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ABSTRACT 

We deal with the question: Can one see from the spectrum of a graph F whether 
it is distance-regular or not? Up till now the answer has not been known when F has 
precisely four distinct eigenvalues (the diameter 3 case). We show that in this case the 
answer is negative. We also give positive answers in some special situations. For 
instance, if F has the spectrum of a distance-regular graph with diameter 3 and 
/z = 1, then F is distance-regular. Our main tools are eigenvalue techniques for 
partitioned matrices. 

1. I N T R O D U C T I O N  

Many properties of  a graph can ~e recognized from the spectrum of its 
adjacency matrix, such as bipartiteness, regularity, and strong regularity. Here  
we deal with the question: Is a graph with the spectrum of a distance-regular 
graph distance-regular? In case the distance-regular graph has diameter 1 
(complete graphs) or 2 (strongly regular graphs), the answer is affirmative. 
Hoffman [11] constructed a graph cospectral with (which means: with the 
same spectrum as) the Hamming 4-cube H(4, 2), but  not distance-regular, 
showing that the answer is negative if the diameter  is at least 4. We shall 
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show (in Section 3) that for several distance-regular graphs with diameter 3, 
including the tetrahedral graphs J ( n ,  3), the answer is negative too. This 
solves a problem of Brouwer, Cohen, and Neumaier [2, p. 263] and disproves 
an old conjecture mentioned by Bose and Laskar [1]; see also Cvetkovi6, 
Doob, and Sachs [5, p. 183]. 

In Section 5 we give some positive answers to the above question for 
diameter bigger than 2, provided some additional requirement is fulfilled. 
For instance, a graph with the spectrum of a distance-regular graph with 
diameter 3 and with the correct number of vertices at distance 2 for each 
vertex is distance-regular. This gives a common generalization of results of 
Bose and Laskar [1], Cvetkovi6 [4], and Laskar [12]. To prove these results we 
develop (in Section 4) a tool for proving regularity of a vertex partition of a 
graph based on its spectrum. But first we need some preliminary results on 
matrix partitions. 

2. MATRIX PARTITIONS 

Throughout the paper A will be a symmetric real matrix whose rows and 
columns are indexed by X = {0 . . . . .  n}. Le t  { X o . . . . .  X a} be a partition of X. 
The characteristic matrix S is the (n + 1) X (d + 1) matrix whose j th  
column is the characteristic vector of Xj ( j  = 0 . . . . .  d) .  Define k s = IX, l 
and K = diag(k 0 . . . . .  kd).  Le t  A be partitioned according to {X 0 . . . . .  Xd}, 
that is, 

A = 

Aa. o ... Aa, aJ 

wherein A~ , denotes the submatrix (block) of A formed by the rows in X~ 
and the eoluSrnns in Xj. Le t  b,,j denote the average row sum of A,, j .  Then 
the matrix B = (b~,j) is called the quot ient  matrix.  We easily have 

KB = SrAS,  SrS  = K.  

If the row sum of each block A~ ) is constant, then the partition is called 
regular and we have A i , j l  = b i . j !  for i , j  = 0 . . . . .  d (1 denotes the all-one 
vector), so 

A S  = SB.  

The following result is well-known and often applied; see [5, 10]. 
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LEMMA 2.1. If, for  a regular partition, v is an eigenvector of B for  an 
eigenvalue A, then Sv is an eigenvector of  A for  the same eigenvalue A. 

Proof. By = Av implies ASv = SBv = ASv. 

Suppose A is the adjacency matrix of a connected graph F. Let ~/ be a 
vertex of F with local diameter d, and let X~ denote the number of points at 
distance i from 3' (i = 0 . . . . .  d). Then {X 0 . . . . .  Xd} is called the distance 
partition of F around 3'- Note that in this case we can compute K from B, 
since k 0 = 1, kibi,~+ 1 =ki+lbi+l, i ,  and bi+l, ~ =~ 0 for i = 0 . . . . .  d -  1. If 
the distance partition is regular, then F is called distance-regular around 31 
and the quotient matrix B is a tridiagonal matrix, called the intersection 
matrix of F with respect to 3'. If F is distance-regular around each vertex 
with the same intersection matrix, then F is (by definition) a distance-regular 
graph with intersection array 

{b0,~ . . . . .  bd- l,a; b l ,0 , - . . ,  bd,j_ ~}. 

Clearly the intersection array determines the intersection matrix, because 
B has constant row sum k ( =  k 1 = b0.1). Lemma 2.1 gives that for a 
distance-regular graph F, the eigenvalues of its intersection matrix B are also 
eigenvalues of its adjacency matrix A. In fact, the distinct eigenvalues of F 
are precisely the eigenvalues of B. Also, the multiplicities (and hence the 
whole spectrum of F) can be expressed in terms of the intersection array. For 
these and all other results on distance-regular graphs used in this paper, we 
refer to Brouwer, Cohen, and Neumaier [2]. 

3. SWITCH PARTITIONS 

In this section we describe a method to change adjacency in a given graph 
in order to obtain another graph with the same spectrum. Let A be the 
adjacency matrix of a graph. A switch partition {X 0 . . . . .  X d} of A is a regular 
partition split into two parts {X 0 . . . . .  Xh-1}, {Xh . . . . .  Xd} such that bi j 
{0, k i, ¼k j} whenever i and j are separated (that is, X i and X) lie in diffe'rent 
parts). A separated pair {i, j} is called a switch pair if bi j = ½kj. 

THEOREM 3.1. Let F be a graph with a switch partition {X 0 . . . . .  Xd}. 
Let F' be the graph obtained from F by switching, for  each switch pair {i, j}, 
the adjacency relation between X i and Xj to its complement (that is, edges 
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become nonedges and nonedges become edges). Then F' has the same 
spectrum as F. 

Proof. Let  A and A' be the adjacency matrices of F and F' respec- 
tively. With the given partition define 

E = 

E0, ... E0,d] 

lEd, 0 "'" Ed, d 

where 

Ei,j 

! j  i f{ / , j}  is a switch pair, 

= if bi, j = kj and { i , j }  is separated, 

otherwise. 

(As usual, O is the zero matrix and J the all-one matrix.) Put D = 
diag(D 0 . . . . .  Dd), where D i = I if i < h and D i = - I  if i ~> h. Then we 
easily have that A' = D ( A  - E ) D ,  that {X 0 . . . . .  Xj} is also regular for A', 
and that A and A' have the same quotient matrix. Therefore, by Lemma 2.1, 
the eigenvalues of A and A' with eigenvectors in the range of the character- 
istic matrix S coincide• Let v be an eigenvector of A with eigenvalue A, 
perpendicular to the columns of S. Then 

A'Dv = D(  A - E ) D D v  = D(  A - E ) v  = D A v  - 0 = ADv.  

So the remaining eigenvalues of A and A' also coincide. 

In some cases 1" is isomorphic to F, but in many cases it is not. The 
switching concept of Theorem 3.1 turned out not be new. It was already 
known to Godsil and McKay [7], who used it to construct many cospectral 
graphs. In case all separated pairs are switch pairs, it is the same as Seidel 
switching; see [5] or [13]. 

EXAMPLE 1. Consider the tetrahedral graph J(n ,  3) (the vertices are the 
unordered triples of an n-set ~;  triples are adjacent if they meet in two 
points). Let Q be a 4-subset of ~ ,  and take n/> 6. For i = 0 . . . . .  3 let X i 
he the set of triples meeting Q in i points. This clearly defines a regular 
partition of J(n ,  3), and moreover it is a switch partition for h = 3 ({2, 3} is 
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the only switch pair). The switching, explained above, produces a graph 
cospectral with, but not isomorphic to, J(n, 3). The new graph is not even 
distance-regular. Indeed, consider a vertex x in X 1 and a vertex y in X 3. 
Then, after switching, x and y have distance 2, with two common neighbors 
if the corresponding triples meet and six common neighbors otherwise. 

Many other distance-regular graphs admit switch partitions producing 
different graphs. We give two more examples. 

EXAMPLE 2. The Gosset graph is the unique distance-regular graph on 
56 vertices with intersection array {27, 10, 1; 1, 10, 27}. It can be constructed 
as follows. Take for the vertices twice the set of edges of the complete graph 
K s. Vertices within a set are adjacent if the corresponding edges are disjoint, 
and vertices from different sets are adjacent whenever the corresponding 
edges intersect in one point. The edges of K s can be partitioned into 7 
classes of four nonintersecting edges. This gives a partition of the vertices of 
the Gosset graph into 14 classes of size 4, and it is easily checked that the two 
sets of vertices make it a switch partition. It is also easy to verify that, after 
switching, for each vertex there is no longer any vertex at distance 3. So we 
have obtained a graph with diameter 2 cospectral to a distance-regular graph 
with diameter 3. 

REMARK. The Gosset graph is an instance of a Taylor graph. This is a 
distance-regular graph with intersection array {k, Ix, 1; 1,/z, k}. It is the same 
as a regular two-graph represented as a double cover of Kk+ 1. A clique in a 
Taylor graph can have at most 1 - s  vertices, where s is the smallest 
eigenvalue [that is, the negative root of x 2 + (2/x - k + 1)x - k]. If the 
bound is achieved, then any vertex not in the clique is adjacent to none or 
half of the vertices of this clique. This gives rise to a switch partition, and 
the local diameter of a vertex of the clique becomes 2 after switching (the 
case n = 6 of Example 1 is of this type). If the graph admits a partition 
into ( 1 -  s)-cliques, the global diameter becomes 2. Taylor graphs with 
this property have been constructed by Taylor [16] for k = - s  a, /z = 
- ( s  + 1)(s z + 1)/2,  whenever - s  is an odd prime power. For s = - 3  we 
have Example 2. 

EXAMPLE 3 (By A. E. Brouwer, personal communication). For a dis- 
tance-regular graph with k = 2/z (k = k 1 = b0.1 and /x = b2,1) the distance 
partition (with respect to any vertex) is a switch partition. This applies for 
instance to distance-regular graphs with intersection array {2/.~,2/z- 
1,/x, 1; 1,/x, 2 #  - 1, 2/z}, the so-called Hadamard graphs. For /x  = 2 we get 
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the array of the Hamming 4-cube, and switching leads to the mentioned 
example of Hoffman. 

In [9] Haemers and Spence determined all graphs cospectral with 
distance-regular graphs up to 27 vertices. Many, but not all, can be obtained 
by switching. Among these graphs there is one cospectral with, but not 
isomorphic to, the cubic lattice graph H(3, 3). 

4. REGULARITY AND EIGENVALUES 

In this section we give some eigenvalue tools for proving regularity of 
partitions. The first result is proved in Haemers [8, Section 1.2] (see also 
[2, Section 3.3]). 

THEOREM 4.1. Let A be a symmetr ic  partitioned matrix, and let S and B 
denote the corresponding characteristic and quotient matrix, respectively. Let 
I~ 0 ~ "°" ~ 1~ n be the eigenvalues o f  A. Then B has real eigenvalues Ixo >1 "'" 
>>. IX~ (say).  Denote the respective eigenvectors by v o . . . . .  v~. Then the 

following hold: 

(i) A, >/ IX, >i An_d+ ~ (0 ~< i ~ d). 
(ii) I f  f o r  some integer k (0 <<. k <~ d), we have A, = Ix, f o r  i = 0 . . . . .  k 

(or  Ixi = An-d+, f o r  i = k . . . . .  d),  then Sv i is an eigenvector o f  A with 
eigenvalue Ix, f o r  i = 0 . . . . .  k (respectively f o r  i = k . . . . .  d). 

(iii) If, f o r  some integer k (0 <~ k <~ d + 1), we have A, = Ix, f o r  i = 
0 . . . . .  k - 1 and Ix~ = A n_ d +, f o r  i = k . . . . .  d, then the partition is regular. 

Thus we have a tool for proving regularity of a partition using eigenvalues. If 
we want to prove distance-regularity of a graph F, we want to apply (iii) to its 
distance partitions. This, however, will hardly ever work if the diameter is 
bigger than 2, since if F is connected, the quotient matrix B has d + 1 
distinct eigenvalues (see Theorem 4.3), whilst all but the largest eigenvalue of 
the adjacency matrix A have in general a multiplicity greater than 1, in which 
case equality in (i) can only hold for/.to, Ix1, and Ix~. So we need a result like 
(iii) in terms of these three eigenvalues only. 

LEMMa 4.2. With  the hypotheses o f  Theorem 4.1, let A be a block-tridi- 
agonal matrix (i.e., Ai. j = O /f li - j l  > 1), and let v i = [vi. 0 . . . . .  vi.~] T 
denote an eigenvector o f  Ixi (0 <~ i <<. d). I f  Ixo = Ao, Ixl = A1, and IX~ = ~ t  n 

and i f  any three consecutive rows o f  [v 0 v 1 v d] are independent,  then the 
partition is regular. 



SPECTRUM OF GRAPHS 271 

Proof. By (ii) of Theorem 4.1, ASv i = I~iSvi for i = 0, 1, d. By consid- 
ering the l th block row of A we get 

V i , l _ l A l ,  l _ l  I -4- V i , lA l ,  l I A- V i , l+ lA l ,  l+l 1_ = I&iVi,l 1_ fo r  i = 0, 1, d 

(wherein the undefined terms have to be taken equal to zero). Since, for 
i = 0, 1, d and j = 1 - 1, l, l + 1, the matrix (v~,j) is nonsingular, we find 
A~,jl_ ~ (1> for j =-l - 1,1,1 + 1 (and hence for j = 0 . . . . .  d). Thus the 
partition is regular. • 

THEOREM 4.3. Let F be a connected graph with adjacency matrix A and 
eigenvalues )t o >i ..- >/A n. Let {X 0 . . . .  , X d} be a partition of the vertices of  
F such that there are no edges between X~ and Xj i f  l i - j l  > 1. Let B be the 
corresponding quotient matrix. Then B has d + 1 distinct real eigenvalues 
I% > "'" > I~d (say), and the following hold: 

( i )  /t o > / / z  o, A 1>/ /x  1, A , , ~ < / z  d. 
(ii) I f  A o =/Xo, A 1 = /./'1, and A, = /~a ,  then the partition is regular. 

Proof. Because F is connected,  b,, i + 1 > 0 for i = 0 . . . . .  d - 1. Hence,  
for any real number  x, the upper  right d × d submatrix of  B -  xI is 
nonsingular. Therefore  no eigenvalue has multiplicity greater than 1. Result 
(i) is part of Theorem 4.1. To prove (ii), we use Lemma 4.2 and show that 
every three consecutive rows of  [v 0 v 1 v d] are independent.  This will be a 
consequence of  the following claims: 

1. All entries of  v o can be taken positive. Indeed, B is nonnegative 
and, since F is connected,  irreducible. Hence by the Perron-Frobenius 
theorem /-to has a positive eigenvector. 

2. For i = 0 . . . . .  d, the eigenvector v i has exactly i sign changes. This 
follows from the theory of tridiagonal matrices (see for instance Stoer and 
Bulirsch [15, Section 6.6.1]): Let  pj (x)  denote the leading principal j x j  
minor of  xI - B for j = 1 . . . . .  d, and put  po(x)  = 1. Then  we may take 

for i , j = O  . . . . .  d. 
Vi, j = b0,1 "'" b j _ l ,  j 

Moreover, the polynomials p form a Sturm sequence. This implies that 3 
pj(/x i) has exactly i sign changes when j runs from 0 to d, proving the claim. 
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3. The sequence (Vl, 0/Vo, 0 . . . . .  Vl, ~/Vo, 6) is strictly monotonic .  
aj = v l , J v o ,  j f o r j  = 0 . . . . .  d. From Bv i = tziv i it follows that 

v , , j _ lb j , j _  t + v , , jbj , j  + l)i,j+lbj,j+ 1 

=lz~vi, j for i = 0 , 1 ,  j =  1 . . . . .  d -  1. 

WILLEM H. HAEMERS 

Write 

This gives for j = 1 . . . . .  d - 1 

(Olj -- o l j _ l ) l )o , j _ lb j , j _  1 + (olj -- o l j+l)vO, j+lbj , j+ 1 ~-- ( i t t  0 - - ~ l ) V l , j ,  

showing that aj > aj+l if aj_ 1 > a and t ) l j  ~ 0 (using that v0,j± l and 
bj j 5:1 are positive). Similarly we get ~n case j ' =  0) 

-  l)v0 lb0 ,1  = ( -  l)v,,0 > 0 

(using vl, 0 --- 1). Hence a o > IT 1. Thus we have, by induction, that the 
sequence a0, a 1 . . . .  is strictly decreasing until v 1 changes sign. Analogously 
it follows that the sequence a j ,  a d_ 1 . . . .  is strictly increasing until the first 
sign change of v 1. Since v 1 has just one sign change, the claim follows. 

Now, after dividing the j th  row of [v 0 v 1 v d] by Vo, j for j = 0 . . . . .  d, v 0 
becomes constant, v t becomes strictly monotonic, and v a remains alternat- 
ing. This implies that dependence of three consecutive rows is impossible. • 

REMARK. Since F is connected, regularity of the partition means that X 0 
(and also X~) is a completely regular code. 

5. DISTANCE-REGULARITY FROM THE SPECTRUM 

Assume F' is a graph on n + i vertices with spectrum ~ = {/x0Y0 . . . . .  /xdfa} 
(the eigenvalues are in decreasing order; exponents denote multiplicities). 
Suppose there exists a feasible intersection matrix B for a distance-regular 
graph F giving the same spectrum E. (See [2, Section 4,1.D] for a precise 
definition of "feasible." So we do not require that F actually exist. It will, 
however, be convenient to talk about properties of F, though they are in fact 
properties of B.) Since F is regular (of degree k = ~0) and connected, E 
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satisfies 

d d 
fo = 1, E L  = n  + 1, ( n  + 1)/~ o =  Y'~fi/x~ z. (1)  

i = 0  i = 0  

This in turn implies that F' is regular of  degree /z 0 and connected with 
diameter  at most d. (See for example [5]. Proofs are, however, not difficult; 
for instance, regularity follows from the third equation of  (1) by applying 
Theorem 4.1(iii) to the trivial partition with only one class of the adjacency 
matrix of F'.) For  a given vertex 7 of  F', let B' denote  the quotient matrix 
with respect to the distance partition around 7, let k~) . . . . .  k~ be the sizes of  
the partition classes, and let /z' 0 >t " .  >//x' d be the eigenvalues of  B' (note 
that /z' 0 = / x  0 = k = k 1 = k'l). We know that the intersection matrix B of  F 
has eigenvalues ~0 . . . . .  Ix a. So, if we can prove B' = B, then by Theorem 
4.3(ii) F' is distance-regular around 7 (with the same intersection array as F). 
Some entries of  B' and B coincide trivially: b~, 0 = b0,0 = 0, b'1,0 = bl, 0 = 1, 
and b~). 1 = b0.1 = / z0  ( = k). The  following lemma shows that we do not have 
to go all the way in proving B' = B. 

LEMMA 5.1. I f  k'~ =k~  f o r  i = 2  . . . .  , d -  1 and b~ , ,=b , , ,  f o r  i = 
1 . . . . .  d ~ 2, then B' = B. 

Proof. Clearly k'~=k~ for i = 0 ,  d. Using b' = 0 ,  b' = k ,  " ' ' ,  0,0 0,1 

b' i lki = b~_l,~ki_ 1, b~,i+ 1 = k - b' - b' and the same formulas i, - i , i  t , t -  1' 

without the primes, we find that b'~,j = b~ j if i or j is not equal to d 
- b' - bd l d - 1  and E = [0, 0, 1, or d - 1. Define x - a - l , ~ - i  - , . . . .  

- k u _  1/kd]r[0 . . . . .  0, 1, - 1]; then 

B' = n + x e .  (2 )  

Next we want to apply inequalities for eigenvalues. Therefore  we prefer  
symmetric matrices and multiply the above equation by K 1/2 on the left and 
by K -1/2 on the right [where g = diag(k 0 . . . . .  k~)]. Then  (2) becomes 

B' = / ~  + x/~. Clearly the matrices are now symmetric, the eigenvalues have 
not changed, and /~ is positive semidefinite. Denote  the eigenvectors of B 

and /~ by v i and ~ (--- K1/~vi),  respectively (i = 0 . . . .  , d). Then  v0 is also 
an eigenvector of  B' for the eigenvalue k ( = / z '  0 =/x0) ,  since v o ( =  1) is an 
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eigenvector of  B' for the eigenvalue k. I f  x > 0, we find (using 130 _t. *31) 

vlB vl 
~'~ >1 5rS~ = tx~ + X~v~v~ >~ tz~" 

Theorem 4.3(i) gives /z' 1 ~< tZl, and hence/~t31 = 0. Similarly, x < 0 implies 
/~t3 a = 0. If  E6 i = 0 then Evi = O, which yields vi, g_ 1 = vi, a. But we saw in 
proving Theorem 4.3 that this is impossible if i = 1 or d. So x = 0 and 
B = B' .  • 

For a strongly regular F the lemma gives that always B' = B, showing 
that strong regularity can be recognized from the spectrum. Another direct 
consequence is the following result. 

THEOREM 5.2. Suppose F' has the spectrum of  a bipartite distance- 
regular graph F with diameter d, and suppose that for  each vertex y of F' 
the number k', of vertices at distance i from y equals k~ (i.e., k' i has the 
required value) for 4 <<. i <. d. Then F' is distance-regular with the same 
intersection array as F. 

Proof. I f  F is bipartite, then so is F'. Therefore  b~, i = 0 = bi, i for 
i = 0 . . . . .  d and Y'-i . . . .  k', = E, oad k'~ = ~even k, = E, ndd k, = (n + 1) /2 .  
Hence  k '  i = k i for i = 0 . . . . .  d, and Lemma 5.1 applies. • 

In particular we find the known result that a graph cospectral to a 
bipartite distance-regular graph with diameter  3 is such a graph. 

Since F' is regular of  d e g r e e / z  0, its adjacency matrix A satisfies 

( a  - ¢ 1 1 ) . . . ( a  -  jz) (J>.  (3) 

Together  with the well-known fact that (AJ)~, i equals the number  of  closed 
walks of  length j from i to i, this sometimes gives information on B'. Take 
d = 3. Then  (3) gives that A 3 has constant diagonal (because every lower 
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power of A has). So the number of oriented triangles through any vertex 
equals 

1 1 3 
[ 

0 n + l  n + l  Aa)0, tr( A a) Y'- fi Ixi 3- 
i = 0  

Hence b' = [1/k(n  + 1)] Ei=0fiIx 3 = bl 1. Of course, as we saw in 1,1 

Section 3, we cannot determine in general all b'i, j. However, this is indeed 
possible if we require that every vertex of F' have the correct number of 
vertices at distance 2. 

THEOREM 5.3. Let F' be a graph with the spectrum of a distance- 
regular graph F with diameter 3 and k 2 vertices at distance 2 from a given 
vertex. 

(i) Each vertex of F' has at least k 2 vertices at distance 2. 
(ii) I f  equality holds for some vertex T, then F' is distance-regular 

around T having the same intersection matrix as F. 
(iii) I f  equality holds for all vertices, then F' is distance-regular. 

Proof. We shall prove (ii) with the weaker condition that F' has at most 
k z vertices at distance 2; then we get (i) immediately. Let {X o, X 1, X 2, X 3} 
be the distance partition around T. Extend X 2 with some vertices of X 3 until 
IX21 = kz, Then IX, I = k~ for i = 0 . . . . .  3, and the partition still satisfies the 
condition of Theorem 4.3. Now Lemma 5.1 gives B' = B, proving (ii), (i) and 
(iii). • 

This generalizes theorems of Bose and Laskar [1] (who proved the result 
for tetrahedral graphs), Laskar [12], and Cvetkovi6 [4] (who proved it for the 
cubic lattice graph). 

REMARK. For d = 3, k 2 can be expressed in terms of E as follows: 

k 2 

k ( k  - 1 - 03) 2 1 3 
Y'. f ,  Ix? and k = Ixo" 0 4 -  0 ~ - k  ' where Oj k ( n  + 1) ,=1 
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So, in the above theorem, we can replace k 2 by this expression. If we do so, it 
is even conceivable that the result remains valid for an arbitrary connected 
regular graph with precisely four distinct eigenvalues. 

COROLLARY 5.4. I f  F has diameter 3 and tz (=  bz, 1) = 1, then F' is 
distance-regular. 

Proof. With respect to any vertex 7 of F' we have k'2b'~, 1 = kb'l, z = 
kbl, z = k2b2, l = k z. Clearly b~, 1 >i 1; hence k~ ~< k 2, and Theorem 5.3 
applies. • 

Several feasible intersection arrays correspond to graphs satisfying the 
condition of Corollary 5.4. For example, the point graph of a generalized 
hexagon has d = 3 and /x = 1, and hence it can be recognized from the 
spectrum whether a graph is the point graph of a generalized hexagon. The 
following example shows the use of our result. 

EXAMPLE. The spectrum {(qZ _ q)l,  qq(q-1)(qZ-q+ l)/2, ( _  l)q3 ' 
(__q)q(q-3XqZ-q + 1)/2} is for q > 2 the spectrum of a distance-regular graph 
with intersection array {q2 _ q, q2 _ q _ 2, q + 1; 1, 1, q2 _ 2q}. Corollary 
5.4 gives that a graph with that spectrum must be such a distance-regular 
graph. The adjacency matrix E of a projective plane of order q2 with a 
polarity with q3 + 1 absolute points has spectrum {(q~ + 1) 1 , 
q q(q3+2q-l)/2, (--q)q(q3+l)/2}. The submatrix A of E induced by the nonab- 
solute points is symmetric with zero diagonal and therefore the adjacency 
matrix of some graph F. An easy eigenvalue property (see [8, Theorem 1.3.3]) 
shows that F has the above spectrum; hence F is distance-regular. This gives 
the unitary nonisotropics graphs (from the Hermitian polarity). 

Other graphs for which Corollary 5.4 applies are distance-regular graphs 
with diameter 3 and girth 5, such as the Sylvester graph and the Perkel graph. 
We also find nonexistence results. For example {51, (1 + ~/~)20, (1 

_ ~/~)20, _315} is not the spectrum of a graph, since it belongs to an 
intersection array of a distance-regular graph with diameter 3 and girth 5 that 
does not exist (see Fon-Der-Flaass [6]). These last examples are also special 
cases of the following result of Brouwer and Haemers [3]. 

THEOREM 5.5. I f  F' has the spectrum of  a distance-regular graph with 
diameter d and girth g >i 2d  - 1, then F' is such a distance-regular graph. 
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Proof. The girth of a regular graph is determined by its spectrum (see 
[5]; but again, proving it is an easy exercise). So F' has girth at least 2d - 1. 
Now we easily have k' i = k~ = k(k - 1) i- 1 for i = 1 . . . . .  d - 1. Moreover 
bl, i = b~. ~ = 0 for i = 1 . . . . .  d - 2. Now Lemma 5.1 gives the result. • 

The last result shows for example that the Coxeter graph is characterized 
by its spectrum. 

We end with a remark about graphs for which distance-regularity is 
forced by the spectrum. If such a graph admits a switch partition, switching 
doesn't change the eigenvalues and we find another distance-regular graph. 
For strongly regular graphs a lot of examples are known, mostly from Seidel 
switching. There are also some examples for bipartite distance-regular graphs 
with diameter 3. These are incidence graphs of symmetric block designs, and 
there exist designs, for instance the recently discovered designs of Spence 
[14], with the required structure. Thus Spence finds many designs with the 
same parameters. 

Added in proof With a different expression for k 2 in terms of Y~, Van 
Dam and the author showed that a regular connected graph with four 
eigenvalues is distanee-regnlar if and only if for each vertex k z satisfies this 
expression. 

I thank A. E. Brouwer and E. Spence for many fruiOCul conversations 
about the subject of this paper and for their remarks on the manuscript. 
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