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ABSTRACT

We consider models of polling systems where switching times between channels are com-
posed of two parts: walking times required to move from one channel (station) to another,
and switch-in times that are incurred only when the server enters a station to render ser-

vice,

We analyze three Gated-type systems: (i) Cyclic polling with Gated regime, (ii) Cyclic
polling with Globally-Gated regime, and (iii) Elevator-type polling with Globally-Gated

regime. In all systems, the server visits station 7 if and only if the number of customers
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(jobs) present there at the gating instant is greater than or equal to a given threshold
K; > 0.

For all schemes we derive formulae for the multi-dimensional generating functions of the
number of jobs in the various queues at polling instants, and derive bounds on mean
waitihg times, mean cycle times and mean number of jobs presenﬁ in the system. For
the Elevator scheme we further show that if switch-in times, as well as arrival rates, are

equal armnong channels, then jobs’ mean waiting times in all stations are equal.

1 Introduction

We consider polling systems with both walking and switch-in times. That is, when the
server moves from one station (channel) to another, the switching times are composed
of two parts: walking times required to move to the next station, and switch-in times
that are incurred only if the server actually visits the channel. Such systems may also
model access procedures of a reader-head to a hard disk in computers (see e.g., section 2
of Smith and Barnes [12]): the reader moves through the different tracks, and whenever

an information is to be fetched, the head has to slow down before it gets into the track.

We assume that when the server polls (arrives at) a station it acquires the knowl-
edge of how many jobs (customers) are present in the station’s queue before it decides
whether to switch in (visit) or not, and we are especially interested in service disciplines
by which a station is not visited if it is empty. This is a special case of polling systems
with threshold service disciplines, where the server visits a station to render service only if
the number of jobs present there is larger than a prespecified threshold. Such disciplines
are of interest since it may occasionally be advantageous to skip service to a station with
only a gmall number of awaiting jobs in order to save switch-in times. Thus, threshold

service disciplines, although difficult to analyze, may prove practical and more efficient.

We study the steady state behaviour of several gated-type polling schemes distin-
guished by their polling proéedures, by their gating regimes and by their service disci-
plines. The polling procedures considered are the Cyclic and the Elevator-type (scan).
The gating regimes are the Gated and Clobally-Gated. In each queue, the service disci-
pline is FIFO with threshold. A combination of a polling procedure, gating regime and
a service discipline yields a specific polling scheme., We define a cycle as the time to

complete a Hamiltonian tour through the stations, and analyze three schemes:
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(i) a (Threshold) Gated regime with cyclic polling, where the server visits channel # if
and only if the number of jobs present there is greater than or equal to a given threshold
K; >0, (i = 1,...,N). If a station is visited, then only jobs that were present at the
polling instant to that station are to be served during that visit.

(ii) the recently introduced (Boxma, Levy and Yechiali [4]) cyclic polling with Globally-
Gated regime: a global gate is closed simultaneously on all stations at the beginning
(gating instant) of each new cycle (i.e., upon the arrival of the server to station 1). The
service discipline in each queue is FIFQ with threshold K; > 0, (i = 1,...,N). Hence
station ¢ will be visited if and only if the number of jobs present there at the (global)
gating instant is at least K;. If a station is visited, then only jobs that were present in
that station at the beginning of the current cycle are to be served.

(iii) an Elevator type polling procedure in which instead of moving cyclically through the
stations, the server first moves through the stations in the order 1,2,...,N-1,N (‘up’ cycle),
and then moves in the opposite direction (‘down’ cycle), i.e., in the order N,N-1,...,2/1.
The server then changes direction again and so on. This type of polling mechanism is
encountered in many applications. For example, it models a common scheme of address-
ing a hard disk for writing (or reading) information on (or from) different tracks (see
Tanenbaum [14] pp. 143-146, for a brief discussion of various techniques for head move-
ment in disks). We consider again a FIFO threshold discipline with a Globally-Gated

regime, where a new (global) gating instant is recorded at the beginning of each up or

down cycle. (This model, without switch-in times and with K; =0, (¢ = 1,...,N), was

introduced and analyzed by Altman, Khamisy and Yechiali [3]).

The cyclic polling with Gated regime and with thresholds K; > 0 is studied in
Section 2. We first obtain bounds on mean cycle time, E{C], and on mean number of
jobs, E[X7], present in queue j at a polling instant to queue i. We then obtain implicit
equations for the joint generating functions of the number of jobs found in different
stations at polling instants. This leads to expressions for the Laplace-Stieltjes Transform
(LST) and first moment of the waiting times in the various stations, for which we derive

various upper and lower bounds.

For the Cyclic polling, Globally-Gated regime (with thresholds K; = 1) we obtain
in Section 3 an implicit equation for the LST of the cycle duration, and derive formulae

for the expected waiting times in the different stations. Several bounds are derived on

moments of X? and C, and extensions for K; > 1, (¢ = 1,..., N}, are discussed.
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In Section 4 we study the Elevator polling procedure under the Globally-Gated
regime, and show that the distribution of the cycle duration does not depend on the
direction of the server. We then consider K; = 1 for all stations. The LST of the cycle
duration is derived by using the expressions obtained for the scheme with Cyclic polling
and Globally-Gated regime. We calculate the expected waiting times for this polling
scheme, and show that if the switch-in times as well as the arrival rates to all queues
are equal, then the expected waiting times in all stations are equal. This extends the
fairness result obtained in (3] for the fully non-symmetric case with only walking, but no

switch-in, times.
Model and Notations

We consider a polling system with N independent channels, where channel ¢ (i =
1,2,..,N) is modeled as an M/G/1—type queueing system. The arrival stream to station

¢ is Poisson with rate A;, and service times are distributed as B;, having LST b!(s) and

first and second moments b; and b,(-z), respectively. We denote by p; = A\;b; and by
p= Ef\il pi the traffic offered to channel 4, and to the system at large, respectively.

The time it takes to move from station ¢ to the next is called the ith walking time,

and is denoted by D;. We assume that the walking times are independent, with LST
d(s) and with first and second moments d; and d§2), respectively. Let D = SN, D; be

the total walking time in a cycle, and denote by d, d® and d*(s) the expectation, second

moment and LST of D, respectively

The time it takes from the moment the server arrives at (polls) the zth station till
service can be started to jobs in that station is called the 7th switch-in time and is denoted
by R;. We assume that the switch-in times are independent, with LST denoted by r(s)
and first and second moments by r; and r.@), respectively. Define r = YN r;. These
times, the walking times, the inter-arrival times and the service durations are mutually
independent. Let X,-j denote the number of jobs in station j at a polling instant to station

7, and let B;(n) represent the total service time of n jobs in station ¢. Let A;(T") denote

the number of arrivals to station j during a time interval of length 7. Hence A;(Bi(X})),

A;(D;), and A;(R;) denote, respectively, the number of arrivals to station j during the

service of, the walking time from, and the switch-in time to, station 1.
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2 Cyclic Polling with Gated Regime and Threshold
Discipline

The Threshold-Gated service regime is a generalization of the regular Gated discipline:
when the server arrives at (polls) station ¢ and finds at least K; > 0 jobs, then all X}
jobs that are present at that polling instant will be served (after a switch-in duration of
length R;). Jobs that arrive to the station after the polling instant will have to wait for

the next cycle. If X} < K, then the server moves on to the next station.

The evolution of the state of the system is described by

Xip = X+ 1{X{ > K} [A;(Re) + A(BA(XD)] + As(D) 5 5 #14, (1)
‘ Xi + Ai(Dy) Xi < K

$+1 = . . s (2)
Ai(R) + Au(Bi(X])) + Ad(Dy) Xi 2 K;

where 1{-} denotes the indicator function.

2.1 Mean Cycle time and E[X]]

Let C; be a random variable distributed as the duration of a cycle (in steady state) that
starts at a polling instant to station ¢{. Observe that E[C;] = E[C], for i = 1, ..., N does

not depend on ¢ (whereas higher moments do).

To compute the mean cycle duration, E[C], we note that the expected period that
the server is not busy during a cycle (in steady state) is given by ©°N | &+ TN mP (X} >
K;). Since the fraction of time that the server is busy in a cycle is given by p, we obtain:

TR, di+ TE P (X 2 K)

E[C) = - . (3)

As the number of jobs present in a station at a polling instant is equal to the
number of jobs that have arrived there during the last cycle plus those who were not
served at the previous cycle (in case that there were less jobs than the threshold) we
have:

BIX)) = NEIC]+ 3> mP(Xi = m) )

m=1
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2.2 Computable bounds on the moments of C and X7/

From (3) and (4) it follows that the complete calculation of E[C] and E[X]] requires
knowledge of the steady state probabilities of X{. One may try to compute the latter from
the generating functions of X,-j , which are derived in the sequel (Section 2.3). However,
these generating functions are given as the solution of a set of implicit equations, and
it seems that the complexity of numerically solving these equations grows exponentially
with the number of channels. This leads us to search for computable approximations or

bounds.

We first note that E[C] can be trivially bounded by using (3),

a,

-+

4 <popc T (5)

1—p 1-—

-

)

Bounds for £(X]] are trivially obtained by using (4) and (5).

A lower bound on E[(X})? is obtained by noting that X! >, A;(C:), where
A <, B means that A is stochastically smaller than B. Stochastic ordering of the form
A Zs B between two random variables (or vectors) is equivalent to the fact that for any

nondecreasing function f,
E[f(A)] < E[f(B)). (6)
Thus,
E[(X})") 2 E[(A:(C))") = M E[C*) + NE[C) 2 MH(E[C])* + A E[C). (7)
Any lower bound on E[C] (e.g. (5)) can now be used in (7).

Better bounds on the first moment of the cycle time, as well as bounds on other

moments of C and of X, can be derived as follows.
Upper bound on E[C] using a Markov-type inequality

By using an idea similar in form to the Markov inequality (see [10] Vol. I, p. 388),
it readily follows from (4) that

Ki-1 . b . .
ME[C) = E[Xi] - 3. mP(Xi=m)= 3 mP(X! =m)> K:P(X! > ).
ma==1 m=K;

Hence
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Substituting into (3) yields

d+ Tk, ’"i"\i%q

ElC) < S

Assuming now that p + ¥, ~\/K; < 1, we finally obtain

d ,
o+ SN mhi/ K] (8)

E[C) < 1=

The upper bound on E[C] is taken as the smallest between (5) and (8), when (8) applies.
Bounds based on Jensen’s inequality

Consider the case K; = 1 for some ¢ = 1,..., N. Then X] is distributed as the
number of Poisson arrivals (with rate );) during a cycle time C;. By using Jensen’s

inequality we get

PWZU:Eﬁfm&ﬂq (9

=1 ]!

v

$ o xm UECTY o & oo, (iClew)
j=t J' - i=1 -7! ’

where Cy, and Cj,y, are any upper and lower bounds on £ [C]. One can use in particular
the bounds in (5) and in (8). A lower bound on E[C) is now obtained by substituting

(9) into (3).

Following the same approach, an alternative upper bound on E[C] can be obtained

as follows.

P(X: >1) = 1- P(){‘I =0)=1- E[P(X,' = 0|Cy)] (10)
= 1-E[e™¥0] < 1 — ¢~ NEC]
_<_ 1 - e—z\icup_

By (3), (9) and (10) we finally have

N ad /\tC ow N .
d + 21 r; Z ——/\,Gup( jll ) d + Zr‘_ (1 _ e-—r\.Cup)
i= j=

< E[C] € —=! . (11)
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Note that the bounds in (11) can be again substituted (iteratively) in (11) in order to
further improve the bounds. Such a process yields a (strictly) monotone decreasing series
of upper bounds (alt bounded by d/(1— p)). Hence, this series converges to a fixed point
which gives a least upper bound. A similar situation exists with respect to the lower

bound.

Bounds based on stochastic ordering

We present two kinds of bounds on X,j . Consider the following four systems.
System (i): Identical to the original polling system, except that switch-in times are al-
ways set to zero. Note that when K; = 1 for all 1, this system coincides with the standard
gated model (e.g. Takagi [13]) with only walking times between stations.

System (ii): Also behaves like the original one, with the difference being that switch-
in times are always incurred (even if a station is not visited). Note that for K; = 1
(i = 1,...,N), this system does not coincide with the standard gated model, since the
gating in each station does not occur immediately before service starts there. The gating
occurs before the switch-in time to that station. However, for K; = 1, 7 = 1, ..., N this
system can be seen as a special case of the systems analyzed in [9]. (One has to add N
dummy “father” stations, for which the arrival rate is zero).

System (iil): Differs from the original one in the following: (1) switch-in times are
always incurred; (2) all jobs found in a station upon the arrival of the server are served
(thus the threshold is set to zero), and (3) for each station 1, i = 1,..., N, if K; > 0 then,

in addition to the Poisson arrival of rate A; to that station, when the server leaves station

t, K; — 1 extra jobs appear in that station.

System (iv): This system differs from system (iii) in that (3) is replaced by:

(3a) For each station i, the walking times from that station requires an additional time
that is equal to the sum of (K; — 1) i.i.d. service times, each distributed like B;. Note
that this system too does not coincide with the standard gated model, since the gating
in each station does not occur immediately before service starts, but rather before the
switch-in time to that station occurs. However, this system again is a special case of the

systems analyzed in [9).

The notation A (A, A, A) will correspond to a quantity in system (i), (system
(i), (iii) and (iv), respectively).

Proposition 1 The following holds:
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(XLXE o X)) < (X XE . XD <o (XE KT, ., XT), (12)
_G_i Sst Cl' _<..at _C—t'7 (13)

(X, X2, XN) < (X1, X2, XD, (14)

Ci <u Ci, (15)

Ci < Gy, (16)

Proof: Inequalities (12) and (13) follow from [1] Section 4. Inequalities (14) and (15)
follow from arguments similar to those in [1] Section 4. Coupling between the original
system and system (iii), assuming that at time zero the same station is polled in both
systems, one shows iteratively that if at time zero the number of jobs in each queue in
the original system is not greater than the number of jobs in each queue in system (iii),
then the number of jobs in each queue in the original system is less than or equal to
the number of jobs in each queue in system (iii) at the nth time that a station is polled
for all n = 1,2,.... This implies (14) and (15). In order to establish (16) one compares
and couples the station times (see [6, 7, 8]) between the original system and system (iv).
Since the distribution of the cycle times in steady-state does not depend on the initial
distribution, we may assume without loss of generality that the N first station times in
the original system are less than or equal to the N first station times in system (iv).
Then, by an appropriate coupling, one can show inductively that all station times in the
original system are less than or equal to those of system (iv) (sample-wise). This implies

(16). |
Proposition 1 implies in particular that, for any k > 0 and any 4,5 =1,..., N,

E(X))4 < E[(X))}] < EI(XD)",

E[(X})¥ < E[(Xi)4, (17)
E[(C)" < E[(C)} < E[(T)H, E[(C:)"] < E[(C:)M,
and
E[(C))*] < E[(C)". (18)

The above readily yields computable bounds for E[X,’] and E[XfX{], 2,7,0 = 1,..., N,
for the case K; = 1. Indeed, for K; = 1, the expressions for E[Q(_f] and E[__)Q_)Q] are
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obtained by solving the sets of linear equations in Takagi [13], p. 106 (since r; = 0 for
all 7). The expressions for E[Yf] and E[-)_(-fj(_:] (K; = 1) are obtained by solving sets of
linear equations which are quite similar to those in Takagi [13], p. 106, or by using the

solution in [9].

The bounds obtained on E[C;] following this approach coincide with those in
(5). Moreover, this approach is also useful to lower-bound the second moment of the
cycle times, since expressions for E[(C;)?] are known (see e.g. [6, 7, 8]). Expressions for
E[(C:)?] can be obtained as the solution of the set of linear equations in [9] (which are

similar to the one in [6, 7, 8)).
For the case K; > 1, one can use (17) to get computable upper bounds for all

moments of X{ . Indeed, for calculating any moment, one obtains in system (iii) a linear

set of equations using the same method as in Takagi [13]. By (18), one can use [9] (an

approach similar to the one in [6, 7, 8]) to calculate the moments of C; in system (iv),
thus obtaining upper bounds for the second moments of the cycle times in the original

system.

2.3 Generating Functions

We define a set of multi-dimensional joint generating functions, describing the vector-

state of the system at a polling instant of queue i.
Let Fi(z) = B [Hgv:l zf‘l]. Let d; = di (TN, Ai(1 — z;)) and define similarly b; and 7;.

Also, set d = d* (T, Aj(1~2;)) and set similarly b and 7. Using the evolution equations

we obtain:
Fz’+1(§)
5 U XIK X+ { X2 ARMABON f  Xi+ { XK A, (R4, (Bi(XiN)]
= d,E z; Zj
i=1
i#i

N N y . i .
H zX']E Hz4j(R‘)+Aj(B‘(X‘))1{X3 > K,-}+z;)("1{X: < K;}

il
2
bty

X;]
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N . .
ied 11 =¥ [f,.bf‘q{x,.‘ > I} + 25X < K

2
i=1

i

it

di | 7 (Fi(zlazh---1zi—1,biyzi+1:---azN)
X} x? g Xxi o xHt Xy i
—BEN AT X < k)
X} x? xio xi# X i -
+E<zll'32""zi"ze+'1 <ayt WX < K}

For K; = 1 we get a simpler relation:

Fin(z) (19)

~

= d,’ [ﬁi-p’i(zhzh sery zi—lybi)zi-i-h "',ZN) + (1 - Fi)Ff(Zla Zi, sevy Z;_],O,Z,‘.‘.l, reey ZN)] .

The probabilities in (3) and (4) are given by

1 d™Fy(1,...,1,2,1,...,1)
m! dzm

P(Xf =m)=

z=0

where z is in the ¢th place in z.

Note that for the completely symmetric case Fi(#1, ..., z2n) = Fip1(2n, 21,0, 28 -1)-

We may thus define F(z) = Fi(z), and obtain from equation (19),

F(21,.28) = da [f1P(by, 21, 0y 2na) + (1= F1)F(0, 21,00y 28 )] - (20)

2.4 Waiting Times

Following Takagi [13], we define the random variables at steady-state:

Li(n) = number of jobs at station ¢ that the nth departing job from the station (counting
from the moment that the station was last polled) leaves behind it.

L; = number of jobs at station 7 that an arbitrary departing job from the station leaves

behind it.
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Accordingly, we define the moment generating function: Qi(2) = E [z["’J. As
the distributions of number of jobs in the system at epochs of arrivals and epochs of
departures are identical (see Kleinrock Vol. 1 [10], p. 232) then, by the well known
PASTA phenomenon (Poisson Arrivals See Time Averages), Qi(z) also stands for the
moment generating function of the number of jobs at station ¢ in steady state at an

arbitrary point in time. Following arguments similar to those in [13], p. 78, one gets

B (T, 01X} 2 K}
Qi(z) = E(XN{Xi> K.}

Set b = bf(A; — Miz). As Li(n) = X} + Ai(R:) — n + Ai(Bi(n)), the evaluation of the

expression for Q;(2) results in:

b xi xi] ! Sl g
o {E [z i —b; '] — g P(X;=7) (z’ —(b.‘)’)}

As special cases, for K; = 0 (see also Takagi [13] p. 109) and for K; = 1 we obtain

Qilz) = ‘E(_X)ZET:'E") (B[ -8} xriua - =),

from which, by differentiation, we derive

(E[(X)*] = EIX]]) (1 + p)

QE[X,'] + Airi. (21)

ElLi]=pi +

We may obtain the quantities E[X{] and E[(X})?] by differentiating F;(z) at z = 1.
For K; = 1, Fi(z) may be computed by solving a set of N implicit equations given by
(19). Numerical methods can be used for the calculation of these quantities (e.g. the
DFT approach, [11]). However, as mentioned before, the complexity of numerically
solving these equations grows exponentially with the number of queues. Therefore, when
moments of X! are required, it seems more practical to use the bounds introduced in

Sub-section 2.2.

The LST and expectation of the waiting time W; of an arbitrary job in queue 2

are obtained using the relations
Wi (xi = Miz)bi (A = Aiz) = Qi(2),

MNEW) + Mb = E[L.']. (22)
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2.5 Bounds on the waiting times

E[L;] and E[W;] can be bounded immediately by substituting appropriately in (21) and
(22) any upper and lower bounds on the two first moments of X} (see Sub-section 2.2).
We thus get

(Bl(X) ow = B[Xlup) (1 + pi)
2E(X]]up

pi+ + AT (23)

(E[(Xi‘.)z]up - E[Xii)]low) (I+pi)
2E[X)tow

< E[Li] <pi+ + i,

(XD )ow = E[X{]un) (1 + i)
2EN X

(EUXDYup — EIXDiow) (1 + 5)
2\ E[ X 10w

+ri < BW) < e

(24)

Note, however, that if we define W; and W; according to the convention introduced prior

to (12), then both inequalities below need not hold
EW,) < E[W)] < E[W))].

Indeed, a counter example is presented in [2], Section 5.

3 Cyclic Polling with Globally-Gated Regime

In this Section we consider an extension of the cyclic-polling Globally-Gated regime
introduced by Boxma, Levy and Yechiali [4]. In that scheme there is one prespecified
station (say station 1), and whenever the (cyclically moving) server arrives to that station
all jobs present in the various stations are marked (global-gating instant). Upon visiting

a station, the server serves only marked jobs.

The novelty of our approach is again in incorporating into the model the real
phenomenon observed in many polling systems that the additional switch-in time into a
station is incurred only if service is to be given to jobs in that station. This happens if
the number of marked jobs is at least one. We thus focus in this section on the FIFO

threshold discipline with K; =1,1=1,...,N.
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3.1 Cycle Duration and Number of Customers at a Gating

instant

Let X; denote the number of jobs in station j at the polling instant of station 1 (i.e.,
at gating instant). As in section 2, consider the system in steady-state and define D as
the total walking time in a cycle, and R; as the switching time into the ith station. A
cycle is defined as the time between two consecutive gating instants and its duration is

denoted by C. We have:

C= D+iB;(X;)+§:1{Xi > 0} R;. (25)

i=1 i=1

Let v(s)=E [e"c]. For any set S of stations, S C {1,2,..., N},

ELHS;:;"] = E{E Leﬂsz}‘io} {exp( J%A(uzj )} (26)

=7 (E Af(l —zj)) 3
jes

where the product over an empty set equals 1. Hence the joint probability generating

function of the number of jobs at a gating instant is obtained as a function of the LST

of the cycle duration, which we obtain (in an implicit form) as follows:

E{E[e*

=
&
I

x,,,..,xN]}=d~(s>E{1’:1(b~3)) I E[e”Rl]}. )

jt X_,')O

I CO el (29
- E{f[(b;(s))x’ I E[e"Rf]l{X1>0}}

LAVNIRY ¢ —sR
+ESTI (55()” T1 Ele™®]1{x: =0)

=1 5:X;>0
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N
= ri()ETT (55(9) I Ee®)
o MR

N -
+ =@ ESTTEE)” 1T Bl ®]1x, = 0)

I=1 itX;>0
i1

N

N 5y~1
. » " X; .
+Z(Hmﬂ0—mMEIMH»’IIEF@M&=®
Jj=1 j:X >0
i>i
The expectation on the right-hand side of the last equation can be further expanded

following the same procedure. We thus obtain,

N
E{TI (b}(s))X: I B[] 1x, =0 (29)
= jZXj >0
i>i
N X
T -

N
) ( I1 r;(.4)> (1-r() E H(b;(s))x’ I E[®]1{X, =X, =0)

1> \h<J<in J=1 jiXj>o0
j>ia

By applying the procedure in expressions (28) and in (29) repeatedly, and by using the
fact that for any set § C {1,.., N},

X, Y
r{ (5)) ™" 1{X; = 0, ;es} (ZAJ—EA )
j i=1 i¢s
we obtain from (27),

N N
v(s) = d"(s (Hr ) o] (Z i~ Z/\jb}(s)) (30)
J=1 j=1

=

#
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N [i-1 N N
+ d*(s) Y (H T}(S)) (1-m(9) (H '“}(S)) AP Aib(s)

i1=1 \ j=1 > j=1 j=1
i#i

N N
+ £ (1 s0) 0-ne) | (I50) | £a- £ e
i2>dy \i1<i<iz J>iz =1 j=1

j# i

+ X ( II r;(s)) (1—r, () [7(§,\])]

INDiN—1 \IN—1<i<iN J=1

In order to simplify the above expression we introduce the set
S={{i1,.ix}, 1<E<SN, 1<1 < <... <4 SN},

where the elements of S are sets denoted by S; (7 = 1,...,|5|) and §; = {i{',.‘.,z’f;(j)},

with k(§) denoting the number of elements in S;. Define i} = 0. We then have

sl ()
v(s) = d'(S)Z(H( I "Z(S))) (31)

J=UAI=0 \dan<idl,,
k(5) N
x [ TI(1—r3(s) IRHOIRIDIEEDIRTHO IR
=1 ! l>ii(j) =1 1¢5;

For the ‘weakly symmetrical’ case in which r}(s), A; and b!(s) do not depend on i, but

only the walking times d; depend on ¢, Eq. (31) reduces to

ENL0) i
1(s) = d'(S)Z(H (7‘1'(8))"“_"“> (32)

=1 \ =0

x (1= 73(8))* D 3 ()] VR oy (N g = (N = R (3))MaBi(s))
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As in Boxma, Levy and Yechiali [4], we introduce Cp and Cpg, the past and residual time,

respectively, of a cycle. We have (see {4] eq. (2.11)):

pler] = b femon] = 151060 @
B(Cr] = E[01—E[fc]] (34)

3.2 First two moments of C and X

To compute the first two moments of the cycle duration one may differentiate Eq. (31).

However, a direct approach is simpler. Let P;{0) denote the probability that station i is

found empty at the (global) gating instant. Taking expectation of (25) yields:

N N
ElCl=d+ ;p;E[C'] + g(l = Pi(0)r: (35)
and
P(0) = E [e™¢] = 4(\). (36)
Thus,
E[C] d + El:ll(— ; R(O))?‘l d + Z‘-11(~ ()‘i))ri. (37)
Using again eq. (25) the second moment is given by
N 2 N
E[CY = dP+E [(z B,-(X,-)) } + Z (1 — ()
+ SrrE[{X: > 0}1{X; > 0}] (38)

]

+ 2dpE C]+2dz 1 — y(A))ri +2Zr. [p.E[C + Y LE(X1{X; > 0})] -
=1 J#L

To complete the calculation of E[C?] we use E(X;) = NE[C) and E[(X;)?] = LE[C] +
M E[C?). Furthermore, for i # j,

E(X;1{X; > 0}) E(X,) — BE(X;1{X; = 0}) = LE[C] — E(Xi1{X; = 0}),
A p [ d

E(X:1{X; =0}) z ]z.=1.,j=o= =

dz; v (A1 = z) + M),y
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d

= )\,‘ E;’)’(S) - y
CE(H{Xi > 0}1{X; >0}) = 1—v(X) =) +v(A+A),
E[X:X;] = M\E[C,

Thus,

i

2
E [(ENIB.'(X.')) jl levar(B;)EX; +Zb"biE(Xin)

iJ

= SR+ ¥ s EICY

=1 i,

- IXV; MBI E[C) + pRECY).

1=1

Substituting these expressions in (38) results in

Bl = (1= ) (49 + 40810 + S ABPE(C]+ 52(1 = 7(A)r?

) o
a=Aj

N N
+2d Y (1 — (A )i+ Do miriy(hi + X)) + 23 rips [E[C] +3 %’7(5)

i=1 i# i=1 IR

3.3 Bounds on moments of C' and X;

Several approaches, similar to those used for the Gated regime, can be applied to obtain
bounds on moments of C and X;. We first note that (37) implies that the trivial bound
(5) on the expected cycle duration holds for the Globally-Gated regime as well. Since
X; are distributed like the number of Poisson arrivals (with rate A;) during a cycle time
C, we can apply again the approach based on Jensen inequality, which implies that (11)
holds for the Globally-Gated regime too. The bounds based on the stochastic ordering
(12) and (13) can be shown to hold as well. We exploit this to further improve the upper
bound on C. Consider system (i) and (ii) defined prior to (12). It follows from (13) that

—Q Zst -C Zat "6a

so (6) now implies that (for s > 0)
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3(s) < 7(s) < 7(s).
Combining this with (37) finally yields

d+ (1 - y(A)ri < B[C] < d+ Ef_q(l = F(A:))rs
1-p = - 1-p '

(40)

The advantage of using this approach for the Globally-Gated regime is that explicit
expressions exist for (:), and similar ones can be derived for 7(:), see Eq. (2.7) in [4].

Clearly, since E[X;] = A\E[C], the bounds (40) result in corresponding bounds on E[X;].

Remark: For K; > 1 it follows easily that the bounds (7), (12), (13), (14), (15) and
(16) hold as well (with X; replacing X{). (12) and (13) imply (5). One can easily derive
exact expressions for systems (iii)-(iv) using the same approach as in [4]. System (iv)
can be seen as a special case of the standard Globally-Gated model [4], if one adds an

additional dummy station, (with no arrivals), at which the global gating occurs.

3.4 Waiting Times

Consider an arbitrary job M at station k. Its waiting time is composed of (i) the residual
cycle time Cp, (ii) the service times of all jobs who arrive at stations 1 to k — 1 during
the cycle in which M arrives, (iii) the walking times through stations 1 to k — 1, (iv) the
service times of all jobs who have arrived at station k during the past part Cp of the cycle
in which M arrives, (v) the switch-in times that occurred in stations 1,..., k. The first

four terms are identical to those appearing in the ‘standard’ Globally-Gated regime [4].

Denoting by ka) the mth component of the waiting time of M, from equation (2.17)
of Boxma, Levy and Yechiali [4], the sum of the expectations of the first four terms is

given by

ij EW™ =0+ 23_:1 pi + px)E[CR) + E‘j di. (41)
m=1 =1

=1

The expectation of the fifth term is

-1 k-1
EW = ri+ k‘; ril = P(0)) = ri+ 3 i1 — v(X))- (42)

i=1
Note that r is incurred as there is at least one job (M) in station k. Clearly, E[W;] =
T8 _ E[W{™]. It readily follows from (41) and (42) that
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E[Wii1] = E[Wi] = (pks1 + pr) E[CR) + di + Traa — miv(Ae). (43)

As expected, the difference (43) depends on the probability of no arrivals to station k

during a cycle.

Finally, we note that the expected waiting times can be easily bounded by using

Clmu2 Cup2
< < —
ZCup - E[CR] - 2Clow’
where Ciow (Cup) and CZ,, (C2) are arbitrary lower (upper) bounds on the first and

second moments of C. For bounds on (1 — v();)), one can use the bounds derived in

(40).

4 Elevator-Type Polling, Globally-Gated Regime

In this Section we consider an Elevator-type polling procedure in which, instead of mov-
ing cyclically through the stations, the server first visits the stations in the order 1,2,...,N,
(‘up’ cycle), and then reverses its orientation and visits the stations in the opposite di-
rection (‘down’ cycle), 1.e., going through stations N,N-1,...,2,1. It then changes direction
again and so on. We assume that the walking time distributions are the same in both
directions, i.e., the walking time from any station j to station 7 + 1 has the same distri-
bution as the walking time from station j + 1 to station j. Note that, compared with
a cyclic polling procedure, the Elevator-type polling procedure saves the return walk-
ing time from station N to station 1. Thus, the total walking time in any direction is
D' = ©N' D; with &, d'® and d”(s) denoting, respectively, the expectation, second
moment and LST of D'.

We comnsider again a FIFO threshold discipline with a Globally-Gated regime,

where a new (global) gating instant is recorded at the beginning of each up or down cycle.

(This model, without switch-in times and with K; = 0 was introduced and analyzed by
Altman, Khamisy and Yechiali [3]). As in [3], a ‘cycle’ will be either an up cycle or a

down cycle, and the distribution of its duration does not depend on the direction.

4.1 Cycle Duration

The discussion above is summerized in the following proposition, whose proof follows the

same arguments as in Lemma 1 of {3].
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Proposition 2 The distribution of a cycle duration (in steady state) does not depend on
the direction, and the expressions for the distribution and moments of the cycle duration

are those given in Section 3 (see (30), (85) and (39)) where D' takes the role of D.

4.2 Waiting Times

Consider an arbitrary job M at queue k. As the distributions of the up and down cycles
are the same, with probability 0.5 it arrives during an up cycle, and with probability 0.5

it arrives during a down cycle. Thus, denoting the waiting time by W}, we can write

server ]) . (44)

moves down

EW,] =05 (E [Wk

server ] +E [Wk
moves up

Below, we shall restrict to K; = 1,1 =1, ..., N. The waiting time of job M, if it arrives
when the server moves down, is composed of (i) the residual cycle time Cg, (ii) the
service times of all jobs who arrive at queues 7 < k during the (down) cycle in which
M arrives, (iii) the walking times from queue 1 to queue k, (iv) the service times of all
jobs who arrive at queue k during the past part Cp of the cycle in which M arrives,
(v) the switch-in times that occurred in stations 1,...,k. As all cycles possess the same

distribution, using (36), (41) and (42), we write

k~1 k=1 k-1
E[W,|down] = (1 +2 Z pi+ px)E[CR] + Z di+re+ Z ri(1 —~v(A). (45)
i=l i=1 i=1
Similarly,
N-1

N
E[Wilup) = (1 +2 fj pi+ pr)E[Cr] + Zk d; + 1 + ; ri(1 = y(A)). (46)
i=k+1 1= i=k+1

Combining (44), (45) and (46) we obtain

E[Wi) = (1 + p)E[CR] + 0.5d" + 7 + 0.5 ri(1 — v(\))- (47)

ik
E[Cg] is given by (34), (37) and (39) with d’ and d'® replacing d and d?, respectively.
It follows that whenever r; and \; are equal for all channels, the expected jobs’ waiting

times are equal in all stations. This generalizes the ‘fairness’ result reported in [3]. (For

further discussion on fairness, the reader is referred to Boxma [5]).
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