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Abstract

The generating functions of the autocorrelations of the interdeparture times in a stationary

M/G/1 system and in a stationary GI/M/1 system involve the probability generating functions of

the number of customers served in a busy period. The latter functions are only implicitly deter-

mined as solutions to some functional equations. Standard methods for the numerical inversion

of generating functions require the values of these functions at many complex arguments. A

recently discovered substitution method for contour integrals allows the numerical inversion

of implicitly determined generating functions without the numerical solution of the functional

equations.
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1 Introduction

The autocorrelations of interdeparture times are important for the analysis of queues in series or

more general networks. Burke [5] shows that the interdeparture times are independent and expo-

nentially distributed for stationary M/M/c systems. Reich [15] provides an alternate proof of these

results based on reversibility. These facts imply the product-form solution of the stationary joint

queue-length distribution for queues in series and acyclic networks with Poisson arrival processes

and exponentially distributed service times. Finch [9] shows that successive interdeparture times

are in general not independent for M/G/1 systems, except when the service times have an exponen-

tial distribution. Jenkins [11] determines the 1- and 2-step autocorrelations for stationary M/EΨ/1

systems. Daley [7] obtains the generating function (GF) of the autocorrelations of interdeparture

times for stationary M/G/1 systems. This GF is expressed in terms of the probability generating

function (PGF) of the distribution of the number of customers served in a busy period which is only

implicitly determined as a solution to a functional equation. Daley [7] also proves that the departure

process of a stationary GI/M/1 system is a renewal process if and only if the arrival process is a

Poisson process. Further, he derives implicit relations for thek-step autocorrelations of interdepar-

ture times in stationary GI/M/1 systems. These relations readily lead with results of Takács [16] to

an expression for the GF of these autocorrelations which involves a function which is only implic-

itly determined as a solution to a functional equation. Pack [14] has found a general formula for the

k-step autocorrelation of interdeparture times for stationary M/D/1 systems. The autocorrelations

of M/D/1 systems seem to act as upper bounds for the autocorrelations of M/G/1 systems. This was

proved fork = 1 by Daley [7]. Hu [10] presents MacLaurin series for moments and covariances of

interdeparture times for a class of GI/G/1 systems with interarrival time distributions of which the

densities are regular at 0. However, these expansions may not converge for all values of the load

for which the system is stable and the paper does not indicate when this phenomenon occurs.

The aim of the present paper is to show that the transform results of Daley [7] are suitable for

numerical inversion. The numerical inversion of (probability) generating functions has been exten-

sively developed during the last decade, see, e.g., Abate & Whitt [1, 2]. A special case is formed by

generating functions that can only be characterized implicitly as solutions to functional equations.

Important examples are the PGFs of the distributions of the number of customers served during a
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busy period in M/G/1 and GI/M/1 systems. Other quantities of interest can be expressed in terms of

these PGFs, for instance, the above mentioned GFs of the autocorrelations of interdeparture times.

Many algorithms for the numerical inversion of GFs require the values of the involved functions at

complex arguments. This means for generating functions which are only characterized implicitly

that the related functional equation has to be numerically solved at (many) complex arguments.

Abate & Whitt [3] discuss the solution of functional equations for complex arguments and pro-

vide conditions for iterative methods to converge. However, this approach is more involved than

the basic methods for numerical inversion, and the iterative solution of a functional equation is an

additional source of numerical inaccuracy. In Blanc [4] it is shown that alternative inversion for-

mulas can be obtained by simple substitutions in the contour integrals, and possibly an integration

by parts, and that upper bounds on the discretization error when applying the trapezoidal rule can

be obtained. In this paper it will be shown that this method allows the efficient computation of

autocorrelations of interdeparture times for stationary M/G/1 and GI/M/1 systems.

The organization of the rest of this paper is as follows. Section 2 provides a short summary of

a standard method for the numerical inversion of generating functions. Section 3 contains some

general properties of interdeparture times in stationary GI/G/1 systems and introduces some nota-

tions. In Section 4 we will present the derivation of an alternative contour integral for the numerical

inversion of the GF of the series of autocorrelations of the interdeparture times in stationary M/G/1

systems. Section 5 is devoted to a similar substitution, but for stationary GI/M/1 systems. The last

two sections contain several examples.

2 Numerical inversion of generating functions

The terms of a sequence of real numbers{gk; k = 0, 1, 2, . . .} with |gk| ≤ 1 for all k can be

recovered from its generating function by means of a contour integral in the complex plane over a

circle around the origin with radiusr, 0 < r < 1:

G(z)
.
=

∞∑

k=0

gkz
k, |z| < 1, gk =

1

2πi

∮

|z|=r
G(z)

dz

zk+1
, k = 0, 1, 2, . . . . (1)
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The contour integral can be converted into an integral over a real interval by means of the substitu-

tion z = reiu and by some symmetry properties of the GF: for0 < r < 1,

gk =
1

πrk

∫ π

0
[cos(ku) <G(reiu) + sin(ku) =G(reiu)] du, k = 0, 1, 2, . . . ; (2)

here,i =
√−1 and<z (=z) denotes the real (imaginary) part of a complex numberz. The case

k = 0 is simple: g0 = G(0). For k > 0, Abate & Whitt [2] describe the following method for

evaluating the above type of integrals with a prescribed accuracy of, say,ε. Application of the

trapezoidal rule with a step size ofπ/k to (2) yields

gk ≈ 1

krk


1

2
{G(r) + (−1)kG(−r)}+

k−1∑

j=1

(−1)j<G(reijπ/k)


 , k = 1, 2, . . . , (3)

while the prescribed accuracy and an upper bound on the discretization error lead to the choice of

r = 2k
√

ε, k = 1, 2, . . .; to avoid roundoff problems, approximately3
2
γ-digit precision is required to

obtainε = 10−γ accuracy.

3 Interdeparture times

Consider a stationary GI/G/1 system. The interarrival time distribution will be denoted byA(.),

with momentsαm, m = 1, 2, . . ., and LSTα(ζ). The service time distribution will be denoted

by B(.), with momentsβm, m = 1, 2, . . ., and LSTβ(ζ). The load isρ = β1/α1 < 1. Let

the random variableBk denote the service time of thekth arriving customer after some tagged

customer 0,k = 0, 1, 2, . . ., let the random variableAk denote the interarrival time between the

(k − 1)st and thekth arriving customers,k = 1, 2, . . .. Further, let the random variableDk denote

the interdeparture time between thekth and the(k + 1)st departing customers,k = 0, 1, 2, . . .. The

aim of this paper is the study of thek-step autocorrelations defined by

ρ̂k{D} .
=

[
E{DkD0} − E2{D0}

] /
σ2{D0}, k = 1, 2, . . . . (4)

For the ease of discussion we will assume that customers are served in the order of arrival (FCFS)

but the results hold for all work-conserving, nonpreemptive and nonanticipating service disciplines.

Thekth interdeparture time is equal to the sum of a virtual idle periodĨk (which is only nonzero
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and equal to an actual idle period if thekth customer leaves the system behind empty) and the

service time of the(k + 1)st customer:

Dk = Ĩk + Bk+1, k = 0, 1, 2, . . . . (5)

Clearly, Ĩk andBk+1 are independent. SincẽIk > 0 with probabilityw0, the stationary probability

that a customer meets an empty system upon arrival, the LST of the distribution of the stationary

interdeparture timeD is related to the LST of the stationary distribution of an idle periodI as

E{e−ζD} = β(ζ)[1− w0 + w0E{e−ζI}], <ζ ≥ 0. (6)

Further, the LST of the stationary distribution of an idle periodI is related to the LST of the

stationary distribution of the FCFS waiting timeW as, cf. Cohen [6, Sect. II.6.7],

E{e−ζW} =
w0[1− E{eζI}]
1− β(ζ)α(−ζ)

, <ζ = 0; w0
.
= Pr{W = 0}. (7)

From (6) and (7) it follows that the mean and the squared coefficient of variationC2
D of the station-

ary interdeparture time distribution are, cf. Marshall [13],

E{D} = α1, C2
D = C2

A + 2ρ2C2
B − 2ρ(1− ρ)E{W}/β1; (8)

here,C2
A (C2

B) denotes the squared coefficient of variation of the interarrival (service) time distribu-

tion. In the rest of this paper it is understood if the loadρ varies that the mean interarrival timeα1

varies with fixed shape of the interarrival time distribution and with fixed service time distribution.

SinceE{W} ↓ 0 asρ ↓ 0 and by the heavy-traffic limit(1 − ρ)E{W} → 1
2
β1[C

2
A + C2

B], cf.

Kingman [12], it holds ifα2 < ∞, β3 < ∞, that

lim
ρ↓0

C2
D = C2

A, lim
ρ↑1

C2
D = C2

B. (9)

The light traffic limit vanishes for D/G/1 systems while the heavy traffic limit vanishes for GI/D/1

systems which will give rise to diverging behavior of the autocorrelations of the interdeparture

times for these systems as we will see below. Daley [7] has proved that ifα2 < ∞, β3 < ∞,

∞∑

k=1

ρ̂k{D} =
C2

A − C2
D

2C2
D

. (10)

This sum has a lower bound of−1
2

for all GI/G/1 systems with finite coefficients of variationCA and

CB. By (9), this sum vanishes in the light traffic limit (ρ ↓ 0) except for D/G/1 systems for which
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Figure 1: Sum over interdeparture time autocorrelations for M/ΓΨ/1 (l.) andΓΨ/M/1 systems (r.).

this sum is equal to−1
2

for all ρ. The heavy traffic limit (ρ ↑ 1) has the finite value1
2
[C2

A−C2
B]/C2

B

except for GI/D/1 systems.

Figure 1 shows the sum over all autocorrelations of the interdeparture times for M/ΓΨ/1 andΓΨ/M/1

systems as a function ofρ for gammaΓΨ distributions with various values of the shape parameter

Ψ, including the limiting cases of M/D/1 and D/M/1 systems (Ψ → ∞). For D/M/1 systems this

sum is constant and equal to−1
2

for all ρ. The heavy traffic limits (ρ ↑ 1) of these sums are all finite

except that of the M/D/1 system.

Next, consider the 1-step autocorrelation of the interdeparture times. Repeated use of (5) yields

E{D1D0} = E{Ĩ1D0}+ E{B2D0} = E{Ĩ1Ĩ0}+ E{Ĩ1B1}+ β1E{D0}. (11)

If Ĩ0 > 0 then the waiting timeW1 of customer 1 is zero and̃I1 = [A2 − B1]
+ is independent of

the length of the idle periodI0. Hence, with (7) it follows that

E{Ĩ1Ĩ0} = w0E{I0}E{[A2 −B1]
+} = (α1 − β1)E{[A2 −B1]

+}.

Further, it holds by a standard relation for GI/G/1 systems that

E{Ĩ1B1} = E{B1[A2 −W1 −B1]
+}.

From the above it follows with (8) that

E{D1D0} = (α1 − β1)E{[A2 −B1]
+}+ E{B1[A2 −W1 −B1]

+}+ β1α1, (12)
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with A2, B1 andW1 mutually independent random variables so that

E{[A2 −B1]
+} =

∫ ∞

0

∫ ∞

u
(v − u) dA(v) dB(u), (13)

E{B1[A2 −W1 −B1]
+} =

∫ ∞

0

∫ ∞

0
u

∫ ∞

u+s
(v − u− s) dA(v) dB(u) dW (s); (14)

here,W (s) denotes the stationary FCFS waiting time distribution. These relations allow the deter-

mination ofρ̂1{D} in many cases without series expansions as in Hu [10]. We only mention here

that if the interarrival time distribution is a mixture of exponential distributions,

A(v) =
H∑

j=1

rj

[
1− e−λjv

]
, v ≥ 0; α(ζ) =

H∑

j=1

rjλj

ζ + λj

, with
H∑

j=1

rj = 1; (15)

then straightforward manipulations lead from (12) with (13) and (14) to

E{D1D0} = β1α1 + (α1 − β1)
H∑

j=1

rj

λj

β(λj)−
H∑

j=1

rj

λj

β′(λj)E{e−λjW}, (16)

provided allλj, j = 1, . . . , H, are distinct (note that not allrj are required to be positive forA(v)

to represent a distribution). The LST of the stationary FCFS waiting time distribution is in this case

given by, cf. Cohen [6, Sect. II.5.11]:

E{e−ζW} =
(α1 − β1)ζ

1− β(ζ)α(−ζ)

λ1

ζ − λ1

H∏

j=2

λj(ζ − φj)

φj(ζ − λj)
, <ζ ≥ 0, (17)

with φj, j = 2, . . . , H, the H − 1 zeros in the right half-plane<ζ > 0 of the denominator

1 − β(ζ)α(−ζ). From (16) and (17) the autocorrelation of two consecutive interdeparture times

becomes

ρ̂1{D} = (1− ρ)
−1 + 1

α1

∑H
j=1

rj

λj

[
β(λj)− λjβ′(λj)

α1(−λj)β(λj)

∏H
h=2

φh−λj

φh

]

C2
A + 2ρ2C2

B − 2ρ(1− ρ)E{W}/β1

. (18)

If two or more ratesλj coincide (in the sense that the LSTα(ζ) has a higher order pole at−λj)

the evaluation of (13) and (14) proceeds somewhat differently. For instance, in the caseH = 2,

λ1 = λ2 = λ, we find that

ρ̂1{D} = (1− ρ)
−1 + β(λ)− (λ− 1

α1
)β′(λ) + λ(φ2−λ)

φ2α1

[
β′′(λ)
β(λ)

− [β′(λ)]2

β2(λ)

]
− β′(λ)

α1β(λ)

C2
A + 2ρ2C2

B − 2ρ(1− ρ)E{W}/β1

. (19)

Similarly, it is possible to evaluate (13) and (14) if the service time distribution is a mixture of

exponential or Erlang distributions. In principle, it is possible to determineρ̂k{D}, k = 2, 3, . . .,

by repeated application of the waiting time recursion and evaluation of(2k + 1)-fold integrals like

(14) but the expressions become very complicated.
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4 The M/G/1 system

Consider an M/G/1 system with arrival rateλ. The distribution of the number of customers served

in a busy period,J , satisfies the following functional equation:

E{zJ} = ν(z), ν(z) = zβ(λ[1− ν(z)]), |z| ≤ 1. (20)

Clearly,Pr{J = 0} = ν(0) = 0 andν(1) = 1. Differentiation of this functional equation yields

ν ′(z) = β(λ[1− ν(z)])− λzν ′(z)β′(λ[1− ν(z)]), |z| ≤ 1. (21)

Daley [7] has derived a relation for the GF of the series of covariances of successive interdeparture

times in stationary M/G/1 systems. Since (8) implies with the well-known formula for the M/G/1

mean waiting time thatC2
D = 1+ρ2[C2

B−1], it follows that the GF of the series of autocorrelations

is given by
∞∑

k=1

ρ̂k{D}zk =
1

1− z

1− ρ

1 + ρ2[C2
B − 1]

[
ν(z)− z

1− ν(z)
+

zν ′(z)− ν(z)

ν(z)ν ′(z)

]
, |z| ≤ 1. (22)

The factor1/(1− z) represents a convolution with a series consisting of all ones. Hence, thek-step

autocorrelation of the interdeparture times can be written as

ρ̂k{D} =
1− ρ

1 + ρ2[C2
B − 1]

k∑

j=1

∆j, k = 1, 2, . . . , (23)

where the quantities∆k, k = 1, 2, . . ., are given by the contour integrals, cf. (1),

∆k =
1

2πi

∮

|z|=r

[
ν(z)− z

1− ν(z)
+

zν ′(z)− ν(z)

ν(z)ν ′(z)

]
dz

zk+1
, k = 1, 2, . . . . (24)

To avoid the computation of the PGFν(z) at the valuesreikπ/n by iterative solution of (20) when

approximating the above integral by the trapezoidal rule, cf. (3), we substitutew = ν(z) in the

contour integral as in Blanc [4]. Sinceν ′(0) = β(λ) > 0, cf. (21), this mapping has an inverse in

a neighborhood of the origin. Moreover, it follows from (20) that this inverse is explicitly given by

z = w/β(λ[1− w]). Further, it follows from (21) that under this mapping

ν ′(z) =
β2(λ[1− w])

β(λ[1− w]) + λwβ′(λ[1− w])
.

Hence, this substitution leads after some rearrangements to the representation, fork = 1, 2, . . .,

∆k =
1

2πi

∮

|w|=r

[
β(λ[1−w])− 1

1− w
− λβ′(λ[1−w])

β(λ[1−w])

]
βk−1(λ[1−w])

[
1 +

λwβ′(λ[1−w])

β(λ[1−w])

]
dw

wk
.

(25)
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The image of a circle|z| = r under the mappingw = ν(z) is not a circle but a contour with the

origin in its interior. Since the integrand in thew-plane has no singularities in<w < 1 other than

w = 0 this contour can be replaced by a circle|w| = r by Cauchy’s Theorem. Observe that the first

factor of the integrand in (25) vanishes for M/M/1 systems, in agreement with the result of Burke

[5] that ρ̂k{D} = 0, k = 1, 2, . . ., for this system. Fork = 1 the integrand has a first order pole at

w = 0 so that the contour integral is simply evaluated. Hence, the 1-step autocorrelation follows

with (23) as (the caseH = 1 of (18)):

ρ̂1{D} = (1− ρ)
β(λ)− 1− λβ′(λ)/β(λ)

1 + ρ2(C2
B − 1)

. (26)

This autocorrelation vanishes asρ ↓ 0 (λ ↓ 0) whereρ̂1{D} ∼ 1
2
ρ2[1 − C2

B]. It also vanishes

asρ ↑ 1 except in the case of the M/D/1 system when it tends to1
2
e−1 ≈ 0.1839; the latter is

a consequence of a factor1 − ρ in the denominator whenC2
B = 0. With some more effort the

following expression for the 2-step autocorrelation is derived from (25) and (23):

ρ̂2{D} = (1− ρ)
β(λ)[β(λ)− λβ′(λ)]− 1 + λ2β′′(λ)− λβ′(λ)[1 + λβ′(λ)]/β(λ)

1 + ρ2(C2
B − 1)

. (27)

This autocorrelation vanishes asρ ↓ 0 whereρ̂2{D} ∼ ρ3[(β2/β
2
1)− 1

3
(β3/β

3
1)]. It also vanishes as

ρ ↑ 1 except for the M/D/1 system when it tends toe−2 ≈ 0.1353.

For higher values ofk the exact formulas for̂ρk{D} become more and more complex. Then, it

becomes more efficient to evaluate the contour integrals (25) numerically, for instance, with the aid

of the trapezoidal rule. This rule could be directly applied to (25), but for an error analysis, and an

appropriate choice of the parameterr, it is more convenient to apply first an integration by parts as

discussed in Blanc [4]. We will deal with the two terms of the first factor of the integrand in (25)

separately. That is, we write∆k = ∆
(1)
k + ∆

(2)
k and obtain, fork = 2, 3, . . .,

∆
(1)
k =

−ρ

2πi(k − 1)

∮

|w|=r

[
1− β(λ[1− w])

ρ(1− w)

]′
βk−1(λ[1− w])

dw

wk−1
, (28)

and

∆
(2)
k =

ρ

2πi(k − 1)

∮

|w|=r

[−β′(λ[1− w])

β1β(λ[1− w])

]′
βk−1(λ[1− w])

dw

wk−1
. (29)

Note that∆(1)
1 = β(λ) − 1 < 0 and∆

(2)
1 = −λβ′(λ)/β(λ) > 0, cf. (25), do not possess such

representations. Fork = 2 the above integrals are simply evaluated as

∆
(1)
2 = −β(λ)[1− β(λ) + λβ′(λ)], ∆

(2)
2 = λ2[β′′(λ)− {β′(λ)}2/β(λ)],
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leading with (23) again to (27). Fork = 3, 4, . . ., the functionβk−1(λ[1− w]) in the integrands of

(28) and (29) is a PGF. Also, the function of which the derivative appears in the integrand of∆
(1)
k

is a PGF, namely, of the distribution of the number of Poisson arrivals during a residual service

time, which has a mean of1
2
λ2β2/ρ. Because the derivative of a PGF divided by the mean of the

corresponding distribution is again a PGF it follows that

−
1
2
λ2β2

k − 1
< ∆

(1)
k < 0, k = 2, 3, . . . . (30)

Moreover, the following upper bound on the discretization errore
(1)
d (k) when applying the trape-

zoidal rule as in (3) to (28) — but with a step size ofπ/(k − 2) since1/wk−1 plays the role of

1/zk+1 — is obtained as explained in Blanc [4] and based on earlier derivations in Abate & Whitt

[1, 2]:

|e(1)
d (k)| ≤

1
2
λ2β2

k − 1

r2(k−2)

1− r2(k−2)
, k = 2, 3, . . . . (31)

Since the LSTβ(ζ) is completely monotonic the integrands in (29) are nonnegative for realw, cf.

Widder [17, Sect. IV.16]. Observe that∆
(2)
k = 0, k = 2, 3, . . ., for M/D/1 systems. For systems such

as M/ΓΨ/1 and M/PH/1 systems for which−β′(ζ)/{β1β(ζ)} represents the LST of a distribution,

with meanC2
Bβ1, we have

0 ≤ ∆
(2)
k < ρ2C2

B, k = 2, 3, . . . , (32)

and the following upper bound on the discretization errore
(2)
d (k) when applying the trapezoidal

rule with step sizeπ/(k − 2) to (28):

|e(2)
d (k)| ≤ ρ2C2

B

k − 1

r2(k−2)

1− r2(k−2)
, k = 2, 3, . . . . (33)

Fork = 3, 4, . . ., the upper bounds on the discretization errors can be used to choose the parameter

r such that a desired accuracy is achieved. In comparison with other application as discussed in

Blanc [4], additional round-off errors are possible for larger values ofk due to the summation in

(23) of terms with differing signs. Possible inaccuracies can be detected by comparison of partial

sums of the series of autocorrelation with the total sum (10). We did not encounter such round-

off errors in our numerical experiments with 16-digit precision, with autocorrelations which are in

absolute value larger than10−8, cf. Section 2, and with values ofk up to 100.

Figure 2 shows the 1- and 2-step autocorrelations of interdeparture times for stationary M/ΓΨ/1

systems as a function ofρ for various values of the shape parameterΨ, including the limiting case
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Figure 2: The 1- and 2-step autocorrelations of the interdeparture times for M/ΓΨ/1 systems.

of an M/D/1 system (Ψ → ∞). The paper by Jenkins [11] contains similar figures but only with

autocorrelations for integer values ofΨ. The autocorrelations turn out to be positive forΨ > 1

(C2
B < 1) and negative forΨ < 1 (C2

B > 1). Numerical experiments confirm this phenomenon

for k-step autocorrelations with higher values ofk. They also confirm that these autocorrelations

for M/G/1 systems have as upper bounds the autocorrelations for M/D/1 systems as found by Pack

[14]:

ρ̂k{D} =
e−kρ

1 + ρ

k−1∑

i=0

k − i

k

(kρ)i

i!
− 1− ρ

1 + ρ
, k = 1, 2, . . . . (34)

Whereas the dependence ofρ̂k{D} on Ψ for ρ andk fixed is monotone forΨ > 1 it clearly is not

monotone forΨ < 1. This can also be seen from the heavy-traffic asymptote ofρ̂1{D} for M/ΓΨ/1

systems which is readily found from (26) as:

ρ̂1{D} ∼ (1− ρ)Ψ

[(
Ψ

Ψ + 1

)Ψ

− 1

Ψ + 1

]
, ρ ↑ 1. (35)

The slope of the autocorrelation nearρ = 1 tends to−∞ asΨ → ∞ where it approximates the

singular behavior of the M/D/1 system. This slope has a maximum of about0.045 at Ψ ≈ 0.48; it

tends to 0 asΨ ↓ 0 and asΨ ↑ 1. This and many stated results below have been determined by

standard numerical maximization (minimization) procedures executed with several starting values

to avoid the risk of local extrema.

In the caseΨ = 1
2
, ρ̂1{D} has a minimum of−0.0173 at ρ ≈ 0.4673 andρ̂2{D} has a minimum

of −0.0147 at ρ ≈ 0.5294. In the caseΨ = 1
8
, ρ̂1{D} has a minimum of−0.0235 at ρ ≈ 0.2583
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andρ̂2{D} has a minimum of−0.0244 atρ ≈ 0.3031. The locations of the minima move to lower

values ofρ asΨ decreases. The values of the minima tend to 0 both asΨ ↑ 1 and asΨ ↓ 0.

The 1-step autocorrelation has an overall minimum in the class of M/ΓΨ/1 systems of−0.02455

at ρ ≈ 0.3189 for Ψ ≈ 0.1948. The 2-step autocorrelation has a slightly larger overall minimum

in this class of−0.02452 at ρ ≈ 0.3223 for Ψ ≈ 0.1422. These findings are in contradiction

with Daley [7, p. 1019] who states that it is possible to choose the service time distribution so that

ρ̂1{D} is arbitrarily close to−1, for instance, through aΓΨ distribution withΨ sufficiently small

(this assertion is repeated in Daley [8, p. 405] without reference to any type of distribution). Also

note that the sum over all autocorrelations, cf. (10), tends to−1
2

if C2
B →∞ in M/G/1 systems.

For the case of an M/C2/1 systems with a 2-phase Cox C2 service time distribution with transition

ratesµ1 andµ2 and LST

β(ζ) =
µ1µ2 + ζ(µ1 + µ2 − β1µ1µ2)

(µ1 + ζ)(µ2 + ζ)
, <ζ ≥ 0, (36)

with squared coefficient of variation and restrictions on the parameter values

C2
B = 1− 2

(
1

β1µ1

− 1

) (
1

β1µ2

− 1

)
,

1

µ1

< β1 ≤ 1

µ1

+
1

µ2

, (37)

the numerator of the 1-step autocorrelation (26) becomes

β(λ)− 1− λ
β′(λ)

β(λ)
=

1
2
[1− C2

B]ρ2µ2
1µ

2
2β

4
1

(µ1β1 + ρ)(µ2β1 + ρ)[µ1µ2β2
1(1− ρ) + ρ(µ1 + µ2)β1]

. (38)

Hence, also for M/C2/1 systems the 1-step autocorrelationρ̂1{D} is positive for allρ if C2
B < 1

and negative for allρ if C2
B > 1. Moreover,ρ̂1{D} has an overall minimum in the class of M/C2/1

systems of−0.03083 atρ ≈ 0.3443 for µ1 →∞ andµ2 ≈ 0.3562 (C2
B ≈ 4.615).

However, the foregoing examples are misleading in the sense that there exist service time distribu-

tions for which the autocorrelationŝρk{D} do not have the same sign for allk, k = 1, 2, . . ., and

for which it can occur that̂ρk{D} does not have a fixed sign for allρ, 0 < ρ < 1, for a givenk.

Examples can be found in the class of M/G/1 systems withC2
B = 1. This is not surprising since the

sum over all autocorrelations (10) vanishes for allρ for all M/G/1 systems withC2
B = 1. Consider,

for instance, distributions which are mixtures of two Erlang E2 distributions. These distributions

(indicated by ME2) have LST

β(ζ) =
q

(1 + 1
2
δ1ζ)2

+
1− q

(1 + 1
2
δ2ζ)2

, <ζ ≥ 0, (39)
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Figure 3: The 1- and 2-step autocorrelations of the interdeparture times for M/ME2/1 systems.

and moments

β1 = qδ1 + (1− q)δ2, β2 = 3
2
[qδ2

1 + (1− q)δ2
2], β3 = 3[qδ3

1 + (1− q)δ3
2]. (40)

Fixing β1 = 1 andC2
B = 1 leaves one free parameter. For the caseδ1 = 2

5
(β3 ≈ 5.956), see the

left graphs in Figure 3, we find that̂ρ1{D} is negative for0 < ρ < 0.198, with a minimum of

−7.5 × 10−6 at ρ ≈ 0.142, and positive for0.198 < ρ < 1, with a maximum of1.1 × 10−3 at

ρ ≈ 0.760; and we find that̂ρ2{D} is positive for0 < ρ < 0.084, with a maximum of6.4× 10−7 at

ρ ≈ 0.061, is negative for0.084 < ρ < 0.920, with a minimum of−4.6×10−4 atρ ≈ 0.553, and is

again positive for0.920 < ρ < 1, with a maximum of1.7× 10−5 atρ ≈ 0.962. Also, for fixed load

ρ the autocorrelationŝρk{D} may have multiple sign changes as function ofk. In the foregoing

example, withρ = 0.7, ρ̂k{D} is negative fork = 2, . . . , 11, with a minimum of−4.0 × 10−4 at

k = 3, and is positive fork = 1 and fork ≥ 12, where there is a maximum of1.8×10−5 atk = 20.

For other values ofδ1 (β3) quite different behavior may occur; see, for instance, the right graphs in

Figure 3, which concern the caseδ1 = 1
3

(β3 ≈ 5.833).

Table 1 contains results of computations based on (28) and (29) for M/ΓΨ/1 systems with a load of

ρ = 0.9. ForΨ > 1, the autocorrelationŝρk{D} are monotonically decreasing withk. However,

they are not monotonically decreasing withk in all cases forΨ < 1. For instance,̂ρk{D} is

minimal atk = 2 for Ψ = 1
2

and atk = 5 for Ψ = 1
8

whenρ = 0.9. Further, it turns out that the

individual values of|ρ̂k{D}| are not so large, in general, but that these values fade away slowly as

13



Table 1: Autocorrelations for M/G/1 systems with loadρ = 0.9.

M/D/1 M/E8/1 M/E2/1 M/Γ1/2/1 M/Γ1/8/1

ρ̂1{D} 0.16135 0.08075 0.01619−0.00447 −0.00182

ρ̂5{D} 0.06528 0.03547 0.00865−0.00373 −0.00274

ρ̂10{D} 0.04070 0.02249 0.00573−0.00277 −0.00254

ρ̂100{D} 0.00395 0.00238 0.00074−0.00053 −0.00085
∑100

k=1 ρ̂k{D} 1.79239 0.99629 0.25858−0.13401 −0.14886
∑∞

k=1 ρ̂k{D} 2.13158 1.21674 0.34034−0.22376 −0.42504

k → ∞, the more so whenC2
B is larger. ForΨ = 1

8
, the sum over the first 100 autocorrelations

only amounts about1
3

of the total sum of the series. The decay factor of this series is equal to that

of the distribution ofJ , cf. (22), which implies that for M/ΓΨ/1 systems (Ψ 6= 1):

lim
k→∞

ρ̂k+1{D}
ρ̂k{D} = ρ

[
Ψ + 1

Ψ + ρ

]Ψ+1

, (41)

which is close to 1 for allρ whenΨ is small. This decay factor is equal toρe1−ρ for M/D/1 systems.

Similar observations as for M/ΓΨ/1 systems can be made for M/C2/1 systems.

5 The GI/M/1 system

Consider an GI/M/1 system with service rateµ. The distribution of the number of customers served

in a busy period,J , is determined via the following functional equation:

E{zJ} =
z − χ(z)

1− χ(z)
, χ(z) = zα(µ[1− χ(z)]), |z| ≤ 1. (42)

For stationary GI/M/1 systems, Daley [7] expresses thek-step autocorrelation of the interdeparture

times in terms of the transient conditional mean waiting time of thek-th customer given that cus-

tomer 0 found the system empty. The GF of the latter series can be obtained from the GF of the

Laplace-Stieltjes transforms of the conditional distributions of these waiting times given in Takács

[16, Sect. 1.5]. Combination of these results readily leads to the following relation for the GF of

the series of autocorrelations of successive interdeparture times in stationary GI/M/1 systems:

∞∑

k=1

ρ̂k{D}zk =
ρ(1− w0 − ρ)

(1− w0)C2
D

χ(z)

1− χ(z)
, |z| ≤ 1; (43)

14



here,w0 denotes the stationary probability that an arriving customer does not have to wait. This

probability is implicitly determined as the unique solution of1 − w0 = α(µw0) on the interval

(0, 1). Note thatw0 = 1 − ρ for M/M/1 systems so that it is clear that all autocorrelations vanish

for this system. For GI/M/1 systems, we haveE{W}/β1 = (1 − w0)/w0 in (8). Hence, inversion

of the GF in (43) implies that

ρ̂k{D} =
ρw0

1− w0

1− w0 − ρ

w0C2
A − 2ρ(1− ρ− w0)

Ξk, k = 1, 2, . . . , (44)

with

Ξk =
1

2πi

∮

|z|=r

χ(z)

1− χ(z)

dz

zk+1
, k = 1, 2, . . . . (45)

As Daley [7] already noted, the quantitiesΞk, k = 1, 2, . . ., are positive so that the sign ofρ̂k{D}
is solely determined by the factor1 − w0 − ρ. This also implies that the autocorrelationsρ̂k{D}
have the same sign for allk, k = 1, 2, . . ., for a fixedρ. If the interarrival time distribution is such

that there exists a value ofρ such thatw0 = 1 − ρ then all autocorrelations vanish at this value of

ρ. An example for which the latter occurs is a mixture of two Erlang E2 distributions, cf. (39), with

C2
A = 1 andα3/α

3
1 ≈ 5.833.

Sinceχ(1) < 1, in fact,χ(1) = 1 − w0, we apply the substitutionw = χ(z)/χ(1), with inverse

z = wχ(1)/α(µ[1− wχ(1)]). This gives, fork = 1, 2, . . .,

Ξk =
1

2πi

∮

|w|=r

χ(1)

1− wχ(1)

[
α(µ[1− wχ(1)])

χ(1)

]k [
1 +

µwχ(1)α′(µ[1− wχ(1)])

α(µ[1− wχ(1)])

]
dw

wk
. (46)

As in the case of the M/G/1 system, the image of the circle|z| = r has been replaced by the

circle |w| = r. In the present case, an integration by parts as discussed in Blanc [4] leads to a

simplification:

Ξk =
1

2πik

∮

|w|=r

χ(1)

[1− wχ(1)]2

[
α(µ[1− wχ(1)])

χ(1)

]k
dw

wk
, k = 1, 2, . . . . (47)

Fork = 1 we simply haveΞ1 = α(µ), so that, cf. (44),

ρ̂1{D} =
ρw0

1− w0

α(µ)
1− ρ− w0

w0C2
A − 2ρ(1− ρ− w0)

. (48)

This autocorrelation vanishes asρ ↑ 1 where ρ̂1{D} ∼ (1 − ρ)α(µ)[C2
A − 1]/[C2

A + 1] since

w0 ∼ 2(1 − ρ)/[C2
A + 1]. The behavior of this autocorrelation asρ ↓ 0 depends on the shape of
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the interarrival time distribution. ForΓΨ/M/1 systems it holds that1− w0 ∼ (Ψρ)Ψ asρ ↓ 0. This

implies that

ρ̂1{D} ∼ (Ψρ)Ψ+1 if Ψ < 1, ρ̂1{D} ∼ −Ψρ2 if Ψ > 1, ρ ↓ 0.

For the D/M/1 system we have by repeated application of1− w0 = α(µw0) = e−w0/ρ:

ρ̂1{D} = − w0e
−1/ρ

2(1− w0)
= −1

2
w0e

−(1−w0)/ρ = −1
2
w0e

−e−w0/ρ/ρ.

Note that this autocorrelation tends to−1
2

asρ ↓ 0 sincew0 → 1 ande−1/ρ/ρ → 0. This result can

be intuitively explained as follows. When the (mean) interarrival time is much larger than the mean

service time there will be hardly any customer who has to wait before service and the interdeparture

time is approximately equal toDk ≈ Ak+1 + Bk+1 − Bk, k = 0, 1, 2, . . .. The latter implies that

ρ̂1{D} ≈ −ρ2C2
B/[C2

A + 2ρ2C2
B] asρ ↓ 0 and this means that̂ρ1{D} ≈ −1

2
asρ ↓ 0 for D/G/1

systems. This reasoning also explains why forΓΨ/M/1 systemŝρ1{D} ∼ −Ψρ2 asρ ↓ 0 if Ψ > 1,

but it fails for Ψ ≤ 1 (C2
A ≥ 1): when the variance of the interarrival times is high, waiting times

cannot be ignored in light traffic. The foregoing argument predicts thatρ̂k{D} → 0, k = 2, 3, . . .,

asρ ↓ 0 for D/G/1 systems.

Fork = 2 it readily follows from (44) and (47) that

ρ̂2{D} =
ρw0

1− w0

[α(µ)− µα′(µ)]α(µ)
1− ρ− w0

w0C2
A − 2ρ(1− ρ− w0)

. (49)

The factorα(µ) − µα′(µ) is positive. It behaves like(1 + Ψ)(Ψρ)Ψ asρ ↓ 0 for ΓΨ/M/1 systems.

It behaves likee−1/ρ/ρ asρ ↓ 0 for D/M/1 systems which shows thatρ̂2{D} → 0 asρ ↓ 0 for this

system as predicted above.

For general values ofk the contour integrals (47) can again be evaluated numerically with the aid

of the trapezoidal rule. In fact, it follows with (42) that

Ξk = Pr{J > k}, k = 1, 2, . . . . (50)

Hence, the upper bound on the discretization errored(k) when the trapezoidal rule with step size

π/(k − 1) is applied to (47) is the same as that forPr{J > k} as derived in Blanc [4]:

|ed(k)| ≤ 1

k

r2(k−1)

1− r2(k−1)

χ(1)

[1− χ(1)]2
, k = 2, 3, . . . . (51)
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Figure 4: The 1- and 2-step autocorrelations of the interdeparture times forΓΨ/M/1 systems.

Figure 4 shows the 1- and 2-step autocorrelations of interdeparture times for stationaryΓΨ/M/1

systems as a function ofρ for various values of the shape parameterΨ, including the limiting case of

a D/M/1 system (Ψ →∞). In contrast with the M/ΓΨ/1 systems, cf. Figure 2, the autocorrelations

are negative forΨ > 1 (C2
A < 1) and positive forΨ < 1 (C2

A > 1). Numerical experiments confirm

this phenomenon fork-step autocorrelations with higher values ofk.

In the caseΨ = 1
2
, ρ̂1{D} has a maximum of0.0316 at ρ ≈ 0.5942 and ρ̂2{D} has a maximum

of 0.0213 at ρ ≈ 0.6467. In the caseΨ = 1
8
, ρ̂1{D} has a maximum of0.0345 at ρ ≈ 0.7445 and

ρ̂2{D} has a maximum of0.0283 atρ ≈ 0.7585. The locations of the maxima move to higher values

of ρ asΨ decreases. The values of the maxima tend to 0 both asΨ ↑ 1 and asΨ ↓ 0. The overall

maximum ofρ̂1{D} in the class ofΓΨ/M/1 systems is0.04006 atρ ≈ 0.6709 for Ψ ≈ 0.2538. The

overall maximum of̂ρ2{D} in this class is0.03044 atρ ≈ 0.7168 for Ψ ≈ 0.2077.

In the caseΨ = 2, ρ̂1{D} has a minimum of−0.0568 atρ ≈ 0.4454 andρ̂2{D} has a minimum of

−0.0287 at ρ ≈ 0.5629. In the caseΨ = 8, ρ̂1{D} has a minimum of−0.2123 at ρ ≈ 0.3329 and

ρ̂2{D} has a minimum of−0.0777 at ρ ≈ 0.5194. In the limiting case of a D/M/1 system,̂ρ1{D}
has a minimum of−1

2
at ρ = 0 which is at the same time the overall minimum for this class of

systems, and̂ρ2{D} has a minimum of−0.1078 atρ ≈ 0.4958 which is again the overall minimum

for this class of systems. The influence of the variance of the interarrival time distribution on the

autocorrelations is in most cases opposite to and stronger than that of the service time distribution.

The latter property is confirmed by the 1-step autocorrelation of the E2/E2/1 system, which can be
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Table 2: Autocorrelations for GI/M/1 systems with loadρ = 0.9.

D/M/1 E8/M/1 E2/M/1 Γ1/2/M/1 Γ1/8/M/1

ρ̂1{D} −0.03939 −0.03173 −0.01458 0.01547 0.02782

ρ̂5{D} −0.01576 −0.01286 −0.00612 0.00730 0.01661

ρ̂10{D} −0.00977 −0.00804 −0.00392 0.00489 0.01204

ρ̂100{D} −0.00090 −0.00081 −0.00048 0.00085 0.00293
∑100

k=1 ρ̂k{D} −0.42652 −0.35688 −0.17987 0.23991 0.63703
∑∞

k=1 ρ̂k{D} −0.50000 −0.42934 −0.23237 0.38385 1.58530

derived from (19) as

ρ̂1{D} = −(1− ρ)ρ2

(1 + ρ)3

(1− ρ)2 − 4ρ + (1 + ρ)
√

(1 + ρ)2 + 4ρ

3 + 2ρ− 3ρ2 − (1− ρ)
√

(1 + ρ)2 + 4ρ
.

This correlation is negative for allρ < 1; in particular,ρ̂1{D} ∼ −ρ2 asρ ↓ 0 and ρ̂1{D} ∼
−(1−ρ)1

4
(
√

2−1) asρ ↑ 1. It has a minimum of−0.0226 atρ ≈ 0.4477, larger than the minimum

of ρ̂1{D} for the E2/M/1 system.

Table 2 contains some results forΓΨ/M/1 systems computed with a value ofr such that an accuracy

of about10−8 is achieved. The numerical results confirm the statement of Daley [7] that|ρ̂k{D}|
decreases monotonically to 0 ask →∞ for GI/M/1 systems. Note again the slow decay of|ρ̂k{D}|
ask → ∞. The decay factor follows by solvingχ′(z) = 0, cf. (43), (42), forΓΨ/M/1 systems

(Ψ 6= 1) as

lim
k→∞

ρ̂k+1{D}
ρ̂k{D} =

1

ρ

[
ρ + ρΨ

1 + ρΨ

]Ψ+1

, (52)

which is again close to 1 for allρ whenΨ is small. This decay factor is equal toe(ρ−1)/ρ/ρ for

D/M/1 systems.
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Table 3: Autocorrelations for GI/M/1 systems with loadρ = 0.8.

y D/M/1 E8/M/1 E2/M/1 Γ1/2/M/1 Γ1/8/M/1

ρ̂1{D} −0.08463 −0.06625 −0.02831 0.02492 0.03392

ρ̂5{D} −0.02664 −0.02155 −0.00995 0.01057 0.01938

ρ̂10{D} −0.01338 −0.01114 −0.00546 0.00645 0.01345

ρ̂100{D} −0.00011 −0.00013 −0.00013 0.00044 0.00214
∑100

k=1 ρ̂k{D} −0.49708 −0.41512 −0.20772 0.26583 0.63347
∑∞

k=1 ρ̂k{D} −0.50000 −0.41899 −0.21262 0.29448 0.92647

For the case of gamma distributed service times with shape parameterΨ the autocorrelation can be

further specified as (Jenkins [11] for integerΨ):

ρ̂1{D} =
(1− ρ)Ψ

Ψ + ρ2(1−Ψ)




(
Ψ

Ψ + ρ

)Ψ

− 1 +
Ψρ

Ψ + ρ


 .

Examples: M/E2/1 and M/Γ1/2/1:

ρ̂1{D} =
2(1− ρ)ρ2

(2− ρ2)(2 + ρ)2
, ρ̂1{D} = −(1− ρ)[1 + ρ−√1 + 2ρ]

(1 + 2ρ)(1 + ρ2)
.

E2/M/1:

ρ̂1{D} = − ρ2[1− 4ρ2 +
√

1 + 8ρ]

(1 + 2ρ + 2ρ2)(1 + 2ρ)2
.

M/D/1:

ρ̂1{D} = (1− ρ)
e−ρ − 1 + ρ

1− ρ2
=

e−ρ − 1 + ρ

1 + ρ
.

ρ̂2{D} = (1− ρ)
(1 + ρ)e−2ρ − 1 + ρ

1− ρ2
= e−2ρ − 1− ρ

1 + ρ
.

ρ̂3{D} = (1− ρ)
(1 + 2ρ + 3

2
ρ2)e−3ρ − 1 + ρ

1− ρ2
=

1 + 2ρ + 3
2
ρ2

1 + ρ
e−3ρ − 1− ρ

1 + ρ
.

ρ̂4{D} = (1− ρ)
(1 + 3ρ + 4ρ2 + 8

3
ρ3)e−4ρ − 1 + ρ

1− ρ2
=

1 + 3ρ + 4ρ2 + 8
3
ρ3

1 + ρ
e−4ρ − 1− ρ

1 + ρ
.

Optimization ofρ̂1{D} for M/C2/1: three variables on(0, 1): ρ, 1/µ1 andµ1µ2/(µ1 + µ2).

∆
(2)
k =

λ2

2πi(k − 1)

∮

|w|=r

[
β(λ[1− w])β′′(λ[1− w])− [β′(λ[1− w])]2

β2(λ[1− w])

]
βk−1(λ[1− w])

dw

wk−1
.
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