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Abstract

This paper studies simulation-based optimization with multiple outputs. It assumes
that the simulation model has one random objective function and must satisfy given
constraints on the other random outputs. It presents a statistical procedure for test-
ing whether a speci�c input combination (proposed by some optimization heuristic)
satis�es the Karush-Kuhn-Tucker (KKT) �rst-order optimality conditions. The pa-
per focuses on "expensive" simulations, which have small sample sizes. The paper
applies the classic t test to check whether the speci�c input combination is feasi-
ble, and whether any constraints are binding; it applies bootstrapping (resampling)
to test the estimated gradients in the KKT conditions. The new methodology is
applied to three examples, which gives encouraging empirical results.

Key words: Stopping rule; metaheuristics; response surface methodology; design
of experiments
JEL: C0, C1, C9, C15, C44, C61

1 Introduction

An important practical and academic type of problem is the search for the
optimal input for a random simulation model. This problem area is known
as simulation optimization. There are many methods to solve this problem;
see the references in [15]. Unfortunately, all these methods are heuristic; i.e.,
they propose solutions that are not necessarily truly optimal in "small" exper-
iments. Such small experiments are the rule in expensive simulations (e.g., a
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user reports that a single run of a speci�c simulation model requires three days
on a powerful PC). In this article, we give these methods "the bene�t of the
doubt"; i.e., our null-hypothesis is that the solution given by the heuristic, is
indeed optimal. Next, we derive a statistical procedure to test this hypothesis.

Before we proceed, we give some more terminology and synonyms, because
simulation optimization is studied in many disciplines� each with its own
terminology. So, an input combination is also called a factor combination,
input point, iterate, or scenario. Multiple simulation outputs or responses are
also called multivariate. Replicates mean that a particular input combination
is simulated several times, using nonoverlapping streams of pseudo-random
numbers (PRN) so identically and independently distributed (IID) output
observations result.

It is standard in the mathematical statistics literature on hypothesis testing
that the users prespecify an upper bound for the type-I error, which is also
known as the � error. If the simulation were not expensive, then the analysts
could also constrain the type-II or � error by simulating enough replicates. In
case of expensive simulation, however, we only desire that our procedure give
a type-II error probability that decreases as the point tested moves away from
the (unknown) true optimal point; i.e, we desire that the statistical power
function of our test procedure increases as the alternative hypothesis deviates
more from the null-hypothesis (and the power is at least 1�� when the null-
hypothesis holds). Part of our procedure uses the classic t test, so it is obvious
that this test has the desired behavior. Another part, however, uses a novel
bootstrap test for the gradients, so we investigate its behavior empirically (and
�nd that the power function has the desired shape; see Section 5).

We focus on parametric bootstrapping (assuming Gaussian distributions) be-
cause this bootstrap enables a minimum number of simulation replicates (e.g.,
only the local central point is replicated a few times, as we shall see). Neverthe-
less, we also brie�y discuss distribution-free bootstrapping, which assumes that
all simulated points are replicated a few times. We do not consider asymptotic
tests, but refer to [2] and [32]. ([10] also uses distribution-free bootstrapping to
test the optimality of a candidate solution, but that article addresses so-called
"stochastic programs with recourse", which is very di¤erent from simulation.)

In practice, simulation models have multiple outputs (e.g., an inventory sim-
ulation may have as outputs the estimated partial cost and service rate).
We focus on the following mathematical programming formulation for such
simulations: minimize the expected value of one random objective (or goal)
function, while satisfying prespeci�ed constraints for the expected values of all
the other random outputs. For the deterministic variant of this formulation,
the Karush-Kuhn-Tucker (KKT) �rst-order optimality conditions are well-
known necessary but not su¢ cient conditions; see [9]. For random outputs
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these conditions are the focus of our article.

We examine the behavior of our procedure through three numerical exam-
ples. We focus on Example 1, which assumes second-order polynomial In-
put/Output (I/O) functions for each type of output. Example 2 simulates the
well-known (s; S) inventory model, assuming that out-of-stock penalty costs
are so hard to quantify that instead a prespeci�ed service (or �ll rate) con-
straint must be satis�ed; see [18]. Example 3 integrates this (s; S) inventory
model with a production model; see [4]. The �rst two examples use parametric
bootstrapping for the gradients that are estimated using a local experimental
design with only the center replicated. The third example uses distribution-
free bootstrapping for the gradients that are estimated using a global Latin
hypercube sampling (LHS) design with all points replicated between �ve and
seven times, analyzed through a global Kriging metamodel.

We assume that the optimum occurs when at least one constraint is binding
(or "active"); i.e., the optimum input point lies at the border of the feasible
area. If the optimum occurs inside the feasible area, then the gradient of
the objective function is tested to be zero; see the classic Response Surface
Methodology (RSM) textbook [25] and the many RSM references in [7] and
[15], and also the unconstrained problem solved via the score function method
in [12].

Simulation optimization heuristics can be distinguished in various ways; e.g.,
gradient based methods (e.g., RSM) and derivative-free methods (e.g., the
commercial software called OptQuest; see Section 5.2). We claim that factor
combinations pronounced to be optimal by some heuristic, should be subjected
to our KKT test. Obviously, a derivative-free method must then be augmented
with a method for estimating gradients; see Section 3.

Moreover, the gradient estimation method should estimate the distribution of
the estimated gradients, because we use this estimated density function (EDF)
for bootstrapping. In general, the bootstrap can estimate the distribution of
any statistic� provided that its density function is continuous; see the seminal
book on bootstrapping [8] or the more recent publication [5]. More speci�cally,
we wish to test the hypothesis that a given input combination satis�es the
KKT conditions; [22] discusses bootstrap hypothesis testing, in general.

We organize the remainder of this article as follows. Section 2 formalizes our
simulation optimization problem as a constrained nonlinear random optimiza-
tion problem, and gives the KKT conditions. Section 3 derives the distribution
of the estimated gradients that feature in the KKT conditions. Section 4 de-
velops a procedure for testing whether the center point of a given local area
satis�es the KKT conditions. Section 5 uses three examples to demonstrate
the performance of the procedure. Section 7 gives conclusions and a research

3



agenda. The article concludes with 34 references, enabling further study.

2 Mathematical programming formulation

Before we give the general problem formulation, we introduce Example 1.
This example has two deterministic inputs, z1 and z2. It has three random
outputs, w0, w1, and w2 where E(w0) is the goal output and E(w1) and E(w2)
must meet prespeci�ed constraints; see Figure 1. This �gure displays the I/O
functions, which are the following second-order polynomials:

minimize E(w0) = E[5(z1 � 8)2 + (z2 + 8)2 + e0]

subject to E(w1) = E[(z1 � 3)2 + z22 + z1z2 + e1] � 4

E(w2) = E[z
2
1 + 3 (z2 + 1:061)

2 + e2] � 9

(1)

where e0, e1, and e2 have zero means. The �gure displays three "iso" goal
functions, which are the set of input combinations with the same goal value�
namely, 96, 76, and 66 respectively. The �gure also shows the two constraints
when they are "binding"; i.e., in (1) � becomes =. The optimal point is A
(in practice, this is the point to be found by the simulation optimization
heuristic). The �gure also displays three suboptimal points, namely B, C, and
D. The points A through C lie on the same binding constraint; D lies on a
di¤erent binding constraint. The �gure also shows the gradients of the goal
function and the binding constraint at these four points; these gradients are
perpendicular to the local tangent lines (which are also displayed).

In practice (also see Examples 2 and 3), the simulation I/O functions are un-
known, because (i) the (complicated) simulation model is an implicit function,
and (ii) the output of the discrete-event simulation is a random variable, so
a run of the simulation model gives only an observation on (or realization of)
the multivariate output. The �gure displays only points on the border of the
feasible area. In practice, an experimental design determines the input combi-
nations to be simulated; executing this design means running the simulation
model, which gives observations on the random outputs. These observations
may be used to test whether the corresponding input combinations are feasible
and whether any of these feasible combinations is optimal (see below).

Our general problem formulation is as follows. The simulation model has k � 1
inputs or decision variables z = (z1; : : : ; zk)

0. This model has r � 2 outputs
wh (h = 0; 1; : : : r� 1) where w0 denotes the goal output, which is to be mini-
mized. This results in the following constrained nonlinear random optimization
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problem:

minimize E(w0jz)

subject to E(wh0jz) � ah0 with h
0
= 1; : : : ; r � 1.

(2)

Let z0 denote a local minimizer for the deterministic variant of our problem.
The KKT conditions for z0 are then

�0 =
P

h2A(z0)
�0h�h

�0h � 0

h 2 A (z0)

(3)

where �0 denotes the k-dimensional vector with the gradient of the goal func-
tion; A (z0) is the index set with the indices of the constraints that are binding
at z0; �0h is the Lagrange multiplier for binding constraint h; �h is the gradient
of the output in that binding constraint (in Figure 1, there is only one bind-
ing constraint at A through D). The KKT conditions imply that the gradient
of the objective can be expressed as a nonnegative linear combination of the
gradients of the binding constraints, at z0. (Moreover, there is a certain con-
straint quali�cation that is relevant when there are nonlinear constraints in
the problem; see [9], p. 81. There are several types of constraint quali�cation,
but many are only of theoretical interest; a practical constraint quali�cation
for nonlinear constraints is that the r�1 constraint gradients at z0 be linearly
independent.)

In Figure 1, A satis�es the KKT conditions; B has two gradients that point in
di¤erent but similar directions� and so does C. However, D has two gradients
that point in completely di¤erent directions.

Unfortunately, in random simulation the gradients must be estimated. More-
over, the slacks of the constraints must be estimated, to check which con-
straints are binding. This estimation changes our problem into a problem of
nonlinear statistics� discussed next.

3 Estimation of gradients in random simulation

There are many methods for the estimation of the gradients in the KKT
conditions (again see Section 1). Whatever method is used, a so-called opti-
mal point should be subjected to the KKT test. Obviously, a derivative-free
method must then be augmented with a method for estimating gradients.
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In Section 5.3, we shall �t Kriging models, which also enable the estimation of
gradients. In the present section, however, we focus on low-order polynomials
per output� �tted locally through ordinary least squares (OLS)� using a so-
called resolution-III (R-III) design augmented with a center point to �t �rst-
order polynomials or a central composite design (CCD) to �t second-order
polynomials. R-III and CCD will be de�ned below.

OLS implies that "�tting errors" occur; see e in (1). OLS assumes that these
errors are white noise; i.e., e is normally (Gaussian), identically, and indepen-
dently distributed (NIID) with zero mean and "constant" variance (say) �2e.
This variance remains constant within each local area, but not when these
areas change; e.g., the local areas centered around A through D in Figure 1
may have di¤erent variances.

By de�nition, a R-III design gives unbiased estimators of the parameters of a
�rst-order polynomial, assuming such a polynomial is a valid approximation.
This design requires only n t k + 1 input combinations; e.g., the n = 8
combinations of a 27�4 design su¢ ce if 4 � k � 7. The design is D-optimal;
i.e., it minimizes the determinant of cov(b�), the covariance matrix of b� whereb� = (c�0; c�1; : : : ; c�k)0 denotes the OLS estimators of these parameters. The
estimated gradient is d��0 = (c�1; : : : ; c�k)0.
One part of a CCD is a two-level factorial that may be a fractional factorial�
provided this fractional has a resolution at least V. A resolution-V (R-V)
design gives unbiased OLS estimators of �0 and �j (j = 1; : : : ; k), and the
two-factor interactions (or cross-products) �j;j0 (j < j0 = 2; : : : ; k)� if all
other e¤ects are zero. The number of regression parameters (say) q is now
1 + k + k(k � 1)=2. Obviously, the design must satisfy the condition n � q.
Our three examples have only k = 2 factors, so part of the CCD is the following
22 design where row j (j = 1; 2) shows the value of factor j in combination i
(i = 1; : : : ; 4):

D0=

264�1 +1 �1 +1
�1 �1 +1 +1

375 : (4)

The other part of the CCD augments the �rst part such that the purely
quadratic e¤ects �j;j can also be estimated; e.g., (4) is augmented to

D0=

264�1 +1 �1 +1 0 �c +c 0 0

�1 �1 +1 +1 0 0 0 �c +c

375 (5)

where c is some constant. In general, a CCD adds the central point 0 =(0; : : : 0)0

and 2k "axial" points with the negative axial point xj = �c and all other
k� 1 factors �xed at the center and the positive axial point with xj = +c and
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xj0 = 0.

Obviously, the gradients estimated through �rst-order and second-order poly-
nomials have di¤erent values, because they are estimated from di¤erent I/O
data. In a small local region, a �rst-order polynomial may give an accurate
approximation; our procedure will test for lack-of-�t (see below).

We assume that the multiple simulation outputs are multivariate normal if we
use parametric bootstrapping, as we shall do for Examples 1 and 2. For Exam-
ple 3, however, we do not assume normality because we shall use distribution-
free bootstrapping. The normality assumption is necessary when simulation is
so expensive that replication is to be avoided as much as possible; i.e., the
parameters of the multivariate distribution can be estimated if only the local
center point is replicated a few times. The normality assumption may be re-
alistic if the output is an average; e.g., [13] discusses the Functional Central
Limit Theorem.

Even if the multiple simulation outputs are correlated and nonnormally dis-
tributed, OLS still gives the best linear unbiased estimator (BLUE)� because
all r outputs use the same input combinations; see [28]. So we use

c�h = (Z0Z)�1Z0wh with h = 0; : : : ; r � 1; (6)

where the total number of simulation runs is N =
Pn
i=1mi where mi = 1 for

all points of the R-III design or the CCD except for the center point, which
has mi > 1; n denotes the number of di¤erent input points; Z denotes the
N�q matrix of explanatory (regression) variables, and wh the N -dimensional
vector with the simulation output of type h. The inversion in (6) requires
n � q.

Z is completely determined by D = (dij), the design matrix for the k inputs
because we use the linear transformation that is standard in design of experi-
ments (DOE):

dij =
zij � zj
(uj � lj)=2

with i = 1; : : : ; n and j = 1; : : : ; k; (7)

where zj denotes the average value of the original (nonstandardized) input j,
and (uj � lj) is the range of the original input j in the local experiment. The
intercept �0 implies that we include a column with n one�s in Z. In a second-
order polynomial, the interactions and purely quadratic e¤ects imply that we
add k(k � 1)=2 + k columns; e.g., k = 2 implies the following standardized
matrix of explanatory variables (say) X (its columns 2 and 3 are identical to
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D with D0 de�ned in (5)):

X0=

26666666666666664

1 1 1 1 1 1 1 1 1

�1 1 �1 1 0 �c 0 c 0

�1 �1 1 1 0 0 �c 0 c

1 �1 �1 1 0 0 0 0 0

1 1 1 1 0 c2 0 c2 0

1 1 1 1 0 0 c2 0 c2

37777777777777775
: (8)

Besides the point estimates [�h;�0, our parametric bootstrap needs the esti-
mated covariance matrix of these estimates. Our designs (either a R-III design
augmented with the center point, or a CCD) enable the computation of the
classic mean squared residuals (MSR). Moreover, they enable the estimation
of the covariances between di¤erent types of simulation output; this MSR we
call the multivariate MSR (MMSR):

\MMSRh;h0 =
1

N � q (wh � cyh)0(wh0 �dy
h
0 ) with h; h

0
= 0; : : : ; r � 1; (9)

where the N -dimensional vector with regression predictors for output h iscyh = Xc�h (h = 0; : : : ; r � 1) (replicated points have identical predictors).
This MMSR is unbiased if the regression metamodel is valid and no common
random numbers (CRN) are used to simulate the di¤erent (local) combina-
tions. More precisely, if h = h0, then (9) gives an unbiased estimator of the
locally constant variance of wh (simulation output h); if h 6= h

0
, then (9) gives

an unbiased estimator of the covariance between wh and wh0 (assumed to be
constant within the local area).

Moreover, we replicate the center point (say) m � 2 times, to obtain a second
estimator that is unbiased even if the metamodel is not valid:

b�h;h0 =
Pm
s=1[(w0;h;s � w0;h)(w0;h0 ;s � w0;h0 )]

m� 1 (10)

where w0;h;s denotes output h of replication s of the center point 0, and w0;h
denotes the average of these replicates; if h = h

0
then b�

h;h
0 = b�2h.

The classic (univariate) lack-of-�t F -statistic is

Fn�q;N�n;h =

Pn
i=1mi(wi;h �dyi;h)2=(n� q)Pn

i=1

Pmi
s=1(wi;h;s � wi;h)2=(N � n)

; (11)

where wi;h;s denotes simulation output h in replication s of point i; see [25].
We reject the regression metamodel if this statistic is signi�cant� using Bon-
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ferroni�s inequality. This inequality implies that in each individual test we
replace the classic �-value by � divided by the number of tests; e.g., if we
test the �t of the regression metamodel for three outputs, then we test at �=3
where � = 0:10 (classic value) or � = 0:20 (not an unusual value for multiple
tests); see [24]. The use of this inequality makes the test conservative; i.e., the
test has smaller type-I error probability than prespeci�ed and higher type-II
error probability (smaller power).

If we �nd signi�cant lack-of-�t, we have two options: (i) Decrease the local
area; e.g., halve each factor�s range. (ii) Increase the order of the polynomial;
e.g., switch from a �rst-order to a second-order polynomial. If we do not �nd
signi�cant lack of �t, then we still base our bootstrap on (10) because (9)
may be in�ated by undetected bias. Moreover, we use (10) to estimate the
covariance matrix of the OLS regression parameters:

\cov(c�h;d�h0) = b�
 (Z0Z)�1 (h; h0 = 0; : : : ; r � 1); (12)

where b� = (b�h;h0 ) is the r � r matrix following from (10) and 
 is the well-
known "Kronecker product" operator; also see [27].

4 Testing the KKT conditions

The KKT conditions (3) for our random optimization problem (2) require
statistical testing of various hypotheses.

4.1 Hypothesis 1: constraints are binding

We formulate the hypothesis that a given point (say) z0 is feasible, and a
constraint is binding at that point; see (3) where A (z0) denotes the set with
the indices of the binding constraints at z0:

H
(1)
0 : E(wh0 jd = 0) = ah0 with h

0
= 1; : : : ; r � 1; (13)

where d = 0 corresponds with the center of the local area (see (7) and (8))
and ah0 denotes the bounds in (2). We test the center point of the local area
because that point is more representative than the other (extreme) points of
the R-III design or the CCD; moreover, we now test a single point instead of
n points. Our null-hypothesis implies zero slack for constraint h0.

To save computer time, a local experiment should start at its center point
including replicates. If it turns out that either no constraint is binding or at
least one constraint is violated, then the other KKT hypotheses (presented in
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the next two subsections) need not be tested and the other n�1 points of the
local design need not be simulated.

We test the hypothesis (13) through the following t statistic:

t
(h0)

m�1 =
wh0(d = 0)� ah0qc�2h0=m with h0 = 1; : : : ; r � 1; (14)

where both the numerator and the denominator are based on the m replicates
at the local center point; see (10).

This statistic may give the following three di¤erent results.

� The statistic is signi�cantly positive; i.e., the constraint for output h0 is
not binding. If none of the (r � 1) constraints is binding, then the optimal
point is not yet found (assuming that the optimum occurs when at least
one constraint is binding; see Section 1).

� The statistic is signi�cantly negative; i.e., the current point is not feasible.
� The statistic is nonsigni�cant ; i.e., the current point is feasible and con-
straint h0 is binding. We then proceed to the next hypotheses � as follows.

4.2 Hypothesis 2: linear combination of gradients

We formulate the hypothesis that the expected value of the goal gradient may
be expressed as the expected value of a linear combination of the estimated
gradients of the binding constraints; i.e., in (3) we replace the corresponding
deterministic quantities by their random estimators:

H
(2)
0 : E([�0;�0) = E

0@ X
h2A(z0)

[�0h�h)

1A : (15)

We estimate this linear combination through OLS using as explanatory vari-
ables the estimated gradients of the (say) J binding constraints, so the ex-
planatory variables are random. We collect the latter gradients in the k � J
matrix\BJ ;�0. The OLS estimator of the goal gradient is

[[�0;�0:

[[�0;�0 =\BJ ;�0(\BJ ;�0
0\BJ ;�0)�1\BJ ;�0

0[�0;�0 =\BJ ;�0 b�; (16)

so b� = (\BJ ;�00\BJ ;�0)�1\BJ ;�00[�0;�0 is the OLS estimator of the Lagrange mul-
tipliers in the KKT conditions. (Obviously, if [�0;�0 and the vectors in \BJ ;�0
point in the same direction, then all the components of b� are positive; if [�0;�0
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and\BJ ;�0 are perpendicular, then b� is zero; if [�0;�0 and\BJ ;�0 point in oppo-
site directions, then b� is negative; also see Figure 1.) The expression in (16)
is highly nonlinear; bootstrapping is a classic analysis method for nonlinear
statistics.

There are several statistics for quantifying the accuracy of a model �tted
through OLS. We use the k-dimensional vector of residuals

e
\
(
[[�0;�0) =

[[�0;�0 �[�0;�0: (17)

Hypothesis (15) implies e
\
(
[[�0;�0) = 0.

To test the latter hypothesis, we "simulate" gradient values that agree with
the observed randomness, quanti�ed through the covariance matrix in (12).
Therefore, we sample from the relevant distribution; i.e., we apply parametric
bootstrapping. This procedure consists of the following four steps, where we
use the standard notation for bootstrapped values, namely the superscript �.

Step 1: Use the Monte Carlo method to sample vec([��0;�0; \B�J ;�0), which is a
(k+kJ)-dimensional vector formed by "stapling" (stacking) the k-dimensional
goal gradient vector and the J k-dimensional vectors of the k�J matrix\B�J ;�0:

vec([��0;�0; \B�J ;�0) � N
 
vec([�0;�0; \BJ ;�0);

\
cov[vec([�0;�0; \BJ ;�0)]

!
; (18)

where N(a; b) denotes a normal distribution with mean a and variance b;
\

cov[vec([�0;�0; \BJ ;�0)] is the (k + kJ) � (k + kJ) matrix computed through
(12) (the latter matrix gives the covariances for all simulation outputs, but we
do not need the covariances for the non-binding outputs).

Step 2: Use the bootstrap values from Step 1, to compute the OLS estimate
of the bootstrapped goal gradient using the bootstrapped gradients of the
binding constraints as explanatory variables; i.e., we use (16) adding the su-

perscript � to all random variables, which results in
[[��0;�0 and b��.

Step 3: Use
[[��0;�0 from Step 2 and [�

�
0;�0 from Step 1, to compute the bootstrap

residual e
\
(
[[��0;�0) =

[[��0;�0 �[��0;�0, analogously to (17).

Step 4: Repeat the preceding three steps (say) 1000 times, to get the EDF of

the bootstrapped residuals per input j (j = 1; : : : ; k)� denoted by e
\
(
\\��0;�0;j).

Reject the hypothesis in (15) if this EDF implies a two-sided (1 � �=(2k))
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con�dence interval (CI) that does not cover the value 0� for any of the k
inputs (the factor k in the CI is explained by Bonferroni�s inequality).

4.3 Hypothesis 3: positive Lagrange multipliers

We formulate the hypothesis that the Lagrange multipliers are non-negative:

H
(3)
0 : E(b�) � 0: (19)

To test this hypothesis, we expand Step 2 of the preceding subsection and
add 1 to a counter (say) c� if any of the bootstrapped Lagrange multipliers b��
is negative (we are not interested in the magnitude of a Lagrange multiplier,
but only in its direction or sign). After the 1000 bootstrap samples of Step
4 in that subsection, we have the �nal value of this counter. We reject the
hypothesis in (19) if the fraction c�=1000 is signi�cantly higher than 50% (if
the true Lagrange multiplier is only "slightly" larger than zero, then "nearly"
50% of the bootstrapped values is negative). To test the latter fraction, we
approximate the binomial distribution through the normal distribution with
mean 0.50 and variance (0:50� 0:50)=1000 = 0:00025.

Note that the k � J matrix \BJ ;�0 may be a square matrix. If \BJ ;�0 is also

non-singular, then e
\
(
[[��0;�0) = 0; i.e., the random KKT problem reduces to a

deterministic problem! For solving such problems we refer to the literature on
deterministic nonlinear programming. In practice, however, this determinis-
tic variant of the originally random problem seems rare; e.g., [14] presents a
simulation model for production planning at a Dutch steel-tube manufacturer

with k = 14 inputs and r = 2 outputs so
\\BJ ;�0 cannot be a square matrix.

5 Examples

We test our procedure extensively through Example 1, for which we (but
not our procedure) know the true I/O functions of the "simulation" model,
namely the second-order polynomials in (1). Consequently, we know the true
optimum and the binding constraints; see the points A through D in Figure
1. Moreover, we ensure that the simulation outputs are multivariate normal;
i.e., to the polynomials we add multivariate normal noise; see again (1).

We further study the robustness of our procedure through Examples 2 and
3, which are discrete-event simulation models. We do not know their I/O
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functions, so we do not know the true optima or the points that make the
constraints binding. We assume that the simulation outputs of Example 2 are
Gaussian; for Example 3 we use distribution-free bootstrapping.

Note that any numerical experiment requires a choice of factor values and
combinations. This choice should not bias the outcomes in favor of the method
being evaluated; i.e., the readers must trust the experimenters, and other
researchers should be able to reproduce and extend the experiment.

5.1 Example 1: second-order polynomial I/O functions

To generate data for Example 1, we must select values for cov(e), which
characterizes the additive noise. This cov(e) determines the signal/noise ratio,
�=[var(b�)]� once we have selected the range of the local area; also see (12).
Two con�icting arguments apply� one mathematical and one statistical (also
see [30]): (i) the smaller the range of the local area, the better the local low-
order approximation (Taylor series argument); (ii) the larger this range, the
higher the signal/noise ratio; i.e., the smaller the noise var(b�). We select the
following standard deviations for e: �0 = 1, �1 = 0:15, and �2 = 0:4; we select
the following correlations: �0;1 = 0:6, �0;2 = 0:3, and �1;2 = �0:1; also see [1].
Together with our choice of the size of the local areas, our choices turn out to
give reasonable signal/noise values.

Our type-I error probability is � = 0:10 per test. To estimate the power
function of our procedure, we apply the procedure to four local areas� with
center points corresponding with the points A through D in Figure 1. Point A
is the optimal point, so at this point our test procedure should reject the KKT
conditions with a probability smaller than � (because we use the conservative
Bonferroni inequality). Point B is "near" the optimum, and has the same
binding constraint as point A. At point B, our procedure should reject the
KKT conditions with a probability higher than �; i.e., our procedure should
show increasing power as the point tested moves away from the true optimum.
Point C is "far away" from the optimum, so our procedure should now reject
the KKT conditions with a probability higher than that of point B. Point D is
even further away from the optimum (and with a di¤erent binding constraint).

To get an accurate estimate of the power of our procedure, we run 1,000
macro-replicates of our example; i.e., we take 1,000 sampled vectors of the
simulation output w per input combination, estimate 1,000 gradients for sim-
ulation output h = 0; 1; 2, obtain 999 bootstrap samples per gradient (999 can
be shown to be more convenient than 1,000), etc.

Table 1 displays the fraction of these macro-replicates that reject our vari-
ous null-hypotheses. We display results for the four locations (A through D),
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for which we also display their coordinates (e.g., A has coordinates 2.53 and
�1:99). Moreover, we experiment with the size of the local area; i.e., in the
"large" area, the original values that correspond with the coded values 0 and
1 di¤er by 0:1; in the �small" area, these values change by 0:01 (for "coding"
see again (7)). The lack-of-�t F -statistic enables us to test whether the area�s
size is acceptable� given the metamodel (e.g., a second-order polynomial). We
use CRN for the two areas, which results in a perfect correlation coe¢ cient of
+1. And we experiment with the magnitude of the noise; i.e., "small" noise
means that the standard deviations are only 10% of the values speci�ed above
(namely, �0 = 1, �1 = 0:15, �2 = 0:4).

To explain the numbers in Table 1, we start with point A�s upper-left element
and proceed with the other elements in the same row, etc.:

69/1000 = 0.07: The denominator equals our number of macro-replicates. Our
procedure uses the t statistic (14) to test if at least one constraint is bind-
ing. This hypothesis is rejected for 69 macro-replicates. (Of these 69 macro-
replicates, 42 replicates �nd the �rst constraint to have positive slack, and the
second constraint to have negative slack; the remaining 69 �42 = 27 replicates
�nd both constraints to have positive slacks; these numbers are not displayed,
to save space.) So the classic t statistic combined with Bonferroni�s inequality
gives slightly conservative results (fractions smaller than � = 0:10)� as we
expected. The other elements in this row give similar results. The other points
(B, C, D) have rows with similar results.

79/931 = 0.08: The number of macro-replicates that remain is 1000�69 = 931.
We use the lack-of-�t F -statistic in (11), to test the adequacy of the second-
order polynomial �tted locally to the simulation I/O data. Because Example 1
has multiple simulation outputs, we again use Bonferroni�s inequality and get
0.08, which is lower than the nominal � = 0:10. We get similar results for the
other cases: see the elements in the same row as 79/931, and the appropriate
rows for points B, C, and D.

106/852 = 0.12: The number of remaining macro-replicates is 931� 79 = 852.
We use bootstrapping to test whether the estimated goal gradient can be
adequately expressed as a linear function of the estimated gradient of the
binding constraint. Because Example 1 has k = 2 simulation inputs, we again
apply Bonferroni�s inequality. The rejected fraction is 0.12, which is slightly
higher than the nominal 0.10. Two other results in this row are similar; the
case of a small local area with large noise, however, gives a low fraction, namely
0.02� which is taken care of, in the next line of the table.

0/746 = 0.00: The number of remaining macro-replicates is 852� 106 = 746.
We now test whether the linear combination has positive Lagrange multipliers.
None of the remaining replicates gives a negative multiplier� except for the
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case of a small local area with large noise, which gives a high fraction, namely
0.66.

From Table 1 we derive the following conclusions:

� Both the classic t test for the identi�cation of the binding constraints, and
the classic lack-of-�t F - test perform well� independent of the distance from
the optimum, the size of the local area, and the magnitude of the noise.

� The farther away a point is from the optimum, the higher is the probability
of rejecting the OLS model that expresses the estimated goal gradient as
a linear function of the estimated gradient of the binding constraint. The
type-I error probability at the optimum itself is acceptable. However, in case
of a small signal and large noise the test often does not reject that linear
model (such behavior is usual in any statistical test); fortunately, in such a
case the KKT conditions are rejected because of the wrong (negative) signs
of the estimated Lagrange multipliers.

We also investigate the �tting of �rst-order (instead of second-order) polyno-
mials to the simulation�s I/O data. Such polynomials have only q = k + 1
parameters, so a R-III design instead of a CCD su¢ ces. Example 1 has only
k = 2 simulation inputs, so our procedure simulates the combinations of a 22

design plus the center point, which is replicated m = 4 times. We experiment
with the same cases as in Table 1. We obtain results that are similar to the
results in that table, except for the case of a large local area with small noise.
In the latter case, the lack-of-�t F -test rejects the polynomial approximation
more often; e.g., in point A that test reject 200 of 927 macro-replicates so the
fraction is 0.22, whereas Table 1 rejects only 77 of 908 macro-replicates so the
fraction is 0.08 (we know that second-order approximations are perfect for this
example, so �rst-order polynomials are only approximations). To save space
we do not present further details.

5.2 Example 2: an (s, S) inventory model with a service level constraint

Inventory simulation is an important topic in the simulation literature; see
the classic simulation textbook [20]. A well-known building block for such
simulation is the (s, S) inventory model. Moreover, this model is often used to
illustrate simulation optimization; see [3], [11], and [26]. By de�nition, the (s,
S) inventory model (with s < S) replenishes the inventory (say) I whenever
it decreases to a value smaller than or equal to the reorder level s; the order
quantity Q is such that the inventory is raised to the order-up-to level S:

Q =

8><>:S � I if I � s0 if I > s
(20)

15



where I does not denote the physical inventory but the inventory including
orders that have already been placed.

In practice, out-of-stock costs are hard to quantify so a service or �ll rate
constraint is speci�ed instead; e.g., the expected fraction of total demand
satis�ed from stock on hand should be at least 90%. The following variant is
studied in [3]. The inventory systems has random demand and random lead
time. This random lead time implies that orders may cross in time; i.e., orders
are not necessarily received in the order in which they are placed� which
complicates the mathematical analysis so simulation is used. Estimating the
optimal control limits (say) s0 and So turns out to be very di¢ cult, as the
vast literature on inventory management shows.

Estimating these so and So may use brute force; i.e., a grid with all the com-
binations of the integers s and S within a given experimental area is used
to search for the optimum. This method is indeed used in [1], [3], and [34].
Unfortunately, these three publications report di¤erent (s, S) combinations as
being optimal! Moreover, brute force cannot be applied to realistic problems;
e.g., practical inventory systems control thousands of Stock Keeping Units
(SKUs), so "the curse of dimensionality" arises. Furthermore, the inventory
system may be only a subsystem of a production-inventory system (the SKU
is not purchased but is manufactured by the same company; see Example 3).
Therefore Example 2 only illustrates how in practice optimization of realistic
inventory systems may be done.

The following three simulation-optimization heuristics are compared in [18]:
(i) OptQuest, which combines the metaheuristics of Tabu Search, Neural Net-
works, and Scatter Search into a single search heuristic (see

http://spot.colorado.edu/~glover/); (ii) Generalized RSM or GRSM (devel-
oped in [1]), and (iii) perturbation analysis (PA) combined with the feasible
directions (FD) method (used in [3]). Furthermore, [18] uses our procedure
to check whether the three optimal points estimated through these heuristics
indeed satisfy the KKT conditions. (Examples 1 and 2 use the same Mat-
lab code for testing the KKT conditions.) Obviously, the �rst two heuristics
treat the simulation model as a black box, whereas the third heuristic uses a
white-box approach.

OptQuest enables the users to control the search as follows. OptQuest allows
di¤erent precision criteria for both the objective and the constrained simula-
tion outputs; i.e., Example 2 restricts the number of replicates to 10 � m �
100. Moreover, OptQuest allows the users to select a relative precision; i.e.,
Example 2 selectsm such that the halfwidth of the 95% con�dence interval for
the average output is within 5% of the true mean. Finally, OptQuest allows
di¤erent stopping or termination criteria; i.e., Example 2 stops the search af-
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ter either 5 hours of PC time or 500 "nonimproving solutions". We propose
to add our procedure to OptQuest, and use it as a better stopping rule.

In Example 2, the following two gradients are relevant where c denotes the
expected value of the total relevant costs, and f the expected disservice rate
(the required� not the expected� disservice rate is denoted by ):

�0;�0 = r(c) =
 
@c

@s
;
@c

@S

!0
(21)

and

�1;�0 = r(f) =
 
@f

@s
;
@f

@S

!0
: (22)

To estimate these two gradients, OptQuest may be augmented with a local
experiment at the point that OptQuest estimates to be optimum. GRSM im-
plies that the two gradients are estimated from a local simulation experiment.
PA estimates the gradients from a single simulation run, using the explicit
functions (e.g. (20)) inside the simulation model.

The null-hypothesis (13), which states that the current slack is zero, now
becomes

H
(1)
0 : E( bf) = 0:10 (23)

where bf is an unbiased estimator of f , which was de�ned before (21).
To estimate the goal gradient, [18] �ts the following second-order polynomial
locally: by = b�0 + b�1s+ b�2S + b�3sS + b�4s2 + b�5S2 (24)

so the gradient is estimated through

[r(c) = (b�1 + b�3S + 2b�4s; b�2 + b�3s+ 2b�5S)0: (25)

Another second-order polynomial is �tted locally for the �ll rate, to get [r(f)
analogous to (25).

The assumptions originally used in [3] are also used in [18]; i.e., demands are
exponentially distributed with mean 100; lead times are Poisson distributed
with mean 6 ; the maximum disservice level  is 0.10; holding cost is 1, variable
ordering cost is 1, and �xed ordering cost is 36.

Table 2 (reproduced from [18]) summarizes the results of the brute-force grid
searches and the search heuristics used by three research teams. Obviously,
Angün et al.�s solution di¤ers much from the solutions reported by the other
two teams.

17



To estimate the performance of our KKT test procedure, [18] investigate the
following three local area sizes for the integer combinations of s and S: (i) a
"small" local area of 4� 4 units; (ii) an "intermediate" local area of 10� 10;
(iii) a "large" local area of 20 � 20. Moreover, that article investigates two
noise levels: (i) relatively small noise resulting from simulation runs with a
length of 30,000 periods; (ii) relatively big noise resulting from simulation runs
of only 3,000 periods.

Table 3 displays results only for the small local area and the small noise level
(1 of the 3� 2 = 6 experimental conditions). Its points denoted by A through
D are speci�ed in Table 2; its point E is (985; 1188) and is obviously not
optimal (E was found during the OptQuest search for the true optimum).
The nominal type-I error probability per test is again � = 0:10. The number
of macro-replicates is now 500. The CCD replicates the center point m = 3
times. The rest of the notation is analogous to Table 1.

The results for points A, B, and C are quite similar. Point D, however, gives sig-
ni�cant slacks for all 500 macro-replicates. Point E results in 18% (= 68/388)
of the Lagrange multipliers being negative; i.e., the two estimated gradients
point in di¤erent directions so this point is suboptimal.

Results for all six combinations of local area size and noise level are presented
in [34]. These results resemble Table 3. Increasing m (number of replicates
at center of local area) from 3 to 20 increases the power of the KKT tests.
(Too small an m value must be avoided, because too much noise never gives
signi�cant results� for any procedure.)

5.3 Example 3: an integrated (s, S) inventory-production model with a service
level constraint

Example 3 is reported in [4]. This example concerns the optimization of the
two control parameters s and S of an integrated production-inventory simu-
lation model, including our KKT procedure. Example 3 uses a global Kriging
metamodel (instead of a series of low-order local polynomials, as Examples 1
and 2 do).

In general, Kriging models (also called spatial correlation models) are typi-
cally �tted to data that are obtained for larger experimental areas than the
areas used in low-order polynomial metamodels; i.e., Kriging models are global
rather than local. These models are used for prediction; the �nal goals are sen-
sitivity analysis and optimization.

Kriging was originally developed in geostatistics (or spatial statistics) by the
South-African mining engineer Krige. A classic geostatistics textbook is [6].
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Later on, Kriging models were also applied to the I/O data of deterministic
simulation models; see [31]. Recently, Kriging has been applied to random
simulation models; see [33]. We also refer to the recent review on Kriging in
[16].

We focus on the simplest type of Kriging, calledOrdinary Kriging� henceforth
brie�y called Kriging. This Kriging assumes

w(d) = �+ �(d); (26)

where d = (d) denotes the vector of simulation inputs, � the simulation output
averaged over the experimental area, and �(d) the additive noise that forms
a "stationary covariance process" with zero mean. By de�nition, a time series
wt is a stationary covariance process if it has a constant mean E(wt) = �, a
constant variance var(wt) = �2, and covariances depending only on the lag
jt� t0j so cov(wt; wt0) = �jt�t0j.

Kriging uses the following linear predictor:

y(d) = �(d;D)0w(D) = �0w; (27)

where the weights �(d;D)� abbreviated to �� are not constants (whereas
the regression parameters � are) but decrease with the distance between the
"new" input (say) d0 to be predicted and the "old" inputs D (see Section 3);
the vector with simulation outputs averaged over the mi replicates is w(D)�
abbreviated to w. (How these weights decrease exactly, we shall explain be-
low.)

To select the optimal weights, Kriging uses the criterion of the best linear
unbiased predictor (BLUP):

min
�
MSE[y(d)] = min

�
[Efy(d)� w(d)g2]; (28)

where the predictor must satisfy the unbiasedness constraint

Efy(d)g = Efw(d)g: (29)

It can be proven that optimal weights must satisfy the condition

nX
i=1

�i = 1 (30)

or (in matrix notation) 10� = 1. Note that some weights may be negative! It
can be derived that the optimal weights are

�o= �
�1[ + 1

1� 10��1
10��11

] (31)
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where � = (cov(wi; wi0)) with i; i0 = 1; : : : ; n is the n � n symmetric and
positive semi-de�nite matrix with the covariances between the old outputs;
 =(cov(wi; w0)) is the n-dimensional vector with the covariances between
the n old outputs and the new output.

These weights imply that� for an old input� the predictor equals the observed
average simulation output at that input:

y(d) = w(d) if d 2 D, (32)

so all weights are zero except the weight of the observed output, which is one.
This property implies that the Kriging predictor is an exact interpolator (the
regression predictor is not� unless n = q).

Finally, it can be proven that

y(d0) = b�+ (d0)0��1(w�b�1) (33)

with b� = (10��11)�110��1w: (34)

Obviously, the optimal weights in (31) depend on the covariances� or equiva-
lently the correlations� between the simulation outputs. The usual assumption
is that the correlation function for a k-dimensional input vector is the product
of the k one-dimensional functions. A stationary covariance process implies
that these correlations depend only on the distance

hj = jdij � dgjj (j = 1; : : : ; k) (i = 1; : : : ; n)(g = 0; 1 : : : ; n): (35)

Example 3 uses the popular assumption of a Gaussian correlation function
(say) �:

� = exp[�
kX
j=1

h2j�j] =
Yk

j=1
exp(�h2j�j); (36)

where �j measures the importance of input j.

We point out that r(y) = (@y=@d1; : : : ; @y=@dk)0� the gradient of the Kriging
predictor� follows from (33) and (34), where  is a function of the input
d for the output w0. For example, assuming a single input and a Gaussian
correlation function, [15] derives

@y=@d1 =
�
�2�(d0 � d1)e��(d0�d1)

2
; : : : ;�2�(d0 � dn)e��(d0�dn)

2
�
���1(w�b�1).

A major problem is that the optimal weights depend on the correlation func-
tion of the underlying simulation model� but this correlation function is un-
known. Therefore the parameter values �j in (36) must be estimated. Most
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Kriging literature uses maximum likelihood estimators (MLEs). Replacing the
weights by their estimates c�0 makes the Kriging predictor nonlinear.
For the estimation of the correlation functions, the optimal weights, and the
gradients, Example 3 uses the Matlab Kriging toolbox DACE� which is well
documented and free of charge; see [21]. Though Example 3 has multiple
(namely r = 2) simulation outputs (analogous to Example 2), a Kriging model
is �tted per simulation output wh (with h = 1; 2). Ignoring the multivariate
character of the output is usual when Kriging in simulation.

Unfortunately, the DACE software ignores both the multivariate character
of the simulation output and the random character (DASE was developed for
deterministic simulation). Example 3 applies the DACE software such that the
Kriging predictors equal the average outputs at the inputs already observed;
see (32).

The stationary covariance process implies a constant variance. In random
simulation, however, the output variances are not constant. Fortunately, [17]
demonstrates that the Kriging model is not very sensitive to this variance
heterogeneity.

To obtain the necessary simulation I/O data, Example 3 uses Latin hypercube
sampling (LHS). Originally, LHS was developed in [23] (albeit not for Kriging).
References to popular software for LHS are given in [15]. The simplest LHS
proceeds as follows: (i) LHS divides the range of each standardized input dj
(j = 1; : : : ; k) into n (number of input combinations) mutually exclusive and
exhaustive intervals of equal length. (ii) LHS randomly selects one value for
the �rst input d1 from each interval, without replacement. (iii) LHS pairs
these n values with the n values of the second input, d2, randomly without
replacement. (iv) LHS combines these n pairs with the n values of the third
input, d3, randomly without replacement to form n triplets. (v) And so on,
until a set of n k-tuples is formed.

A crucial characteristic of LHS is that there is no strict mathematical relation-
ship between n and k, whereas a R-III design has n = 2k�p with 0 � p < k.
Obviously, simulating more input combinations does not hurt. Rules of thumb
can be found in the literature; Example 3 uses n = 10k.

There are several LHS variants; Example 3 uses maximin LHS, which max-
imizes the minimum distance between the n points in the LHS design; see
http://www.space�llingdesigns.nl/.

Random simulation requires a number of replicates mi (i = 1; : : : ; n) to obtain
accurate output data. Example 3 (like Example 2) uses a relative precision
criterion; i.e., mi is such that the halfwidth of the 95% con�dence interval for
the average output of point i is within 5% of the true mean. This criterion
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turns out to require between �ve and seven replicates.

So, for point i there are mi simulation outputs (ci;s; fi;s) where (as in Example
2) c denotes the relevant costs and f the �ll rate (s = 1; : : : ;mi). Obviously,
these two outputs are IID bivariate. To improve the signal/noise ratio, Exam-
ple 3 uses CRN ; i.e., replicate s uses the same PRN seed for all n points� with
s = 1; : : :mini(mi). (With CRN the simulation outputs at di¤erent points are
correlated so the Gaussian correlation function decreases slower; i.e., b� in (36)
decreases.)

Our procedure �rst checks whether the constraint for the �ll rate is binding.
The original (not the bootstrap) data are used in the t test de�ned in (14).

Once the Kriging metamodels per simulation output have been estimated
from the simulation I/O data, Matlab�s function called fmincon�meant for
constrained nonlinear optimization� is used to estimate the optimum input
combination and the resulting values for the goal output and constrained
output. This estimated solution needs further re�nement, because fmincon
ignores the integer constraints on the two inputs s and S, and it is based on
the Kriging metamodel (which only approximates the underlying simulation
model).

Because of 5 � mi � 7, distribution-free bootstrapping seems a reasonable
method. This bootstrap gives (c�i;s; f

�
i;s) with i = 1; : : : ; n and s = 1; : : : ;mi.

Kriging of these bootstrap I/O data gives r new metamodels, which give new

gradients,\r(c�o) and\r(f �o ). These two gradients are then expressed as a linear
combination, using OLS which gives estimated bootstrapped residuals ce� and
the Lagrange multiplier c��. The bootstrap sample with B = 50 observation
gives the EDF of ce�. This EDF gives a con�dence interval; if this interval
does not cover the value zero, then the linear combination is rejected. The c��
are used to update a variable that counts the number of negative values forc��; this counter is used to test the hypothesis that the Lagrange multiplier is
nonnegative.

It turns out that our procedure does not reject the null-hypothesis that the
integer solution found via fmincon is indeed optimal: (i) the t test does not re-
ject the zero slack hypothesis; (ii) the bootstrap does not reject the hypothesis
of zero residuals in the OLS estimate expressing the goal gradient in the �ll
rate gradient; (iii) the same bootstrap does not reject the sign of the Lagrange
multiplier.

Actually, Experiment 3 evaluates three LHS designs, which di¤er in size (n = 5
or n = 20) or in the actual values of the input combinations (LHS implies
sampling). Each experiment gives integer input combinations that are not
rejected by our KKT procedure. Experiment 3 also tests the KKT conditions

22



for a point that is clearly not optimal but does have zero slack. This point
requires a maximum of 26 replications. Now 3 out of 50 bootstrapped Lagrange
multipliers are negative so the counter is not signi�cant at � = 0:10. However,
the residual for input 2 (namely, S) di¤ers signi�cantly from zero so this point
is rejected! Considering the various cases in Experiments 3, we conclude that
our KKT procedure does show an acceptable power function in this example.

6 Conclusions and further research

The literature on optimization of random simulation models o¤ers many heuris-
tic search methods. In this article, we derived a sequential statistical procedure
that may be used as a stopping rule for such methods; i.e., our procedure tests
the null-hypothesis that the KKT conditions hold so the alleged optimum is
a true optimum.

Our procedure starts with the simulation of the input combination speci�ed by
the center of the local area that is hypothesized to be optimal. Replication of
this combination enables the use of a t statistic to test whether any constraint
is binding.

If a binding constraint is indeed found, then our procedure continues and ob-
tains the EDF of the estimated gradients. Obtaining this EDF varies with the
search methods; e.g., RSM uses local �rst-order or second-order polynomials,
which may lead to a multinormal EDF.

Parametric bootstrapping uses this EDF to obtain the gradients of the goal
function and the binding constraints. Distribution-free bootstrapping is an
alternative method for obtaining gradients, provided all input combinations
are replicated. Bootstrapping enables testing whether the goal gradient can
be adequately approximated by a linear function� estimated through OLS� of
the binding constraint gradients. At the same time, this bootstrapping enables
testing whether the Lagrange multipliers� estimated through OLS� are non-
negative.

Our three examples empirically show that our test procedure has a power
function that increases as the point tested moves away from the true optimum
point; at the true optimum the type-I error probability is close to the speci�ed
value. Of course, "steeper" power functions are desirable, so future research
may try to improve our procedure.

Future research may also try to come up with a theoretical (instead of empir-
ical) analysis of the properties of our sequential statistical procedure. Unfor-
tunately, sequential procedures are notoriously hard to analyze (also see the
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RSM procedure).

Moreover, we recommend further analysis because our procedure uses simul-
taneous testing of multiple hypotheses.

Furthermore, when using local approximations (as is the case in RSM), how
small should the experimental area be? Various statistics (e.g., the lack-of-
�t F -statistic, cross-validation statistics such as PRESS) make it possible to
test whether a given metamodel is a valid approximation; see [7] and [15]. (In
a global approach such as Kriging, this question vanishes; in mathematical
programming, the so-called "trust" area is also rather subjective.)

Application of our procedure to more examples (besides our three examples)
may show how and when our methodology is reliable and robust. Instead
of assuming Gaussian distributions, we may assume a t distribution; such a
distribution is used (for other problems than simulation optimization) in [19].

CRN is an interesting research topic: CRN increases the accuracy of the sim-
ulation results, but it also complicates the analysis. Moreover, CRN requires
many more replicates to estimate all the correlations that it creates.

We use the residuals themselves� combined with Bonferroni�s inequality�
to validate the linear approximation that expresses the goal gradient in the
gradients of the binding constraints. Other statistics (e.g., the sum of squared
residuals) may be alternatives. We also refer to the discussion on "pivotal"
statistics in [22].

Bonferroni�s inequality provides simple but conservative tests, so future re-
search might use the notion of "data depth"� discussed in [29].

Finally, we may test second-order optimality conditions besides the �rst-order
KKT conditions.
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large area large area small area small area

large noise small noise large noise small noise

A: (2.53, -1.99)

constraints binding 69/1000 = 0.07 92/1000 = 0.09 69/1000 = 0.07 92/1000 = 0.09

�t of polynomial metamodel 79/931 = 0.08 77/908 = 0.08 79/931 = 0.08 77/908 = 0.08

linear combination of gradients 106/852 = 0.12 107/831 = 0.13 16/852 = 0.02 98/831 = 0.12

positive Lagrange multipliers 0/746 = 0.00 0/724 = 0.00 550/836 = 0.66 0/733 = 0.00

B: (2.00, -2.35)

constraints binding 67/1000 = 0.07 101/1000 = 0.10 67/1000 = 0.07 101/1000 = 0.10

�t of polynomial metamodel 81/933 = 0.09 79/899 = 0.09 81/933 = 0.09 79/899 = 0.09

linear combination of gradients 232/852 = 0.27 820/820 = 1.00 17/852 = 0.02 210/20 = 0.26

positive Lagrange multipliers 0/620 = 0.00 0/0 541/852 = 0.63 0/610 = 0.00

C: (3.00, -1.10)

constraints binding 75/1000 = 0.08 82/1000 = 0.08 75/1000 = 0.08 82/1000 = 0.08

�t of polynomial metamodel 73/925 = 0.08 77/918 = 0.08 73/925 = 0.08 77/918 = 0.08

linear combination of gradients 548/852 = 0.64 841/841 = 1.00 17/852 = 0.02 538/841 = 0.64

positive Lagrange multipliers 4/304 = 0.01 0/0 598/835 = 0.72 2/303 = 0.01

D: (1.00, -1.00)

constraints binding 67/1000 = 0.07 67/1000 = 0.07 67/1000 = 0.07 67/1000 = 0.07

�t of polynomial metamodel 81/933 = 0.09 81/933 = 0.09 81/933 = 0.09 81/933 = 0.09

linear combination of gradients 847/852 = 0.99 852/852 = 1.00 33/852 = 0.04 847/852 = 0.99

positive Lagrange multipliers 5/5 = 1.00 0/0 735/819 = 0.90 5/5 = 1.00
Table 1
Example 1: fraction of rejected macro-replicates in the local areas centered around
points A, B, C, and D

28



Team Method Symbol so; So costs (SE) disservice (SE)

Kleijnen & Wan Brute force A 1020, 1075 624 (2.4). 0.10 (0.004)

OptQuest B 1021, 1077 625 (3.8) 0.10 (0.005)

Bashyam & Fu Brute force N/A 703 (N/A) 0.11 (N/A)

PA & FD C 1040,1065 708 (N/A) 0.11 (N/A)

Angün et al. Brute force D 1160, 1212 647 (8.6) 0.11 (0.010)

GRSM 1185, 1231 671 (N/A) N/A (N/A)
Table 2
Example 2: optima estimated through three di¤erent research teams (SE: standard
error; N/A: not available)
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A

constraints binding 37/500 = 0.07

�t of polynomial metamodel 33/463 = 0.07

linear combination of gradients 11/430 = 0.03

positive Lagrange multipliers 44/430 = 0.10

B

constraints binding 40/500 = 0.08

�t of polynomial metamodel 29/460 = 0.06

linear combination of gradients 6/431 = 0.01

positive Lagrange multipliers 47/431 = 0.11

C

constraints binding 33/500 = 0.07

�t of polynomial metamodel 35/457 = 0.08

linear combination of gradients 21/432 = 0.05

positive Lagrange multipliers 48/432 = 0.11

D

constraints binding 500/500 = 1.00

�t of polynomial metamodel N/A

linear combination of gradients N/A

positive Lagrange multipliers N/A

E

constraints binding 92/500 = 0.18

�t of polynomial metamodel 20/408 = 0.05

linear combination of gradients 3/388 = 0.01

positive Lagrange multipliers 68/388 = 0.18
Table 3
Example 2: fraction of rejected macro-replicates for small noise and small local areas
centered around points A through E
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