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Abstract

The generating functions of the autocorrelations of the interdeparture times in a stationary
M/G/1 system and in a stationary GI/M/1 system involve the probability generating functions of
the number of customers served in a busy period. The latter functions are only implicitly deter-
mined as solutions to some functional equations. Standard methods for the numerical inversion
of generating functions require the values of these functions at many complex arguments. A
recently discovered substitution method for contour integrals allows the numerical inversion
of implicitly determined generating functions without the numerical solution of the functional

equations.
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1 Introduction

The autocorrelations of interdeparture times are important for the analysis of queues in series or
more general networks. Burke [5] shows that the interdeparture times are independent and expo-
nentially distributed for stationary M/M/c systems. Reich [15] provides an alternate proof of these
results based on reversibility. These facts imply the product-form solution of the stationary joint
gueue-length distribution for queues in series and acyclic networks with Poisson arrival processes
and exponentially distributed service times. Finch [9] shows that successive interdeparture times
are in general not independent for M/G/1 systems, except when the service times have an exponen-
tial distribution. Jenkins [11] determines the 1- and 2-step autocorrelations for stationagyIM/E
systems. Daley [7] obtains the generating function (GF) of the autocorrelations of interdeparture
times for stationary M/G/1 systems. This GF is expressed in terms of the probability generating
function (PGF) of the distribution of the number of customers served in a busy period which is only
implicitly determined as a solution to a functional equation. Daley [7] also proves that the departure
process of a stationary GI/M/1 system is a renewal process if and only if the arrival process is a
Poisson process. Further, he derives implicit relations foktheep autocorrelations of interdepar-

ture times in stationary GI/M/1 systems. These relations readily lead with resultsafsTHIG] to

an expression for the GF of these autocorrelations which involves a function which is only implic-
itly determined as a solution to a functional equation. Pack [14] has found a general formula for the
k-step autocorrelation of interdeparture times for stationary M/D/1 systems. The autocorrelations
of M/D/1 systems seem to act as upper bounds for the autocorrelations of M/G/1 systems. This was
proved fork = 1 by Daley [7]. Hu [10] presents MacLaurin series for moments and covariances of
interdeparture times for a class of GI/G/1 systems with interarrival time distributions of which the
densities are regular at 0. However, these expansions may not converge for all values of the load
for which the system is stable and the paper does not indicate when this phenomenon occurs.

The aim of the present paper is to show that the transform results of Daley [7] are suitable for
numerical inversion. The numerical inversion of (probability) generating functions has been exten-
sively developed during the last decade, see, e.g., Abate & Whitt [1, 2]. A special case is formed by
generating functions that can only be characterized implicitly as solutions to functional equations.

Important examples are the PGFs of the distributions of the number of customers served during a



busy period in M/G/1 and GI/M/1 systems. Other quantities of interest can be expressed in terms of
these PGFs, for instance, the above mentioned GFs of the autocorrelations of interdeparture times.
Many algorithms for the numerical inversion of GFs require the values of the involved functions at
complex arguments. This means for generating functions which are only characterized implicitly
that the related functional equation has to be numerically solved at (many) complex arguments.
Abate & Whitt [3] discuss the solution of functional equations for complex arguments and pro-
vide conditions for iterative methods to converge. However, this approach is more involved than
the basic methods for numerical inversion, and the iterative solution of a functional equation is an
additional source of numerical inaccuracy. In Blanc [4] it is shown that alternative inversion for-
mulas can be obtained by simple substitutions in the contour integrals, and possibly an integration
by parts, and that upper bounds on the discretization error when applying the trapezoidal rule can
be obtained. In this paper it will be shown that this method allows the efficient computation of
autocorrelations of interdeparture times for stationary M/G/1 and GI/M/1 systems.

The organization of the rest of this paper is as follows. Section 2 provides a short summary of
a standard method for the numerical inversion of generating functions. Section 3 contains some
general properties of interdeparture times in stationary GI/G/1 systems and introduces some nota-
tions. In Section 4 we will present the derivation of an alternative contour integral for the numerical
inversion of the GF of the series of autocorrelations of the interdeparture times in stationary M/G/1
systems. Section 5 is devoted to a similar substitution, but for stationary GI/M/1 systems. The last

two sections contain several examples.

2 Numerical inversion of generating functions

The terms of a sequence of real numbggs; £ = 0,1,2,...} with |gx| < 1 for all £ can be
recovered from its generating function by means of a contour integral in the complex plane over a
circle around the origin with radius 0 < r < 1:

- 1 dz
k=0 z|=r

~ omi



The contour integral can be converted into an integral over a real interval by means of the substitu-

tion z = re™ and by some symmetry properties of the GF:(for r < 1,

1 @ - -
g = — | [cos(ku) RG(re™) + sin(ku) SG(re™)] du, k=0,1,2,...; (2)

mrk Jo

here,i = /—1 andRz (3z) denotes the real (imaginary) part of a complex numberhe case
k = 0is simple: g0 = G(0). Fork > 0, Abate & Whitt [2] describe the following method for
evaluating the above type of integrals with a prescribed accuracy ofge.sa@ypplication of the

trapezoidal rule with a step size of k to (2) yields

k—1
gw;;k[;{Gw+<—1>’“G<—r>}+Z(—WG(re““”ﬂ) c k=12 @

while the prescribed accuracy and an upper bound on the discretization error lead to the choice of
r= %/, k=1,2,...;toavoid roundoff problems, approximatéjyy-digit precision is required to

obtaine = 10~ accuracy.

3 Interdeparture times

Consider a stationary GI/G/1 system. The interarrival time distribution will be denotet by
with momentsa,,,, m = 1,2,..., and LST«(¢). The service time distribution will be denoted
by B(.), with momentsg,,, m = 1,2,..., and LSTS((). The load isp = (/a1 < 1. Let
the random variabld3,, denote the service time of thgh arriving customer after some tagged
customer 0k = 0,1,2,..., let the random variablel, denote the interarrival time between the
(k — 1)st and thecth arriving customers; = 1,2, .. .. Further, let the random variable, denote
the interdeparture time between tht& and the(k + 1)st departing customerg,= 0,1,2,.... The

aim of this paper is the study of tlkestep autocorrelations defined by

p{D} = [E{DxDo} — E*{Do}| [ 0*{Do}, k=1.2,.... (4)

For the ease of discussion we will assume that customers are served in the order of arrival (FCFS)
but the results hold for all work-conserving, nonpreemptive and nonanticipating service disciplines.

The kth interdeparture time is equal to the sum of a virtual idle pefio@vhich is only nonzero
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and equal to an actual idle period if th¢h customer leaves the system behind empty) and the

service time of th¢k + 1)st customer:
Dy=1Iy+ By, k=0,1,2,.... (5)

Clearly, I, and B, are independent. Sindg > 0 with probabilityw,, the stationary probability
that a customer meets an empty system upon arrival, the LST of the distribution of the stationary

interdeparture timé is related to the LST of the stationary distribution of an idle perias$
E{e P} = B(()[1 — wo + woE{e™*"}], R¢ > 0. (6)
Further, the LST of the stationary distribution of an idle periog related to the LST of the

stationary distribution of the FCFS waiting timi& as, cf. Cohen [6, Sect. 11.6.7],

o[l — E{e'}]
— B(Q)a(=C)’

From (6) and (7) it follows that the mean and the squared coefficient of vari@fiasf the station-

E{e=W) = i" RC=0;  wy=Pr{W =0} 7)

ary interdeparture time distribution are, cf. Marshall [13],
E{D} = a1, Cp = C5 +20C = 2p(1 = p) E{W}/ s ®)

here,C?% (C3%) denotes the squared coefficient of variation of the interarrival (service) time distribu-
tion. In the rest of this paper it is understood if the lgadhries that the mean interarrival tinng
varies with fixed shape of the interarrival time distribution and with fixed service time distribution.
Since E{W} | 0 asp | 0and by the heavy-traffic limitl — p)E{W} — 13,[C3 + C%], cf.

Kingman [12], it holds ifay < o0, B3 < oo, that
limCy =C3, limC% = C3. 9)
plO P11

The light traffic limit vanishes for D/G/1 systems while the heavy traffic limit vanishes for GI/D/1
systems which will give rise to diverging behavior of the autocorrelations of the interdeparture

times for these systems as we will see below. Daley [7] has proved thakifoo, G35 < oo,

00 . C2 _ 02
;Pk{D} = AQT,%D' (10)
=1

This sum has a lower bound ef% for all GI/G/1 systems with finite coefficients of variatioh, and

Cg. By (9), this sum vanishes in the light traffic limjt (| 0) except for D/G/1 systems for which
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Figure 1. Sum over interdeparture time autocorrelations fdrgvl (I.) andI'y/M/1 systems (r.).

this sum is equal te-1 for all p. The heavy traffic limit ¢ 1 1) has the finite valug [C% — C%]/C3
except for GI/D/1 systems.

Figure 1 shows the sum over all autocorrelations of the interdeparture timeslfefMandl",/M/1
systems as a function pffor gammaly distributions with various values of the shape parameter
V¥, including the limiting cases of M/D/1 and D/M/1 systemis {~ o0). For D/M/1 systems this
sum is constant and equalﬂ% for all p. The heavy traffic limits{ T 1) of these sums are all finite
except that of the M/D/1 system.

Next, consider the 1-step autocorrelation of the interdeparture times. Repeated use of (5) yields
E{D\Dy} = E{I, Dy} + E{ByDy} = E{I,Iy} + E{I, B,} + S1E{Dy}. (11)

If I, > 0 then the waiting timél/; of customer 1 is zero anfl = [Ay — B1]* is independent of

the length of the idle period,. Hence, with (7) it follows that
E{L 1o} = woE{Io}E{[As — B\]"} = (a1 — B1) E{[A> — Bi]"}.
Further, it holds by a standard relation for GI/G/1 systems that
E{I,B,} = E{By[A; — W, — By]*}.
From the above it follows with (8) that
E{D1Do} = (a1 — B1)E{[A2 — Bi|"} + E{B1[As — Wi — Bi]"} + frau, (12)
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with Ay, B; and¥/; mutually independent random variables so that

EﬂAg—Bﬂﬂc:AWXf@wa¢MWdBWL (13)
E{Bi[As — W\ — BJ]*} = /Ooo /OOO“/:S(“ Cu—s)dA@W) dBu)dW(s);  (14)

here,IW(s) denotes the stationary FCFS waiting time distribution. These relations allow the deter-
mination of 5;{ D} in many cases without series expansions as in Hu [10]. We only mention here

that if the interarrival time distribution is a mixture of exponential distributions,

H H

Aw) =Y r[1=e], v20, alQ) =)

=1 j=1

i\
C+ A

then straightforward manipulations lead from (12) with (13) and (14) to

H
with er =1; (15)
j=1

H .. H ..
E{D1Do} = Bras + (o1 — 1) > f\*j BN = ;%] BN\ E{e MW}, (16)
=17 =17\

provided all);, j = 1,..., H, are distinct (note that not aftl; are required to be positive fot(v)
to represent a distribution). The LST of the stationary FCFS waiting time distribution is in this case
given by, cf. Cohen [6, Sect. 11.5.11]:
- M)
E e,CW _ (al 61)g 1 J J :
= 5000 c-n o)
with ¢;, j = 2,...,H, the H — 1 zeros in the right half-plan&( > 0 of the denominator

RC >0, a7

1 — B(¢)a(—¢). From (16) and (17) the autocorrelation of two consecutive interdeparture times

becomes

1 H X8 (N;) H ¢n—}j
—1 LI 5 [BOV) — R S T, 2%
C3 +2p*C% —2p(1 — p) E{W}/ 5

If two or more rates\; coincide (in the sense that the LS1¢) has a higher order pole at)))

p{D} = (1 - p) (18)

the evaluation of (13) and (14) proceeds somewhat differently. For instance, in thél case,
A1 = Ay = A, we find that
1 AMg2=A) [B”(N) _ [BN]? B'(\)
“14+ () = (A= )V + 2 B8 - BRF] - aIN  (q9)
Ch +2p2CE —2p(1 — p) E{W}/

Similarly, it is possible to evaluate (13) and (14) if the service time distribution is a mixture of

p{D} = (1-p)

exponential or Erlang distributions. In principle, it is possible to determjid}, k = 2,3,. . .,
by repeated application of the waiting time recursion and evaluati¢®tof 1)-fold integrals like

(14) but the expressions become very complicated.
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4 The M/G/1 system

Consider an M/G/1 system with arrival rate The distribution of the number of customers served

in a busy period/, satisfies the following functional equation:
B{z"y =v(2), wv(2)=2B(\1—v(2)])), |z|<1. (20)
Clearly,Pr{J =0} = v(0) = 0 andv(1) = 1. Differentiation of this functional equation yields
V() = BAL — v(2)]) = A/ () (AL = v(2)]), |2] < 1. (21)

Daley [7] has derived a relation for the GF of the series of covariances of successive interdeparture
times in stationary M/G/1 systems. Since (8) implies with the well-known formula for the M/G/1
mean waiting time that'? = 1+ p*[C% — 1], it follows that the GF of the series of autocorrelations

is given by

S e 1 1—0p v(iz) —z  z2v(2) —v(2)
2 S T e T (1w T v |

<1 (22)

The factorl /(1 — z) represents a convolution with a series consisting of all ones. Hende stie@
autocorrelation of the interdeparture times can be written as

1—p k

A, E=1,2,... 23

1+p2[0%_1]z YR 9 Y Y ( )

J=1

pe{D} =
where the quantitiea,, £ = 1,2, .. ., are given by the contour integrals, cf. (1),

1 j{zr [I/(z) —z () —v(E)] dz Lo o

" om 1—v(2) v(2)V(z) | 2kt

To avoid the computation of the PGKz) at the valuese™™/™ by iterative solution of (20) when
approximating the above integral by the trapezoidal rule, cf. (3), we substituter(z) in the
contour integral as in Blanc [4]. Sineé(0) = B(\) > 0, cf. (21), this mapping has an inverse in
a neighborhood of the origin. Moreover, it follows from (20) that this inverse is explicitly given by

z = w/B(A[1 — w]). Further, it follows from (21) that under this mapping
F2(A[L —w))
BAL = w]) + Aws' (A[L = w])’
Hence, this substitution leads after some rearrangements to the representation, ffaz, . . .,
17{ [Q(A[l—w]) -1 MG (A[1—w]) A (A[l—w)]) | dw
|w|=r

T 2mi 1—w BOL—w]) BI—w]) | w*
(25)

V(z) =

|0 1+



The image of a circléz| = r under the mapping = v(z) is not a circle but a contour with the
origin in its interior. Since the integrand in theplane has no singularities fw < 1 other than

w = 0 this contour can be replaced by a cirgleé = r by Cauchy’s Theorem. Observe that the first
factor of the integrand in (25) vanishes for M/M/1 systems, in agreement with the result of Burke
[B]thatp.{D} =0,k = 1,2, ..., for this system. Fok = 1 the integrand has a first order pole at

w = 0 so that the contour integral is simply evaluated. Hence, the 1-step autocorrelation follows
with (23) as (the cas& = 1 of (18)):

BOY — 1= AT /60

(26)

This autocorrelation vanishes as| 0 (A | 0) wherep, {D} ~ 1p%[1 — C%]. It also vanishes
asp 1 1 except in the case of the M/D/1 system when it tendgdo" ~ 0.1839; the latter is
a consequence of a factor— p in the denominator whef's = 0. With some more effort the
following expression for the 2-step autocorrelation is derived from (25) and (23):

BB = AFN)] = 1+ A0"(N) = AT (V[ + AT N)]/BA)

(27)

This autocorrelation vanishes ag 0 wherep,{D} ~ p*[(5./3) — 5(8s/5})]. It also vanishes as

p 1 1 except for the M/D/1 system when it tendset@® ~ 0.1353.

For higher values of: the exact formulas fop,{ D} become more and more complex. Then, it
becomes more efficient to evaluate the contour integrals (25) numerically, for instance, with the aid
of the trapezoidal rule. This rule could be directly applied to (25), but for an error analysis, and an
appropriate choice of the parameteit is more convenient to apply first an integration by parts as
discussed in Blanc [4]. We will deal with the two terms of the first factor of the integrand in (25)

separately. That is, we writd, = A" + A®) and obtain, fort = 2,3, . . ,

oo [LBOL )] ey
Ar = 2mi(k — 1) j{uﬂ—r [ p(1 —w) ] ARG Dwk—l’ (28)
and
o___ P —BOL =] gt gy oy 4
A= 2mi(k — 1) fmr [ﬁlﬁ()\[l — w])] Zaolt ])wk—l' (29)

Note thatA(") = B()\) — 1 < 0 andAPP = —AF'(\)/B(\) > 0, cf. (25), do not possess such

representations. Fdr= 2 the above integrals are simply evaluated as

AV = BV - B FAFWN)], AP = N7\ — {8 (N80,



leading with (23) again to (27). Fdr= 3,4, .. ., the functions*~!(\[1 — w]) in the integrands of

(28) and (29) is a PGF. Also, the function of which the derivative appears in the integraﬂﬂ of

is a PGF, namely, of the distribution of the number of Poisson arrivals during a residual service
time, which has a mean (%f)\Qﬂg/p. Because the derivative of a PGF divided by the mean of the

corresponding distribution is again a PGF it follows that

—%??<A?<O,k:2&”“ (30)
Moreover, the following upper bound on the discretization eef;ﬁr(k:) when applying the trape-
zoidal rule as in (3) to (28) — but with a step sizemof(k — 2) sincel/w"~! plays the role of
1/2**1 — is obtained as explained in Blanc [4] and based on earlier derivations in Abate & Whitt

[1, 2]

%)\262 T2(k_2)
k—11—r2k-2’
Since the LST3(() is completely monotonic the integrands in (29) are nonnegative foureefl
Widder [17, Sect. IV.16]. Observe thAlff) =0,k=2,3,...,for M/D/1 systems. For systems such

as MI'y/1 and M/PH/1 systems for which5'(() /{51 5(¢)} represents the LST of a distribution,

el (k)| < k=23, .. (31)

with meanC%3,, we have
0< AP < p2C%, k=23,..., (32)

and the following upper bound on the discretization eﬁﬁﬁ}(k’) when applying the trapezoidal
rule with step sizer/(k — 2) to (28):

p2C% r2(k—2)
k—11— 262"

1P (k) < k=2,3,.... (33)

Fork = 3,4, ..., the upper bounds on the discretization errors can be used to choose the parameter
r such that a desired accuracy is achieved. In comparison with other application as discussed in
Blanc [4], additional round-off errors are possible for larger values dfie to the summation in

(23) of terms with differing signs. Possible inaccuracies can be detected by comparison of partial
sums of the series of autocorrelation with the total sum (10). We did not encounter such round-
off errors in our numerical experiments with 16-digit precision, with autocorrelations which are in
absolute value larger thai 2, cf. Section 2, and with values &fup to 100.

Figure 2 shows the 1- and 2-step autocorrelations of interdeparture times for stationarmii M/

systems as a function gffor various values of the shape paramelteincluding the limiting case
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Figure 2: The 1- and 2-step autocorrelations of the interdeparture times Fo/Mgystems.

of an M/D/1 system{ — oco). The paper by Jenkins [11] contains similar figures but only with
autocorrelations for integer values f The autocorrelations turn out to be positive for> 1

(C% < 1) and negative fo < 1 (C% > 1). Numerical experiments confirm this phenomenon

for k-step autocorrelations with higher valueskofThey also confirm that these autocorrelations

for M/G/1 systems have as upper bounds the autocorrelations for M/D/1 systems as found by Pack

[14]:
e~ ke kz_:lk—i(kp)i_l—p
l+p iz k d I+p

p{D} = o k=1,2,.... (34)

Whereas the dependencemf D} on V¥ for p andk fixed is monotone folr > 1 it clearly is not
monotone forr < 1. This can also be seen from the heavy-traffic asymptogg{aD} for M/T'y/1

systems which is readily found from (26) as:

tI/)“I’ 1

], pT1L (35)

The slope of the autocorrelation near 1 tends to—oco as¥ — oo where it approximates the
singular behavior of the M/D/1 system. This slope has a maximum of aboti at U ~ 0.48; it
tendsto O asr | 0 and as¥ 7 1. This and many stated results below have been determined by
standard numerical maximization (minimization) procedures executed with several starting values
to avoid the risk of local extrema.

In the casel = 2, p1{D} has a minimum of-0.0173 at p ~ 0.4673 andp>{ D} has a minimum

1
2

of —0.0147 atp ~ 0.5294. In the casel = 4, p1{ D} has a minimum 0f-0.0235 at p ~ 0.2583
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andp,{ D} has a minimum of-0.0244 atp ~ 0.3031. The locations of the minima move to lower
values ofp as ¥ decreases. The values of the minima tend to O botfr &s 1 and as¥V | 0.
The 1-step autocorrelation has an overall minimum in the class bf,M/systems of-0.02455
atp ~ 0.3189 for ¥ ~ 0.1948. The 2-step autocorrelation has a slightly larger overall minimum
in this class of—0.02452 at p ~ 0.3223 for ¥ ~ 0.1422. These findings are in contradiction
with Daley [7, p. 1019] who states that it is possible to choose the service time distribution so that
p1{D} is arbitrarily close to-1, for instance, through By distribution with ¥ sufficiently small
(this assertion is repeated in Daley [8, p. 405] without reference to any type of distribution). Also
note that the sum over all autocorrelations, cf. (10), tendséidf C% — oo in M/G/1 systems.
For the case of an MAZL systems with a 2-phase Cox €ervice time distribution with transition
ratesu; andu, and LST

B(C) = o fb2 ‘f('ui(ilg(lljz . ?)1#1#2)7 RC >0, (36)

with squared coefficient of variation and restrictions on the parameter values

1 1 1 1 1
Ct=1-2 —1 1], —<B/h<—4— 37
B <51/£1 ) <ﬁ1,u2 ) M1 b < B 2 (37)
the numerator of the 1-step autocorrelation (26) becomes
! 1 1— CQ 2,,2,,2134

B (B + p)(p2Br + p)[pap2Bi (1 — p) + plpn + p2) Bi]
Hence, also for M/@'1 systems the 1-step autocorrelatigd D} is positive for allp if C% < 1
and negative for alp if C% > 1. Moreover,p;{D} has an overall minimum in the class of M/C
systems of-0.03083 at p ~ 0.3443 for y; — oo andu, ~ 0.3562 (C3 ~ 4.615).
However, the foregoing examples are misleading in the sense that there exist service time distribu-
tions for which the autocorrelationg{ D} do not have the same sign for &llk = 1,2,..., and
for which it can occur thap,{ D} does not have a fixed sign for all 0 < p < 1, for a givenk.
Examples can be found in the class of M/G/1 systems @h= 1. This is not surprising since the
sum over all autocorrelations (10) vanishes forpeibr all M/G/1 systems withC% = 1. Consider,
for instance, distributions which are mixtures of two Erlangdistributions. These distributions
(indicated by ME) have LST

B q l—gq
T g o o 20 =
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Figure 3: The 1- and 2-step autocorrelations of the interdeparture times for MiMstems.
and moments
Oi =g +(1—q)ds,  Fa=13g07 + (1 —q)d3), 05 =3[gd) + (1 —q)5].  (40)

Fixing 8, = 1 andC% = 1 leaves one free parameter. For the c@se- 2 (03 ~ 5.956), see the
left graphs in Figure 3, we find that { D} is negative for) < p < 0.198, with a minimum of
—7.5 x 1075 at p ~ 0.142, and positive fo10.198 < p < 1, with a maximum ofl.1 x 103 at
p ~ 0.760; and we find thap,{ D} is positive for0 < p < 0.084, with a maximum of.4 x 10~" at
p =~ 0.061, is negative fon.084 < p < 0.920, with a minimum of—4.6 x 10~* atp ~ 0.553, and is
again positive fo.920 < p < 1, with a maximum ofl.7 x 1075 atp ~ 0.962. Also, for fixed load
p the autocorrelationg,{ D} may have multiple sign changes as functiontofin the foregoing
example, withp = 0.7, pp{D} is negative fork = 2,... 11, with a minimum of—4.0 x 10~ at
k = 3, and is positive fok = 1 and fork > 12, where there is a maximum f8 x 1075 atk = 20.
For other values af; (/35) quite different behavior may occur; see, for instance, the right graphs in
Figure 3, which concern the case= 3 (0; ~ 5.833).

Table 1 contains results of computations based on (28) and (29) foy/Msystems with a load of
p = 0.9. For¥ > 1, the autocorrelationg,{ D} are monotonically decreasing with However,
they are not monotonically decreasing within all cases forl < 1. For instancegs,{D} is
minimal atk = 2 for ¥ = % and atk = 5 for ¥ = é whenp = 0.9. Further, it turns out that the

individual values of 5, { D}| are not so large, in general, but that these values fade away slowly as
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Table 1: Autocorrelations for M/G/1 systems with loaé- 0.9.

M/D/L  M/Es/l  M/Ey/l  MIT, /1 MIT, /1
p{D} | 0.16135 0.08075 0.01619—0.00447 —0.00182
ps{D} | 0.06528 0.03547 0.00865—0.00373 —0.00274
p{D} | 0.04070 0.02249 0.00573—0.00277 —0.00254
proo{D} | 0.00395 0.00238 0.00074—0.00053 —0.00085

10 5D} | 1.79239 0.99629 0.25858—0.13401 —0.14886

S D} | 2.13158 1.21674 0.34034-0.22376 —0.42504

k — oo, the more so whel'%, is larger. For¥ = 1, the sum over the first 100 autocorrelations

1
gy
only amounts abOLg of the total sum of the series. The decay factor of this series is equal to that

of the distribution of/, cf. (22), which implies that for M/ /1 systemsy # 1):

. U1
D U+1
lim p’jL{} _ l?”] , (41)
k—oo pk{D} g + P

which is close to 1 for alb whenU is small. This decay factor is equalte'~* for M/D/1 systems.

Similar observations as for M,/1 systems can be made for M systems.

5 The GI/M/1 system

Consider an GI/M/1 system with service rateThe distribution of the number of customers served
in a busy period/, is determined via the following functional equation:

B} = 255, w9 =zl —x@)D, <1 @2)
For stationary GI/M/1 systems, Daley [7] expressesittstep autocorrelation of the interdeparture
times in terms of the transient conditional mean waiting time ofkttle customer given that cus-
tomer O found the system empty. The GF of the latter series can be obtained from the GF of the
Laplace-Stieltjes transforms of the conditional distributions of these waiting times givenacsak
[16, Sect. 1.5]. Combination of these results readily leads to the following relation for the GF of

the series of autocorrelations of successive interdeparture times in stationary GI/M/1 systems:

o~ - _p(l—=wy—p) x(2) '
kz::l/)k{D}z’f = mw0cE T 2] < 1; (43)
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here,w, denotes the stationary probability that an arriving customer does not have to wait. This
probability is implicitly determined as the unique solutionlof wy, = «(pwy) on the interval
(0,1). Note thatwy, = 1 — p for M/M/1 systems so that it is clear that all autocorrelations vanish
for this system. For GI/M/1 systems, we haki¢V'}/3; = (1 — wy)/wo in (8). Hence, inversion

of the GF in (43) implies that

A pr 1—w0—p _
by= Sp k=1,2,... 44
pk{ } 1—w0 ’woc%—Qp(l_p_wO) k> , &, s ( )
with
=k T o PN k=12 .... 45
F 271 fz|:r1—x<z) zk+1’ ) 4y ( )

As Daley [7] already noted, the quantities, £ = 1,2,. .., are positive so that the sign pf{D}

is solely determined by the factér— w, — p. This also implies that the autocorrelatiofg D}
have the same sign for all k = 1,2, ..., for a fixedp. If the interarrival time distribution is such
that there exists a value pfsuch thatu, = 1 — p then all autocorrelations vanish at this value of
p. An example for which the latter occurs is a mixture of two Erlanglistributions, cf. (39), with
C3 =1andaz/a} ~ 5.833.

Sincex(1) < 1,in fact, x(1) = 1 — wo, we apply the substitutiom = x(z)/x(1), with inverse

z =wx(1)/a(p[l —wx(1)]). This gives, fork = 1,2, ...,

= = X et —wx(WD]" ], | poxDa’(plt —wx(1))] dw
foo i [ P ) @

T omi
As in the case of the M/G/1 system, the image of the cifele= r has been replaced by the

circle |lw| = r. In the present case, an integration by parts as discussed in Blanc [4] leads to a

simplification:
= _ ! XM el —wxD]" dw
= 2k Jjwi=r [1— wx(1)]2 O o k=12 (47)
Fork = 1 we simply haveE; = a(u), so that, cf. (44),
. w 1—p—w
p{D} = " a(p) — (48)

1 —wp woC% — 2p(1 — p —wp)”

This autocorrelation vanishes as? 1 wherep{D} ~ (1 — p)a(u)[C% — 1]/[C% + 1] since
wy ~ 2(1 — p)/[C? + 1]. The behavior of this autocorrelation as| 0 depends on the shape of
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the interarrival time distribution. Fdry/M/1 systems it holds that — wy ~ (¥p)¥ asp | 0. This

implies that
p{D} ~ (Up)" Tt if U <1, p{D}~—-Vp* if U >1, p|0.

For the D/M/1 system we have by repeated applicatioh-efw, = a(uw,) = e~%0/?:

wpe /P
2(1 — wo)

,e*wo/p/p

ﬁl{D} ==

Note that this autocorrelation tends-+d asp | 0 sincew, — 1 ande~'/#/p — 0. This result can

be intuitively explained as follows. When the (mean) interarrival time is much larger than the mean
service time there will be hardly any customer who has to wait before service and the interdeparture
time is approximately equal t0;, ~ Ay + Bry1 — B, kK = 0,1,2,.... The latter implies that
p{D} =~ —p*C%/[C3 + 2p*C%] asp | 0 and this means that {D} ~ —1 asp | 0 for D/G/1
systems. This reasoning also explains whylfe/M/1 systems, { D} ~ —Wp* asp | 0if ¥ > 1,

but it fails for & < 1 (C% > 1): when the variance of the interarrival times is high, waiting times
cannot be ignored in light traffic. The foregoing argument predictsgh@d} — 0, £ = 2,3,.. .,

asp | 0 for D/G/1 systems.

For k = 2 it readily follows from (44) and (47) that

pwo / L—p—wp
T [a(p) — pa(p)]e(p) o sy —" (49)

p2A{D} =

The factora(u) — po/(p) is positive. It behaves likél + W) (Wp)¥ asp | 0 for I'y/M/1 systems.

It behaves like==1/7/p asp | 0 for D/IM/1 systems which shows that{D} — 0 asp | 0 for this
system as predicted above.

For general values df the contour integrals (47) can again be evaluated numerically with the aid

of the trapezoidal rule. In fact, it follows with (42) that
Ep=pPr{J >k}, k=1,2,.... (50)

Hence, the upper bound on the discretization ef0k) when the trapezoidal rule with step size

7/(k — 1) is applied to (47) is the same as thatfar{ J > k} as derived in Blanc [4]:

k=23,.... (51)
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Figure 4: The 1- and 2-step autocorrelations of the interdeparture timég fgv1 systems.

Figure 4 shows the 1- and 2-step autocorrelations of interdeparture times for stafiguisiAL
systems as a function pffor various values of the shape paramdtemcluding the limiting case of

a D/M/1 system{ — o). In contrast with the M/ /1 systems, cf. Figure 2, the autocorrelations
are negative fow > 1 (C% < 1) and positive folr < 1 (C% > 1). Numerical experiments confirm

this phenomenon fok-step autocorrelations with higher valuesiof

In the casel = 1, p;{D} has a maximum 00.0316 at p ~ 0.5942 andp,{D} has a maximum

of 0.0213 atp ~ 0.6467. In the casel = ¢, 51 {D} has a maximum 06.0345 at p ~ 0.7445 and
p2{ D} has a maximum di.0283 atp ~ 0.7585. The locations of the maxima move to higher values

of p asV¥ decreases. The values of the maxima tend to 0 both &4 and as¥V | 0. The overall
maximum ofp,{ D} in the class of"y/M/1 systems i$).04006 atp ~ 0.6709 for ¥ ~ 0.2538. The
overall maximum of.{ D} in this class i€).03044 at p ~ 0.7168 for ¥ ~ 0.2077.

In the casel = 2, p;{D} has a minimum of-0.0568 atp ~ 0.4454 andp.{D} has a minimum of
—0.0287 atp ~ 0.5629. In the casel = 8, p;{D} has a minimum of-0.2123 atp ~ 0.3329 and
p2{ D} has a minimum of-0.0777 atp ~ 0.5194. In the limiting case of a D/M/1 system; {D}

has a minimum of-3 at p = 0 which is at the same time the overall minimum for this class of
systems, and,{ D} has a minimum of-0.1078 atp ~ 0.4958 which is again the overall minimum

for this class of systems. The influence of the variance of the interarrival time distribution on the
autocorrelations is in most cases opposite to and stronger than that of the service time distribution.

The latter property is confirmed by the 1-step autocorrelation of §#ie,A system, which can be
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Table 2: Autocorrelations for GI/M/1 systems with loaé- 0.9.

DIM/1  EJdM/I1  Ey/M/1 T,,/MI1 T,,/M/1

pm{D} | —0.03939 —0.03173 —0.01458 0.01547 0.02782
ps{D} | —0.01576 —0.01286 —0.00612 0.00730 0.01661
pro{D} | —0.00977 —0.00804 —0.00392 0.00489 0.01204
proo{D} | —0.00090 —0.00081 —0.00048 0.00085 0.00293
S0 pr{DY | —0.42652 —0.35688 —0.17987 0.23991 0.63703
% p{D} | —0.50000 —0.42934 —0.23237 0.38385 1.58530

derived from (19) as

(1—p)p* (L=p)? =4p+ (1+p)\/(1+p)* +4p

(L0 342932 — (1—p)\/(L+p)2+4p

This correlation is negative for al < 1; in particular,p,{D} ~ —p? asp | 0 andp,;{D} ~

ﬁl{D} ==

—(1—p)i(v/2—1) asp 1 1. It has a minimum of-0.0226 atp ~ 0.4477, larger than the minimum
of p1{D} for the E/M/1 system.

Table 2 contains some results 10g/M/1 systems computed with a valuerofuch that an accuracy
of about10~® is achieved. The numerical results confirm the statement of Daley [7]ih@D}|
decreases monotonically to O/as- oo for GI/M/1 systems. Note again the slow decay@f D}|
ask — oo. The decay factor follows by solving'(z) = 0, cf. (43), (42), forl'y/M/1 systems
(F#£1)as

~ w+1
i PeriD} 1 [/HP‘I’] , (52)

k=oo p{D}  p [T+ p¥

which is again close to 1 for a} when ¥ is small. This decay factor is equal &&~/7/p for
D/M/1 systems.
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Table 3: Autocorrelations for GI/M/1 systems with loaé- 0.8.

y DIM/1  EJdM/I1  Ey/M/1 T,,/MI1 T,,/M/1
p{D} | —0.08463 —0.06625 —0.02831 0.02492 0.03392
ps{D} | —0.02664 —0.02155 —0.00995 0.01057 0.01938
pro{D} | —0.01338 —0.01114 —0.00546 0.00645 0.01345
proo{D} | —0.00011 —0.00013 —0.00013 0.00044 0.00214

S0 pe{D} | —0.49708 —0.41512 —0.20772 0.26583 0.63347

S pe{D} | —0.50000 —0.41899 —0.21262 0.29448 0.92647

For the case of gamma distributed service times with shape paraingierautocorrelation can be

\I] Y _ 1 + ﬂ
v+p v +p
Examples: M/E/1 and MI", ,/1:

) 2= p)p? . _ (A=plttp—v1+29
pl{D}_(z—pQ)(2+p)2’ piib} =~ (1+2p)(1+p%)

further specified as (Jenkins [11] for intege):

(1-p)¥
U+ p2(1— W)

ﬁl{D} =

Eo/M/1:
ﬁ{D}:_p2[1—4p2+\/1+8p]
! (1+2p+202)(1 + 2p)?
M/D/1:
. elr—=14+p e?—=14p
D} =(1- = :
R (I+pe?>—-14p _ 1—p
p2{D} = (1-p) 1= 2 ZGQP—H-
1+2p+3p*)e ™ —1+ 14+2p+32 1—
ﬁ3{D}:(1—P)< F ip >62 £ - 13_ 2'0 e - 1_|_p'
—p P P
/34{D}:(1_p)(1+3p+4p2+§p3)6_4p—1+p:1+3p—|—4p2+§p36_4p_1—p‘
1—p? 1+p I+p

Optimization ofp,{ D} for M/C,/1: three variables ofD), 1): p, 1/ andpy o/ (g1 + po).

9 N BAL = w))B" (AL = w]) — [F'AL —w])*| iy dw
S = st 1 o | ) P
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