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A COMPLEXITY REDUCTION FOR THE LONG-STEP
PATH-FOLLOWING ALGORITHM FOR LINEAR PROGRAMMING*

D. DEN HERTOG?, C. ROOS!, AND J.-PH. VIAL}

Abstract. A modification of previously published long-step path-following algorithms for the so-
lution of the linear programming problem is presented. This modification uses the simple Goldstein—
Armijo rule. A \/n reduction in the complexity bound is obtained, while a linesearch may still be
done. Depending on the updating scheme for the barrier parameter, the resulting complexity bounds
are O(n3L) or O(n33L).
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1. Introduction. The original O(n®’L) complexity bound of short-step path-
following methods was reduced to O(n3L) by Vaidya [15); Gonzaga [6]; Kojima,
Mizuno, and Yoshise [9]; and Monteiro and Adler [11]. This reduction was achieved
by using Karmarkar’s [8] partial updating scheme. Their partial updating analysis is
based on steps of a fixed, short length, which fits into short-step methods in a natural
way. In Mizuno and Todd [10] a partial updating analysis for an “adaptive-step”
path-following algorithm is given.

In Roos and Vial [14] a long-step path-following algorithm is proposed, which is in
fact a natural implementation of the classical logarithmic barrier function approach.
The number of reductions of the barrier parameter is O(L). Each reduction is followed
by a series of inner steps, aiming at getting close to the analytic center associated with
the current value of the penalty parameter. It was proved that at most O(nL) inner
steps are needed. This means that the total complexity is O(nL).

This result was also obtained independently by Gonzaga [7] in a more general
approach. He also showed that if the barrier parameter is reduced by a factor 1 —
(v/+/n), v > 0, then at most O(y/nL) reductions and at most O(1) inner steps are
needed. So, the total complexity of this variant is O(n33L).

In this paper we show that, using a Goldstein—Armijo rule to safeguard the line-
searches of the barrier function, a y/n reduction in the complexity bounds can be
obtained for both versions. As mentioned above, the partial updating analysis in [15],
[6], [9], and [11] is based on steps of a short, fixed length, and so it cannot be used in
long-step algorithms. The Goldstein—Armijo rule was introduced in the complexity
analysis for Karmarkar’s [8] projective algorithm by Anstreicher [1]. Anstreicher and
Bosch [2] used the rule to improve the complexity bound for Ye [16] and Freund’s [4]
affine potential reduction algorithm.

Some new aspects are used in the analysis. We will use quadratic convergence
in the neighbourhood of the central path to prove some properties of nearly centered
points. This also enables us to improve Gonzaga’s (7] results. Also, the reduction in
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the barrier function value after an inner step is proved in a more natural way by using
a Taylor expansion.

The paper is organized as follows. In §2 we prove some properties of (nearly)
centered points. Then, in §3 we describe our algorithm and in §4 we prove that the
algorithm reduces the complexity bound by a factor /n.

Notation. As far as notations are concerned, e shall denote the vector of all
ones. Given an n-dimensional vector £ we denote by X the n x n diagonal matrix
whose diagonal entries are the coordinates x; of x; 2T is the transpose of the vector
z and the same notation holds for matrices. Finally ||z|| denotes the I, norm.

2. Properties near the central path. We consider the linear programming
problem:

(P) min {ch Ax =b,x > 0} .

Here A is an m X n matrix and b and ¢ are m- and n-dimensional vectors, respectively;
the n-dimensional vector z is the variable in which the minimization is done. The
dual formulation for (P) is:

(D) max {67y : ATy + s =¢,5 > 0}.

Without loss of generality, we assume that all the coefficients are integers. We shall
denote by L the length of the input data of (P).

We make the standard assumption that the feasible set of (P) is bounded and has
a nonempty relative interior. In order to simplify the analysis we shall also assume
that A has full rank, though this assumption is not essential.

We consider the primal logarithmic barrier

T n
(1) fa,w) =2 =Y gy,
e

where p is a positive parameter. The first- and second-order derivatives of f are

Vf(-’l?, p’) = % - X_lea
Vif(z,n) = X2

Consequently, f is strictly convex on the relative interior of the feasible set. It also
takes infinite values on the boundary of the feasible set. Thus it achieves a minimum
value at a unique point. The necessary and sufficient first-order optimality conditions
for this point are:

ATy +s=c¢, $>0,
(2) Az = b, x>0,
Xs = pe,

where y and s are m- and n-dimensional vectors, respectively. It is well known that
the necessary and sufficient first-order optimality conditions for the minimum of the
dual logarithmic barrier function are also (2).

Let us denote the unique solution of this system by (z(u), y(u), s(#)). The primal
and dual central path is defined as the solution set x(p) and y(u), respectively, for
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g > 0. It is well known that the duality gap in (z(u), y(u), s(u)) satisfies z(p)Ts(p) =
nu. Hence, if 4 — 0, then z(u) and y(p) will converge to optimal primal and dual
solutions, respectively.

The following lemma states that the primal objective decreases along the primal
path and the dual objective increases along the dual path. These results also follow
from Fiacco and McCormick [3]. We will give another simple proof.

LEMMA 2.1. The objective cTz(u) of the primal problem (P) is monotonically de-
creasing and the objective bTy(u) of the dual problem (D) is monotonically increasing
of 1 decreases.

Proof. Using the fact that z(u) and y(u) satisfy (2) and taking derivatives with
respect to i we obtain

ATy 4+ 6 =0,
(3) Az’ =0,
Xs' + 82’ =e,

where the prime denotes the derivative with respect to y. Now, using the relations of
(2) and (3), we find

Tz’ = ()T (s + ATy) = (2")Ts = eT(Sz') = (Xs' + Sz')T Sz’
_ /.L(IL‘I)TS, + (xl)TSaxl — (:E’)TSZ(L" > 0’

where the last equality follows because (z')Ts’ = —(Az')Ty’ = 0. This proves the
first part of the lemma.
To prove the second part of the lemma, we multiply the last equality of (3) by

AS1:
ASTIX s + Az’ = AS e,
which reduces to AX2s’ = b. Taking the inner product with 3’ results in
By = ()T AX%S = (ATY) X% = ~(s)T XS < 0.
This proves the second part of the lemma. D

Roos and Vial {13] introduced the following measure of the distance of an interior
feasible point to the central path:

@ 6o, = min {

‘Xs
——e
u

:ATy+3=c}.

The unique solution of the minimization problem in the definition of §(z, 1) is denoted
by (y(z, p), s(z, ). It can easily be verified that

z =z(p) < 8(z, 1) = 0 = s(z,p) = s().

The next lemma states that there is a close relationship between this measure and
the projected Newton direction p(z, 1), which is obtained from (cf., e.g., [5])

® ) ()-070)
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LEMMA 2.2. For given x and p, 6(z,p) = || X " 1p(z, p)]l-
Proof. From (5) we can derive that p(x, u) = Xq, where

Xs
(6) g=e— —
I
with
(N s=c— ATy
and
(8) y=(AX2AT)"'AX (Xc — pe).
It can easily be verified that s = s(z, ). Thus the lemma is proved. O

We note that a closed-form solution for p(z, i) is given by

(9) p(z, p) = =X Pax (% - e) :

where Pax denotes the orthogonal projection on the null space of the matrix AX.

Consequently, the projected Newton direction and the scaled projected gradient di-

rection associated with f coincide. In the following we will write p instead of p(z, u).
Now we will prove some fundamental lemmas for nearly centered points.
LEMMA 2.3. If § := 8(z, p) <1, then y := y(z, u) is dual-feasible. Moreover,

w(n —6v/n) < "z — b7y < p(n + 6v/n).

Proof. By the definition of s(z, ) we have

This implies s(x, ) > 0, so y{x, ) is dual-feasible. Moreover,

o ()

Xl _ eH <L
p <

acTs(m, D) _ n‘ —

. XS(.’I?,[I,) __eH — 5\/%'.

w

Consequently, since 27 s(z, u) = cTz — bTy,
p(n —6vn) < cTx —bTy < p(n + 6y/n). o

LEMMA 2.4. If 6(z,pu) < 1, then z* = x + p is a strictly feasible point for (P).
Moreover,

8(z*, p) < b(z, p)*.

Proof. In the proof we make use of the vector ¢ defined by

Xs(z, p)

t= 2000

b
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Note that
*=z+p=z+ X(e—t)=2z—- Xt.
From é(z, #) < 1 we deduce that ||t —¢|| < 1. Hence
2¢e —t > 0.
As a consequence one has, since z > 0,
¥ =2r - Xt=X2e—t)>0.

So z* is strictly feasible, because Ax* = Az + Ap = b.
The definition of s(z*, ) implies the following;:

* *
X*s(z*, 1) _e” <
I

aﬂm=}

Xrslw,pm) _ e” = X*X"Yt—el.
7
Using that z* = 2z — Xt we find
X*XH-e=0Q2X - X)X t—e=2t-Tt—e=(E-T)(t—e).
Hence
6(z*, p) < m?x(l —tilllt —e|| < 6(z, p)?.

LEMMA 2.5. If § := §(z, ) < 1, then
2

F@ pm) = fla(u),m) < 753

Proof. The barrier function f is convex in z, whence
fle+p,n) 2 fz,p) +p"Vi(z,p).
Now using (9) and AXX 'p=Ap=0,
pIVf(e,n) = (X 'p)TXV (2, p)
= (X"'p)" Pax(XV f(z, p))
=-(X"'p)TX"p
(10) = —§2,

where the last equality follows from Lemma 2.2. Substitution gives

f(m+paﬂ) _>_f($aU)-‘623

or equivalently,

(11) f(m,u) —f($+pa/1') < 82.

75

Now let x° := z and let z°,z!,22,-- - denote the sequence of points obtained by

repeating Newton steps, starting at 2z°. By Lemma 2.4 we have

(12) 8(at, ) < 6(z°, ) = 6%
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So, using (11), we may write

e ]

Fm,m) = fl@(w),m) =) (f@, 1) - @, )

t=0

<Y (et w?
=0

00 i1
<) e
i=0

62

LEMMA 2.6. If § := 6(x, p) < 1, then

6(14+6
¢%a — ()] < XDy vm

Proof. From (10) we have p? V f(x, u) = —62. On the other hand,

p'Vf(z,u) =p" (% - X‘lf:)

T
c
=P _ eTX_Ip.
m

So we have

T

il -824+efX"1p

7

or

cTp=u(—6%+e X 1p).
Using the Cauchy—Schwarz inequality, we obtain
le” X~ p| < | X pllllell = 6v/n,

where the last equality follows from Lemma 2.2. From this we deduce that

6
(13) 7] < (@ + 0y =5 (14 7= ) i < 8014 8) v
Again, let 2° := z and let 2°, 2,22, -- denote the sequence of points obtained by

repeating Newton steps, starting at 0. Then we have

>

Z (CT.’,Cl _ CT:U'H-I)
=0

et .
<Y |Tp(at, )]

=0

¥z — T (u)] =
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<

§(z*, p)(1+ 6(z*, p))pv/n

M8 EM8

82 (1 + 62" uy/n

=0
<1 +8)pvn Y 8%
=0
5(1 + 5)

——=p/n,

where the second inequality follows from (13) and the third inequality from (12). 0

In [7] results similar to those in Lemmas 2.5 and 2.6 have been obtained in a
different way for more centered x, namely, §(z, ) < 0.1. Our results hold for 6(z, x) <
1. Moreover, for §(z, 1) < 0.1, our bounds are tighter.

3. The revised long-step algorithm. Long-step barrier methods work as fol-
lows: fix p, do linesearches along Newton directions until the iterate is in the neigh-
bourhood of the current center, then reduce the barrier parameter, and repeat this
process. Hence, at each iteration of these methods, one has to solve the linear system
(5). Essentially this means that the (m+n) x (m+n) coefficient matrix of this system,

denoted M,
X-2 AT
5 )

has to be inverted. Hence, assuming that m = O(n), at each iteration O(n3) arith-
metic operations are needed. The matrices in two successive iterations differ only
due to changes in X. Now consider the hypothetical case when only one entry of
x changes. Then the new coefficient matrix M’ differs from M only by a rank-one
matrix. This makes it clear that we can write

M =M+ wT,
where u and v are suitable vectors. With the help of the Sherman-Morrison formula,

M 1ypT M1

M T—1=M—1_
(M +uv™) 1+oTM-1y’

the inverse of M’ can be calculated from the inverse of M in only O(n2) arithmetic
operations. If we require an exact solution of the system of equations we will generally
need to make n such rank-one modifications. Therefore, O(n3) arithmetic operations
will be needed at each iteration.

However, assume that instead of solving system (5) we solve

oo ()G e

where X is a working matrix closely related to X. Actually, the diagonal term Z; of X
is updated during the inner iteration only if Z; differs too much from z;. If a limited
number of components of Z are updated at a given iteration, a reduced computational
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cost can be achieved using the Sherman—Morrison formula. Of course one does not
obtain the exact projected Newton direction p, but an approximation p of it.

The purpose of this paper is to show that by performing a safeguarded linesearch
along P, one can achieve the double goal of enforcing a significant decrease of the
barrier function at each iteration, while maintaining a relatively small number of
updates in the components of Z, thereby achieving a computational saving in solving
(14).

In order to work out these ideas we introduce the diagonal matrix D, with diagonal
element d;, defined by

X =XD.

Let p > 1 be some fixed number. The algorithm is designed so as to maintain the
inequality

(15) <d;<p, 1<i<n

R

Karmarkar [8] already used approximate solutions and partial updating to reduce the
complexity bound for his algorithm. Using these approximate solutions for X, we
will show that on the average only /n rank-one modifications are needed, without
increasing the complexity bound for the required number of iterations. This can be
reached by submitting the linesearch to a Goldstein—Armijo condition.

To measure the distance to the central path, we shall now use a slightly different

metric. We define
o[-
m

Again, there is a close relationship between this measure and the approximate Newton
direction p. It can easily be verified that

8(z, 1) = 1 X5l

(16) §o,) = i {

:ATy+s=c}.

A closed-form solution for p is
~ X
ﬁ=~XRWD(—E—0.
U
It is clear from the definition that &(x, ) = 0 if and only if z = z(x). In other words,
we will have
6(x, 1) =0 < b(z,pu) = 0.

It is easy to verify that
1 ~
(17) ;“%M)55@MOSPM%M)

Consequently, if §(z, p) < —;—, then we have §(z, u) < 1, and then the lemmas proved
in the previous section hold.
The Goldstein—Armijo condition can be formulated as follows:

Af o _ dia+ap )

18 a=0;
(18) a do la=o
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where Af is the change in the barrier function value and 0 < { < 1. This condition
is a well-known rule in nonlinear programming. It permits significant decreases of
f(z, u), but prevents excessively large steps. Note that we have

df (z + ap, c N\ Yo ~
) LEEDL (S xe) g -IX I = -

We will now describe the revised algorithm.
Revised long-step algorithm

Input:

o is the initial barrier value, uo < 2%;

0 is the reduction parameter, 0 < 8 < 1;

p is the coordinate update parameter, p > 1;
¢ is the Goldstein-Armijo factor, ¢ < 3;

20 is a given interior feasible point such that §(x, pg) < le;

begin
z:=2% % :=z% p = pp;
while z7s(z, ) > 27% do
begin (outer step)
while §(z, p) > 55 do
begin (inner step)

D:=XXx"1
& = argminaso { f(z + b, ) 1 7 + ap > 0, AL > 8w, w2}
z:=x+ap

for j :=1to n do if (Z;/x;) € (3,p) then &; :=x;
end (inner step)
pi=(1—0)p;
end (outer step)
end.

For finding the initial point that satisfies the input assumptions of the algorithm, we
refer the reader to, e.g., Renegar [12].

4. Convergence analysis of the revised long-step algorithm. We first give
an upper bound for the total number of outer and inner iterations. Finally we derive
an upper bound for the total number of coordinate updates of z.

Henceforth we shall denote {z?}, j = 0, 1,2, - -, the sequence of inner iterates and
{pe}, & =0,1,2,---, the sequence of parameter values during the successive outer
iterations. Suppose that x7 is the current iterate when puy is calculated. Then set
pr = J. Take po = 0. Then for any j > 0 there is a k£ such that pr < j < pg+1, and
the value of 1 used in the calculation of z7 is ux = (1 — 6)* .

THEOREM 4.1. After at most K = O(%) outer iterations, the algorithm ends up
with a primal and a dual solution such that z7s < 2L,

Proof. Since é(z, p) < -21[; implies 6(x, ) < %, we can derive an upper bound for
the duality gap after K outer iterations from Lemma 2.3:

1
zTs < px (n+ 5\/;:,—) ,
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where px = (1 — 8)X yg. This means that z7s < 27% certainly holds if
K 1 -L
(1 —6)*po (n+§\/ﬁ) <27
Taking logarithms we obtain

K> L+In(n+ 34/n) +1npg
- —1n(1 —0)

Since we have assumed that uo < 2%, and since # < —1In(1 — ), this certainly holds
if K=0(%). O

The following two lemmas are needed to derive an upper bound for the number
of inner iterations in each outer iteration. The first lemma estimates the difference in
barrier function value between the starting point and end point of an outer iteration.
The proof is in essence due to Gonzaga [7]. The second lemma states that a sufficient
decrease in the barrier function value can be obtained by taking a step along the
direction p. Moreover, it shows that for any ¢ < %, the Goldstein—Armijo rule (18)
can be enforced with the default value

Thus the algorithm is well defined.
LEMMA 4.2. One has

£ ) = @, m) < 7o (B +3YR) +

W=

Proof. The definition of f(z,u), £ > 0, implies that

e Tz

f(ﬂ:,Hk) = f(.’l),pk_l) + E. — P

T 1
= _ — 1
S+ S (1)
6 Tz

1-6 ltk—l.

= f(z, pr—1) +
Using this we obtain

(20) f@, ) — F@™*, ) = f(@ pp—1) — F@7, 1)

6 T 1
[ Pk Dk+1
1 g 1 (C X cC T )

First note that because xP* and xP*+! are approximately centered with respect to
z{pr—1) and x(pg), respectively, using Lemma 2.6 and § = % for the first and Lemma
2.1 for the second inequality, we find

3 3
cTaPr — TaPrit < cTa(pp 1) + FHR-1Vn = cTa(ur) + Euk\/ﬁ

= Talmr) — () + 5 (2~ Ope-1v
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< (Folmer) = Fy(mer))
— ("2(ur) — 0" y(ix)) + Bpr—1vn
= pg—11 — pEn + pk—1vV"N
= Opp—11 + 3pr_1v/n
= pig—1 (fn + 3/n) .

Second, using the fact that z(ug—1) minimizes f(z(ug—1), #x—1) and using Lemma
2.5 and 6 = %, we obtain

F(xP*, pg—1) — f(aP* pg_1) = f(&P*, pr—1) — F(z(pr—1), pr—-1)
+f(@ (1), pr—1) — F(2P*+, pe—1)
< f(@P*, pp—1) — f(2(pr-1), tie-1)

IA

1
3
Hence, substitution of the last two inequalities into (20) yields

0 1
F(@® ) = f@+ ) < 75 (Bn+3vVn) + 2.

This proves the lemma. O
The following lemma will be used in Lemma 4.4.
LEMMA 4.3. For v > 0 we have:

2

v
<YV— ——mm—.
Il +v) Sv- 5575

Proof. First note that —In(1 + v) = In(1 — 1%;). Now using Karmarkar’s [8]
well-known inequality, we have for v > 0

ln(l v )2__ v _%1(”)22 v P

T 14w

This means that

v
< —y——
W+o) < o+ 5aae =V 2T

LEMMA 4.4. Let 6 := b(x,p), @ := [p(6 + p)]~. Then

Af = f(z,1) - f(o + @, u) z%—ln (1+%

SN———

Moreover,

> (6% for ¢

IA
BN =

i
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Proof. We write down the Taylor expansion for f:

f(a+ ap,p) = f(2, 1) + ap” V f(z, ) + ;a pTV? f(z, 1) + Z th,

k=3
where t;, again denotes the kth-order term in the Taylor expansion.
Using the fact that
k n
—a L
=2 S okt
=1
we derive by the definition of # and &,
ok & ok & b/ af -
el < T Do lor il = 5 Dol < 5 (Zld &'l ) =5
i=1 i=1

Further,
PV (@, m)p = pTX*p = |[DX'5|* < o587,
and, using the fact that AXX~1p = Ap = 0,

PV f(z,p) = ():f_lﬁ)TXVf(ic,u)
= (XT'P) TP (XV f(z, )
=-(X"'p)TX'p
= 62,

So if apb < 1, we find

f(@+ o, p) < f(z,p) — ab® + a 2078 + Z
= f(z,p) — ab® —In(1 — apé) - apﬁ.
Hence
f(@, 1) — f(z + ap, p) > ab® + apb + In(1 — apé).

The right-hand side is maximal if @ = @ = [p(6 + p)]~*. Note that @pé < 1. Substi-
tution of this value finally gives

) 52 5 5 § ;
(21) Af > ~6 + ~p6 +In|l- ~p6 =é——ln 14+~-1.
p(6+p)  p(6+p) p6+p)) P p
This proves the first part of the lemma. The second part follows immediately from
(21) and Lemma, 4.3:

< < Iy <2 2 <2 ~
cmf148) 88 S 8 Lo O
p) PP 2148 2006+p) 2

(220 Af>

o
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THEOREM 4.5. The number of inner iterations for each outer iteration, denoted
by P, is bounded by

op* 4

Proof. Let us consider the (k + 1)st outer iteration. Let P denote the number of
inner iterations. For each inner iteration we know, by the definition of & and (22),
that the decrease in the barrier function value is larger than

52
206+ p)

Since this expression is an increasing function of §, and since during each iteration
6> %, we have

£2
P,
2p(6+p) — 12p

Consequently, we have

f(@P*t, ug) < f(2P*, pe) — WP-
Equivalently,
1
Epzp < F(@P%, ) — (2P, p).
Now using Lemma 4.2, the theorem follows. O

Consequently, using an additional Goldstein—Armijo rule and approximate solu-
tions does not influence the order of the total number of outer and inner iterations.

The last theorem will give an upper bound for the total number of coordinate
updates in Z. For the proof of this theorem we make use of some results obtained by
Anstreicher [1]. The following lemma will be used in the theorem.

LEMMA 4.6. Letw e R, 0<w<1,andv E€R, v>w. Then

|1 —v||Inw|

Inv| <
| Inv] < 1—w

Proof. Defining

Inz f
= if z#1,
1@): {1 ifz=1,

it is easy to see that f(z) is monotonically decreasing and positive for z € (0, 00).
Hence

Inv

<

Inw ‘ | Inw|

v—1 w—1| 1—-w’

This implies the lemma. O
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THEOREM 4.7. The total number M of coordinate updates of T up to the last
inner iteration N is bounded by

203y (On+3yn 1

Proof. Let k1 be an iteration at which an update of %; is performed. Let k2 > k;
be the first iteration at which Z; is updated again. Then we have

k j j— k i k i—1

2 w_zy :I;Z 1 2 :L“g 2 mg

I I max | —27, —— > max I I o1 I l 7
z; x;

j=k1+1 i z

j=ki+1 T j=ki+1 i

:1:1-ﬁz xfl
=max | Tk ks
331,' 1 zi 2

>p
Taking logarithms and defining
.- L+
= 1 ()l = T
z;

we obtain

ka1 .
(23) Inp < Z |In7|.

J=k1
Let

Inequality (23) can be sharpened to

ko—1
(24) Inp < Z [In#|.
Jj=k1

To prove (24), first assume that for some £, k; < £ < kg — 1, r,ij < %. Then

ka2—1
Inp=|lnff| < > [In#f].
Jj=k1

Otherwise, f‘ij = rij , k1 < j < k2 —1, and (24) holds because of (23). Hence (24) has
been proved.

We deduce from (24) a bound on the total number m; of updates of coordinate %
of Z:

milnp < |In#]|.

o
Il
=)
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Consequently the total number of coordinate updates is bounded by

N-1 n

(25) Mlnp < ZZHnr”ijl

j=0 i=1

In view of Lemma 4.6, with v = #¥ and w = [—1),

(26) |1n7“'7|< |1—"|

p

Since #) =] ifr] > 1 5» and 7 #>r]ifrf <1 5+ We always have
(27) 1= 7] < 1= | = é4l(={) 5]

Substitution of (26) and (27) into (25) gives

p - 14
LI Co

From the inequality between the I, and Il norms,
n o . . N ~ .
Yol B | < Vall(X )T < pv/ll(X 7)1
i=1
Hence

(28)

-1
a;[(X 7).
=0

Since the Goldstein—Armijo condition is satisfied at each inner iteration, for any j and
k such that pp < j < pr+1 (we will write k(j) instead of k to denote its dependence
on j),

f(=zd, Nk(j)z — f(zit, lik(j))‘
Cll(x9)-1pd||2

(29) a; <

Substituting this into (28) we obtain

PPy R (@7, migy) — £ i)
M=to-1n 2 Z (X 3)=15]| '

Since ||(X)~!p7|| > 2L, this implies

_1)2 o7, ui(iy) = @, )

= LS e s )
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Now using Theorem 4.1 and Lemma 4.2 we obtain

203/ (n+3yn 1

Theorems 4.1 and 4.5 imply that N, the total number of inner iterations needed by
the algorithm, is bounded by

N< (121”T40 (6n + 3v/) + 4%:1) o(L).

The total number of arithmetic operations in each iteration, aside from the work due
to coordinate updates, is O(n?). The same amount of work must be done for one
coordinate update. Consequently, the total number of arithmetic operations needed
by the algorithm is (N + M)O(n?).

COROLLARY 4.8.

e If0 < 6 < 1, independent of n and L, then the total number of iterations is
bounded by O(nL) and the total number of coordinate updates by O(n'SL).
Consequently, the total complezity is O(n>°L).

e If0 =v/\/n, v >0 and independent of n and L, then the total number of
iterations is bounded by O(y/nL) and the total number of coordinate updates
by O(nL). Consequently, the total complexity is O(n3L).
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