However, it is easy to verify that due to the MLRP, the optimal contract when ŷ =

min{yi; i = 1, ..., N} satisfies s(yH) > s(yL). Therefore, ŷ = max{yi; i = 1, ..., N},

i.e. the reported signal ŷ equals yH if for at least one measurement method it holds

that yi = yH , and equals yL otherwise. Consequently, as in Penno (2005) and Ozbilgin

and Penno (2006), the probability distribution of the reported signal under high effort

depends on the number of acceptable measurement alternatives in the following way:

P{ŷ = yL|a = aH} = P (max {yi; i ∈ {1, ..., N}} = yL|a = aH)

= P
(
y1 = yL, y2 = yL, ..., yN = yL|a = aH

)

= P (y1 = yL|a = aH)P (y2 = yL|a = aH) · · ·P
(
yN = yL|a = aH

)

= pN ,

(4)

and,

P{ŷ = yH|a = aH} = 1 − pN . (5)

Similarly, for low effort:

P{ŷ = yH |a = aL} = 1 − qN , (6)

P{ŷ = yL|a = aL} = qN . (7)

Let us denote s(yH) = sH and s(yL) = sL. Then, (4)-(7) imply that optimization

problem (3) is equivalent to:

min pNsL + (1 − pN )sH

s.t. pNu(sL − cH) + (1 − pN)u(sH − cH) > qNu(sL − cL) + (1 − qN )u(sH − cL)

pNu(sL − cH) + (1 − pN)u(sH − cH) > u(M)

sL > 0, sH > 0.

Our goal is to study the effect of the degree of reporting flexibility, N, on the optimal

incentive contract, on the expected cost of compensation, and on the manager’s expected

utility.
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4 The effect of increased reporting flexibility

In this section we first determine the optimal contract for any given value of N . This will

then allow us to determine the effect of an increase in the level of reporting flexibility on

the level of compensation and the size of the bonus (subsection 4.1), on the manager’s

expected utility (subsection 4.2), and on the expected cost of compensation (subsection

4.3).

The following theorem shows that, in contrast to Ozbilgin and Penno (2006), the

structure of the optimal compensation contract depends crucially on whether N ex-

ceeds a threshold value, N∗, and yields the optimal compensation levels for both cases.

Moreover, it is shown that an optimal contract only exists if there are sufficiently many

acceptable measurement methods.

Theorem 1 A minimal level of reporting flexibility is necessary for the existence of an

optimal contract. Specifically, an optimal compensation contract exists iff

N >
ρ(cH − cL)

ln q − ln p
.

Then, the limited liability constraint is binding iff N > N∗, where

N∗ = max
{

N ∈ N; 1−qN

1−pN 6
1−e−ρ(M+cL)

1−e−ρ(M+cH)

}
, if q < 1,

= ∞, if q = 1. (8)

Moreover:

i) If N 6 N∗, the optimal compensation scheme is given by

sL = −
1

ρ
ln

(1 − pN)e−ρ(M+cL) − (1 − qN)e−ρ(M+cH)

qN − pN
, (9)

sH = −
1

ρ
ln

qNe−ρ(M+cH) − pNe−ρ(M+cL)

qN − pN
. (10)
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ii) If N > N∗, the optimal compensation scheme is given by

sL = 0, (11)

sH = −
1

ρ
ln

qNe−ρ(M+cH) − pNe−ρ(M+cL)

(1 − pN)e−ρ(M+cL) − (1 − qN)e−ρ(M+cH)
. (12)

Note that the theorem shows that a minimal degree of reporting flexibility may ac-

tually be necessary to be able to resolve incentive conflicts at finite cost. Suppose that

the manager’s degree of risk aversion and cost of effort are such that ρ(cH−cL)
ln q−ln p

> 1.

Then, there does not exist an optimal contract if the manager is constrained to us-

ing any given measurement method. If he can choose amongst at least N = ρ(cH−cL)
ln q−ln p

performance measurement methods, there does exist a contract that resolves incentive

problems.

It is clear from Theorem 1 that the way in which the optimal contract is affected by

the level of reporting flexibility depends crucially on whether the threshold value N∗

is exceeded, or, equivalently whether the limited liability constraint is binding. It is

therefore intuitively clear that this threshold value can also play a dominant role in the

effect of reporting flexibility on the expected cost of compensation.
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5 10 15
7

8

9

10

11

12

13

14

15
E[cost]

Figure 1: Optimal values of sH (dashed-dotted) and sL (dashed) (left panel) and expected

cost (right panel), as a function of N for ρ = 0.1, cL = 0, cH = 5, M = 3, p = 0.3, q = 0.9.
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This is illustrated in Figure 1. It shows the payoffs sL and sH and the expected cost

of the optimal contract, as a function of the number of alternative reports. We see that

the optimal payoffs as well as the expected cost of compensation first decrease and then

increase as N increases.

Although in the setting in Figure 1 the limited liability constraint becomes binding

at N∗ = 6, and the expected cost of compensation decreases (increases) in N for N <

6 (N > 6), we will show in the sequel that this is not the general pattern.

4.1 The effect on the optimal contract

For the sake of intuition, we view the compensation package as consisting of a level of

compensation sL, to which a bonus sH − sL is added in case of a high report. Let us

use the following notation:

α = e−ρ(cH−cL). (13)

The parameter α reflects the severity of the incentive problem. A lower value of α, e.g.

due to a higher degree of risk aversion and/or a bigger difference between the cost of

high effort and low effort, ceteris paribus, implies that compensation will be more costly.

We also introduce a second threshold value Ñ , which is defined as follows:5

Ñ =
ln( ln p

ln q )−ln(α)

ln q−ln p
, if 0 < p < q < 1,

= ∞, if q = 1,

= 0, if p = 0.

(14)

In the following proposition we first determine the effect of the level of reporting

flexibility (N) on the two levels of compensation sL and sH , as well as on the size of the

bonus (the difference between the two levels of compensation), where the critical values

N∗ and Ñ are as defined in (8) and (14), respectively.

Proposition 2 For the optimal compensation contract, the following holds:

5Since the solution of the optimization problem is trivial when p = 0 and q = 1, we can assume

without loss of generality that p > 0 or q < 1.
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i) sH is decreasing in N for N 6 max{N∗, Ñ}, and increasing in N for N >

max{N∗, Ñ},

ii) sL is decreasing in N for N 6 N∗, and sL = 0 for N > N∗.

iii) sH − sL is decreasing in N for N 6 Ñ , and increasing in N for N > Ñ.

First, the critical level Ñ determines whether an increase in N makes incentive prob-

lems more severe, or equivalently, whether a higher bonus is required to motivate high

effort. As long as N 6 Ñ , an increase in the degree of reporting flexibility makes incen-

tive problems less severe, so that the size of the bonus can be decreased. The opposite

holds when N is higher than the critical level Ñ . Second, the critical level N∗ determines

whether the limited liability constraint is binding. When the degree of reporting flexibil-

ity is lower than the threshold value N∗, the limited liability constraint is not binding.

The fact that the likelihood ratios of the low and the high outcome both increase when

a higher level of discretion is allowed, then implies that both levels of compensation can

be decreased. When the lowerbound on compensation becomes binding (N > N∗), the

compensation for low outcome needs to be fixed at its minimal level. Consequently, the

size of the bonus can only be affected by changing the level of the compensation in case

of high outcome. It needs to be increased when N > Ñ , but can be decreased when

N 6 Ñ .

4.2 The effect on the manager’s expected utility

In this section we study the effect of an increase in the degree of reporting flexibility

on the manager’s expected utility. Let us therefore denote CE(N) for the manager’s

certain equivalent as a function of the number of alternative measurement methods, N ,

i.e.

CE(N) = u−1
(

(1 − pN)u(sH) + pNu(sL)
)
,

where sH and sL are as defined in Theorem 1. The following proposition determines the

effect of N on the manager’s certain equivalent.
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Proposition 3 For the manager’s certain equivalent, the following holds:

CE(N) = M, for N 6 N∗,

= 1
ρ
ln (1−pN )e−ρcL−(1−qN )e−ρcH

qN−pN , for N > N∗.

The certain equivalent is strictly increasing in N for N > N∗.

The above proposition implies that the manager’s utility is not affected by a change

in the degree of reporting flexibility as long as the critical level N∗ is not exceeded.

The expected utility of the manager is then equal to his reservation utility. Above the

critical level N∗, the manager starts earning a rent due to the fact that the limited

liability constraint becomes binding. Since the rent is increasing in N , the manager

strictly benefits from increased reporting flexibility.
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Figure 2: The manager’s certain equivalent, as a function of N , for p = 0.3, q = 0.7,

ρ = 0.1, M = 10, cL = 0, and cH = 7 (solid line), cH = 5 (dashed line) and cH = 3.5

(dashed-dotted line).

This is illustrated in Figure 2. It can be verified that the limited liability constraint

becomes binding at N∗ = 4, after which the size of the rent increases when the degree

of reporting flexibility increases. The rate of the increase is increasing in the difference

between the cost of high and low effort.
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4.3 The effect on the expected cost of compensation

The analysis in the previous subsections hints at the fact that the effect of reporting

flexibility on the expected cost of compensation will be driven by the following three

effects:

• The decreased risk compensation effect : because pN is strictly decreasing in N if

p > 0, an increase in the degree of reporting flexibility implies that the probability

that the manager will receive the higher compensation level increases. Conse-

quently, he requires less risk compensation (Proposition 2 i) and ii)).

• The incentive compatibility effect : the bonus can be decreased when N < Ñ

(needs to be increased when N > Ñ) because an increase in reporting flexibility

then mitigates (aggravates) incentive problems (Proposition 2 iii)).

• The limited liability effect : when N > N∗, the limited liability constraint is bind-

ing, and the manager earns a rent which increases with the level of reporting

flexibility (Proposition 3).

In isolation, each of these effects is either cost increasing or cost decreasing. In

the sequel, we determine under what conditions the cost increasing, respectively cost

decreasing effects will be dominant. Let us start with two special cases: the case where

low effort yields a low signal with certainty, i.e., q = 1, and the case where high effort

yields a high signal with certainty, i.e., p = 0.

Proposition 4

• If q = 1, then N∗ = Ñ = ∞, and the expected cost of compensation is decreasing

in N .

• If p = 0, then Ñ = 0, and

– If N 6 N∗, the expected cost of compensation is independent of N .
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– If N > N∗, the expected cost of compensation is increasing in N .

If q = 1, an increase in the degree of reporting flexibility always mitigates incentive

problems (i.e. Ñ = ∞). Moreover, the lowerbound on compensation never becomes

binding (i.e. N∗ = ∞ ). Consequently, the expected cost of compensation is mono-

tonically decreasing in the number of alternative measurement methods. In contrast,

if p = 0, compensation always equals sH , so that no risk compensation is required.

However, an increase in reporting flexibility always aggravates incentive problems, since

Ñ = 0. Combined with the effect of the limited liability rent, this implies that the

expected cost of compensation increases when N > N∗.

The results of Proposition 4 illustrate that the effect of an increase in reporting flexi-

bility on the expected cost of compensation depends to a large extent on the parameter

values: it increases the expected cost if p = 0 and N > N∗, it decreases the expected

cost if q = 1, and it leaves the expected cost unaffected if p = 0 and N 6 N∗. It the

sequel we characterize the conditions under which increased reporting flexibility will in-

crease (decrease) the expected cost of compensation for all 0 < p < q < 1. The following

theorem shows that for sufficiently high values of N, the cost increasing effects of the

limited liability rent and increased incentive problems are dominant.

Theorem 5 If N > max
{
N∗, Ñ

}
, then the expected cost of compensation is increasing

in N .

We now focus on the case where N 6 max
{
N∗, Ñ

}
. The following theorem shows

that whether a higher degree of reporting flexibility would increase or decrease the

expected cost of compensation depends on: the probabilities pN and qN , whether N

exceeds the threshold value N∗,6 and the risk aversion/cost parameter α, as defined in

(13).

6Given pN and qN , the number of alternative signals N affects the magnitude of the derivative of

the expected cost of compensation with respect to N , but not its sign.
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Theorem 6 Let p, q, and N 6 max
{
N∗, Ñ

}
be given, and denote

S = {(u, v) ∈ [0, 1] × [0, 1] : (u − 2uv + v) lnu − 2v(1 − u) ln v > 0} . (15)

Then, there exists an α∗ and an α∗
b such that:7

i) If N < N∗, an increase in N

– decreases the expected cost of compensation iff α < α∗or
(
pN , qN

)
/∈ S.

– increases the expected cost of compensation iff α > α∗ and
(
pN , qN

)
∈ S.

ii) If N∗ 6 N 6 Ñ , an increase in N increases (decreases) the expected cost of

compensation iff α > α∗
b (α < α∗

b).

Figure 3 illustrates the set S.
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Figure 3: The combinations of pN and qN for which (pN , qN) ∈ S.

7The critical values α∗ and α∗
b

depend on pN and qN . In order to avoid overloaded notation, we do

not explicitly denote this dependence, unless it is required for clarity.
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5 Implications

In this section we use Proposition 3 and Theorem 6 to study the implications of increased

reporting flexibility for both the principal and the manager. We will distinguish four

ranges of values of N .

The case where N 6 min{N∗, Ñ}.

In this case, the limited liability constraint is not binding (because N 6 N∗), and an

increase in reporting flexibility mitigates incentive problems and therefore allows for a

lower bonus (because N 6 Ñ). Now it can be verified numerically that:8

N 6 Ñ =⇒ α < α∗. (16)

It therefore follows from Theorem 6 i) that the expected cost of compensation will be

decreasing in N . Moreover, since the limited liability constraint is not binding, it follows

from Proposition 3 that the manager does not earn a rent. This yields:

Implication 1 : If N is sufficiently low (N 6 min{N∗, Ñ}), an increase in the degree

of reporting flexibility makes the principal strictly better off, while leaving the manager’s

utility unaffected.

The case where Ñ 6 N 6 N∗.

In this case, the limited liability constraint is still not binding (because N 6 N∗), but

an increase in reporting flexibility now aggravates incentive problems and thus requires a

higher bonus (since Ñ 6 N). The effect on the expected cost of compensation therefore

depends on whether the cost reducing effect of reduced compensation risk outweighs

the cost increasing effect of increased incentive problems. It follows from Theorem

6 i) that the aggregate effect of increased reporting flexibility on the expected cost

of compensation depends on both the risk aversion/cost parameter α, as well as on
(
pN , qN

)
. Combined with the result from Proposition 3, this yields:

8Remember that Ñ depends on α, p, and q, and that α∗ depends on
(
pN , qN

)
.
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Implication 2 : If Ñ 6 N 6 N∗, an increase in the degree of reporting flexibility leaves

the manager’s utility unaffected, and

• makes the principal better off if α < α∗or
(
pN , qN

)
/∈ S.

• makes the principal worse off if α > α∗ and
(
pN , qN

)
∈ S.

Note that since S ⊂ [0, 0.2] × [0, 0.2], there is a wide range of parameter values for

which
(
pN , qN

)
/∈ S. We illustrate this in Figure 4.
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Figure 4: Left panel: Expected cost of compensation in excess of M + cH as a function

of N , for cL = 0, cH = 100, M = 85000, p = 0.46, q = 0.52, and α = 0.99. Right panel:

The critical value α∗ as a function of N for p = 0.46, q = 0.52.

For the parameter values in Figure 4, it holds that Ñ = 2 and N∗ = 26. The

critical value of α needed to make the increased incentive problems effect dominant, α∗,

decreases for N 6 5, and increases for N > 5. It can be verified that α = 0.99 > α∗ and
(
pN , qN

)
∈ S for N ∈ [3, 8]. The expected cost of compensation therefore increases over

that range, but decreases outside that range.

18



The case where N∗ 6 N 6 Ñ.

In this case, the limited liability constraint is binding (because N > N∗), but the

degree of reporting flexibility is sufficiently low so that an increase in reporting flexibility

allows for a lower bonus (because N 6 Ñ). It then follows from Theorem 6 ii) that the

cost decreasing effects (decreased risk compensation and decreased incentive problems)

dominate the limited liability effect if the manager is sufficiently risk averse, i.e. if

α < α∗
b . Combined with the results of Proposition 3, this yields the following:

Implication 3 : If N∗ 6 N 6 Ñ and α < α∗
b , an increase in the degree of reporting

flexibility is strictly beneficial to both the manager and the principal.

We illustrate this result in Figure 5.
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Figure 5: The left panel: the expected cost of compensation as a function of N , for

p = 0.875, q = 0.995, ρ = 0.01, cL = 0, cH = 2 and M = 0.094, so that α = 0.98. The

right panel: α∗
b as a function of N , for p = 0.875 and q = 0.995.

For the parameter values in Figure 5, it can be verified that N∗ = 2, and Ñ = 26,

and that α = 0.98 < α∗
b for all N 6 5. Combined with Implication 1, this implies

that the expected cost of compensation decreases for N 6 5, and increases for N > 5.
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Interestingly, for values of N between 2 and 5, the expected cost of compensation is

decreasing in N , even though an increase in N strictly increases the manager’s rent.

The case where N > max{N∗, Ñ}.

In this case, the limited liability constraint is binding, and an increase in reporting

flexibility would require a higher bonus. We know from Theorem 5 that the combination

of increased incentive problems and limited liability then implies that the expected cost

of compensation will increase when the level of reporting flexibility increases. Moreover,

it follows from Proposition 3 that the manager’s limited liability rent will also increase.

Implication 4 : If N is sufficiently high (N > max{N∗, Ñ}), an increase in the degree

of reporting flexibility makes the principal strictly worse off, while making the manager

strictly better off.

6 Conclusion

We identified the three main effects of an increase in the level of reporting flexibility

on managerial compensation, in a setting where the manager has the discretion to choose

the method. First, it reduces the manager’s risk because the probability that he will

be able to report a favorable signal increases. Second, the size of the bonus required

to motivate the manager to provide high effort can be decreased if the current level

of discretion is sufficiently low, but the opposite would happen if that level is already

relatively high. Finally, the fact that the manager faces limited liability significantly

affects the effect of increased reporting flexibility. The limited liability constraint will

be binding if the degree of reporting flexibility is, or becomes, sufficiently high. Below the

threshold value, the manager’s expected utility is constant and equal to his reservation

utility. Above the threshold value however, the manager earns a limited liability rent,

which is increasing in the degree of reporting flexibility. The latter implies that the

manager strictly benefits from increased reporting flexibility if that level is high enough.

Whether or not increased reporting flexibility would be harmful to the principal
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depends on the aggregate of the above described effects. For sufficiently low degrees of

reporting flexibility, the cost decreasing effects are unambiguously dominant, i.e. the

principal strictly benefits from a higher degree of reporting flexibility; the opposite holds

for sufficiently high degrees of reporting flexibility. For intermediate values, the effect is

ambiguous, and depends on the probability distributions of the signals, the manager’s

degree of risk aversion as well as his cost parameters. For a broad set of parameter values,

increased reporting flexibility would be strictly beneficial to the principal, and would

leave the manager’s utility unaffected. We also identify conditions under which both the

principal and the manager are strictly better off when more performance measurement

alternatives are available.

21



References

[1] Arya A.,J. Glover, and S. Sunder (1998). Earnings management and the

revelation principle. Review of Accounting Studies 3: 7:34.

[2] Arya A., R.A. Young, and P. Woodlock (1992), Managerial Reporting Dis-

cretion and the Truthfulness of Disclosures, Economic Letters 39, 163-168.

[3] Demski J.S. (1998), Performance Measure Manipulation, Contemporary Account-

ing Research 15, 3, 261-285.

[4] Demski J.S, H. Frimor and D.E.M. Sappington (2004), Efficient Manipula-

tion in a Repeated Setting, Journal of Accounting Research 42,1, 31-49.

[5] Demski J.S, J.M. Patell and M.A. Wolfson (1984), Decentralized Choice of

Monitoring Systems, The Accounting Review 59,1, 16-34.

[6] Dye R.A, and R.P. Magee (1991), Discretion in Reporting Managerial Perfor-

mance, Economic Letters 35, 359-363.

[7] Dye R.A, and R.E. Verrecchia(1995), Discretion vs. Uniformity: Choices

among GAAP, The Accounting Review 70,3, 389-415.

[8] Fishman J.F., and K.M. Hagerty (1990), The Optimal Amount of Discretion

to Allow in Disclosure, Quarterly Journal of Economics 105, 2, 427-444.

[9] Lambert R.A. (2001), Contracting Theory and Accounting, Journal of Account-

ing and Economics 32, 3-87.

[10] Liang P.J. (2004), Equilibrium Earnings Management, Incentive Contracts, and

Accounting Standards, Contemporary Accounting Research 21, 3, 685-717.

[11] Ozbilgin, M. and M. Penno (2006), The Assignment of Decision Rights in For-

mal Information Systems, working paper (An earlier version is available at SSRN:

http://ssrn.com/abstract=605481.)

22



[12] Penno M. (2005), The Contracting Value of Tainted Reports in Cost Reduction

Settings, European Economic Review 49, 1979-1985.

[13] Verrecchia R.E. (1986), Managerial Discretion in the Choice among Financial

Reporting Alternatives, Journal of Accounting and Economics 8, 175-195.

23



Appendix

Remarks:

1. Note that if a real-valued function f(·) is increasing (decreasing) over the range

[l, b], then f(·) is clearly also increasing (decreasing) over all integer values in that

range. Therefore, although N can only take integer values, we can conclude that

f(N) is increasing (decreasing) in N over a certain range if f ′(·) > 0 (< 0) over

that range.

2. The following properties will be used throughout the proofs:

d
dn

(xn) = xn ln(x), for all x > 0,

ln(x) < 0, for all x ∈ [0, 1],

ln(x) 6 x − 1, for all x > 0,

ln(xn) = n ln(x), for all x > 0 and n ∈ N,

ln(xy) = ln(x) + ln(y), for all x > 0, y > 0.

Proof of Theorem 1

i) Let us first consider the optimization problem without the limited liability constraints.

Then it follows immediately from the KKT-conditions that the individual rationality

and the incentive compatibility constraint are both binding.

It can be verified that the solution equals sL = −1
ρ
ln(x∗) and sH = −1

ρ
ln(y∗), where

x∗ =
(1 − pN)e−ρ(M+cL) − (1 − qN)e−ρ(M+cH)

qN − pN
, (17)

y∗ =
qNe−ρ(M+cH) − pNe−ρ(M+cL)

qN − pN
. (18)

The resulting payment scheme is feasible (i.e., 0 6 sL < ∞, 0 6 sH < ∞) iff 0 < x∗ 6 1

and 0 < y∗ 6 1. If x∗ 6 0 or y∗ 6 0, then an optimal compensation scheme does not

exist. If x∗ > 1 or y∗ > 1, then the limited liability constraint is violated.
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Note that y∗ 6 x∗ and

y∗
> 0 ⇐⇒

(
q

p

)N

> eρ(cH−cL),

so that indeed an optimum exists iff N >
ρ(cH−cL)
ln q−ln p

.

Furthermore, the limited liability constraint is binding iff

x∗ > 1 ⇐⇒
1 − qN

1 − pN
>

1 − e−ρ(M+cL)

1 − e−ρ(M+cH)
.

Now it remains to show that

N > N∗ ⇐⇒
1 − qN

1 − pN
>

1 − e−ρ(M+cL)

1 − e−ρ(M+cH)
.

Given the definition of N∗, it is sufficient to show that 1−qN

1−pN is increasing in N .

d

dN

(
1 − qN

1 − pN

)
=

pN ln p(1 − qN) − qN ln q(1 − pN)

(1 − pN )2

=
1 − qN

1 − pN

(
pN

1 − pN
ln p −

qN

1 − qN
ln q

)
.

Now, let us introduce the function

g(x) =
x ln x

1 − x
. (19)

Then

g′(x) =
(ln x + 1)(1 − x) + x ln x

(1 − x)2
,

=
ln x − x ln x + 1 − x + x lnx

(1 − x)2
,

=
ln x + 1 − x

(1 − x)2
6 0.

The last inequality follows from the fact that ln x 6 x − 1. Therefore,

d

dN

(
1 − qN

1 − pN

)
=

1 − qN

1 − pN

(
g(pN) − g(qN)

)
·

1

N
,

> 0.
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Moreover,

(
1 − qN

1 − pN

)

N=1

=
1 − q

1 − p
< 1,

and

lim
N→∞

1 − qN

1 − pN
= 1.

Therefore,

1 − qN

1 − pN
6

1 − e−ρ(M+cL)

1 − e−ρ(M+cH)
⇔ N 6 N∗.

ii) It follows from the proof of i) that

1 − qN

1 − pN
>

1 − e−ρ(M+cL)

1 − e−ρ(M+cH)

implies that x∗ > 1, so that the limited liability constraint sL > 0 is binding. It then

follows that the optimal compensation under yH satisfies

sH = min−1
ρ
ln(y)

s.t. eρcH [pNx + (1 − pN)y] 6 eρcL[qNx + (1 − qN)y]

eρcH [pNx + (1 − pN)y] 6 e−ρM

0 < y 6 1

x = 1

It can be verified that the incentive compatibility constraint is binding, and

sH = −
1

ρ
ln(y∗

c ),

where

y∗
c =

qNe−ρ(M+cH) − pNe−ρ(M+cL)

(1 − pN) e−ρ(M+cL) − (1 − qN) e−ρ(M+cH)
. (20)
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Proof of Proposition 2

Let us introduce the following notation:

x̃ =
qNα − pN + (1 − α)

qN − pN
,

ỹ =
qNα − pN

qN − pN
,

ỹc =
qNα − pN

qNα − pN + (1 − α)
.

Then, for N 6 N∗,

sL = M + cL −
1

ρ
ln (x̃) ,

sH = M + cL −
1

ρ
ln (ỹ) ,

and for N > N∗

sH = −
1

ρ
ln (ỹc) .

Moreover, for all N ,

sH − sL = −
1

ρ
ln ỹc.

Therefore, it is sufficient to show that: i) x̃ is increasing in N, ii) ỹ is increasing in N,

and iii) ỹc is increasing in N for N 6 Ñ , and decreasing in N for N > Ñ .

i)

dx̃

dN
=

(
qN · ln q · α − pN · ln p

)
∗
(
qN − pN

)

(qN − pN )2

−

(
qN · ln q − pN · ln p

)
∗
(
qNα − pN

)

(qN − pN)2
,

=
1 − α

(qN − pN)2
· (ln p · pN(1 − qN) − ln q · qN(1 − pN)).

Therefore,

dx̃

dN
=

(1 − α)(1 − pN)(1 − qN)

N(qN − pN)2

(
g(pN) − g(qN)

)
> 0, (21)

where the function g(·) is as defined in (19).
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ii) Since

ỹ = x̃ −
1 − α

qN − pN
,

it follows that

dỹ

dN
=

dx̃

dN
− (1 − α)

d

dN

(
1

qN − pN

)
,

=
(1 − α)

(qN − pN )2

[
ln p · pN(1 − qN) − ln q · qN(1 − pN) − ln p · pN + ln q · qN

]
,

=
(1 − α)

(qN − pN )2pNqN [ln q − ln p] , (22)

> 0.

iii) It can be verified that

dy∗
c

dN
= (1 − α) ∗

αqN ln q − pN ln p

(αqN − pN + 1 − α)2
, (23)

which is negative iff

ln q

ln p

(
q

p

)N

>
1

α
⇐⇒ N > Ñ .

Proof of Proposition 3

Let us denote s̃L and s̃H for the optimal compensation scheme when there is no limited

liability constraint. Then it follows immediately from the proof of Theorem 1 that s̃L

and s̃H are given by (9) and (10), respectively, for any given value of N.

Note that

sL = s̃L, sH = s̃H , if N < N∗,

sL = s̃L − s̃L = 0, sH = s̃H − s̃L, if N > N∗.
(24)

i.e., as a consequence of the limited liability constraint, the compensation increases with

the amount −s̃L.
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As can be seen from the proof of Theorem 1, the individual rationality constraint is

binding when N < N∗. Given (24), this implies that the manager’s certain equivalent

is given by:

CE(N) = M, if N < N∗,

= M − s̃L, if N > N∗.

Now first note that the rent CE(N) − M is zero when N < N∗, and equals −s̃L when

N > N∗. It follows from the proof of Proposition 2 that −s̃L is strictly increasing in N .

Proof of Proposition 4

First consider the case q = 1. Then, the expected cost of compensation equals

sL + (1 − pN)(sH − sL),

where

sL = M + cL,

sH = M + cL −
1

ρ
ln

α − pN

1 − pN
.

Now it can be verified that

d

dN
ln

α − pN

1 − pN
=

(
1 − α

α − pN
− ln

(
1 +

1 − α

α − pN

))
pN ln p

6 0,

where the inequality follows from the fact that ln x 6 x − 1.

Now consider the case where p = 0. Then, the expected cost of compensation is given

by sH , and it follows immediately from Proposition 2 and the fact that Ñ = 0, that sH

is decreasing (increasing) in N for N 6 N∗ (N > N∗).

Proof of Theorem 5

Suppose that N > max{N∗, Ñ}. Then, we know that sL = 0 and sH is increasing in N.

Moreover, since sL = 0, the expected cost equals

(1 − pN )sH .
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The fact that 1 − pN is increasing in N completes the proof.

Proof of Theorem 6

First consider the case where N 6 N∗. Then the derivative with respect to N of the

expected cost equals

D (α) = −pN ln p(sH − sL) + (1 − pN)
d

dN
sH + pN d

dN
sL.

It follows from the proof of Proposition 2 that

d

dN
sL = −

1

ρ

1 − α

(qN − pN)

ln p · pN(1 − qN) − ln q · qN(1 − pN)

(1 − pN) − (1 − qN)α
,

d

dN
sH = −

1

ρ

1 − α

(qN − pN)

pNqN(ln q − ln p)

qNα − pN
.

Some straightforward but tedious computations show that

D (α) =
pN

ρ
G

(
qNα − pN

1 − α

)
,

where

G (z) =
1

z2 + z
·
ln p · pN

(
1 − qN

)
− ln q · qN

(
1 − pN

)

qN − pN
+ ln p

(
1

z
− ln

(
1 +

1

z

))
.

Our goal is to determine the sign of D (α) . Now, first notice that

lim
z→0

G (z)

= lim
z→0

1

z

(
1

1 + z

(
ln p · pN

(
1 − qN

)
− ln q · qN

(
1 − pN

))

(qN − pN)
+ ln p − ln p

ln
(
1 + 1

z

)

1
z

)
,

=
(ln p − ln q)qN(1 − pN)

qN − pN
lim
z→0

1

z
,

= −∞. (25)

lim
z→∞

G (z) = 0. (26)

For ease of notation, we define

c1 =
ln p · pN

(
1 − qN

)
− ln q · qN

(
1 − pN

)

qN − pN
> 0,

c2 = − ln p > 0,
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f (z) =
1

z + z2
,

g (z) =
1

z
− ln

(
1 +

1

z

)
.

Then

G (z) = c1f (z) − c2g (z) .

It can easily be verified that

f
′

(z) = −
1 + 2z

z2 (1 + z)2 ,

g
′

(z) = −
1

z2 (1 + z)
.

Consequently,

G
′

(z) =
1

z2 (1 + z)2 ((c2 − 2c1) z + c2 − c1) .

Now, notice that

c1 − c2 =
1

qN − pN
·
(
ln p · pN

(
1 − qN

)
− ln q · qN

(
1 − pN

)
+ ln p

(
qN − pN

))
,

=
1

qN − pN
(ln p − ln q) · qN

(
1 − pN

)
< 0.

Now, we consider the following two situations:

• 2c1 6 c2

Then since c1 − c2 < 0, it follows that G′ (z) > 0 for all z. Combined with (25)

and (26) this implies that G (z) 6 0 for all z.

• 2c1 > c2

Then, since c1 − c2 < 0 and 2c1 − c2 > 0 we know that G
′

(z) has exactly one

strictly positive root. Therefore, G
′

(z) > 0 for z 6 z̃ and G
′

(z) < 0 for z > z̃,

where z̃ denotes the unique positive root of G
′

(z) . Again, combined with (25)

and (26), this implies that G (z) has a unique positive root z∗. This implies that

D (α) 6 0 for α 6 α∗, and D (α) > 0 for α > α∗ where

α∗ =
z∗ + pN

z∗ + qN
.
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It now only remains to see that, since ln p = ln pN

N
and ln q = ln qN

N
, it follows that

(
pN , qN

)
∈ S iff 2c1 > c2.

Now, consider the case where N > N∗. Then, given (24), it follows that the derivative

with respect to N of the expected cost equals

Db (α) = −pN ln p(sH − sL) + (1 − pN )
d

dN
sH + (pN − 1)

d

dN
sL,

where sH and sL are as defined in (10) and (9), respectively.

Therefore,

Db (α) =
1

ρ
Gb

(
qNα − pN

1 − α

)
,

where

Gb (z) =

(
pN 1

z2 + z
+

1

1 + z

)
∗
ln p · pN

(
1 − qN

)
− ln q · qN

(
1 − pN

)

qN − pN
+pN ln p

(
1

z
− ln

(
1 +

1

z

))
.

Again,

lim
z→0

Gb (z) = −∞ (27)

lim
z→∞

Gb (z) = 0. (28)

It can easily be verified that

G
′

b (z) =
1

z2 (1 + z)2

(
−

c1

pN
z2 + (c2 − 2c1) z + c2 − c1

)

where

c1 = pN
ln p · pN

(
1 − qN

)
− ln q · qN

(
1 − pN

)

qN − pN
> 0

c2 = −pN ln p > 0.

Since G
′

b (0) = +∞ and − c1
pN < 0, if follows that G

′

b (z) has exactly one strictly positive

root. This concludes the proof.
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