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Introduction

Complicated simulation models have been con-
structed in many disciplines. All these models confront
the analysts with the problem of sensitivity analysis;
that is, what are the effects of changing the parameters
and input variables of the simulation model? That
question arises in “‘what if” analysis, validation, optimi-
zation, and soon. Thisatticle introduces and illustrates
the application of siimple techniques that originated in
the discipline of mathematical statistics. These tech-
niques are least squares curve-fitting, regression analy-
sis, and statistical designs such as 2P designs. The
techniques are applied to an integrated assessment
model for the greenhouse effect. This model has been
developed at a large Dutch institute called National
Institute of Public Health and Environmental Protection
(or RIVM in Dutch).

One of the major imminent ecological threats of the
world is the ‘enhanced greenhouse problem’: the earth
and the lower layers of its atmosphere have shown
rising temperatures over the past hundred years. This
phenomenon is probably caused by an increase of
greenhouse gases (such as carbon dioxyde, methane,
and ozone) that absorb the earth’s heat radiation, so the
global average temperature rises. Mankind is largely
responsible for this increased ‘greenhouse’ gas concen-
tration. Temperatures are expected to rise further, but
with different amounts in different regions of the earth
(the tropics will be less affected probably). Higher
termperatures will cause thermal expansion of the oceans
and melting of arctic ice, which raise the sea level,
Many more processes, however, are involved; see [9].



One consequence of a higher sea level is the need to
raise the dikes’ height in the Netherlands. A survey of
the effects for society is given in [5].

To gain quantitative insight into the greenhouse
problem and develop long-term strategies for coping
with climatic changes, RIVM developed the Integrated
Model for the Assessment of the Greenhouse Effect or
IMAGE. This model is a deterministic simulation (but
most of the sensitivity techniques applied to this model
can also be used in random simulation models). The
state of the dynamic biospheric system is computed per
half year, starting in the year 1900 and ending in the
year 2100. The model is composed of modules, which
treat specific parts of the greenhouse problem. Modules
get inputs from other modules. Also see Figure 1 and
the references [4; 15; 16).

The sensitivity analysis techniques are applied to
several modules. This paper concentrates on the
carbon-cycle module; the dike raising modules are
briefly discussed: see the shaded modules in Figure 1.

Note that there are alternative techniques for sensitiv-
ity analysis. Latin Hypercube sampling is a Monte Carlo
method that is discussed at length in [8] and criticized in
[3]; also see [10, pp. 143-145). This technique was
applied to several IMAGE modules in [13]; it gave results
similar to the results of this paper. More sophisticated
techniques do not treat the simulation model as a black box;
they use analytical differential analysis; see {7; 14].

This article is organized as follows. First the need for
sensitivity analysis is discussed, and the greenhouse
case study is introduced. Then metamodels, which
explain the input/output behavior of the underlying
simulation model, are explained. The coefficients of the
metamodel are estimated by least squares regression
analysis. The resulting metamodel can be validated.
Closely related to the metamodel specification is the
selection of an efficient experimental design. All
techniques are demonstrated by their application to
several modules of the greenhouse simulation model.

Metamodeling through regression analysis

A simulation model maps its inputs into one or more
outputs; hence a simulation model is a mathematical
function (say) s( ). The inputs are parameters, input
variables, and behavioral relationships (or submodules);
see {10, p. 136]. These inputs are called factors in the
statistical design of experiments. They may be repre-
sented by z withj=1,.. jkand k 1. In the greenhouse
model all factors are quantitative, but the techniques
also apply to qualitative factors. The case study concen-
trates on a single output variable, namely the global
average atmospheric CO, concentration in the year
2100, which is denoted by y. (If there were several
outputs, the technique could be applied per output.)
This yields

y=s(zl,...,z].,...,zk). 1

A mathematical function may be approximated by a
Taylor series, under certain mathematical conditions.
Suppose the initial approximation is

k-1 k

Y =v0+3 T vnziz, @)

j=1 h=j+l

where y, is the overall or grand mean, v, is the first-
order or main effect of factor j, and v,, is the interaction
between the factors j and h (that is, the effect of factor j
depends on the level of factor h).

Note that the variables in approximation (2) may be
functions of the variables in simulation model (1); for
example, in (2) z, may be replaced by log(zi Jorl/ z,.
Then (2) remains linear in the parameters c, so linear
regression analysis still applies; see [10, pp. 160-161].

The approximation in (2) is called a metanode! because
itis a model of the input/output behavior of the
underlying simulation model. The Taylor series
argument may be one inspiration for the specification of
such a metamodel. Because the mathematical condi-
tions of the Taylor series do not hold in complicated
simulation models, the validity of the metamodel must
be checked. In other words, the metamodel is only an
approximation. Before that model can be validated, it
must be calibrated, that is, its coefficients or parameters
ymust be estimated. Moreover there is a scaling prob-
lem. These issues are discussed now.

For simplicity’s sake the interactions in the
metamodel (2) are ignored temporarily. If the input
variable z, increases by one unit, then the output
changes by v, units. We assume, however, that sensitiv-
ity analysis is meant to quantify the effect of a change of
the input over its whole experimental area. (Next those
‘important’ factors are further investigated to validate
and optimize the simulation model; if only optimization
were the goal, then local marginal effects would suffice.)
So the importance of factor j is measured by the differ-
ence between the outputs at the lowest and the highest
value of that factor. Denoting those two extreme factor
values by L and H, respectively (so the ‘experimental
area’ is a k-dimensional rectangle), the original variables
z, yield the standardized variables x, , which range
between -1 and +1:

Hl_Li andbj = %,
2 2

zj = ajxj + bjwithaj =

@)
The simple transformation (3) together with the
original metamadel (2) yields the standardized
metamodel

k-1 g
Y:BO"'Eik:lﬁixiz 2 Bih x5 xn. 4)
j=1 h=j+1

JUNE 1992 SIMULATION 411



NATURAL

SOURCES ENERGY

INDUSTARY AGRICULTURE

[ I

T 1

Y Y

Y
]

Y Y

CO-EMISSIONS | | CO,-EMISSIONS | | CH,-EMISSIONS | | NO-EMISSIONS | | CFC-EMISSIONS
DECAY BY o' ATMOSPRERIC
ATMOSPHERIC CONCENTRATION——
CHEMISTRY - OF TRACE GASES]
A
CH¢CO-OH
CYCLE
Yy
RADIATIVE - DEFORESTATION
ABSORPTION
]
| ALPINE GLACIERS [——
ANTARCTIC ICE CAP THERMAL
EXPANSION
GREENLAND ICE CAP
- SEA LEVEL RISE
INTERTIDAL] | DUNE OIKE SALT YSSEL
ZONE EROSION | | RAISING INTRUSION [SEEPAQE DRAINAGE| | | e
L L | i
COSTEOF - .. ENERGY USE %OSYSOFCHANGES
COASTAL DEFENCE WATERMANAGEMENT

A

RISK
ANALYSIS

Figure 1. The modules of IMAGE; the

It is snmple to prove that B reflects the importance of

factor j: B, =y, (H L M2 lgnonng interactions. See[2].
Note that in its search f or the optimum combination
of the input factors, Response Surface Methodology
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shaded modules are submitted to sensitivity analyses

(RSM) combines a first-order metamodel with the

+:steepest ascent technique. That search should use

neither the original nor the standardized model but the
centered model




k-1

k
+ 3 X Ginlzi-723)(zn-20) (5)
j=1 h=j+l
n
where z j = ¥ z;/n, which assumes that n combina-
i=1
tions of input factors are simulated. See [2].

Calibration means that the parameters of the model are
quantified. So the metamodel parameters 3 in (4) are
estimated. Therefore the metamodel is fitted to the
simulation data. Let q denote the number of parameters
in the metamodel; in (4) gequals 1 + k + k(k-1)/2. To

getestimated parameter values B, n combinations of
the factor values are simulated. That set of simulated
combinations yields the n x q matrix of independent
variables X corresponding to the metamodel in (4):

L, X 11, o X1k, X 11 X102, oo s X1 k-1 X 1K
X=1 1, X1, e Xik, X1 X425 o0 s X ko1 Xiik (6)
1, Xn1ls e Xnk s Xn1Xn2 s o0r s Xn,k~1 X nk

Example: Suppose there are three factors (k=3), which
in combination i have the values +1, -1, and -1 respec-
tively. (Remember that standardization means that in
this combination factor 1 is at its highest level H  , factor
2 is at its lowest level L, and s0 on; see equation (3).
Then the interaction variable x,x, has the value (+1) (-1)
=-1in this combination, and so on. Obviously f§,
corresponds to the ‘variable” that is +1 in all combina-
tions. So row i of X equals

’

x; = (+1,+1,-1,-1,-1,-1, +1).

The simulated output of combinationiisy ; see (1).
Fitting the metamodel to the simulation data, using the
least squares criterion, yields the estimated parameters

B =(xx)"xy. @)

The least squares criterion yields unique estimates
only if X is non-singular so that the inverse of (X"X)
exists. A necessary conditionisn q (the number of
simulated factor combinations is not smaller than the
number of parameters in the metamodel). This condi-
tion, however, is not sufficient. For example, if the
factors 1 and 2 are changed simultaneously in the n
combinations, then their two columns are identical
(x,=x,fori=1,.,n)and X is singular. Obviously X is
not singular if all its columns are orthogonal

n

(Z xyXih = 0 ) . Under certain statistical assumptions,

i=1

an orthogonal matrix X is optimal; see the next section.
The calibrated metamodel can now be validated. One

aspect is how well this metamodel fits the simulation

data. One overall criterion is

n . .
Y (3i-y)’
1-:]1

Z(Yi—7)2

i=1

R*’=1- ®)

n
where ¥ = Y yi/n. A’perfect fit means that
i=1
yi= ’}7 i for all i, so the upper limit for R?is 1. Unfor-

tunately, a lower threshold for R? is hard to give.
Therefore we propose to compute the relative errors

(yi— y i)y, which can be ‘eyeballed’ by the user.
Validating a model, however, usually means that the
model is used to forecast the output; next that forecast is
confronted with the true output. Therefore cross-
validation should be used. So delete one combination

( x; Y i') from the old data set (X,y); denote the remain-
ing set by (X, ,y ). Reestimate the metamodel param-
eters {3, analogous to (7):

_E__1 = (X’_i X4 )_1 Xiy-i. )

Predict the output of combination i, not using the data
of combination i:

Y= xiB. (10)
Compute the forecast errors
esi= y-i-Yi 11

The user may again evaluate the relative errors
e_,/y, This procedure is repeated for all i (i=1,... n).
The errors e, can be computed without applying the
least squares criterion n times (to n—1 combinations).
First no data are eliminated; see (7). Next the so-called
‘hat’ matrix H is computed:

H=X(X'X)"X". (12)
H has diagonal elements h, which };ield

e, =e /(I-h). (13)
Many modern regression analysis packages give those

‘leave one out residuals’. See [10, p. 178] and [1, p. 13].
The mathematical analysis can be refined if a statistical
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(sub)model is added for the fitting errors e. Kleijnen (10,
p- 164) assumes that these errors are normally and
independently distributed with common variance (say)
o2 Then the least squares algorithm yields the Best
Linear Unbiased Estimators (BLUE); that is, the estima-
tors have minimum variances and correct expected

~~
values. Those variances var ( B j') are given by the
main-diagonal elements of the variance-covariance

matrix of 3 :

~~

cov (3_) = (x'x) 762 (14)

The parameter o in (14) is estimated through the
Mean Squared Error:

57 = 3(F -y 7 (nmq). (1)

i=1

—~

The estimated variances (or standard errors)of §
yield a t statistic with n —q degrees of freedom:

tn-(l:(,ﬁ\i—ﬁj)/gi (=1,...q), (16)

~mnl
where ¢ j denotes {v a r( §) i)}z and B, is thej™"
element of § (so B, in (16) is identical to | in (4), B, in
(16)is B, in (4),..., Bq in(16)is B, , , in (4)). The signifi-

cance of B j can be tested statistically, using the t table
for a given significance level or type-I error (say) c.. For
example, o= 0.05 and v = 12 give the critical t value 2.18
in a two-sided test, which considers the absolute value
oft_ .

Note thata more sophisticated model for the fitting
errors is used by Sachs et al. [17]. They assume that the
errors are not independent but form a stationary process
with a specific correlation function. Also see [11].

Statistical design of experiments

The metamodel determines the experimental design.
For example, a model with interactions such as (4)
cannot be calibrated through a design that changes one
factor at a time; see [10, pp. 266-267]. If purely qua-

dratic terms x]?' are added to (4), then the variable X;
cannot be observed at only two levels (-1 and +1).
Given the metamodel, there is more than one design
to calibrate that model. A necessary condition for the
design is that the resulting matrix of independent
variables X is non-singular; see (6) and (7). Consider, for
example, a first-order model: in (4) the double summa-
tion term vanishes. That model has q = 1 + k effects, so
anecessary condition is that the number of combina-
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tions satisfies:n k + 1. For k =3, Table 1 gives two
designs that give a non-singular X. Intuitively the 2**
design is attractive because it is balanced: each column of
X has an equal number of plus and minus signs, and
each pair of columns has an equal number of the four
combinations (-, =), (=, +), (+, <), (+, +). If the classical
statistical model for the errors is assumed, then the

covariance matrix of f is given by (14). An orthogonal

X minimizes the variances of f j ; see[10, p. 335].

If the metamodel includes interactions, then the
number of effects increases considerably. To keep the
number of combinations relatively small, the user may
specify which interactions may be important; the
remaining interactions are assumed to be negligible.
Examples will be presented later.

The metamodel may be expanded with purely qua-

k

dratic effects: Y, Bjj sz is added to (4). These quadratic
j=1

effects quantify the curvature of the response surface.

Then more than two values per factor must be simu-

lated (otherwise all columns for sz are identical to the

column for x,). A classical design is the central composite

Table 1. Two designs for a first order model with k=3

design: each factor is observed not only at~1 and +1 but
also at the ‘center point” 0 and at two other values, for
example, -2 and +2 (together five values). The2*»
designs that is used to estimate main effects and interac-
tions, are augmented with the center point plus 2k
combinations:

0, 0, .., 0)
2, 0, .., 0)
+2, 0, .., 0)
(0, 2, .., 0)
(0 +2, .., 0)
(0, 0, ., 2)
(0, 0, ., +2). 17)

Next applications of metamodeling and experimental
design will be presented. First the results for a relatively



simple module of IMAGE will be discussed; then results
and technical details for a more complicated module
will be presented.

Dike raising in IMAGE

One module of IMAGE estimates the magnitude of
the necessary dike raise and the resulting costs; see the
lower part of Figure 1. Eleven factors are examined
(k=11). Anexample of a factor is the “unit dike raising
cost”, which is the cost of increasing the dike level by
one meter. Finding a valid metamodel takes several
iterations; altogether nine different models (and their
concomitant designs) are tried. Inan early iteration the
metamodel helped to detect a serious error in the
underlying simulation model: the original module
needed to be split into two modules such that the first
submodule yields the dike raise necessary to keep the
flooding probability under a fixed safety level, while the
second submodule takes that raise as input and yields
the costs as output. So metamodeling may serve
verification of the simulation model. Moreover, meta-
modeling may show in which area the simulation model
is valid; for factor combinations outside that experimen-
tal area the simulation is not a correct model.

To obtain a valid metamodel for the dike raising costs
module, the ranges of the original input variables must
be decreased. This makes sense mathematically, since a
Taylor approximation is better in a smaller area. The
final metamodel yields relative forecast errors smaller
than 10%, which is acceptable for the IMAGE analysts.
Nine of the eleven factors are significant, and so is one
interaction. The most important factor is the “unit dike
raising cost”, as the analysts expected. The order of
importance of the other factors was surprising, and gave
more insight into the simulation model; for details see
[18].

The carbon-dioxide cycle in IMAGE: ocean module

There are two modules for the CO, cycle in IMAGE:
one for the oceans and one for the terrestrial biosphere;
also see the upper part of Figure 1. This section covers
the first module; the next section will discuss the second
module.

The oceans show three CO, processes, described in
[6]. For these processes ten factors are investigated; for
example, factor 5 is thickness of ocean layers. For each
factor a range is specified by the analysts; for example,
factor 5 varies between 3,000 and 4,000 meters but factor
2 (diffusion coefficient) ranges between 3,716 and 5,984
cm?/second. These variables are standardized, as
described by (3). The analysts list eleven specific
interactions that they think might be important; the
remaining 34 interactions are neglected. To verify the
design the reader should know that the following eleven

interactions may be important:13,15,23,25,36,37,5
6,57,58,68and 7 8, where 13 stands for 3, and so
on. So the metamodel is given by (4) with k = 10 and
only eleven specific interactions 8, .

A ‘full factorial’ design requires 2 * combinations,
which takes too much computer time. The number of
effects in the tentative metamodel is: q=1+10+11=
22. Hence a classical 2*P design with enough combina-
tions requires: n=2'%r 22 orp 5 (least squares
applied to the whole data set requiresn g, whereas
cross validation requires n > q). There are many 2*%
designs. Accounting for the eleven specific interactions,
the following design is selected; details are given in [10,
pp- 295-300]. Write down all 27 = 25 combinations of
the factors 1,2,4,9, and 10. Write down element i of the
column for factor 3 as the product of the elements i in
the columns for the factors 9 and 10; that is, x; = x ;X
withi=1,..,nand n =2%? =25or in short-hand: 3=9
10. This is called a ‘generator’ of the design. The 2%
design is fully specified by its p = 5 generators

3=9105=4106=197=298=124, (18)

where 8 =12 4 stands for x, = x; x,, x,, . The generator
3 =9 10 means that the main effect of factor 3 is con-

founded or alinsed with the interaction between the

factors 9 and 10; thatis, B3 = By 10and E(l B 3) =
B,+PB,,,- Ifindeed the interaction B,  is negligible,
then obviously this confounding is acceptable. Analo-
gously, the generator 8 = 1 2 4 implies

E( B 3) = Bs+P124 whereb,,, isa ‘three factor’

interaction. This interaction was not yet defined in this
paper, but such high-order interactions are assumed
negligible in metamodeling,

The 2'*% combinations of this design are simulated,
and the outputs are compared with the predictions of
the calibrated metamodel. This results in relative errors
exceeding 10% in eight combinations, which is consid-
ered unacceptable. Shrinking the ranges of the original
variables does not help. Next the metamodel is ex-
panded with purely quadratic effects. The central
composite design of (17) requires 1 + 2k extra combina-
tions. To save computer time, only five of the ten factors
are investigated, namely those five factors that are
significant in the previous metamodel. Because that
metamodel is not valid, it is dangerous to use it for the
selection of factors; the resulting new metamodel,
however, will be validated again.

The quadratic model is used for the five factors 3,4,5,7,
and 10. Only four (not all ten) interactions between
these factors are conjectured to be important. So the
number of effects excluding purely quadratic effects, is
1+5 +4=10. Hence the 2*? design, which is part of the
central composite design, must satisfy n =27 10 orp
< 1. Soa single generator is selected, namely 4 =37 10.
These sixteen combinations are augmented with the
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eleven combinations that follow from (17). This experi-
ment yields a calibrated metamodel, which is cross-
validated. Moreover, six additional combinations are
selected randomly, simulated, and compared with the
predicted outcomes. Finally, a ‘base’ combination is
examined; this combination is not the center combina-
tion (0,0,. . .,0) of (17), but is close to it; it is a combination
intuitively specified by the analysts. All validation
results are acceptable: the errors are smaller than 10%.
The individual effects of this accepted metamodel are
discussed next.

Because a statistical model for the fitting errors e is
assumed, (16) gives the relevant t statistic with degrees
of freedom n—q = (16+11) - (10+5) = 12. For o= 0.05 the

critical t value is t?zf 2218 Table 2 shows significant
effects only, in decreasing order of importance.

Note that if no statistical model for the fitting errors
were assumed, then the last column should be ignored.
IE the design were orthogonal, then ‘significance’ and
importance would coincide: (14) through (16) imply that

thq = B /(E/V—ﬁ_) , S0 if effects are sorted in order

of magnitude ( ' Bi ’ ) , » they are sorted in order of

significance (|tn—q|), . The central composite design,
however, is not orthogonal, because the quadratic
effects and the overall mean are not orthogonal.

Table 2. Significant effects of ocean module

Summarizing, originally ten factors are investigated
for the ocean module. Because the metamodel without
quadratic effects cannot be accepted, a model including
such effects is specified. That model, however, is
restricted to five factors. The latter model is accepted,
and yields only four important factors. These factors
have significant main effects, one significant quadratic
effect, and three significant interactions.

The carbon-dioxide cycle in IMAGE: terrestrial
biosphere module

The terrestrial biosphere module is described in [6].
The analysis of this module is presented, because the
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module contains many input variables, namely k = 62.
These variables are described in [18]. There are designs
that yield estimators of main effects without bias by
possible interactions; moreover, these designs yield
estimators of confounded interactions. These designs
are called resolution-IV designs (see [10], p. 301). Itcan
be proven that such designs require at least 2k combina-
tions (sok + 1 <<n<<1+k+k(k-1)/2). Sofork=62a
2P design of resolution IV satisfies 2°% 124 or p = 55.
Hence 55 generators must be selected. Each selection
yields a specific confounding pattern of estimated
effects. The analysts give 26 interactions that they think
might be important. Based on that list, 55 generators are
selected; see [18).

One estimated effect turns out to have the wrong sign:
the effect is significantly positive whereas the analysts
expect a negative effect. So the ranges of the input
variables are decreased. Now the results become
acceptable: the relative forecast errors are small, all 26
confounded interactions are non-significant, and all
significant (unbiased) main effects have correct signs.
There are only 13 significant main effects (significance is
measured by the t statistic with 128 — (1+62+26) = 39
degrees of freedom). Finally the metamodel is validated
through an experiment with twelve randomly selected
extra combinations; its relative forecast errors vary
between -5.5% and -0.10%.

Conclusion

Any simulation model requires sensitivity analysis.
The simulation model can be treated as a black box, if
the techniques of regression analysis and experimental
design are applied. The regression model is a
metamodel of the simulation model, and guides the
experimental design. The design leads to efficient and
effective experimentation.

The case study demonstrates that application of these
statistical techniques requires knowledge of the under-
lying simulation model and real world system. For
example, potentially important factors and their ranges
must be given by the analysts. Some statistical expertise
is needed to select the generators for the design.

The case study was a success. The metamodels give
acceptable forecasterrors. The significance of certain
effects surprises the analysts. For example, quadratic
effects in the ocean module were not expected; the
major importance of the ‘biotic growth’ factor in the
terrestrial module is also surprising. Another surprise is
the ‘bug’ in the dike raising module; the metamodel
shows that this module must be split into two sub-
modules.

The sensitivity analysis of IMAGE took quite some
time and effort, but this investment in metamodeling is

~ judged to be profitable. The conclusions of this analysis

will guide the development of an interactive version of
IMAGE.



Summarizing, regression metamodels and experimen-
tal designs are useful in the sensitivity analysis of
simulation models, as the case study demonstrates.
Details on the techniques can be found in [10] and [12].
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