Combinatorial and Global Optimization, pp. 161-176
P.M. Pardalos, A. Migdalas and R. Burkard, Editors
© 2002 World Scientific Publishing Co.

Semidefinite Programming Approaches for
MAX-2-SAT and MAX-3-SAT: computational
perspectives

E. de Klerk (e.deklerk@twi.tudelft.nl)
Department of Technical Mathematics and Informatics,
Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands.

J.P. Warners (j.p.warners@twi.tudelft.nl)
Department of Technical Mathematics and Informatics,
Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands. ,

Abstract

Semidefinite programming (SDP) relaxations — in conjunction with randomized
rounding schemes — yield 7/8 and 0.931 approximation algorithms for MAX-
3-SAT and MAX-2-SAT respectively. In spite of these powerful theoretical
results, it is not clear if SDP can be used as a practical tool for solving MAX-
SAT problems to optimality. In this regard, the usefulness of the SDP approach
will ultimately depend on the ability to exploit sparsity in the SDP relaxations
of large dimension. (The dimension corresponds to the number of variables and
the sparsity is related to the number of clauses.) We present an investigation
of sparsity issues for the SDP relaxations of Goemans and Willlamsen [7], and
Feige and Goemans [6] for MAX-2-SAT. Moreover, we test a branch and cut
procedure to solve MAX-2-SAT to optimality, where the dual of the SDP relax-
ation is solved by interior point methods in order to exploit sparsity. The idea
of exploiting sparsity in this way was first investigated for other combinatorial
optimization problems by Benson, Ye, and Zhang [2]. Finally, based on this
numerical experience we discuss possible extensions to MAX-3-SAT using the
7/8 relaxation of Karlow and Zwick [12] for MAX-3-SAT.

Keywords: Semidefinite programming, satisfiability, interior point algorithms

162
1 Introduction

An instance of the MAX-SAT problem is defined by a collection of Boolean clauses
- {C4,...,Ck}, where each clause is a disjunction of literals drawn from a set of variables
{z1,...,2n}. A literal is either a variable z; or its negation —z; for some i. Each
clause has an associated nonnegative weight, and an optimal solution to a MAX-SAT
instance is an assignment of truth values to the variables which maximizes the total
weight of the satisfied clauses. MAX-p-SAT is a special case of MAX-SAT where each
clause contains at most p literals.

There are many algorithms available for the MAX-SAT problem, even though the
MAX-2-SAT problem is already NP-complete. Algorithms for MAX-SAT include
well-known procedures such as EDPL, and branch and cut; approximation algorithms
include GRASP, GSAT, and recently semidefinite programming (SDP) (see e.g. [10]
and the references therein). SDP became a powerful tool for MAX-2-SAT problems
when Goemans and Williamson [7] proved that a 0.87856 approximation algorithm
could be obtained by rewriting the MAX-2-SAT problem as a Boolean quadratic
programming problem, and solving a convex SDP relaxation of the resulting problem,
followed by a randomized rounding procedure. This rounding procedure may be seen
as a heuristic which gives a solution with a quality guarantee, while the optimal value
of the SDP gives a bound on the sub-optimality of this heuristic solution. If the
heuristic solution is not shown to be optimal by the bound, then the relaxation must
be tightened by adding suitable cuts. Recent numerical studies indicate that it is
very hard to prove optimality for MAX-2-SAT by only tightening the SDP relaxation
[10]). It seems necessary therefore to use the SDP relaxations in some branch and
cut framework. Up to now, the bottleneck for such an approach has been that it is
hard to exploit sparsity in the solution procedure of the SDP relaxations. In this
paper, we show that one can solve the dual of the SDP relaxations efficiently, using
the dual interior point method of Benson, Ye and Zhang [2]. Moreover, we show that
the relaxed solutions can Be used in a branch and cut scheme to solve MAX-2-SAT
problems with 50 variables and up to 500 clauses to optimality in a few minutes on
a workstation.

2 The SDP relaxation of MAX-2-SAT

The key in the SDP reformulation is to introduce new Boolean variables (yq,...,9n) €
{—1,1}" and to express the number of unsatisfied clauses as a quadratic finction of
these new variables. '

Note that a clause z; V g; is satisfied if y; + y; > 0, etc. Thus we can represent the
satisfiability problem as a feasibility problem: find y € {-1,1}" so that Ay > 0,

163

where A is a suitable & x n maitrix.

Note that

(Ag)i 1 {lor —1 if clause 7 is satisﬁed}
Yhi—i=

-3 otherwise

Letting e denote the vector of all-ones, it follows that
(Ay —)T (Ay — €) = Yunsat + (k — unsat)

where unsat denotes the number of unsatisfied clauses for the assignment y of truth
values. Using ”e = k, we have that

_lrr T
unsat—-g—(y At Ay — 2e Ay),

and the MAX-2-SAT problem is simply to minimize this quantity over y € {~1,1}".
Thus we have rewritten MAX-2-SAT as a Boolean quadratic programming problem:

unsat® = min {% (yTATAy - 2eTAy) |y € {-1, 1}"} .

Such problems have standard semidefinite relaxations with provable quality bounds
[16]. The first step in deriving the relaxation is to remove the linear term in the
objective by adding an additional Boolean variable y,4; € {~1,1} to obtain

unsat* = min {% (yTATAy - 2yn+1€TAy) | (%) ¥ns1) € {~1, 1}"*1} . (2)

Note that the introduction of the auxiliary variable y,4; does not change the optimal
value of the optimization problem. Problem (2) can be further simplified by using
the structure of A: Note that one has

Z(ATA)i'i = 2k7
=1
which shows that
unsat® = min {% (yT [ATA — diag (ATA)] Y — i1’ Ay + 2k) [(¥ Y1) € {~1, 1}n+1}
‘We can rewrite this as:
L+ min {77WG : e {11}, (3)
4 ¥
where § := [, ..., Yn, Yn+1] and W is the (n +1) x (n + 1) matrix:

ATA - diag (ATA) —ATe
—eTA 0

1
W.=§

164

Note that W;; can only be nonzero if z; and z; appear together in some clause. Thus
the fraction of nonzeros of W will never exceed the ratio (k +n) : gn(n +1). For
example, for a MAX-2-SAT instance with n = 100 variables and k = 400 clauses the
upper bound on the density of W is 9.8%.

We will show in later sections why this ratio is an important consideration when
choosing an algorithm for solving the SDP relaxation.

The SDP relaxation of (3) can be derived by rewriting it as
unsat® 1= %k +1’rb_in {Tr (Wﬂg’]T) : diag [ﬂgT] = e} ,

where “Tr’ denotes the trace operator. The SDP relaxation is now obtained by
replacing the rank one, positive semidefinite matrix 7% by a positive semidefinite
matrix X which is not restricted to have rank one.

The relaxation therefore takes the form:
unsat* > SDP* = %k + m)}n {Tr (WX) : diag(X) =¢, X = 0}, (4)

where X = 0 means X is symmetric positive semidefinite. Note that all products
yiy; are replaced by the matrix entries XIJ Given a Choleski decomposition of X,
say X = VTV, one can write X” (v¥)Tv! where the v*’s are the columns of V. This
means that the product ¥;y; is in fact relaxed to an inner product (v (v Tl

This type of relaxation was originally suggested by Lovasz and Schrijver [13]. Goe-
mans and Williamson [7] proved that
k — unsat”
k — SDP*
(We should note that the derivation of the model presented here is different from that
in [7), and follows that of Van Maaren and Warners [14].)

> 0.87856. (5)

Also note that W;; = 0 V(4, 5) if all possible clauses are included for the n variables.
In this case exactly % of the clauses are satisfiable, i.e. unsat* = k. In this case
one trivially has SDP* = unsat*, i.e. the SDP relaxation is exact. It is therefore
reasonable to expect that the SDP relaxation will become even tighter as the ratio
k/n grows. This can be observed from numerical experiments shown in Table 1, where
the average ratio for the left hand side of expression (5) is given as a function of the
number of clauses (for random MAX-2-SAT instances with 50 variables).

Goemans and Williamson also proposed the following heuristic for use in conjunction
with the SDP relaxation:

e Solve the SDP relaxation (4) to obtain an e-optimal X = VTV,

165

clauses | A=unast:
50 0.95658
100 0.97502
200 0.98538
500] 0.98911

1000 0.99128
2000 0.99258
3000 0.99400
4000 0.99503
5000 0.99592

Table 1: The average quality of the SDP relaxation improves as the number of clauses
grows (50 variables).

e Choose a random r € R" and normalize 7.
o Set y; = 1if 7Tv* > 0 or set 3; = —1 otherwise.

This randomized algorithm yields an approximate solution to MAX-2-SAT with ex-
pected objective value at least 0.87 times the optimal value.

3 Additional valid inequalities

There exist instances of MAX-2-SAT where the ratio in (5) is no better than 0.88889
(6], The SDP relaxation (4) can be strengthened by adding a number of valid in-
equalities (cuts) proposed by Feige and Goemans [6].

The first set of inequalities (called triangle inequalities) are based on the observation
that for any pair of indices (i,) there holds:

Ynt1¥i + Yn+ry; + 4y 2 1
—Un41¥i ~ Yn+1¥5 T Y =2 —1
—Ynt+1¥i T Yne1¥ — WY 2 -1

166

In the SDP relaxation these inequalities correspond to %n(n — 1) additional linear
constraints:

Kt + X + Xy -1
~Xut1i = Xnv15+ Xy = -1 (6)
~Xngri+ Xy~ Xy 2 -1

Note that the first of these constraints can be rewritten as

1 1

§Tr (ei,j,n+1€g,“,’-,n+1X) - 15 Z -1
where the vector e;;,+1 has ones in the positions i, j and n + 1, and zero elsewhere.
In other words, we have a constraint of the form

’IY(AtX) 21, (7)

where A; is a rank one matrix containing only zero’s and +1. The other two con-
straints in (6) can be represented similarly. Feige and Goemans have shown that
the addition of these inequalities improves the quality guarantee of the SDP relax-
ation from 0.87856 to 0.93109 (see (5)). A bound on the worst-case approximation is
0.94513, i.e. there exist problems where the ratio (5) is no larger than 0.94513,

v

The constraints (6) form a subset of an even larger set of 2n(n — 1)(n — 2) valid
inequalities which follow from: :

Ye¥i + Uy T Yy 2 1
YW — ey — WY 2 -1
~Ye¥i + Yl — Wiy 2 1
—yk¥i — kYt Y 2 —1

for each distinct triple of indices (i, 7, k). The corresponding constraints in the SDP
relaxation once again takes the form (7). The quality guarantee for the additional
cuts remains 0.93109, but the worst-known behaviour now becomes 0.98462.

In practice all these inequalities cannot be added beforehand because of the increase
in problem size; it is more feasible to re-solve the SDP relaxation after having added
(some of) the violated inequalities.

4 Solving the SDP relaxation of MAX-2-SAT

The SDP relaxations mentioned so far can be cast in the generic form
n}}n Tr (WX)

167

subject to
diag(X) = e
Tr{AX) = 1, i=1,...,m
X =

where the A;’s are rank one matrices corresponding to the valid inequalities in Section
3.

The associated dual problem is

m n
maxy v+ v
i=1

1S o

subject to

m
D('y)+2y,~A,~+S = W

=1

y20,yeR",S >0,
where D(v) denotes the diagonal matrix with the vector v € R" on its diagonal.

Note that the dual matrix S will have more or less the same sparsity structure as W,
if the number of cuts m is small. Recall further that W will be sparse in general, as
discussed in Section 2.

This suggests to solve the dual problem instead of the primal in order to exploit this
sparsity structure,

Dual interior pbint methods are based on the dual logarithmic barrier function

1(8,u) = logdet(5) + Y- log(w)

i=1

which can be added to the dual objective function in order to replace the (matrix)
inequality constraints S > 0 and ¥ > 0. Thus one can solve a sequence of problems
of the form

maX{iyﬂri% + ufi(S, y)} (8)

BTN Gt =
subject to
m
DY)+ Y pidi+S=W,
. i=1
for decreasing values of i > 0. The projected Newton direction for this problem can
be calculated from a positive definite linear system with coefficient matrix consisting

168
of four blocks (see the collected works [5, 1, 8, 4, 2]):

S loS ! B
BT C

where ‘o’ indicates the Hadamard (componentwise) product, and the blocks B and
C are respectively of the form

B,‘j =Tr (A;S‘leje?S‘l) == ?S—lAiS_lej
where e; is the jth standard unit vector, and
C,'j = Tr (A,'S_IAJ'S-'I) .

Once S~! is known, the computation of [S~! 0 S~1;;, B;; and Cj; all require only one
multiplication and some additions.

The matrix M can therefore be assembled quickly once the inverse S~! has been
computed. Detail of how to compute S~ efficiently in general is given by Benson, Ye,
and Zhang in [2]. They have implemented a dual scaling method (using the search
direction described above!) which requires O(y/m + n) iterations for convergence.
The computation per iteration is dominated by the solution of the linear system with
coefficient matrix M. This algorithm is used in the numerical experiments below.

To give an impression of how fast the relaxed problem can be solved using this ap-
proach, the CPU-times (in seconds) for MAX-2-SAT relaxations of some of the largest
benchmark problems from [9] is given in Table 2. The computation was done on a
HP 9000/715 workstation.

The column ‘solution’ gives the best obtained solution for the Goemans Williamson
heuristic, upper gives the bound k — §DP*, and ‘ratio’ indicates the ratio of the best
obtained heuristic solution to k — SDP*,

5 A branch and cut framework

The SDP relaxations can be used in any branch and cut framework. The framework
we have used for our numerical experiments will be described in this section, with
reference to Figure 1.

IThe dual scaling method chooses the parameter 4 in (8) dynamically by monitoring the progress
of the algorithm via the so-called Tanabe-Todd-Ye potential function. For details the reader is
referred to [2).

163

problem | clauses | variables | solution | upper | ratio | time sdp | time heuristic
p2300-1 300 99 285 292 | 0.9762 4.09 0.32
p2300-2 300 101 285 294 | 0.9710 4.08 0.35
‘ p2300-3 300 101 287 293 | 0.9808 3.91 0.34
p2300-4 | 300 101 286 293 | 0.9772 4.02 0.35
p2300-5 300 101 284 293 | 0.9694 4.90 0.34
p2300-6 300 101 283 290 | 0.9774 4.38 0.35
p2300-7 300 101 279 288 | 0.9709 4.74 0.36
p2300-8 300 101 283 291 | 0.9757 411 0.36
p2300-9 300 101 284 291 | 0.9761 4.26 0.34
p2400-1 400 101 369 379 | 0.9761 5.26 0.40
p2400-2 | 400 101 371 380) 0.9780 5.13 0.41
p2400-3 | 400 101 | 373 383 | 0.9764 4.37 0.39
p2400-4 | 400 101 371 378 | 0.9827 4.65 0.40
p2400-5 400 101 370 379 | 0.9780 5.22 0.39
p2400-6 | 400 101 372 380 | 0.9796 4,82 0.41
p2400-7 | 400 101 373 382 | 0.9788 4.44 ‘ 0.40
p2400-8 { 400 101 366 376 | 0.9748 4.77 0.40

Table 2: Solution times for the SDP relaxation of MAX-2-SAT and for the Goemans-
Williamson heuristic.

At any node in the branching tree, the current set of clauses (obtained after partial
assignment of the variables) is denoted by ®, and b and ub contain lower and upper
bounds on the minimal number of unsatisfiable clauses respectively. The value unsat
is a counter for the number of unsatisfied clauses by the current partial assignment.
Note that Ib and unsat are local variables that are only valid in the current branch;
on the other hand, ub is a global variable which is valid for the whole search tree. At
termination of the procedure, ub containg the optimal value of the instance.

Before calling node_procedure the values [, unsat, and ub must be initialized, One
can take Ib := 0, unsat := 0, ub := k. Following Borchers and Furman, unit resolution
is applied if ub — unsat = 1. Subsequently, the semidefinite relaxation of the current

170

procedure node.procedure (&, b, unsat);

if (ub — unsat = 1) unit.resolution(®);

(Ibadp, ubsgp):= SDP_relaxation(®); (x)
ub = min{ub, unsat + ubyqp}; (*)
Ib := max{lb, unsat + max{0, ib,4}}; (*)

if (ub — Ib < 1) return;

z :=branch_rule(®);

Set 2 + TRUE and update ¢, unsat;

if (ub — unsat > 1) node_procedure (¥, lb, unsat);
Set z +- FALSE and update ®, unsat;

if (ub — unsat > 1) node_procedure (@, b, unsat);

return;

Figure 1: Branch and cut framework for MAX-2-SAT

m”m

formula is solved to obtain upper and lower bounds ubs, and lbss,. The current
bounds ub and b are then updated (taking unsat into account), and if ub— b < 1,
then the best known solution so far cannot be improved upon in the current branch,
so that we backtrack. Otherwise a variable z is determined to branch on, which is
set to TRUE and FALSE respectively. The branching rule for fixing variables is as
follows: choose the variable with the highest occurrence in the longest clauses.

The formula & and unsat are subsequently updated; if ub — unsat < 1 this branch
need not be further explored. In the other case node.procedurs is recursively called.

In each node, the steps marked () can be repeated adding violated cuts from Section
3 to the relaxation, to obtain tighter bounds.

6 Numerical experiments

In this section we present some numerical results for the branch and cut SDP algo-
rithm of the previous section. The results presented here are of a preliminary nature,
and were obtained without adding extra cuts.

The MAX-2-SAT benchmark problems are taken from Borchers and Furman (3] (ex-
cept for the two largest instances).

As before, all reported CPU-times are in seconds on a HP-9000/715 workstation with
160MB internal memory.

The SDP branch and cut method presented here are compared to a modified EDPL
algorithm [3] and to the Mixed integer linear programming approach using the com-
mercial solver Minto [15). The respective CPU-times are shown in Table 3.

It is immediately clear that the SDP approach is distinctly superior to the other two
approaches if the clauses/variables ratio exceeds 4:1. The reason is that the SDP
relaxation becomes tighter as this ratio grows, as discussed in Section 2. Note also
that the SDP branch and cut algorithm solved each of the problems in a few minutes.
It therefore has a very robust performance in comparison to the other two methods.

The second set of test problems are weighted MAX-2-SAT problems from Borchers and
Furman [3]. The same observations hold as for the unweighted problems, although
the difference is now somewhat less pronounced. All the algorithms fare somewhat
better on these problems. The results are shown in Table 4.

172

clauses | SDP (nodes) | EDPL | Minto]
100 84 (82) 1.36 12.9
150 69 (64) 5.1 18.0
200 91 (70) 395 67.3
250 118 (92) | 2218 | 128
300 170 (128) | 20794 | 687
350 127 (91) >12hr 2339
400 56 (40) | >12hr | 1550
450 276 (210) | >12hr | 12634
500 205 (144) >12hr 8677
2500 331 (184) | not run | not run
5000 663 (399) | not run | not run

Table 3: Solution times (in seconds) of MAX-2-SAT benchmark problems (n = 50)
for different algorithms

7 Future work

7.1 Cutting planes

The results from the previous section for MAX-2-SAT can probably be improved upon
significantly by adding some of the cuts described in Section 3 to the relaxations.

The influence of added cuts is illustrated in Table 5. These results were obtained
using the SDP solver CUTSDP [11] in the branching scheme described in Section 5.
The solution times are for proving optimality only, and are given for two MAX-2-
SAT instances from Table 3 and two from Table 4 (weighted). The solver CUTSDP
uses a primal-dual predictor-corrector algorithm based on the so-called X .S direction.
This direction also results in a sparse Newton system at each iteration of the solution
of MAX-2-SAT relaxation, but the algorithm still requires additional computation
involving the dense primal matrix variable. For this reason, it is not as efficient as
the dual scaling method. However, the CUTSDP software automatically adds (some
of} the violated triangle inequalities described in Section 3, and therefore gives and
indication of the effect of cutting planes on the branching procedure.

173

clauses | SDP (nodes) | EDPL | Minto
100 101 (125) 1.36 12.9
150 101 (108) | 204 | 16.3
200 58 (61) 23.5 | 34.1
250 137 (117) | 235 | 171
300 61 (44) 874 149
350 161 (122) 40285 | 2155
400 100 (82) 20233 | 579
450 53 (44) | >12hr | 1420
500 118 (76) >12hr | 3153

Table 4: Solution times (in seconds) for weighted MAX-2-SAT benchmark problems
(n = 50) for different algorithms

clauses CUTSDP with cuts | (nodes) | CUTSDP without cuts | (nodes)
100 283 (25) 206 (78)
450 396 (38) 403 (191)
100 (weighted) 180 (20) 228 (116)
450 (weighted) 270 (28) 80 (40)

Table 5: Solution times (in seconds) for MAX-2-SAT benchmark problems (n = 50)
for the CUTSDP method (with and without cuts) in a branching framework

It is clear from Table 5 that the introduction of cuts reduces the number of nodes in
the branching tree significantly, but increases the solution time of the relaxations at
the nodes. The total solution time is not improved in general, and all the solution
times are worse than those reported in Table 3 and Table 4 for the dual scaling method
without cuts.

Nevertheless, it is clear that the number of branching nodes can be reduced signifi-
cantly; the challenge is therefore to extend the dual scaling method to use cuts and to

174

find the optimal trade-off between stronger relaxations and increased solution times.

7.2 Extension to MAX-3-SAT

Another challenging problem is to extend the approach in this paper to MAX-3-SAT
problems. The are two possibilities in this regard:

(1) One can rewrite MAX-3-SAT as a MAX-2-SAT problem in such a way that
the SDP relaxation to the MAX-2-SAT problem yields a 0.801 approximation
algorithm for MAX-3-SAT (see [17]); the resulting MAX-2-SAT problem can
then be solved using the approach in this paper.

(2) One can use the branch and cut formulation of this paper in conjunction with the
MAX-3-SAT relaxation of Karlov and Zwick [12]. This relaxation guarantees a
7/8 approximation,

The difficulty with approach (1) is that one has seven 2-clauses for each clause of
MAX-3-SAT. For example, the clause a V b V ¢ is replaced by the seven (weighted)
clauses

2aVz, =bVz, bV -z, ncVz, cV-z bVe =bV e,

where z is an auxiliary variable. If the MAX-3-SAT instance therefore has k clauses
and n variables, the associated MAX-2-SAT instance has Tk clauses and n + k vari-
ables. The MAX-2-SAT instance is also highly structured, and it remains to be seen
if the SDP relaxations are as effective in this case as for random instances.

The approach (2) involves the following relaxation of MAX-3-SAT: the clause z; V
z; V zx will be true if and only if

min 1- %(xn.{.] + :ui)(a:j +ax), 1-— ;41-(:17,”.1 + :Ej)(.’E.' +Ik) _1
1- %(xn.;.]_ -+ xk)(zi -+ .’L‘j), 1

‘We can relax the left hand side to four linear matrix inequalities by replacing z; by a
vector v; of norm one, etc., and replacing the products by inner products, as before:

1
1-— —('U,,.H + 'U,')T(Uj + ’Uk)

<
t < 4
1
t < 1- Z(v,H.l + v;)T (s + vg)
1
t 1- Z(’Un,+1 + ’Uk)T(’l){ + vy)

o~
IA A

1.

175

The SDP relaxation involves maximizing the sum of the values ¢ for all the clauses.
It is easy to check that one obtains an SDP with 4k inequality constraints where the
coefficient matrices of the constraints are of rank 3.

One can still solve the resulting problem by the dual scaling method (see {2]), but
the assembly of the linear system at each iteration becomes more expensive, and its
coefficient matrix becomes more dense. The question is therefore if these relaxations
can be solved quickly enough to allow incorporation in a branch and cut scheme.

References

1]

[2]

3l

[4]

(5]

(6]

[7]

(8]

K.M. Anstreicher and M. Fampa. A long-step path following algorithm for
semidefinite programming problems. Working Paper, Department of Manage-
ment Sciences, University of Iowa, Iowa City, USA, 1996.

S.J. Benson, Y. Ye, and X, Zhang. Solving large-scale sparse semidefinite pro-
grams for combinatorial optimization. Working paper, Computational Optimiza-
tion LAb, Dept. of Management Science, University of Iowa, lowa City, USA,
1997,

B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and
weighted MAX-SAT problems. Manuscript, 1997. (To appear in Journal of
Combinatorial Optimization).

E. de Klerk. Interior Point Methods for Semidefinite Programming. PhD thesis,
Delft University of Technology, Delft, The Netherlands, 1997.

L. Faybusovich. Semi-definite programming: a path-following algorithm for a
linear-quadratic functional. SIAM Journal on Optimization, 6(4):1007-1024,
1996.

U. Feige and M. Goemans, Approximating the value of two prover proof sys-
tems with applications to MAX 2SAT and MAX DICUT. In Proc. Third Israel
Symposium on Theory of Computing and Systems, 1995.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Jour-
nal of the ACM, 42(6):1115-1145, 1995.

B. He, E. de Klerk, C. Roos, and T. Terlaky. Method of approximate centers
for semi-definite programming. Optimization Methods and Software, 7:291-309,
1997.

176

[9] S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithm for MAX-SAT
and weighted MAX-SAT. In M.A. Trick and D.S. Johnson, editors, DIMACS
series in Discrete Mathematics and Theoretical Computer Science, volume 26.
American Mathematical Society.

{10} S. Joy, J. Mitchell, and B. Borchers. Solving max-sat and weighted max-sat
problems using branch-and-cut. Manuscript, 1998.

(11] S. Karisch. CUTSDP — A toolbox for a cutting-plane approach based on semidef-
inite programming. User’s Guide/Version 1.0. Technical Report IMM-REP-1998-
10, Dept. Mathematical Modelling, Technical University of Denmark, 1998.

(12] H. Karlow and U. Zwick. A 7/8-approximation algorithm for max 3sat?
Manuscript, 1997. ‘

[13] L. Lovdsz and A. Schrijver. Cones of matrices and set—functions and 0-1 opti-
mization. SIAM Journal on Optimization, 1(2):166-190, 1991.

[14] H. Van Maaren and J.P. Warners. Bounds and fast approximation algorithms
for binary quadratic optimization problems with application to MAX 2SAT and
MAX CUT. Technical Report 97-35, Delft University of Technology, The Nether-
lands, 1997.

(15] G.L. Nemhauser, M.W.P. Savelsbergh, and G.C. Sigismondi. Minto, a mixed
integer optimizer. Operations Research Letters, 15(1):47-58, 1994.

[16] Yu. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic opti-
mization. CORE Discussion paper 9719, Belgium, March 1997.

[17] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approxima-
tion and linear programming. In Proc. of the 87th Anual IEEE Symposium on
Foundations of Computer Science. 1996.

